ESA

Back to Index

French  |  German

N° 46–2003: Golden legacy from ESA's observatory

22 July 2003

Scientists are celebrating the thousandth scientific publication from ESA's Infrared Space Observatory. ISO is fast becoming one of the world's most productive space missions, even though its operational life ended in 1998.

ISO was the first space observatory able to see the sky in infrared light. Using its eyes, we have discovered many new phenomena that have radically changed our view of the Universe.

Everybody knows that when something is heated it glows. However, things also glow with a light our eyes cannot detect at room temperature: infrared light. Infrared telescopes do not work well on the Earth’s surface because such light is absorbed by the atmosphere.

ISO looked at the cold parts of the universe, usually the 'cold and dusty' parts. It peered into clouds of dust and gas where stars were being born, observing for the first time the earliest stages of star formation. It discovered, for example, that stars begin to form at temperatures as low as -250°C or less. Scientists were able to follow the evolution of dust from where it is produced (that is, old stars - the massive 'dust factories') to the regions where it forms new planetary systems. ISO found that most young stars are surrounded by discs of dust that could harbour planets. The observatory also analysed the chemical composition of cosmic dust, thereby opening up a new field of research, ‘astromineralogy’.

With ISO we have been able to discover the presence of water in many different regions in space. Another new discipline, 'astrochemistry', was boosted when ISO discovered that the water molecule is common in the Universe, even in distant galaxies, and complex organic molecules like benzene readily form in the surroundings of some stars.

"ISO results are impacting most fields of astronomical research, almost literally from comets to cosmology," explains Alberto Salama, ISO Project Scientist. "Some results answer questions. Others open new fields. Some are already being followed up by existing telescopes; others have to await future facilities."

When ISO's operational life ended, in 1998, its observations became freely available to the world scientific community via ISO’s data archive. In May 2003 the 'milestone number' of 1000 scientific papers was reached. Even now ISO's data archive remains a valuable source of new results. For example, some of the latest papers describe the detection of water in 'protostars', which are stars in the process of being born, and studies of numerous nearby galaxies.

"Of course we were confident ISO was going to do very well, but its actual productivity has been far beyond our expectations. The publication rate does not even seem to have peaked yet! We expect many more results," Salama says.

Note for editors

ISO's data archive contains scientific data from about 30 000 observations. Astronomers from all over the world have downloaded almost eight times the equivalent of the entire scientific archive. As much as 35% of all ISO observations have already been published at least once in prestigious scientific journals.

ESA is now preparing to continue its infrared investigation of the Universe. The next generation of infrared space observatories is already in the pipeline. ISO is to be followed by the NASA SIRTF observatory to be launched later this year. Then, in 2007, ESA will follow up the pioneering work of ISO with the Herschel Space Observatory, which will become the largest imaging telescope ever put into space.

ISO

The Infrared Space Observatory (ISO) was launched in 1995 and operated from November that year to May 1998, when it ran out of the coolant needed to keep its detectors working. At the time it was the most sensitive infrared satellite ever launched and made particularly important studies of the dusty regions of the Universe, where visible light telescopes can see nothing. ESA will reopen its examination of the infrared Universe when Herschel is launched in 2007.

Herschel

Herschel will be the largest space telescope when, in 2007, it is launched on an Ariane-5 rocket, together with ESA’s cosmology mission, Planck. Herschel’s 3.5-metre diameter mirror will collect longwave infrared radiation from some of the coolest and most distant objects in the Universe. These include forming stars and galaxies.

For more information, contact:

ESA Communication Department

Media Relations Office

Paris, France

Tel: +33 (0)15369 7155

Fax: +33 (0)15369 7690

Dr Alberto Salama, ESA – ISO Project Scientist

VILSPA - Villafranca, Spain

Tel : + 34 91 8131374

For more information about ISO and the ESA Science Programme, visit:

http://www.esa.int/science

For more information about ESA, visit:

http://www.esa.int

For further information:

ESA Media Relations Service
Tel: +33.(0)1.5369.7155
Fax: +33.(0)1.5369.7690



Rate this

Views

Share

  • Currently 0 out of 5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5
Rating: 0/5 (0 votes cast)

Thank you for rating!

You have already rated this page, you can only rate it once!

Your rating has been changed, thanks for rating!

43


Copyright 2000 - 2014 © European Space Agency. All rights reserved.