The importance of measuring time

Determining precise location depends on accurately measuring the distances between receiver and satellite, and that depends on very accurate measurement of the radio signal’s travel time from the satellite to the receiver. As these signals travel at the speed of light, the journey times are tiny fractions of a second.

The receiver measures travel times by comparing ‘time marks’ imprinted on the satellite signals with the time recorded on the receiver’s clock. The time marks are controlled by a highly accurate atomic clock on board each satellite.

These clocks, however, are too expensive to incorporate into standard receivers, which have to make do with small quartz oscillators like those found in a wristwatch. Quartz oscillators are very accurate when measuring times of less than a few seconds, but rather inaccurate over longer periods. The solution is to re-set the receiver’s time to the satellite’s time continuously. This is done by the receiver’s processor using an approximation method involving signals from at least four satellites.

For this system of measurement to work, all satellites need to be synchronised so that they can start transmitting their signals at precisely the same time. This is achieved by continuously synchronising all on-board atomic clocks with a master clock on the ground. These super-accurate clocks can keep time to within one second in 100 million years!

Last update: 3 August 2011

Copyright 2000 - 2014 © European Space Agency. All rights reserved.