ESA's water mission SMOS

ESA's Soil Moisture and Ocean Salinity (SMOS) mission has been designed to observe soil moisture over the Earth's landmasses and salinity over the oceans. Soil moisture data are urgently required for hydrological studies and data on ocean salinity are vital for improving our understanding of ocean circulation patterns.

Launched on 2 November 2009, SMOS is the second Earth Explorer Opportunity mission to be developed as part of ESA's Living Planet Programme. As well as demonstrating the use of the new radiometer, the data acquired from this mission will contribute to furthering our knowledge of the Earth's water cycle. The data acquired from the SMOS mission will lead to better weather and extreme-event forecasting, and contribute to seasonal-climate forecasting. As a secondary objective, SMOS will also provide observations over regions of snow and ice, contributing to studies of the cryosphere.

An important aspect of this mission is that it will demonstrate a new measuring technique by adopting a completely different approach in the field of observing the Earth from space. A novel instrument has been developed that is capable of observing both soil moisture and ocean salinity by capturing images of emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2D interferometric radiometer.

Dry earth

Although soil only holds a small percentage of the total global water budget, soil moisture plays an important role in the global water cycle. However, in-situ measurements of soil moisture are sparse but, if we are to better our understanding of the water cycle so that the forecasting of climate, weather and extreme-events can improved, more data are urgently required.

Warm salty tropical ocean

The same is true for data on ocean salinity. There are few historical measurement data, and only a small fraction of the ocean is currently sampled on any regular basis.

Salinity and temperature determine the density of seawater, and in turn density is an important factor driving the currents in our oceans. Ocean circulation plays a crucial role in moderating the climate by, for example, transporting heat from the Equator to the poles.

Ocean salinity is therefore one of the key variables for monitoring and modelling ocean circulation.

Last update: 6 November 2013

Copyright 2000 - 2014 © European Space Agency. All rights reserved.