• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Observing the Earth

    • Understanding Our Planet

    • Securing Our Environment

    • Benefiting Our Economy

    • About understanding our planet
    • Space and Earth Monitoring

      • Land

        • Overview
        • Rivers & lakes
        • Volcanoes
        • Coastal zones
        • Wetlands & deserts
      • Oceans

        • Overview
        • Wind & waves
        • Ocean colour & algae blooms
        • Sea Surface Temperature
        • El Niño
      • Ice

        • Overview
        • Ice and climate
      • Atmosphere

        • Overview
        • Water vapour & clouds
        • Aerosols
        • Ozone hole
        • Climate change
      • Biosphere

        • Overview
        • Forests
        • Carbon cycle
    • About Observing the Earth

      • How does Earth Observation work?
      • How to get Earth observation data
      • Integrating Earth Observation in your job
      • Earth Observation users speak
    • Opportunities with us

      • Education & training
      • International cooperation
      • Milestones & announcements
    • Multimedia

      • Image Gallery
      • Video Gallery
      • Online resources
      • RSS feeds

    ESA > Our Activities > Observing the Earth > Understanding Our Planet

    Volcanoes

    Etna eruption
    Mount Etna

    There are about 1,500 active volcanoes on the Earth's surface - the majority following along the Pacific 'Ring of Fire' – and around 50 of these erupt each year. At least 500 million people live close to an active volcano. Space-based monitoring helps identify those volcanoes presenting greatest danger, and in the aftermath maps the damage done.

    Mass evacuation

    In January 2002 up to half a million people had to flee their homes along the slopes of Mount Nyiragongo in eastern Congo. Scorching lava overwhelmed 14 villages and reaching the regional capital Goma. The sky was darkened by sulphurous clouds of volcanic dust and steam. At least 50 people were killed during the eruption.

    As world population increases, so does the potential threat from every eruption. But there is no way ground-based monitoring can be carried out of all volcanoes across the globe. Many volcanic peaks are inaccessible or sometimes too dangerous to be approached.

    Data from Envisat’s SCIAMACHY
    Sulphur dioxide levels fall two weeks after Etna eruption

    Early warning from space

    But continuously-gathered satellite data can be used to assess risk, and detect the slight signs of change that may foretell an eruption. In Italy, ERS data has been used to study the ancient but extremely active Mount Etna over the course of a decade.


    Radar interferometry shows sub-centimetre-scale movement of Etna's slopes as the volcano's underground magma chamber fills, and builds up pressure for a future eruption. A time-lapse animation of interferometry data shows a volcano that appears to be breathing.

    Reviving 'dead' volcanoes

    The same technique is being applied to volcanoes worldwide. California Institute of Technology researchers used radar interferometry data to survey 900 volcanoes in the Central Andes. They found movement of between one and two centimetres a year on the slopes of four volcanoes previously classed as inactive, located in Bolivia, Argentina and Peru.

    When an eruption begins, optical and radar instruments can image the various phenomena associated with it, including lava flows, mud slides, ground fissures and earthquakes. Atmospheric sensors can identify the gases and aerosols released by the eruption, and quantify their wider environmental impact.

    Last update: 2 December 2009

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    70
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • Related news
      • Envisat captures renewed volcanic activity
        • New satellite image of ash spewing from Iceland’s volcano
          • New satellite image of volcanic ash cloud
            • Congo receives help from space after volcano eruption
            • Related missions
            • ERS overview
            • Envisat overview
            • Earth Explorers overview
            • In depth
            • EO Principal Investigator Portal

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions