BepiColombo operations

BepiColombo – ESA's first mission to Mercury – will be conducted in cooperation with Japan. ESA's Mercury Planetary Orbiter (MPO) will be operated from ESOC, Germany
BepiColombo

BepiColombo – ESA's first mission to Mercury – is based on two spacecraft: the ESA-led Mercury Planetary Orbiter (MPO), a three-axis stabilised and nadir-pointing spacecraft with 11 experiments and instruments, and the JAXA-led Mercury Magnetospheric Orbiter (MMO), a spinning spacecraft carrying a payload of five experiments and instruments. 

The composite spacecraft will reach Mercury using a highly efficient, low thrust, electric propulsion system that will steadily propel it along a series of arcs around the Sun. The trajectory will also be modified by eight planetary flybys: of Earth in July 2018, Venus in 2019 and 2020, and then five times of Mercury itself between 2020 and 2023. BepiColombo will enter Mercury orbit in January 2024.

ROLEMercury observation & exploration
LAUNCH DATE27 Jan 2017 (planned) | Arrival Jan 2024
LAUNCHER/LOCATIONAriane 5/Kourou
LAUNCH MASS4100 kg
ORBITCruise: Heliocentric transfer orbit
At Mercury:
MPO: polar orbit, 400×1508 km, 2.3-hr period
MMO: polar orbit, 400×11 824 km, 9.3-hr period
NOMINAL
MISSION
1 year
+ ESA's first mission to Mercury will provide clues
on how planets form and interact with the Sun +

The mission

Europe's space scientists have identified the mission as one of the most challenging long-term planetary projects, as Mercury's proximity to the Sun makes it difficult for a spacecraft to reach and survive in the harsh environment. Scientists are keen to go to Mercury for the valuable clues that such a mission can provide in understanding the planet itself as well as the formation of our solar system; clues which cannot be obtained with distant observations from Earth.

The objectives of the mission are:

  • Study the origin and evolution of a planet close to its parent star
  • Study Mercury as a planet - its form, interior, structure, geology, composition and craters
  • Investigate Mercury's vestigial atmosphere (exosphere) - its composition and dynamics
  • Study Mercury's magnetised envelope (magnetosphere) - structure and dynamics
  • Investigate the origin of Mercury's magnetic field
  • Confirm Einstein's theory of general relativity
 

MPO will study the surface and internal composition of the planet, while MMO will study Mercury's magnetosphere, the region of space around the planet that is dominated by its magnetic field.

The Flight Control Team

Elsa Montagnon is Spacecraft Operations Manager for the ESA portion of the joint ESA/JAXA BepiColumbo mission to Mercury
Elsa Montagnon

The BepiColombo/MPO Flight Control Team (FCT) will operate the Mercury Planetary Orbiter from a Dedicated Control Room located at ESOC, ESA's operations centre in Germany. Elsa Montagnon was appointed as Spacecraft Operations Manager (SOM) in December 2006.

Under her lead, the team are now working on mission operations definition and building and testing the ground segment. In 2014-15, the team will conduct a series of System Validation Tests, connecting the newly installed mission control systems on ground with the satellite flight model as it undergoes integration and final testing. This enables the team to test and validate flight control procedures with the actual spacecraft.

The FCT will be supported by specialist teams at ESOC from functional areas such as flight dynamics, ground facilities and tracking stations and mission data systems.

Mission operations overview

BepiColombo, one of the 'cornerstones' in ESA's long-term science programme, presents enormous but exciting challenges. Apart from Venus Express, all of ESA's previous interplanetary missions have been to relatively cold parts of the Solar System. BepiColombo will be the Agency's first experience in sending a spacecraft so close to the Sun.

The journey from Earth to Mercury will take some seven years. ESA is responsible for the overall mission design, and for the operation of the composite spacecraft up to the insertion of the MPO and MMO into their orbits. 

On its long way to Mercury, the spacecraft must brake against the Sun's gravity, which increases with proximity to the Sun – rather than accelerate away from it, as is the case with journeys to the outer solar system. BepiColombo will accomplish this by conducting a series of planetary flybys (Earth in 2015, Venus twice in 2016, and Mercury itself in 2017, 2018 and twice in 2019) and by using solar electric propulsion (SEP).

Bepi Colombo mission to Mercury

A brief summary of the key stages in the journey to Mercury are given here:

  • Launch on Ariane 5 in 2017 on an escape trajectory to reach heliocentric orbit for Earth flyby after about 1.5 years (depending on launch date)
  • Cruise trajectory using solar electric propulsion – the Solar Electric Propulsion Module (SEPM), up to 290 mN thrust – plus seven gravity assists: Earth, Venus (twice) and Mercury (five times)
  • Approximate 6.5-year cruise phase to Mercury
  • SEPM jettisoned shortly before arrival at Mercury
  • Capture and insertion by chemical propulsion engines mounted on the MPO
  • On reaching MMO orbit, MMO is released
  • MPO is inserted into final orbit using thrust from chemical propulsion engines
  • For MPO and MMO: one Earth year (four Mercury years) operations in Mercury orbit with optional one-year extension
 

Key mission dates (for a 2017 launch)

DateMission event
2017Launch
16 July 2018Earth flyby
22 September 2019First Venus flyby
4 May 2020Second Venus flyby
23 July 2020First Mercury flyby
14 April 2021Second Mercury flyby
6 July 2022Third Mercury flyby
29 December 2022Fourth Mercury flyby
4 February 2023Fifth Mercury flyby
1 January 2024Arrival at Mercury
1 April 2025End of nominal mission
1 April 2026End of extended mission
 

ESA is responsible for the overall mission design, and for the operation of the composite spacecraft up to the insertion of the MPO and MMO into their orbits. 

Ground stations

During the cruise, the team at ESOC in Darmstadt will coordinate operation of the full composite spacecraft using ESA's 35 m-diameter deep-space tracking station, Cebreros, Spain, supported by the two other 35m stations in Argentina and Australia. Cebreros (DSA 2) will provide telecommanding visibility for some 8 hours daily; a cross-support agreement with JAXA ensures that the Japanese Usuda Deep Space Centre's 64 m-diameter station can be also be used as back-up during critical phases and in case of problems.

ESA's 35 m-diameter deep-space dish antenna, DSA-2, is located at Cebreros, near Avila, Spain. It is controlled, as part of the Estrack network, from ESOC, the European Space Operations Centre, Darmstadt, Germany.
Cebreros 35 m deep space antenna

Japan's JAXA Sagamihara Space Operation Centre, using the Usuda station, in Nagano, will take over the operation of the MMO once it is in orbit around Mercury, while ESOC will remain in charge of the MPO spacecraft.

After arrival at Mercury and separation of the MMO by spin ejection, Sagamihara, located south-west of Tokyo, will take over control of MMO. ESOC will retain control of the MPO until the end of the mission.

The platform and payload

The composite ESA/JAXA BepiColombo spacecraft comprises the Mercury Transfer Module (MTM), the Mercury Planetary Orbit (MPO), a Sun Shield and the Mercury Magnetospheric Orbiter (MMO)
BepiColombo
 

The spacecraft platforms

XXXXX
 Mercury Planetary Orbiter
(MPO)
Mercury Magnetospheric Orbiter (MMO)
Stabilisation3-axis stabilised15-rpm spin-stabilised
OrientationNadir pointingSpin axis at 90° to Sun
OrbitPolar orbit, period of 2.3 h
400 × 1508 km
Polar orbit, period of 9.3 h
400 × 11 824 km
Spacecraft Mass4100 kg (composite; at launch)
1150 kg (in Mercury orbit)
275 kg (in Mercury orbit)
Payload Mass80 kg45 kg
Payload Power100-150 W90 W
TM bandX/Ka-bandX-band
Data volume (downlink)1550 Gbits/year160 Gbits/year
Equivalent average data rate50 kbits/s5 kbits/s
AntennaHigh-temperature resistant, 1.0-m X/Ka-band high-gain steerable antenna0.8 m X-band phased array high-gain antenna
Operational lifetime> 1 year> 1 year
 

The spacecraft payloads

Planetary orbiterCameras, spectrometers (IR, UV, X-ray, γ-ray, neutron), radiometer, laser altimeter, magnetometer, particle analyser, Ka-band transponder, accelerometer
Magnetospheric orbiterMagnetometer, ion spectrometer, electron energy analyser, cold and energetic plasma detectors, plasma wave analyser, and imager
Copyright 2000 - 2015 © European Space Agency. All rights reserved.