• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Space Engineering

    • What we do
    • Directorate of Technical and Quality Management (TEC)
    • Electrical
    • Electrical engineering
    • Control Systems
    • Data Systems
    • Radio Frequency Payload Systems
    • Electromagnetics and Space Environment
    • Power and Energy Conversion
    • Mechanical
    • Mechanical engineering
    • Thermal Control
    • Structures and Mechanisms
    • Mechatronics and Optics, incl. robotics and life support
    • Propulsion and Aerothermodynamics
    • Systems
    • Systems and software engineering
    • Software Systems
    • Systems Engineering, incl. cost engineering
    • Technology programmes
    • Product Assurance
    • Product Assurance
    • Flight Safety
    • Dependability
    • Quality Management and Assurance
    • Materials and Processes
    • Electronic Components
    • Software Product Assurance
    • Standards
    • Requirements and standards
    • European Cooperation for Space Standardization (ECSS)
    • European Space Components Coordination (ESCC)
    • Services
    • ESA calendar of events
    • Subscribe

    ESA > Our Activities > Space Engineering

    LAPCAT II overview

    LAPCAT II is a logical follow-up of the previous, co-funded EC-project LAPCAT I, whose objective was to reduce the duration of antipodal flights (that is, flights between two diametrically opposite points on the globe) to less than two to four hours. Among the several vehicles studied, only two novel concepts – for Mach five and Mach eight cruise flight – are retained in the new program. The project, co-funded by the European Commission under the theme of air transportation, will last for four years and involves 16 partners representing six European member states.

    Starting from the available Mach five vehicle and its related, pre-cooled turboramjet developed in LAPCAT I, the assumed performance figures of various components will now be assessed in more detail, i.e.:

    • ­
    • intake design and performance ­
    • environmentally friendly design of combustor ­
    • nozzle design and performance ­
    • structural analysis

    This will lead to an updated overall Mach five vehicle performance, allowing the definition of a detailed development roadmap.

    Although the cruise flight of the Mach eight vehicle – based on a scramjet – seems feasible, the fuel consumption during acceleration requires a large fuel fraction, severely affecting gross take-off weight. Initial studies of a first stage rocket ejector concept gave poor range with large take-off mass. Integrated design of airframe and engine throughout the whole trajectory is now the prime focus to guarantee an optimal design in terms of range and flight time. Different concepts will be re-assessed and optimised to achieve a final Mach eight concept. Both turbo- and rocket-based engines will be investigated to ensure better performance and fuel consumption during acceleration and cruise. Important points that will be addressed to realise these goals are:

    • proper development and validation of engine-airframe integration tools and methodology
    • high-speed airbreathing cycle analysis
    • off- and on-design behaviour of engine and airframe
    • dedicated experiments to evaluate the design at various operation points in the fields of aerothermodynamics, intakes, combustion and nozzles

    High-Speed windtunnels for aerodynamic and combustion experiments

    1. H2K blow down facility at DLR-Cologne Courtesy DLR
    2. HEG shock tube tunnel at DLR-Göttingen Courtesy DLR
    3. ITLR connected tube at University of Stuttgart Courtesy ITLR
    4. LAERTE connected tube at Onera-Palaiseau. Courtesy Onera
    5. F4 Blow down tunnel at Onera- La Fauga Courtesy Onera

    The dedicated experiments will form the basis for validation of advanced design tools. These numerical tools will give better confidence when proposing a fully integrated vehicle that complies with the mission goals. In particular, nose-to-tail computations should give the simultaneous solution and interaction of an operational propulsion unit and the vehicle aerodynamics. A roadmap towards the final vehicle design will be laid out with a step-wise approach to future developments.

    Finally, for vehicles flying at high speeds and high altitudes, limited knowledge is available on their environmental impact. The influence of NOx and H2O on the ozone layer and the formation of contrails with its direct and indirect effects will be investigated for both the Mach five and Mach eight vehicles.

    Last update: 2 October 2012

    Rate this

    Views

    Share

    • Currently 5 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 5/5 (2 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    126
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • More information
      • Facts and figures
      • LAPCAT II Partner login
      • Related link
      • Achievements LAPCAT I

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions