• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Space Engineering

    • What we do
    • Directorate of Technical and Quality Management (TEC)
    • Electrical
    • Electrical engineering
    • Control Systems
    • Data Systems
    • Radio Frequency Payload Systems
    • Electromagnetics and Space Environment
    • Power and Energy Conversion
    • Mechanical
    • Mechanical engineering
    • Thermal Control
    • Structures and Mechanisms
    • Mechatronics and Optics, incl. robotics and life support
    • Propulsion and Aerothermodynamics
    • Systems
    • Systems and software engineering
    • Software Systems
    • Systems Engineering, incl. cost engineering
    • Technology programmes
    • Product Assurance
    • Product Assurance
    • Flight Safety
    • Dependability
    • Quality Management and Assurance
    • Materials and Processes
    • Electronic Components
    • Software Product Assurance
    • Standards
    • Requirements and standards
    • European Cooperation for Space Standardization (ECSS)
    • European Space Components Coordination (ESCC)
    • Services
    • ESA calendar of events
    • Subscribe

    ESA > Our Activities > Space Engineering

    Life support pilot plant paves the way to Moon and beyond

    Inauguration of the MELiSSA pilot plant in Barcelona, Spain
    5 June 2009

    A pilot plant inaugurated yesterday in Barcelona, Spain, is testing regenerative life support system technologies that could one day recycle waste products and supply essential food, water and oxygen to humans living on the surface of the Moon or Mars.

    MELiSSA, short for Micro-Ecological Life Support System Alternative, is an artificial ecosystem to recover food, water and oxygen from waste (faeces and urine), carbon dioxide and minerals. The laboratory will help in the development of technology for a future regenerative life support system for long-duration human space exploration missions, for example to a lunar base or to Mars.

    View inside MELiSSA pilot plant in Barcelona
    A view inside the MELiSSA pilot plant at the University Autònoma of Barcelona

    The second generation MELiSSA pilot plant is located within the School of Engineering at the University Autònoma of Barcelona (UAB), Spain. The MELiSSA project is partially funded by ESA through the Directorate of Human Spaceflight and the Directorate of Technical and Quality Management. The facility was inaugurated yesterday by the Spanish Minister for Science and Innovation Cristina Garmendia, ESA Director General Jean-Jacques Dordain and UAB Rector Ana Ripoll.

    "The MELiSSA plant provides a world class research facility combining the expertise of many European countries, as well as Canada," said Dordain. "The validation of MELiSSA's highly regenerative life support processes is a mandatory step towards future long-duration human space exploration missions."


    Inauguration MELiSSA pilot plant
    Inauguration MELiSSA pilot plant in Barcelona, Spain

    The pilot plant at UAB demonstrates the associated technologies with a 'crew' of 40 rats – together their oxygen consumption is equivalent to one person. This demonstration will last for more than two years – this length of time is considered representative of human space exploration missions. The rats will be kept under close veterinary supervision throughout.

    MELiSSA goes further than other recycling systems used on Mir or the International Space Station that purify water and recycle urine and exhaled carbon dioxide, but do not attempt to recycle organic waste for food production.

    Based on the principle of an aquatic ecosystem, the facility consists of five interconnected compartments. In three of them, waste is progressively broken down by fermentation processes. In the fourth compartment, algae or plants are grown to produce food, oxygen and water. The fifth compartment is where the crew lives – rats in the case of this experiment and on real missions – the astronauts.

    View inside MELiSSA pilot plant in Barcelona
    A view inside the MELiSSA pilot plant at the University Autònoma of Barcelona

    "I praise the progress made in the demonstration of the technologies which are the bases of the MELiSSA project. This is a key element in our strategy for human spaceflight and exploration. We now have to press ahead with a more stringent utilisation plan that takes into account the real needs of human missions in different scenarios," said Simonetta Di Pippo, ESA's Director of Human Spaceflight. "The Directorate will provide the required leadership to this very important project that is a demonstration of a successful partnership between ESA and national and local authorities. One more piece of the puzzle is falling into place to make Europe an even more important partner in future human spaceflight and exploration undertakings."

    Spanish Minister Garmendia visits the MELiSSA pilot plant
    Spanish Minister Garmendia visits the MELiSSA pilot plant during the inauguration on 4 June 2009

    The first generation MELiSSA pilot plant, which began operating in November 1995, was gradually assembled together with components developed all over Europe. The preliminary achievements of the first pilot plant lead to the decision in 2005 to develop an improved facility.

    The second generation MELiSSA pilot plant was built in 2006-2007 and will progressively incorporate newly designed compartments. The compartments will first be independently tested, characterised and optimised during the next 18 to 24 months. They will then be gradually interconnected in order to start a full-scale demonstration of MELiSSA in 2014.

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    25
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • Related links
    • UAB
    • MELiSSA

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions