• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Launch Special

    • Herschel

    • Planck

    • ESA Science

    • About Herschel

      • Herschel at a glance
      • Science objectives
      • Herschel highlights
      • History of infrared astronomy
    • The infrared Universe

      • Why the infrared?
      • More about the infrared
      • The infrared revolution
    • Spacecraft and telescope

      • Vital stats
      • The largest infrared space telescope
      • Instruments
      • Cutting-edge spacecraft
    • The mission

      • Journey
      • Early operations
      • Operating Herschel
    • Meet the team

      • Herschel Project Scientist: An interview with Göran Pilbratt
      • Herschel and Planck Programme Manager: An interview with Thomas Passvogel
    • Multimedia
    • Herschel images
    • Herschel videos

    ESA > Our Activities > Space Science > Herschel

    Cutting-edge spacecraft

    Herschel operating at the second Lagrange point (L2)

    Herschel will be stationed at the second Sun-Earth Lagrange point (L2), 1.5 million km from Earth. This point is theoretically stationary in space with respect to the Earth and Sun, which means that for Herschel, Earth and the Sun will always be in the same general direction.

    This provides a stable thermal environment and a good view of the sky. Since the Earth is far away, Herschel is not disturbed by its radiation belts.

    At the same time, the spacecraft's position in space and the resulting temperature extremes make the task of optimising the work environment for the instruments a challenge.

    The Herschel spacecraft has heritage from the successful ESA Infrared Space Observatory (ISO). It has been improved and optimized for a more distant and more favourable orbit and its complement of instruments.


    Modular design

    Inside Herschel

    The Herschel satellite is composed of three sections.

    First is the telescope, which has a 3.5 m-diameter primary mirror protected by a sunshade. The telescope focuses light onto three scientific instruments; their detectors are housed in a giant thermos flask, known as a cryostat.

    The cryostat provides the interface and cryogenic environment for the instrument focal plane units, and supports the telescope, the solar array and telescope sunshade, and a unit of the Heterodyne Instrument for the Far Infrared.

    Herschel’s cooling system
    Herschel’s sophisticated cooling system

    Inside the cryostat, Herschel's detectors are kept at very low and stable temperatures, necessary for the instruments to operate. The cryostat contains liquid superfluid helium at temperatures lower than –271°C, which makes the instruments as sensitive as possible. The instruments detectors and the cryostat make up the second section, the payload module.

    The infrared detectors must be cooled to extremely low temperatures in order to work, in fact close to absolute zero (–273.15°C or 0 K).

    Herschel’scooling system
    Herschel’s sophisticated cooling system

    All three Herschel instruments will be housed inside and cooled by the cryostat which is filled at launch with more than 2300 litres of superfluid helium kept at 1.65 K, i.e. –271.5°C. Further cooling – down to 0.3 K – is required for the SPIRE and PACS bolometeric detectors. The role of the cryostat is fundamental because it determines the lifetime of the observatory.

    The superfluid helium evaporates at a constant rate, gradually emptying the tank. It is expected to evaporate completely about four years after launch.

    Herschel’s cooling system
    Herschel’s sophisticated cooling system

    When it has all gone, the temperature of the instruments will start to rise and Herschel will no longer be able to perform observations. However, the data that Herschel will have supplied will keep astronomers busy for decades.

    The third element of the satellite is the service module located below the payload module. It houses the instrument electronics and the components responsible for satellite function, such as the communication hardware. The service module houses the payload electronics that do not need cooling, and provides the necessary subsystems: power, attitude and orbit control, on-board data handling, thermal control and command execution, communication, and safety.

     

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    60
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • Herschel: ESA's giant infrared observatory
    • Read more
      • Caroline and William Herschel: Revealing the invisible
        • Observations: Seeing in infrared wavelengths
          • The electromagnetic spectrum
            • L2, the second Lagrangian Point
              • What are Lagrange points?
                • Why infrared astronomy is a hot topic
                  • The infrared explorers
                  • In depth
                  • Herschel in depth
                  • Herschel spacecraft in depth

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions