• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • SMART-1

    • ESA Science

    • About SMART-1
    • SMART-1 factsheet
    • Towards final impact
    • Approaching the mission end
    • Frequently Asked Questions
    • Ask about the SMART-1 impact
    • Join the SMART-1 impact observation campaign
    • About the journey

      • The magic of ion engines
      • The SMART way to travel
      • A spiral pathway to the Moon
    • About the mission

      • Masterpieces of miniaturisation
      • What do all the instruments do?
    • About the Moon

      • Welcome to the double planet
      • Lunar science - still plenty left to do!
      • Where did the Moon come from?
    • Multimedia
    • SMART-1 images
    • SMART-1 videos
    • SMART-1 animations
    • 3D Flash 'model'
    • SMART-1 wallpaper
    • Launch replay
    • Services
    • Comments

    ESA > Our Activities > Space Science > SMART-1

    SMART-1's ever-increasing orbit of the Earth

    The SMART way to travel

    The type of ion engine chosen for SMART-1 makes clever use of an effect discovered by the American physicist E.H. Hall in 1879, whereby a current flowing across a magnetic field creates an electric field directed sideways to the current. This is used to accelerate ions (charged atoms) of xenon. A gassy element with atoms about 131 times heavier than hydrogen atoms, xenon is chemically inert.

    Drawing electric power of 1350 watts from SMART-1's solar panels, the ion engine generates a thrust of 0.07 newton. That is equivalent to the weight of a postcard.

    By accelerating SMART-1 at 0.2 millimetre per second per second, the incredibly gentle thrust could in theory fling the spacecraft right out of the Solar System, if sustained for long enough. In practice, SMART-1 used its ion engine intermittently over 16 months, fighting against the Earth's attraction, to put itself into orbit around the Moon.

    For the first 2 or 3 months, the leisurely journey could have brought problems due to SMART-1's exposure to possible harm from energetic atomic particles in the radiation belts that surround the Earth. The electronics and instruments were hardened to resist such damage.

    Last update: 31 August 2006

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    6
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • Related articles
    • Electric Propulsion section
    • Related articles
      • Ion engine gets SMART-1 to the Moon

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions