• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG’s blog
      • For Member State Delegations
      • Business with ESA
      • Law at ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
      • ESAshop
    • Our Activities

      • Space News
      • Observing the Earth
      • Human and Robotic Exploration
      • Space Transportation
      • Navigation
      • Space Science
      • Space Engineering & Technology
      • Operations
      • Telecommunications & Integrated Applications
      • Preparing for the Future
    • Careers at ESA

    • For Media

      • Media
      • ESA TV
      • Videos for professionals
      • Photos
    • For Educators

    • For Kids

    • ESA

    • Space Science

    • Our Universe
    • About Space Science
    • ESA's 'Cosmic Vision'
    • Science missions
    • Mission navigator
    • Target groups
    • For Media
    • For Scientists
    • For Kids
    • Multimedia
    • Science images
    • Science videos
    • Science poster
    • Animations
    • Downloads
    • Sounds from space
    • Resources
    • Reference section
    • Services
    • FAQs
    • Glossary
    • Comments
    • Follow us
    • ESA Sci on Twitter
    • ESA Space Science Images on Flickr
    • ESA 3D on Flickr
    • Terms and conditions

    ESA > Our Activities > Space Science > Space sensations

    Flip a Sun's pole for more dust

    SOHO image of the Sun
    20 August 2003

    Astronomers once thought they understood how the Sun worked. A large ball of gas, generating energy by nuclear fusion, it also created a magnetic field enclosing Earth and the other planets in a gigantic magnetic bubble.

    This bubble protected us from the dusty cosmic debris that shoots through space beyond the Solar System. But thanks to ESA's solar polewatcher Ulysses, that picture is changing...

    11-year switch

    Ulysses has revealed a complexity to the Sun's magnetic field that astronomers had never imagined. The Sun's magnetic field consists of a north pole, where the field flows out of the Sun and a south pole, where the field re-enters. Usually, these line up, more-or-less, with the rotation axis of the Sun.

    Every 11 years the Sun reaches a peak of activity that triggers the magnetic poles to exchange places. The reversal was thought to be a rapid process but, thanks to Ulysses, astronomers now know it is gradual and could take as much as seven years to complete.

    During this slow-motion reversal, the line connecting the poles - known as the magnetic axis - comes close to the Sun's equator and is swept through space like the beam of a light house. Eventually it passes through this region and lines up with the opposite pole.


    Ulysses and the heliosphere
    Ulysses and the heliosphere

    Imagine if this happened on Earth! Compasses would become useless, given that they rely on the fact that Earth's magnetic axis is roughly coincident with its rotation axis, which passes through the North and South geographic Pole.

    Although it seems surprising, magnetic pole reversals have happened on Earth also. The last time was about 740 000 years ago. After studying magnetic rocks, scientists conclude that field reversals on Earth take place once every 5000 to 50 million years (but are impossible to predict). Reversals on the Sun, however, are almost as regular as clockwork - every 11 years, with its magnetic axis changing position for most of that time.

    More shooting stars

    Earth's magnetic field is more stable because it arises in the metal-dominated regions in the deep interior of the planet. The Sun's field, however, comes from a high-temperature, electrified gas called plasma so it is a much more volatile thing. Loops of the magnetic field can burst through the surface of the Sun and when they do, they create the dark patches known as sunspots.

    Astronomers are still studying the precise reasons behind the Sun's 11-year magnetic flips. However, using Ulysses, they have now shown that, when the Sun's magnetic axis points near its equator, it allows much more cosmic dust to enter the Solar System than normal. What does that mean for us?

    If there is more dust in the Solar System, more of it will fall on Earth also. Scientists estimate that in the coming years, about 40 000 tonnes of dust could fall on Earth every day. However, most of it will be so small that it will burn up in the atmosphere before reaching the ground.

    This will certainly increase the number of faint shooting stars during the next 11 years, but fortunately the Earth will not become a dustier place!

    Rate this

    Views

    Share

    • Currently 5 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 5/5 (3 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    1185
    Tweet
    • More about...
      • Ulysses overview
        • SOHO overview
    • App Store
    • Subscribe
    • mobile version
    • FAQ

    • Site Map

    • Contacts

    • Terms and conditions