Electronic nose sniffs hazards

Stockholm metro train
Stockholm metro train
9 March 2009

An advanced sensor and data processing used to monitor air quality inside a space station is now being used in an innovative fire protection system for Stockholm’s metro system.

This technique, called the ‘electronic nose’, was developed for ESA in the 1990s as a contribution to the Russian Mir programme to ensure constant monitoring of the air inside the Mir space station.

Mir
Mir space station

The system was successfully completed and operated on the 1995 and 1997 Mir missions, and proved its worth when it ‘smelled’ the very early signs of a fire on the 1997 mission.

The electronic nose system consists of three elements:

  • a sensor that acts in the same way as the neurons inside a human nose as receptor of odours
  • a microprocessor that characterises the odours in a way similar to the nose’s olfactory bulbs
  • a software processing system that works like the human brain to interpret the odours and take proper action

After a series of tests covering all stages of a fire, from smouldering to an open fire, engineers of EADS RST Rostock System-Technik used the electronic nose technology to develop an early fire recognition system for industrial applications.

Making metros safer

Electronic nose

Together with the Swedish company Firefly, the system was developed to detect fires in tunnels and underground train stations.

After intensive testing in the Stockholm underground, series production of the device is now underway.

The contract with the Stockholm underground corporation, to equip its tunnels and stations with this novel detection system, will cover a total of 56 metro stations and 60 km of tunnels.

So far, the tunnels and stations of most underground infrastructures worldwide are equipped with conventional fire recognition systems that rely on smoke detectors. These are susceptible to disturbances of the rough underground environmental conditions like humidity and fine types of dust, to which the electronic nose is much less susceptible.

Stockholm metro station T-Centralen
Stockholm central metro station

"Technologies developed for use in space must not only be sophisticated and fail-proof, they must also be extremely robust to withstand the extreme conditions of the space environment and the ferocious shakes of a spacecraft launch. They must function in the vacuum of space and be able to face temperatures from sizzling hot to freezing cold. One can say that the extreme space environment is a driver for innovative solutions that can then be applied elsewhere," says Frank M. Salzgeber, head of ESA’s Technology Transfer Programme Office.

"Many of the technology developments for our space programmes have shown their worth in non-space fields by providing novel solutions to problems on Earth. The electronic nose improving safety in the Stockholm metro system is a very good example of how spin-offs from European space technology can provide successful solutions in everyday life on Earth."

ESA's Technology Transfer Programme Office (TTPO)

The main mission of the TTPO is to facilitate the use of space technology and space systems for non-space applications and to demonstrate the benefit of the European space programme to European citizens. The office is responsible for defining the overall approach and strategy for the transfer of space technologies including the incubation of start-up companies and their funding. For more information, please contact:

ESA’s Technology Transfer Programme Office
Frank M. Salzgeber
European Space Agency ESA
Keplerlaan 1, 2200 AG, Noordwijk ZH
The Netherlands
Phone: +31 (0) 71 565 6208
Email: ttp @ esa.int
Website: http://www.esa.int/ttp

Copyright 2000 - 2014 © European Space Agency. All rights reserved.