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The EO information burden and the
technological challenges
Users in all domains require information or
information-related services that are focused,
concise, reliable, low cost and timely and which
are provided in forms and formats compatible
with the user’s own activities. In the current
Earth Observation (EO) scenario, the archiving
centres generally only offer data, images and
other ‘low level’ products. The user’s needs are
being only partially satisfied by a number of,
usually small, value-adding companies applying
time-consuming (mostly manual) and expen-
sive processes relying on the knowledge of

experts to extract information from those data
or images. 

In the future, these processes will become even
more difficult to perform and to manage
because of the growing diversity of the user
communities, the greater sophistication of user
needs requiring, for example, the fusion of
multi-sensor or EO and non-EO data, and the
exponential increase in the volume and
complexity of the data archives, due to the
rapid increases in:  
– number of missions (even constellations)
– number of sensors
– kinds of sensed data
– sensor resolution
– number of spectral bands
– number of data formats
– number, type and size of distributed archives.

Today’s Synthetic Aperture Radar (SAR) and
optical sensors generate 10 – 100 Gbytes of
data per day, so that  in a multi-sensor
spacecraft scenario the volume of data to be
archived annually easily reaches 10 Tbytes.
However, this figure can sometimes be at least
one order of magnitude larger: the Shuttle
Radar Topography Mission (SRTM) provided
about 18Tbytes of SAR data in just 11 days,
and ESA’s Envisat spacecraft launched on 1
March 2002 is going to collect about 80 Tbytes
of multi-sensor data per year! Future European
programmes like GMES (Global Monitoring for
Environment and Security) will be even more
challenging, unless major progress is achieved
soon. Emerging technologies for the automatic
extraction, classification and easy provision of
information, from EO data alone or after fusion

Information mining/knowledge discovery and the associated data
management are changing the paradigms of user/data interaction by
providing simpler and wider access to Earth Observation (EO) data
archives. Today, EO data in general and images in particular are
retrieved from archives based on such attributes as geographical
location, time of acquisition and type of sensor, which provide no
insight into the image’s actual information content. Experts then
interpret the images to extract information using their own personal
knowledge, and the service providers and users combine that
extracted information with information from other disciplines  in order
to make or support decisions.

In this scenario, the current offering, which is ‘data sets’ or ‘imagery’,
does not match the customer’s real need, which is for ‘information’.
The information extraction process is too complex, too expensive and
too dependent on user conjecture to be applied systematically over an
adequate number of scenes. This hinders access to already available
or new data (data accumulation rate is increasing), penalises large
environmental-monitoring type projects, and might even leave critical
phenomena totally undetected. Emerging technologies could now
provide a breakthrough, permitting automatic or semi-automatic
information mining supported by ‘intelligent’ learning systems.
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how the system might remember particular
features so that it gets ‘smarter’ with increasing
use is also being addressed.

In Europe, IMF-DLR has been working since
1993 in collaboration with ETH Zurich on
developing and refining a novel image
information mining concept. Unlike traditional
feature-extraction methods that rely on
analysing pixels and looking for a predefined
pattern, it is based on extracting and storing
basic characteristics of image pixels and areas,
which are then selected (one or more and
weighted) by users as representative of the
feature being searched for. This approach has
a number of advantages:
– there is no need to re-scan the entire image 

archive to detect new features
– the selected feature can be closer to the

user’s expectations and perceptions (the same
feature can have different meanings for different
users: e.g. a forest for an environmentalist, a
forest ranger, a geologist, or an urban planner)

– the system can learn from experts’ knowledge.

Drawing upon the research experience of 
IMF-DLR and ETH Zurich and the systems
engineering competence of Advanced
Computer System SpA, an ESA Technology
Research Programme (TRP) project has been
started in ESRIN with the title: ‘Knowledge-
driven Information Mining in Remote-Sensing
Image Archives’. This KIM project takes all of
the above background into account, as well as
the facts that:
– The huge and exponentially growing volumes

of existing and new EO data archives need to
be more fully exploited in terms of their true
information potential. 

– Human-centred computing will play an
increasing role in the design of EO data
exploitation, i.e. intelligent man/machine
interfaces, systems that infer and adapt to
user needs, etc.

– Fusion of sensor data with non-EO data and
information will be used to better understand
the identities of the observed scenes and the
Earth cover structures.

– Information mining, knowledge discovery and
other exploratory information-retrieval methods
should be used to try to fully understand
highly complex data, phenomena or global
observations.

– There is a need to enlarge and reinforce the
reconnaissance/surveillance applications
spectrum.

– It is necessary to migrate (adopt and promote)
from data to information management and
dissemination.

KIM tries to satisfy the requirements of the
various communities including:

with data and information from other fields,
could provide this breakthrough.

After 30 years of remote sensing, for almost
any site on Earth there are data takes piling up.
They contain valuable information that is not
being fully exploited because of the lack of
automated tools. New technologies are
required to automatically analyse such data
and data series to detect changes and trends,
for example, which could otherwise remain
hidden forever or be detected only by chance.

From data to information
In recent years, our ability to store large
quantities of data has greatly surpassed our
ability to access and meaningfully extract
information from it. The state-of-the-art of
operational systems for remote-sensing data
access, particularly for images, allow queries by
geographical location, time of acquisition or
type of sensor. This information is often less
relevant than the content of the scene, i.e.
structures, objects or scattering properties.
Meanwhile, many new applications of remote-
sensing data require knowledge of the
complicated spatial and structural relationships
between objects within an image. This
knowledge is ‘hidden’ in the image’s structure
and must be ‘mined’ to retrieve meaningful
spectral or polarimetric signatures or objects of
higher-level abstraction, such as cities, roads,
rivers, forests, etc. The hidden information can
relate to very localised phenomena, such as
subsidence or even to the structural stability of
individual buildings, but can also include
phenomena related to global change. 

Knowledge-driven information mining from EO
archives requires the exploitation of a family of
methods for knowledge discovery, learning 
and automatic information extraction from 
large amounts of data. It may be performed
with the identification of a specific feature and
application in mind, such as the high density of
strong scatterers and structures in SAR images
to detect settlements, hot spots in ATSR products
to detect fires, etc. Alternatively, it may be used
to identify key features without having a specific
application in mind at that very moment.  

Companies and research centres around the
World are devoting a large effort to the second
approach through the design and production of
Content-Based Image Retrieval (CBIR)
systems. Several attempts have already been
made to apply the CBIR approach to EO
archives, but difficulties have been encountered
in applying searching by global image similarity
(the basic concept of CBIR tools) because of
the predominance in the EO domain of grey-
scale and false-colour imagery. The problem of

remote-sensing image archives
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Figure 1. Schematic of current (A) and future (B or A&B) search methods

– End users (access to basic information in a
simple way).

– The EO value-adding industry and service
providers (access to data and information for
enhancing existing and providing new services).

– The scientific community (access to large
information sets, e.g. for the analysis of global
change).

– Civil protection agencies (access to specific
information in support of their operational
activities, directly or through service providers).

– Institutions involved in education (access to
various data and information types to be
used as examples or training cases).

A better grasp of user interaction
In today’s EO ground segments, the retrieval of
images is mainly based on sensor, location and
time criteria (Case A in the schematic of Fig. 1).
A more user-friendly interaction model would
also permit searches using other attributes of
the image or its parts (Cases B or A&B in Fig.
1). Access to a desired image from the archive
might thus involve a search through: 
– mission attributes such as sensor, time and

location
– the presence of a particular combination of

intensity, texture and shape
– the presence of specific ‘object’ types, e.g.

forest, rice field, etc.
– the presence of a particular type of event, e.g.

burnt forest, flood. 

This list of possible queries represents an
increasing level of abstraction, complexity 
and answering difficulty (requiring more and
more reference to some body of external
knowledge), corresponding to the increasing
complexity of the related attributes, which can
be classified as shown in Table 1 (from low to
high complexity).

A model based on primitive and derived
features would also require semi-automated
extraction of primitive features, image
annotation in terms of primitive and derived
features, and the capability to select, weight
and combine primitive or derived features
during the query process.

A logical representation of the above
classification of attributes is reflected in the
model of Figure 2, where the arrows represent
logical flows. The upward arrows represent
unsupervised algorithmic flow, while the down-
ward one describes the creation of the basic
attributes or the user’s subjective classification.
In fact, the identification of derived features is
supposed to be performed only via user
subjective classification of objects of a given
type. Figure 2 appears to include an additional
level with respect to the above classification:
the ‘primitive feature clusters’. This level is
necessary only to reduce the data volume, by
grouping into clusters primitive features that
show similar behaviours (values). In reality,
‘primitive features’ and ‘primitive feature
clusters’ pertain to the same level.

First step: extraction of primitive features
The IMF-DLR/ ETH Zurich concept applied in
KIM is aimed  at building a system free from
application specificity, so as to enable its open
use in almost any scenario, and also to
accommodate new scenarios required by the
development of new sensor technology or
growing user expertise. Its first step is the
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Table 1. Classification of query attributes

Attribute Type Description

Basic attributes Sensor, time, latitude, longitude (or location name), 
directly related for example to raw data or geocoded
products

Primitive features Intensity, texture or shape, for example: attributes 
that are both objective, and directly derivable from 
the images themselves, without the need to refer to
any external  knowledge base

Derived features Sometimes known as logical features, these are 
objects of a given type (e.g. ‘mountains’) or specific
objects (e.g. ‘Jura-like mountains’). This level 
involves some degree of logical inference about the
identity of the objects and permits searches in user 
semantic terms (which can be assigned during 
system training to weighted combinations of 
primitive features)

Abstract attributes Involving a significant amount of high-level reasoning
about the meaning and purpose of the objects or 
scenes depicted (e.g. illegal plantation). They are 
outside the scope of the current research activity.



Figure 2. Logical representation of data and derived attributes

extraction of primitive features and the
reduction of the resulting data into primitive
feature clusters.

The primitive features to be extracted need to
be carefully selected, since they mainly
determine the quality and capabilities of the
resulting system. SAR and optical images, for
example, will have to be handled differently and
texture primitive features will have to be
extracted at various resolution levels, since
different textures can dominate at different
scales.

The steps necessary to properly extract
primitive features in the EO context are shown
in Table 2. The steps need to be repeated
iteratively for each band of the image. 

Primitive feature extraction generates a huge
amount of data, which cannot be handled in
practice and therefore has to be compressed
somehow. This process is represented in the
left part of Figure 3, which depicts the result of
the scanning of two images (or of two bands of
the same image). Each pixel of the image will
be located in n-dimensional space in the
position determined by the values of the
contributing primitive features (their units are
non-commensurable, e.g. texture and spectral
features). The pixels will tend to group
themselves into specific regions of this space.
Through clustering (right part of Fig. 3), the
‘clouds’ of image primitive features are
replaced by parametric models of their groups,
which can be represented in more compact
forms. This reduces the precision of the
system, similar to a quantisation process, but
permits its practical use thanks to the huge
data reduction obtained. The primitive features
are compressed into clusters using the K-
means approach. 

The clusters (condensed representation of
primitive features) have no direct meaning,
since they group points in an n-dimensional
space of non-commensurable variables. Still
they represent characteristics of the image
seen as a multi-dimensional signal. It is possible
to associate meaning with these clusters
through training. A user can tell the system that
a specific, weighted combination of some
clusters represents a derived feature of the
image. By making this association, it is possible
to select all images in the database that have
that specific combination and may therefore
contain the feature that the user is searching
for. This step is discussed below in more detail.

Second step: information mining
The second step in KIM is aimed at assigning
physical meaning to the primitive features, i.e.

remote-sensing image archives
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Table 2. Steps for primitive feature extraction in the EO context

Step Objective

Image geo-coding Permit co-registration of different images and 
absolute geographical reference of the features

Segmentation by The homogeneous areas that can be detected in the
geometry full geo-coded image are assimilated to reference 

shapes and related to an absolute coordinate system

Sub-scenes Large images are split into sub-scenes to reduce the
probability that an image item contains all the 
primitive features and therefore that it is always 
retrieved during a search

Sub-sampling Perform progressive sub-sampling of each sub-
scene to ensure that the various textures are 
identified at the related scale

Texture analysis:
Optical image Extract primitive features using the Gibbs Random 

Field approach

SAR image De-speckle the image and extract primitive features
using the Gauss-Markov Random Field approach

Figure 3. Unclustered and clustered primitive features



Figure 4. Lake Constance on
the Swiss-German border

(Landsat TM)

at identifying ‘derived features’. This information-
mining step involves a learning phase. The
system presents sample images in which the
user marks areas with positive and negative
traits, refining the definition of the derived
feature through an iterative process. Once this
process/system training has been satisfactorily
completed, the definition can be saved and
used by other users, who then will have only to
request images containing the derived features
corresponding to that definition.

The information-retrieval process is divided into
two steps:
– objective information extraction
– semantic representation. 

The objective information extraction requires
signal modelling as a realisation of a stochastic
process. A library of stochastic and deter-
ministic models is used to infer the signal
model. The resulting objective features are
interpreted according to user conjecture. The
interpretation process relies on restructuring
(using a certain syntax) of the signal feature
space according to the semantic models of the
user. Augmentation of the data with meaning
can be seen as a data-encoding task including
the modelling of the user’s understanding.

The source manipulates the information input
and provides a filter, which may however also
add some process-induced noise. If the user is
an expert, he/she plays an active role in training
the system, to create relationships between
primitive features and definitions. If the user is
not an expert, he/she can just use the
definitions prepared by other experts for
retrieving images from the database.

The expert can train the system by pointing and
clicking via a graphical user interface on
‘positive’ and ‘negative’ image-structure
examples  (and therefore the corresponding

clusters), in two steps:
– first of all to identify specific broad ‘cover-

type’ definitions, related to broad domains of
possible user interest (e.g. geology, forestry,
…)

– therafter to create from the aggregation of the
above definitions, and the possible use of
additional ‘training’ pixels, more precise
definitions with semantic meaning (i.e.
‘concepts’, like wood, water, grass, urban
area, etc.).

A simple Bayesian network links primitive
feature clusters and definitions and these
associations can be stored and made available
to users for subsequent interactive sessions.

With this approach, we are modelling and
learning about the user’s interests and actions.
We are implementing machine-learning
methods to answer the question: What is the
user trying to do? We are exploring ways to
design an information mining and interpretation
system that adapts to the user’s particular
interests and incorporates contextual information
to determine the user’s intentions and degree
of satisfaction with the results. It should provide
a breakthrough by establishing a new pattern
for user-EO system (archive) interaction, and a
quantum leap with respect to the more
traditional feature-extraction systems. The aim
with KIM is to help users uncover the most
relevant image information content, by providing
an ‘eye’ with which to delve into multi-sensor
and multi-temporal image data archives.

Examples of application scenarios
The KIM system provides a wide variety of
‘mining’ tools, including semantic querying by
image content and image example, and
interactive classification and learning of image
content. As an example, we can take an
archive of Landsat TM and Space Radar
Laboratory X-band SAR SRL/X-SAR images
covering the whole of Switzerland, one of which
is shown in Figure 4. The Landsat and X-band
SAR scenes have been partitioned into sub-
scenes of 2048 x 2048 pixels, with all data geo-
coded in a pre-processing step. The user has
available a catalogue list of semantically valid
land-cover structures, e.g. lakes, forests, alpine
valleys, cities, etc. A study of the dynamics of
inhabited areas, for example, requires the
detection of built-up areas as a first step. The
KIM system can search for all SAR images likely
to contain settlements larger than a specified
threshold, returning the set shown in Figure 5.

Figure 6 shows the result of a search for the
cover structure ‘glacier’. Each image has
associated with it a classification map identifying
the structure of interest and a table recording all
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Figure 5. X-SAR images containing built-up
areas

of the ‘structures’ that the users have
searched for in this image. The latter is a
record of the ‘image content’ seen from
the perspectives of users with different
interests or backgrounds. The record is
created during the interactive learning step.

The interactive learning function is a
valuable mining tool for exploring the
unknown content of large image archives.
A Graphical User Interface (GUI) enables
the user to select, by clicking on the
image, those structures of greatest
interest, which then appear in red on a
gray-scale visualisation of the relief

remote-sensing image archives
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Figure 6. Result of a search for cover type
glaciers



Figure 7
(A) Jet condensation trails in
a Landsat image
(B) The user selects the
‘interesting’ pixels by
pointing  and clicking
(C) The result of a search for
similar features after the
selection performed in
Figure 7B

according to the Bayesian learning of the
structure recognition (Figs. 7A and B). The
scenario in which Figures 7A,B have been
produced assumes that the user is interested in
finding/studying the condensation trails
produced by jet aircraft. The classification is
based on the fusion of the image information
that best explains the selected structures, i.e.
spectral and textural image parameters. KIM
thereby provides the user with those images
most likely to contain similar structures (Fig.
7C), ranked according to their relevance.

The last examples, in Figure 8, are based on an
aerial photograph of a small Swiss village and

show how the user can explore the image,
marking by pointing and clicking the features of
interest. In this case, the red areas associated
with ‘built-up areas’ (Fig. 8B), ‘forests’ (Fig. 8C),
‘meadows’ (Fig. 8D) and ‘roads’ (Fig. 8E), have
been generated by a previous user clicking on
the image, the KIM interactive learning module
being able, in real time, to generate a set of
supervised image classification maps. The
interactively induced image classification is
generalised over the entire image archive.

Conclusions
The technologies for knowledge-driven image
information mining are reaching a sufficient level
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Figure 8. 
(A) Aerial photograph of a
Swiss village
(B) Selection of built-up
area
(C) Selection of forest
(D) Selection of meadows
(E) Selection of roads

– a new paradigm for the interaction with and
exploitation of EO archives can be
implemented, paving the way for much easier
access to and much wider use of EO data
and services. 
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of maturity for their integration into commercial
products, as has been demonstrated here for a
variety of remote-sensing applications. This opens
new perspectives and offers huge potential for
correlating the information extracted from
remote-sensing images with the goals of
specific applications.

These technologies shift the focus from data to
information, meeting user needs, promoting
scientific investigations, and supporting the
growth of the value-adding industry, service
providers and market, by permitting the
provision of new services based on information
and knowledge. They will also profoundly affect
developments in fields like space exploration,
industrial processes, exploitation of resources,
media, etc.

The KIM prototype has demonstrated that:
– the results of advanced and very highly

complex algorithms for feature extraction can
be made available to a large and diverse user
community

– the users, who can access the image
information content based on their specific
background knowledge, can interactively
store the meta-information and knowledge

remote-sensing image archives

33

AA BB

CC DD

EE


