Proceedings of the Symposium

The Three-Dimensional Universe with Gaia

4 – 7 October 2004
Observatoire de Paris-Meudon
Paris, France

Sponsored by

l’Observatoire de Paris
ESA
EADS Astrium
Alcatel Space
Alenia Spazio
CNES
CNRS
INSU

European Space Agency
Agence spatiale européenne
Contents

Introduction .. xii

Catherine Turon & Michael Perryman

Session 1: Overview of the Mission, Design, and Scientific Performances
Chair: Daniel Egret

INVITED CONTRIBUTIONS

Introductory Remarks .. 3
J. Kovalevsky

Overall Science Goals of the Gaia Mission* .. 5
F. Mignard

Overview of the Gaia Mission* .. 15
M.A.C. Perryman

Gaia: The Satellite and Payload* ... 23
O. Pace

The Astrometric Instrument of Gaia: Principles* 29
L. Lindegren

Accuracy Budget and Performances* ... 35
J.H.J. de Bruijne

Photometric System Design and Performances 43
C. Jordi & E. Høg

Radial Velocity Spectrometer Design and Performance* 51
D. Katz

POSTERS

The Astro Optical Response Model* ... 59
D. Busonero, M. Gai, D. Gardiol, M.G. Lattanzi, D. Loreggia

RVS Wavelength Calibration: Simulation of Reference Stars 63
F. Crifo, D. Katz

The Gaia Parameter Database* ... 67
J.H.J. de Bruijne, U. Lammers, M.A.C. Perryman

Calibrating the Medium Band Photometer using Spikes 71
C. Fabricius, E. Høg

First Gaia Photometry ... 75
E. Høg

Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) 77
N. Gouda, T. Yano, Y. Yamada, Y. Kobayashi, T. Tsujimoto, The JASMINE Working Group

* indicates that this article contains colour figures in the electronic version
Session 2: Galaxy Census, Formation and Evolution
Chair: Karri Muinonen

INVITED CONTRIBUTIONS

Gaia Census and Completeness*
A.C. Robin

Modelling the Galaxy for Gaia
J. Binney

Census of Binaries - the Big Picture
S. Söderhjelm

ISM, Extinction and Star Forming Regions*
J. Knude, C. Fabricius

The Thin Disc and the Bulge with Gaia
A. Vallenari, E. Nasi, G. Bertelli, C. Chiosi

Chemical Evolution of the Galaxy
P.E. Nissen

ORAL CONTRIBUTIONS

Dynamical Streams in the Solar Neighbourhood
B. Famaey, A. Jorissen, X. Luri, M. Mayor, S. Udry, H. Dejonghe, C. Turon

Modelling Interstellar Extinction in Three Dimensions
D.J. Marshall, A.C. Robin, C. Reylé, M. Schultheis

The Galactic bulge as Seen by Gaia
C. Reylé, A.C. Robin, M. Schultheis, S. Picaud

POSTERS

Chemistry and Kinematics in the Solar Neighbourhood
O. Bienaymé, C. Soubiran, T. Mishenina, V. Kovtyukh, A. Siebert

From Detailed Galaxy Simulations to a Realistic End-of-Mission Gaia Catalogue*
A.G.A. Brown, H.M. Velázquez, L.A. Aguilar

Stellar Galactic Population Characterization using Gaia Photometry
J.M. Carrasco, C. Jordi, F. Figueras, J. Torra

Open Clusters and the Galactic Metallicity Distribution
L. Chen, J.L. Hou

What Gaia Will See: All-Sky Source Counts from the GSC2*
R. Drimmel, B. Bucciarelli, M.G. Lattanzi, A. Spagna, C. Jordi, A.C. Robin, C. Reylé, X. Luri

Galactic Extinction Model: New Developments
R. Drimmel

[\alpha/Fe] in the Thin and the Thick Disc: Towards an Automatic Parametrization of Stellar Spectra
P. Girard, C. Soubiran

Determination of Star Formation Histories from Gaia-Type Photometric and Astrometric Survey Data
B.R. Jørgensen, L. Lindegren

* indicates that this article contains colour figures in the electronic version
Structure of the Galactic Halo Towards the North Galactic Pole
T.D. Kinman, A. Bragaglia, C. Cacciari, A. Buzzoni, A. Spagna

Self-Consistent Distance Determinations for Lutz-Kelker-Limited Samples*
J. Maíz Apellániz

Tracing the Origin of the Solar Neighbourhood
B. Nordström, J. Andersen, M. Mayor

The Trouble with Isochrone Ages for Field Stars: A Cautionary Tale for Solar Neighbourhood Studies
F. Pont, L. Eyer

The Spiral Structure of Our Galaxy
D. Russeil

The Structure of the Thick Disc
A. Spagna, B. Bucciarelli, D. Carollo, R. Drimmel, M.G. Lattanzi, B. McLean, R.L. Smart

Combining Photometric and Astrometric Data to Identify Stellar Clustering at KPC-Distances*
R. Teixeira, G. Medina-Tanco, M. Corti, C. Ducourant

Probing Galactic Reddening with the 8620 Å Diffuse Interstellar Band
S. Vidrih, T. Zwitter

Chair: James Binney

INVITED CONTRIBUTIONS

Relativistic Formulation and Reference Frame
S.A. Klioner

Astrometric Limits Set by Surface Structure, Binarity, Microlensing*
U. Bastian, H. Hefele

Asteroid Orbits with Gaia: Inversion and Prediction
K. Mynonen, J. Virtanen, M. Granvik, T. Laakso

Gaia Observations of Asteroids: Sizes, Taxonomy, Shapes and Spin Properties*
A. Cellino, M. Delbò, A. Dell’Oro, V. Zappalà

Near Earth Objects
E. Hog, F. Mignard

Impact of Gaia on Dynamics and Evolution of the Solar System
P. Tanga

Detection and Characterization of Extra-Solar Planets with Gaia*
M.G. Lattanzi, S. Casertano, S. Jancart, R. Morbidelli, D. Pourbaix, R. Pannunzio, A. Sozzetti, A. Spagna

ORAL CONTRIBUTIONS

Relativistic Astrometry: the RAMOD Project
B. Bucciarelli, M.T. Crosta, F. de Felice, M.G. Lattanzi, A. Vecchiato

Can the Perturbation of a Stellar Motion in a Triple System Mimic a Planet?*
J. Schneider

The Study of Stars with Planets*
G. Cayrel de Strobel

* indicates that this article contains colour figures in the electronic version
POSTERS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic Representation of the Gaia Extragalactic Reference Frame*</td>
<td>271</td>
</tr>
<tr>
<td>A.H. Andrei, A. Fienga, M. Assafin, J.L. Penna, D.N. da Silva Neto, R. Vieira Martins</td>
<td></td>
</tr>
<tr>
<td>Astrometric Representation of the Gaia Extragalactic Reference Frame from Ground Observations</td>
<td>275</td>
</tr>
<tr>
<td>A.H. Andrei, A. Fienga, M. Assafin, J.L. Penna, D.N. da Silva Neto, R. Vieira Martins</td>
<td></td>
</tr>
<tr>
<td>Observations of the Satellites of Jupiter and Saturn</td>
<td>279</td>
</tr>
<tr>
<td>J.-E. Arlot, V. Lainey</td>
<td></td>
</tr>
<tr>
<td>GAREX: a Relativity Experiment with Gaia*</td>
<td>281</td>
</tr>
<tr>
<td>M.T. Crosta, F. Mignard</td>
<td></td>
</tr>
<tr>
<td>Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets</td>
<td>285</td>
</tr>
<tr>
<td>D.N. da Silva Neto, M. Assafin, A.H. Andrei, R. Vieira Martins</td>
<td></td>
</tr>
<tr>
<td>Asteroid Sizes from Gaia Observations</td>
<td>289</td>
</tr>
<tr>
<td>A. Dell'Oro, A. Cellino</td>
<td></td>
</tr>
<tr>
<td>IMCCE Planetary Ephemerides: Present and Future</td>
<td>293</td>
</tr>
<tr>
<td>A. Fienga, J. Laskar, J.L. Simon, H. Manche, M. Gastineau</td>
<td></td>
</tr>
<tr>
<td>Determination of the PPN β and Solar J_2^\odot from Asteroid Astrometry*</td>
<td>297</td>
</tr>
<tr>
<td>D. Hestroffer, J. Berthier</td>
<td></td>
</tr>
<tr>
<td>Physical Models and Refined Orbits for Asteroids from Gaia Photometry and Astrometry</td>
<td>301</td>
</tr>
<tr>
<td>M. Kaasalainen, D. Hestroffer, P. Tanga</td>
<td></td>
</tr>
<tr>
<td>Refining the Relativistic Model for Gaia: Cosmological Effects in the BCRS</td>
<td>305</td>
</tr>
<tr>
<td>S.A. Klioner, M.H. Soffel</td>
<td></td>
</tr>
<tr>
<td>A Keck/HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs</td>
<td>309</td>
</tr>
<tr>
<td>Observing the Natural Satellites of Solar System Bodies with Gaia</td>
<td>313</td>
</tr>
<tr>
<td>P. Tanga, F. Mignard</td>
<td></td>
</tr>
<tr>
<td>A Ground-Based Network of Observers for a Gaia Follow-Up</td>
<td>317</td>
</tr>
<tr>
<td>W. Thuillot</td>
<td></td>
</tr>
<tr>
<td>Statistical Inversion of Gaia Photometry for Asteroid Spins and Shapes</td>
<td>321</td>
</tr>
<tr>
<td>J. Torppa, K. Muinonen</td>
<td></td>
</tr>
<tr>
<td>Asteroid Orbits with Gaia: Simulated Examples</td>
<td>325</td>
</tr>
<tr>
<td>J. Virtanen, K. Muinonen, F. Mignard</td>
<td></td>
</tr>
<tr>
<td>Gaia-Assisted On-Board Detection of Moving Objects*</td>
<td>329</td>
</tr>
<tr>
<td>S. Wolff</td>
<td></td>
</tr>
</tbody>
</table>

* indicates that this article contains colour figures in the electronic version
Session 4: Technical Issues, Data Simulation, Reduction and Processing
Chair: Carla Cacciari

INVITED CONTRIBUTIONS

The Gaia On-Board Scientific Data Handling* .. 335
F. Arenou, C. Babusiaux, F. Chereau, S. Mignot

Gaia Astrometric CCDs and Focal Plane* ... 343
A.D. Short

Radial Velocity Spectrometer: Technical Issues* ... 351
M. Cropper, D. Katz, A. Holland, R. Bingham, B. Hancock, D. Walton

Modelling the Instruments and Simulating the Data Stream 357
X. Luri, C. Babusiaux, E. Masana

Design and Overview of the Data Processing* .. 361
J. Torra, F. Figueras, C. Jordi, X. Luri, E. Masana, C. Fabricius

Data Processing: Testing of Core Tasks* ... 369
F. Figueras, B. López Martí, C. Fabricius, J. Torra, C. Jordi, P. Llimona, E. Masana, X. Luri

Gaia Photometric Data Analysis* ... 377
A.G.A. Brown

A Prototype for Science Alerts* ... 385
N. Wyn Evans, V. Belokurov

Object Classification and the Determination of Stellar Parameters* 393
C.A.L. Bailer-Jones

ORAL CONTRIBUTIONS

Applying Grid Technology to Gaia Data Processing* 401
S.G. Ansari, Y. Balague-Jordan, X. Luri, M. ter Linden

Gaia First Look* ... 405

POSTERS

The Astrometric Model Implementation. Simulations and Data Reduction Compatibility Test* 413
G. Anglada-Escudé, J. Torra, E. Masana, X. Luri

The Gaia Instrument and Basic Image Simulator ... 417
C. Babusiaux

Design of the Gaia Photometric Systems for Stellar Parametrization using a Population-Based Optimizer* 421
C.A.L. Bailer-Jones

Simulation of the Clock Framework of Gaia ... 425
J. Castañeda, J.P. Gordo, J. Portell, E. García-Berro, X. Luri

The Windows Design and the Restoration of Object Environments 429
C. Dollet, A. Bijaoui, F. Mignard

The Gaia Focal Plane to Sky Mapping: A Sample of Calibration Issues* 433
M. Gai, D. Busonero, D. Gardiol, D. Loreggia

* indicates that this article contains colour figures in the electronic version
Gaia Optical Aberrations Described by Means of Orthogonal Polynomials
D. Gardiol, D. Bonino, D. Loreggia

Automatic Parametrization of Gaia Astrometrically Unresolved Binary Stars
T.A. Kaempf, P.G. Willemsen, C.A.L. Bailer-Jones

Gaia Telemetry Rate Simulations: A First Look at the Complete Picture*
U. Lammers

CHORIZOS: a Complete Photometric χ^2 Code*
J. Maíz Apellániz

Minimum Distance Method of Classification Applied to Gaia Simulated Photometric Data
V. Malyuto

The Gaia System Simulator*
E. Masana, X. Luri, G. Anglada-Escudé, P. Llimona

Observing Faint Binaries with Gaia
P. Nurmi

Galaxy Simulations of Visual Binary Stars
P. Nurmi

A Bayesian Classification Algorithm for Gaia
S. Picaud, A.C. Robin, U. Bastian

The Payload Data Handling and Telemetry Systems of Gaia
J. Portell, X. Luri, E. García-Berro, E.M. Geijo

Design of a Basic Angle Monitoring System in Silicon Carbide
A.A. van Veggel, P.C.J.N. Rosielle, H. Nijmeijer, A.A. Wielders, H.J.P. Vink

Automated Identification of Unresolved Binaries using Medium Band Photometry
P.G. Willemsen, T.A. Kaempf, C.A.L. Bailer-Jones, K.S. de Boer

The JASMINE Simulator
Y. Yamada, The JASMINE Working Group

Optical System for JASMINE and CCD Centroiding Experiment

Session 5: Stars: Laboratories and Tracers
Chair: Poul Erik Nissen

INVITED CONTRIBUTIONS

Stellar Interiors and Atmospheres in the Framework of the Gaia Mission
Y. Lebreton

Gaia Stellar Chemical Abundances and Galactic Archaeology
A. Recio-Blanco, F. Thévenin

Duplicity and Masses
D. Pourbaix

Variability Analysis: Detection and Classification*
L. Eyer

Metallicity and Age of Disc Stars
M. Haywood

The RAVE Spectroscopic Survey: Results From the First 44 000 Observed Stars
U. Munari, T. Zwitter, A. Siebert

* indicates that this article contains colour figures in the electronic version
ORAL CONTRIBUTIONS

Determination of Stellar Rotation with Gaia and Effects of Spectral Mismatch 537
A. Gomboc, D. Katz

Emission Line Stars in the Framework of Gaia ... 543
I. Kolka, T. Eenmae, A. Hirv, T. Tuvikene, M. Kama

Towards Accurate Stellar Photometry: the Role of C, N, O and Alpha-Process Elements 549
G. Tautvaisiene, B. Edvardsson

POSTERS

Gaia Data Reduction Tasks for Double and Multiple Stars* .. 557
F. Arenou, S. Soderhjelm

Study of B and Be Stars by Gaia ... 561
D. Briot, N. Robichon

A PHOENIX Model Atmosphere Grid for Gaia ... 565
I. Brott, P.H. Hauschildt

Predicted Properties of Eclipsing Binaries Observable by Gaia .. 569
J. Dischler, S. Soderhjelm

Weighing Stellar–Mass Black Holes with Gaia ... 573
B. Fuchs, U. Bastian

Astrometric Binaries with a Variable Component ... 575
J.L. Halbwachs, D. Pourbaix

Orbit Determination for Gaia Spectroscopic Binaries* .. 579
S. Jancart, D. Pourbaix

Hipparcos Astrometric Binaries in the Ninth Catalogue of Spectroscopic Binary Orbits:
A Testbench for the Detection of Astrometric Binaries with Gaia 583
S. Jancart, A. Jorissen, D. Pourbaix

Modelling Spectra of Fast-Rotating Stars: Beyond Spherical Approximation 587
U. Jauregui, A. Gomboc, T. Zwitter

Theoretical Modelling of Late-Type Giant Atmospheres: Preparing for Gaia* 591

α-Enhancement in Thin and Thick Disc Stars: An Atlas of Synthetic Spectra 595
M.L. Malagnini, M. Franchini, C. Morossi, P. Di Marcantonio

Gaia and the Fundamental Stellar Parameters from Double-Lined Eclipsing Binaries 599
P.M. Marrese, E.F. Milone, R. Sordo, M.D. Williams

Variability of B and Be Stars with Gaia ... 603
C. Neiner, A.-M. Hubert, Y. Fremat, M. Floquet

Physical Parameters of Stars in Close Binaries Derived from Gaia Photometry 607
P.G. Niarchos, V.N. Manimanis, K.D. Gazenas

Introducing Adapted Nelder & Mead’s Downhill Simplex Method to a Fully Automated Analysis of
Eclipsing Binaries ... 611
A. Prsa, T. Zwicker

Automatic Derivation of Stellar Atmospheric Parameters and Chemical Abundances 615
A. Recio-Blanco, A. Bijaoui, P. de Laverny, D. Katz, F. Thevenin

* indicates that this article contains colour figures in the electronic version
Session 6: The Galaxy and Beyond
Chair: Catherine Césarsky

INVITED CONTRIBUTIONS

The Fundamental Building Blocks of Galaxies* .. 629
P. Kroupa

Crowded Fields in the Milky Way and Beyond* .. 637
C. Babusiaux

Gaia, the Oldest Stars and the Early Universe* .. 645
M. Spite

Dark Matter in the Local Group ... 651
M.I. Wilkinson

Variable Stars as Standard Candles and Stellar Tracers* 659
G. Bono, M. Cignoni

Quasars with Gaia: Identification and Astrophysical Parameters 667
J.-F. Claeskens, A. Smette, J. Surdej

ORAL CONTRIBUTIONS

Correcting Systematic Errors in the Determination of Proper Motions in the Galaxy .. 675
J. Kovalevsky

Globular Cluster Kinematics with Gaia .. 681
H. Baumgardt, P. Kroupa

POSTERS

VLBI Survey of Weak Extragalactic Radio Sources as a Potential Link Between the Radio and Optical Reference Frames .. 683
S. Frey

Star Formation and Chemical Evolution of M31* .. 687
J.L. Hou, L. Chen, R.X. Chang

The Physics Behind the Non-Linearity of the Cepheid Period-Luminosity Relation .. 691
S. Kanbur, C. Ngeow

Beyond the Galaxy with Gaia: Evolutionary Histories of Galaxies in the Local Group* .. 695
A. Kučinskas, L. Lindegren, V. Vansevičius

Cool Carbon Stars in the Galactic Halo .. 699
N. Mauron, T. Kendall

Cepheid Period-Luminosity Relations: Galactic vs. LMC and the Results from t-Test .. 703
C. Ngeow, S. Kanbur

* indicates that this article contains colour figures in the electronic version
Classical Cepheids and RR Lyrae Stars as Standard Candles
A.S. Rastorguev, A.K. Dambis, M.V. Zabolotskikh

Kinematic Survey of Halo Stars from SDSS-DR2 ∩ GSC2
P. Re Fiorentin, A. Spagna, A. Helmi, M.G. Lattanzi

Substructure and Tidal Debris in Local Galaxies: Models and Observations
J.E. Taylor

Statistical Methods for Calibrating Trigonometric Parallaxes
T. Tsujimoto, Y. Yamada, N. Gouda

The Classification of Cepheids by Pulsation Modes and the Problem of the Distance scale
M.V. Zabolotskikh, M.E. Sachkov, L.N. Berdnikov, A.S. Rastorguev, I.E. Egorov

Concluding Remarks: Gaia and Astrophysics in 2015–2020
P.T. de Zeeuw

List of Participants

Subject Index

* indicates that this article contains colour figures in the electronic version
Introduction

Between 4–7 October 2004, a major symposium dedicated to the scientific aspects of the Gaia mission was held at the Observatoire de Paris, Meudon, France, as ‘Les Rencontres de l’Observatoire 2004’. Attended by 240 delegates, the four-day meeting was an opportunity to present the current status of the Gaia mission to the interested scientific community, and to hear about the results of investigations carried out in the various areas of the mission over the last four years.

The Gaia mission was proposed to ESA in 1994 as part of the ‘Horizon 2000 Long-Term Plan’, and supported by the Survey Committee if the achievement of accuracies of about 10 micro-arcsec at 15 mag could be demonstrated. It was approved by the ESA’s Science Programme Committee in 2000 after a two-year concept and technology study. From that time, the project has been through an intensive study phase which will end during the early part of 2005. The mission will then enter the detailed design and manufacturing phase shortly afterwards. The launch date is currently targeted for mid-2011. The Gaia 2004 Symposium was timed to coincide with the finalisation of this study phase.

The main purposes of the Symposium were: (i) to present to the scientific community the overall mission design, along with its detailed characteristics and performances; (ii) to bring to the attention of the scientific community the extraordinary potential of Gaia, and to share with the younger generation of scientists the expertise acquired during its preparation (and all phases of the Hipparcos mission); and (iii) to organise the next phases of scientific preparations of the mission: in particular the data reduction and, ultimately, preparation for the scientific exploitation of the data.

During the study phase, three major and closely related components of the project have been under study:

(1) A small ESA study team, led by study manager Oscar Pace, has directed two parallel industrial studies, undertaken by EADS Astrium and Alenia/Alcatel. The overall system aspects, including the payload, attitude control, and data handling sub-systems, launcher interface, thermal design, and the mass and power budgets, have been studied in detail. In addition, specific technical development activities have been running over the last two years in the most technologically critical areas to establish further confidence in their performance and feasibility: this includes a prototype of the large primary mirror manufactured in silicon carbide, flight representative CCDs, deployable sunshield, payload data handling electronics, etc.

(2) The scientific community, represented by ESA’s Gaia Science Team and chaired by the project scientist Michael Perryman, has directed the associated scientific studies and provided guidance to ESA on the technical aspects of the satellite and payload design impacting on the final mission accuracies. The goal of these activities is to converge on a satellite design which is scientifically optimised, and technically and financially feasible. Sixteen scientific working groups, representing more than 200 European scientists, were formed in 2004 to coordinate detailed scientific studies on aspects such as multiple and variable stars, solar system objects, relativistic formulation, on-board detection and data handling, accuracy analysis, etc. These groups have worked to improve confidence in the scientific objectives, the data processing requirements, and all other preparations needed before launch.
The third major component of the Gaia end-to-end system is the data processing on-ground. This has always been understood to be a very challenging part of the mission, involving large data volumes, large numerical processing requirements, and numerous and complex algorithms including the core ‘global iterative solution’. Considerable attention has been given to this element over the past few years, with a comprehensive data simulation chain being built up under the direction of the simulation working group, and a detailed prototype of the data base and iterative solution now running on 18 months of mission data comprising 200,000 stars.

Presentations covered all scientific aspects of Gaia, and the detailed studies carried out by the working groups and science team over the past four years. These proceedings therefore represent a snapshot, as of October 2004, of the rapidly developing scientific aspects of the mission. As apparent in the 150 papers presented at the meeting, great advances have been made in all aspects of the mission design. Equally evident are the many challenges that lie ahead.

The three industrial organisations, EADS Astrium, Alenia, and Alcatel, as well as Observatoire de Paris, ESA, CNES, CNRS and INSU generously sponsored this Gaia 2004 Symposium. This allowed travel grants to be provided to 40 graduate and post-doctoral students. The many young scientists now involved in the Gaia mission, and attending the symposium, is a great testament to its interest and vibrancy.

As chair and co-chair of the Scientific Organising Committee, we acknowledge the contributions of all involved in making the symposium a success: the Scientific Organising Committee, the Gaia Science Team, and the International Advisory Committee; the Local Organising Committee under the leadership of Yves Viala; Karen O’Flaherty in charge of communication and proceedings aspects; the chairs of the various sessions; those who undertook the challenging but valuable task of summarising the poster contributions (David Katz, Ulrich Bastian, François Mignard, Michel Breger, and Xavier Luri); and of course the speakers and poster presenters.

Catherine Turon, Observatoire de Paris-Meudon

Michael Perryman, European Space Agency