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Abstract.
Autonomy is an essential factor to maximize the

scientific return of exploratory missions, and it in-
creasingly motivates the development of intelligent
technologies that reduce the need for remote con-
trol or human supervision. is is the case for in-
stance in the fields of rover navigation or on-board
science analysis for planetary exploration. Inter-
estingly, some of the tasks involved in such en-
deavors are also faced and efficiently solved by bio-
logical systems in nature, e.g. the animal olfactory
system is able to autonomously detect and track
cues (molecules) over long distances; it can robustly
cope with sparse or noisy data, and it requires low
computational complexity and energy consump-
tion. On account of such capabilities, technolo-
gies that find inspiration in the neural architecture
of biological systems present intrinsic advantages
that give answers to the requirements of space en-
vironments. is paper outlines recent work in
the fields of bio-inspired autonomous navigation
and neuromorphic chemical sensing. We envision
that these two approaches can be merged to pro-
duce novel techniques for autonomous exploration
in space applications.

*E-mail: emartinmoraud@ieee.org
†E-mail: chicca@ini.phys.ethz.ch

1 Introduction

For decades space exploration has been involved with
searching for traces of past or present life and water on
other planets along with measuring geophysical param-
eters relevant to planetary evolution. Examples of up-
coming exploratory missions sharing these goals include
the ‘ExoMars’ mission led by ESA, which will perform
measurments of the Martian soil and rocks, collecting
and analyzing particles bymeans of a surface Rover [39].
Likewise, the NASA ‘ARES’ Mission will study the at-
mospheric composition of the red planet using an Un-
manned Air Vehicle (UAV) that will be flown through
the near-surface atmosphere while collecting samples of
its chemistry and dynamics [34].

Common to all aforementioned tasks is required to
detect and track chemical components in an unknown
environment. is involves several challenges. First,
relevant particles or blends are to be detected and dis-
criminated on-line. Precise gas sensor technologies
and on-board analysis are required to classify relevant
molecules in real time, thereby coping with their short-
time scale, high dimensionality and quickly changing
amplitude [15]. Traditional pattern recognition mod-
els based on attractor states may prove too slow for such
purposes.

Secondly, exploration needs to be driven toward ar-

9



Acta Futura 4 (2011) / 9-19 E.M.Moraud and E. Chicca

eas of high scientific impact. Navigation must be au-
tonomous and efficient, able to deal with data that is
sparse, noisy and subject to turbulence. Note, that in
real environments, patches of high concentration are
constantly surrounded by wide voids where no rele-
vant information is available. is makes navigation
a complicated task for which simple approaches (e.g.,
gradient-based) fail, since gradients constantly fluctuate
inmagnitude and direction, and do not point toward the
source [35].

When considering space applications, additional
constraints must be accounted for, namely, limited en-
ergy consumption and physical space. Computational
complexity must thus be kept to a minimum.

Interestingly, olfactory source localization is a com-
mon task in nature, and many animals constantly solve
it to locate food or find mates with high accuracy and
limited resources [26]. Moth and Bacteria are among
the most illustrative and better documented examples
of scent tracking. e former use their antennae to de-
tect pheromones released by females, and employ them
to track the plume toward their mate [2]. Bacteria on
the other hand rely on local searches to move toward a
source of nutrients [3]. To this date, neither the dis-
crimination capabilities achieved by biological systems,
nor their efficiency in exploration, have been replicated
by artificial counterparts.

Several biomimetic solutions have attempted to draw
inspiration from nature, and to apply them to robotics
as an alternative to classic engineering approaches [14,
30]. Of particular interest, neuromorphic technolo-
gies mimic the architectural structures present in the ner-
vous system. ey are usually implemented in ana-
logue circuits that consume little power and they ex-
ploit parallel computation which allows real-time per-
formances. Such concepts provide an ideal technical
framework to deal with the requirements of space appli-
cations. Recent successful applications include neuro-
morphic vision-based spacecraft landing, derived from
insect optic flow strategies, and integrated within Very
Large Scale Integration (VLSI) sensors [27, 22].

In this paper, we report advances in both neuromor-
phic chemical detection and autonomous navigation.
We further outline how, when combined, such tech-
niquesmay prove valuable in the framework of planetary
exploration.

2 Robot navigation

2.1 Toward full autonomy

Intelligent decision-making in space unmanned vehicles
is essential to overcome the limitations caused by com-
munication delays and overloaded bandwidths. It allows
the exploration of distant planets without direct human
supervision, and thereby to replace impractical remote
control [1].

To this day, however, autonomous navigation has
been mostly limited to providing basic behaviours, e.g.
obstacle-avoidance or detection of traversable areas.
Higher-level behaviours that require scientific expertise
and long-term plans (as is the case when seeking chem-
icals) are still human controlled. Additional autonomy
has recently been deployed using planning and schedul-
ing techniques [38, 10, 6] in order to flexibly redirect
exploratory paths on-line, and thereby to account for
new features of interest discovered along the way. Yet
this is only local and with limited range of action within
the pre-established long-term plan outlined fromEarth.
Fully automating exploratory operations would require
that the whole navigation toward promising areas be de-
cided onboard by the agent itself, guided by interactions
with its environment and motivated by an intrinsic in-
terest in the final goal.

Completely autonomous source localization has been
attempted on Earth through a variety of techniques, ei-
ther purely probabilistic or inspired from biological sys-
tems. e former uses intelligent sensing and planning
to reason about the world, but it often suffers from the
sparseness of information far from the source, and it
proves to be truly efficient in dense conditions only, i.e.
close to the source where the plume can be considered
as a continuous cloud [28]. Bio-inspired approaches,
on the other hand, can yield impressive results even
far form the source [17, 14, 29], but often address the
problem only from a behavior imitation perspective, i.e.
they mimic the choices performed by animals through a
rule-based approach, regardless of the mechanism from
which the behavior emerges. is raises the question
of how well such strategies may be adapted to new sce-
narios (if at all) or even be optimized when consider-
ing added constraints such as those imposed by space.
A proper adaptation would instead require tuning and
rewiring the underlying neural architecture.
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F . Infotaxis. Example of belief (probability map) for the
location of the source after 10 steps (red dots). No ‘cues’ are detected
in that time. Locations in front of the agent become less probable as
the agent navigates forward without encounters, thereby increas-
ing the likelihood of locations on the sides. e shape of the belief
(Gaussian-like) is inferred from the physics description of how cues
spread in the environment when transported by the wind.

2.2 Infotactic strategies

Infotaxis [40] conveys the advantages of both ap-
proaches previously mentioned. It is based on Rein-
forcement Learning (RL) approaches, and fully exploits
the capabilities of autonomous on-line learning. e
agent discovers the direction leading to the source by
iterative interactions with its environment, driven by a
decision-making strategy that efficiently combines ex-
ploratory patterns with information exploitation.

Interestingly, although animal patterns are not pre-
programmed or imposed through explicit rules of move-
ment, behaviors such as casting or zigzagging (exten-
sively documented in moths) do actually emerge natu-
rally from the underlying architectural model [20]. is
represents a promising baseline from which to derive
extended strategies, adapted to other scenarios. As a

matter of fact, even though initially restrained to the
problem of scent tracking, infotaxis actually embodies a
general framework for intelligent navigation and source
localisation with sparse cues. Its core components are
outlined hereafter.

Algorithmic foundations.

Infotaxis is built around two core components: Uncer-
tainty modeling and decision-making. e former is
achieved through an internal description of the world
(physical description of how cues spread in turbulent
environments when transported away from the source),
which can be used to interpret encounters and thereby
to infer the likelihood for the source to be at a given
location.

In the scenario considered in [40] (odor cues spread in
an open environment), the internal model corresponds
to the spatio-temporal profile of odor plumes (as de-
rived from the equations of diffusion-advection). Since
molecule dispersal is subject to high degrees of turbu-
lence and randomness, a detailed description of the en-
vironmental dynamics is unfeasible; instead, a time-
average distribution of the detection-rate R is calcu-
lated, to which a random component is added, i.e. actual
encounters are sampled independently from a poisson-
distributed variable.

Based on this physical model, a probabilistic belief is
built (Fig. 1) given the trace of past perceptions (in a
similar way to [28]). Note that both encounters and
non-encounters provide information and are used to it-
eratively update the belief, which is then relied upon for
the decision-making. e strategy attempts to maxi-
mize the expected amount of ‘knowledge’ acquired in
the next step, as quantified in terms of the entropy of
the aforementioned probabilistic map. Note that this
differs from classical approaches in that the agent does
not directly target themost likely location for the source,
but rather the one where he expects to ‘learn’ more about
its surrounding.

e (expected) uncertainty in future steps is derived
from two terms: A first term which evaluates the prob-
ability of finding the source, and a second one which
computes the amount of knowledge gathered even if the
source is not found. e first term corresponds to the
exploitative choice; the robot chooses to go in the direc-
tion that maximises its (expected) chances of finding the
source (regardless of other considerations) whereas the
second term represents the explorative decision which
pushes the robot to go to regions where it might detect
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F . Left. Real recordings (red) with a heat sensor at sampling frequency f =10Hz, and derived ‘cues’ (black dots) to be employed
by infotaxis when guiding the search. A moving window (blue) is used to filter the signal while preventing consecutive correlated hits
from being overcounted, thereby ensuring that ‘cues’ are appropriately derived from the sensor measurementsRight. Experimental setup,
koala robot endowed with the sensor, and heat source.

new cues (regardless of whether the source is actually
believed to be in that direction or not). is balance is
essential for the strategy to be effective and provides the
model with a robustness that makes it especially suitable
for turbulent environments. Its efficiency was shown
indeed to outperform more classical approaches [40].
Note that the horizon considered when predicting re-
wards consists of a single step, but could easily be ex-
tended to account for elaborated planning.

2.3 Facing real environments

We addressed the problem of verifying that infotactic
strategies may prove equally efficient under real exper-
imental conditions. It is well known that matching
the complexity of the world in computational models is
highly challenging, and usually it is necessary to make
simplifications or assumptions to help make the prob-
lem tractable. On the contrary, robotic agents are con-
fronted with the real environment and hence provide a
testbed to assert complete and rigorous results. It is also
an essential step to ensure that algorithmic concepts can
be implemented with the available technology and em-
ployed for real-world applications.

e key point at the core of infotaxis is the ran-
domness of odor encounters. is randomness is ex-
plained by the turbulence of the medium (particles
spread through diffusion-advection), and it motivates
the use of an uncertainty-minimisation approach. Cues
are modeled in simulation through stochastic mathe-
matical descriptions, and it is assumed that they are
independent and uncorrelated. Yet in reality an odor

patch covers a certain volume and presents extended
spatiotemporal characteristics. Even though inherently
random, this structure will give rise to consecutive non-
independent ‘cues’. For infotaxis to be fully efficient,
consecutive detections should not be overcounted. In
[24], we calculated the posterior probability distribu-
tion from a modified model that accounts for correlated
hits, and is built around transitions from no-detection to
detection rather than on single hits. In our implemen-
tation, this is achieved by means of an adaptive filter,
calculated over a moving time-window (Fig. 2).

Furthermore, electronic sensors must be chosen so
that the requirements of the model (in terms of sensi-
tivity and speed) are met. Because odor sensors usually
require long degassing times and saturate easily, they are
unable to respond to the requirements of infotaxis. We
chose as an alternative to use heat sensors, which do not
saturate easily and react at high speed. We note that the
spatiotemporal distribution of heat is identical to that of
odor, and thus no loss of accuracy is brought in by this
adaptation. Alternative solutions for chemical sensing
that draw inspiration from the animals neural informa-
tion system are further outlined in section 3, along with
their advantages.

Infotaxis robustness and effectiveness was then tested
by means of a real robotic framework (Fig. 2 – right).
Identical distributions were obtained, both for the
search time required until finding the source, and for
the number of encounters required (Fig. 3), thus ensur-
ing that its main properties are preserved when applied
in reality. Note also that the internal model relied upon
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F . Comparison of robotic and simulated results: cumulative distribution of the number of steps until finding the source (left)
and of the number of cues required to reach the goal (left).

by the agent requires parameters such as wind speed and
direction. Which in reality may vary over time and dif-
fer from the estimated ones. e robustness of infotaxis
was thus evaluated even with respect to inaccurate mod-
eling by the agent; the parameters were not fine-tuned
or adapted on-line, yet despite this discrepancy the robot
was able to find the source within reasonable time limits.

e biomimetic characteristics of the navigation were
also preserved in our robotic implementation. Robot
trajectories were shown to exhibit animal-like patterns
such as ‘extended cross-wind’ or ‘zigzag upwind’ [24].
e track angle histogram also maintains a distribution
similar to that observed in moths.

3 Artificial olfaction

Molecule sensing and discrimination is being deployed
in a range of space projects. Examples of on-board anal-
ysis and recognition include theMarsOrganicMolecule
Analyzer (MOMA) embedded within the ExoMars
rover, that will analyze gases in the Martian atmosphere,
attempting to separate and identify specific compo-
nents. Complementary approaches that help facilitate
this task would prove highly useful.

In this regard, it has been suggested that the animal
olfactory system exploits network dynamics to improve
the recognition of different inputs. ey make use of
the transient response and decorrelate different inputs
by mapping them into a higher dimensional space that

exploits the number of possible spatio-temporal combi-
nations [30]. Under this grounding premise, recogni-
tion models built out of a similar structure could prove
extremely efficient for real applications. Neuromorphic
engineering is therefore a promising tool for building
odor classification systems.

is technology may also be implementable as part
of gas sensor employed in every day-life problems (e.g.,
CMOS). Progress so far in this direction has been hin-
dered by the high price of these devices, and consider-
able effort has been devoted to developing low-cost gas
sensors using CMOS technology, and combining them
with MEMS for instance. is has led to the imple-
mentation of low-power smart gas sensors. A recent re-
view by Gardner et al. [12] summarizes the main latest
achievements in the field of integrated CMOS gas sen-
sors.

3.1 Neuromorphic computation for olfactory
systems

Neuromorphic VLSI devices comprise hybrid ana-
log/digital circuits that implement hardware models of
biological systems, using computational principles anal-
ogous to the ones used by nervous systems [21].

During the last decade the neuromorphic engineering
community has made substantial progress by develop-
ing the technology for constructing distributed multi-
chip systems of sensors and neuronal processors that
operate asynchronously and communicate using action-
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potential-like signals (or spikes) [7, 23]. e main ad-
vantages of VLSI networks of spiking neurons permit
the embodiment of this platforms on robotic devices,
providing the circuits with realistic inputs which are af-
fected by the interaction of the robot with the environ-
ment.

Recent advances in chemosensors [12], a better un-
derstanding of the signal processing principles of bio-
logical olfactory systems and progress in the technology
for constructing distributed spiking multi-chip neuro-
morphic systems, have made it possible to consider im-
plementing compact, low-power, biologically inspired
neuromorphic olfactory systems.

ese systems are often modular. e sensing (see
[32] for a recent review), the signal processing (e.g.,
[31]) and the artificial neural network pattern recogni-
tion system (e.g., [9, 33]) are implemented separately
using various technological means (sensors with differ-
ent transducer principles, conventional software algo-
rithms, general purpose digital computing devices and
custom hybrid analog/digital VLSI devices).

Within the biologically inspired olfactory systems
proposed in the literature the most representative ex-
ample of a neuromorphic olfaction device was recently
suggested by Koickal et al. [13]. ey presented a fully
integrated neuromorphic olfaction chip comprising a
chemosensor array, a signal conditioning circuitry and a
spiking neural architecture with on-chip spike time de-
pendent plasticity [19].

We propose a modular neuromorphic approach for
testing olfactory coding and signal processing hypothe-
sis derived from the study of insects. e long term goals
of this research include the development of novel algo-
rithms for chemical sensor data classification based on
principles extracted from biological olfactory systems.

e choice for modularity provides two main advan-
tages in comparison to a fully integrated neuromorphic
olfaction chip:

1. commercially available chemical sensor arrays can
be easily integrated in the neuromorphic system.

2. possibility to test different network topologies by
means of spiking multi-neuron Address Event
Representation (AER) chips and the related hard-
ware infrastructure¹.

¹In recent years we have witnessed the emergence of new asyn-
chronous communication protocols that allow aVLSI neurons to
transmit their activity across chips using pulse-frequency modulated
signals (in the form of events, so-called spikes). One of the most com-
mon asynchronous communication protocols used in these types of

F . Simplified model of the AL studied in [4]. Small tri-
angles: excitatory connections. Small circles: inhibitory connec-
tions. Weights of excitatory and inhibitory connections (gray and
blue pathways) are the only free parameters used to study the be-
havior of the network.

e olfactory system of insects provides an ideal sub-
strate for studying the information processing in bio-
logical neural networks for several reasons. Firstly, it
is a ‘small’ system, i.e. the first olfactory relay in in-
sects, the Antennal Lobe (AL), consists of a relatively
small number (ca. 50 in Drosophila) of functionally dis-
tinct processing units or glomeruli. Secondly, it exhibits
a stereotyped connectivity; the glomeruli are zones of
high synaptic convergence between the axons of one
type of Olfactory Receptor Neurons (ORN) and the
dendrites of a few Projection Neuron (PN) projecting to
higher brain areas [41]. Finally, the odor code is con-
served between individuals which is helpful for the sys-
tematic comparison and pooling of experimental results.

In the insect glomeruli, inhibitory modulation of
the AL activity is achieved by the interaction of Local
Interneuron (LN) with ORN and PN. ese intra-AL
connections have a significant influence on the process-
ing of information in the AL [42, 37]. e role of these
inhibitory networks in shaping and processing olfactory
information is not fully understood, despite a number
of studies that have illustrated the importance of inhibi-
tion in theAL. In [4], we studied a network architecture
with feed-forward global inhibition based on a previous
study by Silbering and Galizia [36] (see Fig. 4) by us-
ing a linear model, a spiking software simulation and a
neuromorphic implementation.

We used the linear model to provide a complete char-

systems is based on the AER [18]. Systems containing more than one
AER chips can be assembled using off-chip arbitration and lookup ta-
bles to map address-events from one chip to another, implementing
arbitrary network topologies. Infrastructures for constructing multi-
chip pulse-based neuromorphic systems based on AER have been de-
veloped by several researchers (e.g., [5, 8, 25, 11, 7]).
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F . Histogram of angles between activation vectors of odor pairs for the three simulations (rows) and for three values of inhibition
strength (columns) presented in [4]. Increasing inhibition strength (from left to right) produces a shift of the angle distribution toward
the 90 degrees limit, therefore increasing odor discriminability.

acterization of the parameter space. e spiking simu-
lation on the other hand provides the advantage of in-
cluding the temporal dynamics in the model but has the
drawback of being computationally intensive, especially
for large network simulations. Alternatively, the neu-
romorphic VLSI emulation has the advantages of the
spiking simulation in a compact, low-power, real-time
system.

As shown in Fig. 5, we compared the behavior of the
network in response to calcium concentrations measure-
ments of odor responses in Drosophila Melanogaster for
the three different simulation approaches.

One hypothesis about the role of the AL in the ol-
factory processing stream is to increase odor discrim-
inability. In the AL, all axons with the same recep-
tor expression profile converge onto a single glomerulus
[41], so that the array of activity values of each ORN for
a given odor represents a vector in a multidimensional
space. Intuitively, we can consider the Euclidean angle
between pairs of vectors as a measure of odors proxim-
ity, thus the network should increase angles to improve
odor discriminability.

e table in Fig. 5 presented in [4] shows the distri-
bution of angles (computed for all possible odor pairs)
for the three simulations (rows) and for three values of
inhibition strength (columns). When inhibition is dis-
abled (left column) the PNs angle histogram is identical
to the input (ORN) angle histogram for the linear sim-
ulation (top graph). When inhibition is enabled (center

column) an average increase in angles between odors is
observed in the three models. is network effect can be
increased by increasing the strength of inhibition (right
column).

ese results showed that inhibition could be used by
the AL to increase angles between odor pairs and there-
fore improve odor discriminability. e three models
show comparable results.

Apart from studying the role of local inhibition in the
AL, this work was very useful to establish a hardware
framework for implementing models of olfactory com-
putation. e neuromorphic neural network studied in
[4] can be used as a preprocessing stage for an odor clas-
sifier. We are currently investigating a neuromorphic
system for odor classification using the same data pre-
sented in [4], and comparing the classifier performance
on the network’s input and output data.

4 Perspectives for space

Infotactic navigation strategies have been tested so far
in the case of olfaction only, i.e. for scent-tracking
and odor-source localization. Nevertheless, the concept
only requires certain features to work (cues encountered
along the way as the agent navigates, providing informa-
tion about where the source is more likely to be, along
with a model of the environmental dynamics), and it
hence represents a quite general approach that may be
applicable to different scenarios with equal degrees of
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F . Exomars rover [39] and riverbed along which fully
autonomous water-source localisation may be considered.

success.
Under such premise, it may be of interest to consider

whether similar approaches could be used for space-
related applications as the ones outlined in the intro-
duction, for instance in the framework of finding foot-
prints of biological activity. A key point is that the goal
is treated as a source that spreads cues in the environ-
ment in a way that can be modeled, and relied upon
when reasoning. Rover infotactic navigation would help
guide the search toward areas of scientific interest (e.g.,
a crater, or the source of a dry river - Fig. 6).

ese navigation strategies must be supported by on-
board detection and real-time classification of chemical
components. Integrated sensors and neuromorphic ol-
factory systems described above are ideal candidates for
achieving these demanding tasks. e results presented
in [4], summarized in section 3, provide a promis-
ing substrate for exploring hardware implementation of
real-time chemical detection and classification devices.
Furthermore, the neuromorphic technology can guar-
antee low-power consumption and compactness, essen-
tial for space applications. In particular, the hardware
framework presented in [4] is relevant for robotic scent
tracking in space exploration for the following reasons:

1. e neuromorphic chips used are massively parallel
and operate in real time, regardless of the size of the
implemented neural network.

2. e analog circuits modelling spiking neurons and
dynamic synapse are operated in the transistor’s
subthreshold regime [16], therefore producing cur-
rents of the order of pico-Amperes and leading to
very low power consumption.

3. Miniaturized systems can be implemented after a
prototyping phase used to explore different archi-
tectures.

4. e spiking neural networks implemented in our
neuromorphic chips can exploit temporal dynamic
analogues to those observed in biology to achieve
improved odor classification.

5 Conclusion

We have presented both software and hardware bio-
inspired alternatives to classical robot navigation and
odor-sensing processing. ese exploit the structure of
neural systems, their low energy consumption and small
size, making them very well adapted to the requirements
of space applications. Specifically we envision that im-
plementing infotactic navigation supported by neuro-
morphic sensing and processing will lead to efficient and
robust strategies that could allow full autonomy to be
contemplated in exploratory rovers. ese would intel-
ligently guide the search for chemicals without human
supervision.

In addition, alternative applications that go beyond
mere odor recognition and tracking may also be con-
sidered. e presented models can be extended to ac-
count for additional constraints and scenarios, and may
therefore be considered as a baseline from which to de-
rive global searching strategies with sparse or noisy cues.
Examples could include autonomous satellite guidance,
or extensions that cope with limited measuring capabil-
ities. Note that these may be included in the model as
constraints, which might lead to substantial changes in
the strategies adopted depending on the reward-to-cost
ratio considered.
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