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Abstract 

Locomotion using legs offers a great potential to mobile platforms 
transversing unstructured environments in terms of speed, energy efficiency 
and adaptation. Planets, satellites, and asteroids, presenting great scientific 
and exploration interest, are all characterized by such environments and 
therefore are candidate to be explored by legged locomotion platforms. 
Although research in legged robots over the last three decades led to several 
models, control algorithms and designs, a general systematic approach to the 
design and selection of appropriate gaits is lacking. 

This study examines the effects of gravity, slopes, and stiffness to the 
gaits achieved by quadruped robots in dynamic walking and running. To this 
aim, Hildebrand gait diagrams are employed in analysing gaits resulting from 
an optimisation process according to criteria important for space missions, 
such as motion speed and energy efficiency. A lumped parameter model of a 
quadruped robot in the sagittal and the coronal plane, is obtained using the 
Lagrangian methodology, and used in a simulation set-up to tackle the body 
pitch/ roll stabilization problem. Appropriate models for the environment 
including gravity and soil properties are used. An optimization study based on 
an extensive analysis using numerical return maps and passive robot models 
is used to determine the conditions required for achieving steady state cyclic 
motion. The results are evaluated using an appropriate objective function, an 
optimization algorithm and a complex quadruped robot model. The optimum 
gaits are classified using an automated scheme based on the Hildebrand gait 
diagrams. 

This study showed that it is possible to obtain stable gaits despite the 
varied conditions encountered in planetary exploration, and therefore, it 
indicates that legged robots can be used in such missions. It also presents 
important design guidelines that can be useful in designing robots able to 
complete their exploratory tasks successfully. 
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1. Introduction 

1.1 Concept 
Exploration missions of celestial bodies can benefit by employing legged 
robots. However, locomotion using legs, and especially dynamically stable 
locomotion, is highly depended on the local gravity field. On the other hand, 
exploration missions have specific requirements, such as low weight, radiation 
resilience, energy efficiency and system reliability. In addition, maintenance is 
impossible; therefore under critical situations a mission can be abruptly 
terminated. To this end, a systematic methodology is required for designing 
and implementing specific legged systems, according to the various 
challenging constraints of a space mission. An important ingredient of this 
approach is the study of the evolution of gait patterns as a function of gravity, 
and mission requirements such as transversal speed, environment 
morphology, power consumption, etc. 

1.2 Motivation 
Humans and animals have incredible motion capabilities in terms of speed, 
energy efficiency and traversing capabilities of environments with rough 
terrain, extreme slopes, and obstacles, such as off-road and mountainous 
areas, earthquake ruins, volcanoes, etc. These capabilities are due mainly to 
their legged locomotion system that allows them to use discrete footprints to 
handle discontinuities. Also, they change the stiffness of their muscles and the 
distance between their CoM and the ground to preserve their desired motion 
in an efficient way despite ground inclination and obstacles. In addition, 
humans and animals are able to perform dynamically stable motions in order 
to achieve higher speeds. 

Robotics researchers and scientists have been intrigued by these 
phenomenal characteristics since more than thirty years. The effort of 
mimicking nature led to a number of legged robot designs that can be 
classified as statically and dynamically stable. The development of legged 
robots with capabilities close to those of animals or humans opens new and 
exciting possibilities, such as reaching distant points through rough or slopped 
terrain, detecting survivors in earthquake ruins or workers in mine tunnels, 
helping in fire-fighting or de-mining tasks, or exploring planets. 

The exploration of planets, satellites and asteroids is undoubtedly 
significant for mankind. Wheeled robots have already been used in space 
exploration, sometimes having faced formidable obstacles. Legged 
locomotion is a natural alternative that has great potentials. The transversal of 
rough terrain and the small footprint requirements can be met by the 
development and use of legged robots. Although legged machines have the 
potential to outperform wheeled vehicles on rough terrain, they are subject to 
complex motion control challenges and to balance-in-motion constraints. 
Simply controlling the forward speed becomes a much more involved issue 
than in wheeled vehicles. 
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1.3 Literature Survey 
Significant efforts have focused on legged robots due to their efficiency, 
particularly in uneven terrains, and their capability in sloping ground 
locomotion. A number of approaches aiming at using legged robots for 
celestial body exploration have been presented up to date. To name a few, 
researchers at the Jet Propulsion Laboratory proposed the All-Terrain Hex-
Limbed Extra-Terrestrial Explorer (ATHLETE) concept as a mobility platform 
for lunar operations [1]. ATHLETE is a six limbed hybrid mobile platform 
designed to traverse quickly over smooth terrain using its wheels, traverse 
uneven terrain using its limbs and perform general manipulation of tools and 
payloads. Also, ATHLETE used as an evaluation testbed for a method of 
modelling compliance. This method assumes that all of the robot’s compliance 
takes place at the ground contact points, specifically the tires and legs, and 
that the rest of the robot is rigid [2]. The robots of the ATHLETE family use 
statically stable gaits, without capability of quick motions or right themselves 
from an unstable position. Therefore, predictive gait planning becomes very 
challenging and necessary. Another six-legged robot proposed for planetary 
exploration is the DLR Crawler [3]. It is an actively compliant walking robot 
that implements a walking layer with a simple tripod and a more complex 
biologically inspired gait. A navigation layer enables the robot to 
autonomously find a path to a predefined goal point. Nevertheless, the robot 
lacks a planner for footholds and body poses to handle highly uneven terrains. 

A different concept of a steerable six-legged hopping robot proposed in 
[4]. The robot can be launched from a base lander or vehicle and retrieved 
using a tether mechanism. Although a simulation of a hopping robot was 
designed to study and test the hopping robot parameters for the launch and 
retrieval system in different gravitational environments, a systematic gait 
planning, e.g. for stability purposes, was not presented. Instead, an internal 
gyro was used to help stabilize the robot, allowing it to stay upright and land 
on its feet when hopping at angles. The ASTRO is a six-limbed ambulatory 
locomotion system that replicates walking gaits of the arachnid insects [5]. A 
microgravity emulation testbed for asteroid exploration robots was presented 
for validating control methods using the ASTRO in hardware-in-the-loop 
simulations [5]. As the researchers stated, the main purpose of this motion 
technique, is to avoid getting ejected from the surface of the asteroid. 
Nevertheless, motion patterns and landing strategies were not proposed. 

Researchers from DFKI presented the concept of a biologically inspired, 
energy-efficient and adaptively free-climbing six-legged robot for steep slopes 
[6]. They focused on robot foot-design aiming at handling constraints from the 
environmental ground conditions, i.e. soft or steep terrain. They used a 
Central Pattern Generator (CPG) to generate the rhythmic walking motions 
and control the coordination for all legs. Although the prototype robot handles 
slopes around 25o while moving with a uniformly distributed walking gait or a 
tripod gait, its forward speed is quite slow, i.e. 125 mm/s, as expected for a 
statically stable gait. A quadruped concept design for planetary exploration is 
presented in [7]. The system was built for upright walking but its wide range of 
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motion in all joints allows switching to a turtle-like crawling gait when loose 
soil or steep slopes are encountered. Also, it is capable of recovery 
manoeuvres after tipping over. A comparison with a six-wheeled rover in 
terms of obstacle handling and static stability proved that the legged 
locomotion system is a worthy option for planetary exploration. In this case 
also, the robot uses statically stable gaits for the sake of stability, which 
reduces its speed capability. 

1.4 Contents of this work 
This work presents a systematic study of legged locomotion gaits as a 
function of gravity and environmental morphology, employing Hildebrand gait 
diagrams. The gaits are the result of an optimisation process and are studied 
according to criteria important to space missions, such as motion speed, 
energy efficiency or range, and climbing capabilities. 
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2 Robot Dynamics 

2.1 Concept 
Experimental evidence from research in Biology suggests that the high level 
nervous system is not required for steady state level walking and running, 
while research in Physiology indicates that during rapid locomotion, the 
control is dominated by the mechanical system. Similar results were 
presented from research in passive legged mechanisms that walk without the 
need of sensors and actuators or controllers. Therefore one can assume that 
a legged system has a physical predisposition to move in a specific way 
based on its internal dynamics. 

2.2 Motivation 
This predisposition depends on environmental parameters, such as gravity 
and terrain characteristics, physical parameters of the system, e.g. body 
mass, number of legs, leg length, distance between legs, and desirable 
motion, e.g. forward speed, apex height. Moreover, in principle there are more 
than one gait types for achieving desired motion characteristics, e.g. a specific 
forward speed, but with different power requirements. 

2.3 Literature Survey 
A general model for legged locomotion is the SLIP (Spring Loaded Inverted 
Pendulum) model (Fig. 1), which is passive and conservative [8]. Although the 
SLIP model describes quite accurately the coupled motion of the CoM of a 
body-leg system during dynamically stable locomotion (fast walking or 
running), it does not capture the body pitch stabilization problem. The body 
pitch motion is a significant component of the motion in quadruped gaits, like 
bounding, pronking, pacing and trotting, which are examined in this work. The 
SLIP model combined with the idea of the virtual leg can describe the motion 
of bodies with more legs. 
 

 
Figure 1. SLIP model. 

 

y

x

m

l
a



 9/48 

2.4 Contents of this work 
A lumped parameter model of a quadruped robot in the sagittal plane is 
shown in Fig. 2a and is used in the simulation set-up to deal with the body 
pitch stabilization problem. This model is consisted of two compliant virtual 
legs (VLegs) of mass ml and inertia Il and a body of m, I respectively. A VLeg, 
front or rear, models the two respective physical legs that operate in pairs 
when a gait is realized and has twice the mass, inertia, stiffness, and 
actuating requirement of each one of them [9]. Each VLeg is connected to the 
body with an actuated rotational joint at distance d from body’s CoM. The 
rotational hip joint allows positioning of VLegs at an angle γ in the plane of the 
forward motion. Also, each VLeg has a passive prismatic joint modelled as a 
linear compression spring of constant k and viscous damping coefficient c. 
The prismatic joint allows changes of the VLegs’ length l and energy 
accumulation during the robot’s motion. It should be noted here that front and 
rear VLegs are considered in general to have different uncompressed length 
l0 and compliance k. 

A similar planar model can be considered in the coronal plane that holds 
the dynamics of the body rolling motion (Fig. 2b). The motion of the robot in 
this plane has a significant role in the overall stability of the motion because it 
is unlikely that in a highly unstructured terrain, like an asteroid surface, the left 
and right legs to be at the same level. Again, the model consists of two 
compliant virtual legs of mass ml and inertia Il,x around x-axis and a body of m, 
Ix respectively. In this model each VLeg, left or right, models the two 
respective physical legs of the same side and is connected to the body with 
an actuated rotational joint. The rotational hip joint allows positioning of VLegs 
at angle δ in the coronal plane (vertical to the plane of the forward motion). 
Also, each VLeg has a passive prismatic joint modelled as a linear 
compression spring of constant k and viscous damping coefficient c. 

The robot motion was studied in the sagittal plane. During the flight phase 
(both VLegs do not touch the ground), the robot’s CoM performs a ballistic 
motion with constant system angular momentum H0 with respect to the CoM, 
and equations of motion given by, 

  xc = −gsin(ϕ )   (1) 

  yc = −gcos(ϕ )   (2) 

  H0 = (I + 2d
2ml ) θ + (Ilm

2 + ll
2mlm(m − 2ml ))( γ r − γ f ) /m

2   (3) 

The robot dynamics for the double stance phase (both VLegs touch the 
ground) are derived using a Lagrangian approach. The main body CoM 
Cartesian coordinates, xc, yc, and pitch angle θ, are used as the system’s 
generalized variables. The double stance dynamics also yields the dynamics 
for the front and rear stance by removing terms that are not pertinent, 

 
 

mxc = −mgsin(ϕ )− kr (l0,r − lr )sinγ r + c ⋅ lr sinγ r −τ r cosγ r / lr
− k f (l0, f − l f )sinγ f + c ⋅ l f sinγ f −τ f cosγ f / l f

  (4) 
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myc = −mgcos(ϕ )+ kr (l0,r − lr )cosγ r − c ⋅ lr cosγ r −τ r sinγ r / lr
+ k f (l0, f − l f )cosγ f − c ⋅ l f cosγ f −τ f sinγ f / l f

  (5) 

 

 

I θ = −krd(l0,r − lr )cos(γ r −θ )+ k f d(l0, f − l f )cos(γ f −θ )

+ cdlr cos(γ r −θ )− cdl f cos(γ f −θ )
+ (d sin(γ r −θ )− lr )τ r / lr − (d sin(γ f −θ )+ l f )τ f / l f

  (6) 

A list of the parameters used in the above equations is presented in Table 
1. When the robot motion is studied in the coronal plane similar equations to 
Eq. (1)-(6) describe its dynamics during flight phase and double stance. 
Again, the main body CoM Cartesian coordinates, zc, yc, and roll angle ψ, are 
used as the system’s generalized variables. 

 

 
(a) 

 

 
(b) 

Figure 2. A quadruped robot planar model in the (a) sagittal and (b) coronal 
plane. 
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Electric motors were considered as the torque source for their 
appropriateness in space applications. Moreover in space robotic systems on 
planets, such as the mars rovers, it is common to use DC brushed motors. 
Electric motors have limitations in their performance and energy 
requirements. Also, their physical parameters, i.e. dimensions and weight, 
were considered as they add to the overall robot mass. Moreover, for their 
operation, electric motors need a power supply (i.e. batteries), an amplifier 
and a transmission. These parts have their own physical and performance 
limitations. Therefore, models of these parts were considered in the analysis 
and also during the optimization. 

 
Table 1. List of parameters used. 

Symbol Description Symbol Description 
xc CoM x-axis position. I Body inertia w.r.t. z-axis. 

yc CoM y-axis position. Ix Body inertia w.r.t. x-axis. 

zc CoM z-axis position. m Body mass. 

θ Body pitch angle. ψ Body roll angle. 

l VLeg length. Il VLeg inertia w.r.t. z-axis. 

l0 VLeg uncompressed 
length. 

Il,x VLeg inertia w.r.t. x-axis. 

k VLeg spring constant. ml VLeg mass. 

c VLeg viscous damping 
coefficient 

τ Hip torque. 

γ VLeg absolute angle in 
sagittal plane. 

δ VLeg absolute angle in 
coronal plane. 

d Hip joint to CoM distance 
in sagittal plane. 

v Hip joint to CoM distance in 
coronal plane. 

φ Ground inclination in 
sagittal plane. 

ω Ground inclination in 
coronal plane. 

f As index: front VLeg. r As index: rear or right 
VLeg. 

l As index: left VLeg. td As index: value at 
touchdown. 
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3 Environmental Conditions 

The environmental conditions affect the motion of a legged system, therefore 
it is necessary to develop mathematical models or concepts that shall quantify 
their relation with the emerging gaits. The environmental parameters that 
have direct effect on motion types are: 

 gravity, 
 topographic features, 
 surface characteristics and 
 subsurface characteristics. 
Other parameters that have indirect effect but can be modelled sufficiently 

by changing the characteristics of the body and legs are: 

 environmental radiation, 
 temperature, 
 pressure, 
 corrosive environment, 
 weather conditions of the celestial body. 
For example in the case of environmental radiation a larger mass would 

correspond to the addition of a radiation protection system. On the other hand 
wind gusts can be modelled as external disturbances with which the controller 
must cope. 

To this end, this analysis focuses on the first four parameters, which are 
the most crucial and cannot be modelled via an indirect way without loss of 
realism. In the coming sections, these four parameters are discussed in detail. 
Subsurface characteristics are a very intriguing issue on its own, and this 
particular matter is thoroughly developed. A model for simulating the leg-
ground interaction is being proposed based on the literature on similar fields 
like terramechanics and impact mechanics, which is considered more 
appropriate for our purposes. Next, the algorithms used for simulation of the 
environment are presented. 

3.1 Gravity 
This parameter plays a dominant role in the definition of the best strategy for 
gaits, as it was evident by the astronauts’ movements on the Moon. Gravity 
has direct implication on the motion of any multibody system, but even more 
on legged systems. At the limit of lack of gravity, no gait of any kind is 
possible. Additionally, gravity defines the apex height of the gait during 
dynamic motion. For example, a large stride may result in the landing of a 
robot far from the scientific point of interest. Table 2 displays the gravity for a 
number of celestial bodies. 

Table 2 also includes the escape velocity. It is reasonable to assume that 
real danger exists mainly during motions on objects like asteroids, which have 
very small gravitational acceleration. This velocity actually represents an 
upper limit of rebound velocity after the impact with the ground of the legged 
robot. However and without loss of generality, this problem is considered less 
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severe for planets like Mars, therefore no particular limits are set in the 
simulations. However, the interested reader should have in mind this limit. 

 
Table 2. Characteristics of some celestial bodies of interest [10]. 

Name Celestial Type g/gEarth Escape Velocity 
(km/s) 

Weather 
Effects 

Earth Planet 1.000 11.2 YES 
Moon Natural Satellite 0.163 2.4 NO 
Mars Planet 0.378 5.0 YES 
Jupiter* Planet 2.357 59.5 YES 
Titan Natural Satellite 0.138 2.6 YES 
Europa Natural Satellite 0.134 2.0 YES 
Itokawa Asteroid 0.00001 0.0002 NO 
Eros Asteroid 0.0006 0.0103 NO 

*Jupiter is presented only as a reference, mainly for the gravitational parameter. 
 
Whilst gravity has a dominant role, the modelling of gravity is rather 

simple. The dynamic model of the robot system explicitly includes the 
gravitational acceleration g . This is done by default during the formulation of 
the equations. Therefore in order to set the gravitational acceleration, the 
constant g  is set prior to running the model according to the selection of the 
celestial body. For obvious reasons, there is no point in changing this 
constant while running a model. 

3.2 Topographic Features 
The surface of celestial bodies is not flat and the slope on any area of interest 
is expected to be highly varied. Usually of great scientific importance are 
craters or similar features (e.g. mountain or volcanoes), and the inclination on 
these areas imposes various dangers for any robot (e.g. tipping over), 
especially when a dynamically stable gait is used, Fig. 3. 
 

 
(a) 

 
(b) 

Figure 3. Topographic features of interest: (a) mountains and (b) craters. 

 
To this end, it is necessary to model the inclinations so as to obtain 

reliable results. More specifically, a general procedure has been developed 
both for 2D paths and 3D areas, Fig. 4. Each path is separated in small 
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segments with local inclinations (defined by the global inclination 
characteristics which can be variational or constant). The user defines only 
the dimensions of these segments, length for the 2D case, length and width 
for the 3D case. The dimensions are defined by the foot characteristics, which 
in this case the double of the diameter of the foot has been selected. In our 
case, a diameter of 20mm  has been chosen, which leads to 
d = 2 ⋅20mm = 40mm  length of segments. The same figures were selected for 
the width in the 3D case. Naturally this discretisation leads to a simplification 
when the foot lies on two consecutive segments at the same time, but without 
great loss of accuracy the simulation selects the most prominent of the two 
(the segment where the largest part of the foot lies). Of course by increasing 
or decreasing the dimension of the segment partitioning (for length or width), 
the user can configure the desired resolution. The properties of the terrain at 
xe,i  or (xe,i , ze, j )  are defined by the properties of the segment they belong. 

 

 
(a) 

 
(b) 

Figure 4. Discretisation in (a) 2D path and (b) 3D area. 

3.3 Surface Characteristics 
The coverage of an area by rocks or soil, define the path profile of the robot. 
The rock dimensions are directly related to the gait that the robot should use 
to pass over without tipping. Moreover when touchdown occurs, it is highly 
possible some legs to be at a different level from the rest due to uneven 
terrain characteristics, such as different rock sizes. Various distribution 
models can be applied for this reason; for example for Mars, distribution 
model equations can be found in [11]. 

On the simulation side however, the existence of rocks can be modelled 
via changing locally and abruptly the local inclination. This can be easily done 
for example by adding an angle to the existing angle of a segment (due to 
local inclination), and then adding a negative angle of the same value on the 
next segment. However, it was considered that by using the proper controlled 
options, these abrupt alterations could be handled while the most significant 
problem is the main slope of the ground. For this reason, a user can add 
inclination spikes at the program (manually or automatically via the use of 
some random matrix), however in the rest of the analysis, this effect is not 
considered. 
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3.4 Subsurface Characteristics 
The terrain includes areas with regolith and bedrocks that can be comprised 
of materials with different properties [12]. Similar information can be obtained 
for other planets, satellites or asteroids. In addition, the compliance of the 
ground affects the motion and different contact models and/or parameters 
should be applied according to the nature of the terrain, e.g. granular soil 
could be implemented as a surface with large deformations, and a rocky 
surface as a fixed body with large stiffness. Stick, slip and sliding conditions 
should be taken into account, with surface friction playing dominant role for 
the proper characterization [13]. Since space agencies have shown in the 
past large interest in rover locomotion, various terramechanics models have 
been developed or exemplified for the case of planets, such as in [14]. 
Related work in the past took place for the case of legged locomotion with 
combined use of artificial intelligence schemes for real time estimation of soil 
parameters [15]. These works have as a common feature the use of 
equations that make use of the Bekker equations or similar. However, as [16] 
presents, this approach lags on the accurate representation of a dynamics 
interaction between soils and legs – and for this reason the authors introduce 
the term “terradynamics”. This approach is proved interesting for the 
locomotion of the robot types that the authors examine but does not include 
impact characteristics, which are prominent in our case. However the term 
terradynamics can be used here as well. Besides terradynamics, modelling of 
the interaction of legged robots with the ground during dynamic walking also 
includes impact mechanics. 

3.4.1 Problem Statement 
In terramechanics the main interest is the interaction between wheels and 
soils. As Fig. 5 presents, the requirements for soil description differ in essence 
with the fast dynamics of an impact. The wheels move, however they press a 
relatively large area continuously. In other words, wheels are not stationary 
but also they are not dynamic in the way a leg interacts with the soil. That is, 
the usual terramechanics models can efficiently describe the developed 
forces between wheels and soil, but fail to describe the forces developed 
while the leg touches the ground. They do not describe the locomotion 
process as an impact, which has small time duration and concentrated effect.  
 

 
Figure 5. Interaction parameters between wheel and soil. 
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For example, the basic equations about relation of sinkage and pressure, 
which can be found in in literature, e.g. [14, 17] are based on Bekker or similar 
empirical equations in which the normal stress is given by: 

 σ x( ) = k1 + k2 ⋅b( ) ⋅ x b( )n   (7) 

where b  is wheel width, k1,k2  constants depending on the material, x  is 
sinkage and n  the sinkage coefficient. On the other hand the equations 
concerning the shear stress, use the cohesion, c , and the friction angle φ  
which lead for example to the known equation which combines the above 
parameters and the maximum normal stress σ max  with 

 τmax = c +σ max ⋅ tanφ   (8) 

However the focus of this study is dynamic walking, that is the legs 
nominally touch the ground for fractions of second. In contrast to static 
walking, the duration of time in which leg and soil interact is smaller. By this 
virtue, this interaction should be considered as an impact. Therefore, in order 
to efficiently analyze the interaction, impact mechanics procedures are 
necessary. 

There are basically three approaches for analyzing such impacts. The first 
case employs the theory of rigid body impacts. The drawback in this case is 
that except for particular cases (e.g. solid terrain) this theory cannot produce 
reliable results. The second case employs compliant models. This case 
seems the most appropriate, as the different soil kinds can be simulated by 
lumped parameters (i.e. springs and dampers) with different linear or non-
linear characteristics. Finally, one may employ the Finite Element Method 
(FEM); however this method requires a different procedure and large 
analytical representation of the soil elements per se, which would burden the 
simulation time and efficiency, add unnecessary complexity and of course 
would not allow the development of theoretical analysis that would be 
necessary to examine the problem. Furthermore, in the case a robotic 
controller is required to estimate the soil characteristics on the fly, FEM 
models are completely unacceptable. In other words a more appropriate 
method should be developed to overcome this problem, which is fast and 
reliable enough to be used during dynamic interaction of robots (or bodies in 
general) with a terrain (or a material in general). This approach must take into 
account the characteristics of the impact and the loss of energy. A novel 
method was proposed in [16]. This method is mainly applied to granular soils 
with particular characteristics. At its current form, it cannot simulate efficiently 
environments like wet terrain, whereas the concentrated force development of 
impact is not considered. 

In this study, the compliant model for the normal direction of impact is 
prefered. The soil differences can be adopted easily by matching the stiffness 
and damping parameters to implicit characteristics of candidate soils. On the 
other hand the tangential force can be analyzed via a simpler rigid body 
model according to some basic assumptions, which are stated in the sequel. 
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Here, if a gait is not stable (i.e. due to soil characteristics the leg may slip), the 
simulation stops. Therefore the forces developed depend only on the 
geometry of the leg and the coefficient of friction µ . A more detailed model 
should take into account additional effects like tangential compliance, soil 
coherence and bulldozing. 

The assumptions that apply in this research, considering the impact of 
legs on a ground are summarized: 

i. The impact duration is very small and the impact forces very high. 
ii. Due to (i), the effects from external forces like gravity are 

considered negligible. 
iii. The area of impact is localized, and thus small in comparison with 

other dimensions. 
iv. Tangential effects are considered mainly due to friction and 

geometrical characteristics of the leg under impact. Tangential 
compliance, coherence and bulldozing are not examined here. 

3.4.2 Modelling of interaction with soil 
In order to recognize the operational concept of the impact of leg on a soil let 
the free body diagram of a leg on a ground, Fig. 6. The ground is considered 
flat, without loss of generality, otherwise another angle, which corresponds 
the slope, is added, and the appropriate components of forces are calculated. 
In any case, the interest is for the normal and tangential forces developed in 
respect to the common tangent between the foot (toe) and the ground, which 
in this case, matches with the ground. 
 

 
Figure 6. Interaction model between leg and soil. 

 

During the stance phase, the motor M , applies to the leg torque T , 
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this is an assumption which is closer to the reality as the toe becomes 
smaller). Due to the falling motion, as the leg touches the ground, the main 
body continues its motion, which compresses the spring and the damper of 
the leg, Kl ,Cl  respectively. Also the leg during touchdown has an initial angle 
θ  in respect to the main body. The parameters K , C  are the equivalent 
spring and damper parameters of the ground which represent its behaviour 
during impact (these values depend both on the ground and the material of 
the toe). The forces that act on the small mass which comes into contact with 
the ground are (the weight is omitted due to the impact): 

- The force due to the torque: 

 FT = T l   (9) 

where l  is the current length of the leg spring & damper 
-  The force due to the spring and damper of the leg 

 
 
Fl = Fl Kl ,Bl ,δ l,δ l

i⎛
⎝

⎞
⎠   (10) 

where Fl  is generally a non-linear equation depending on leg characteristics 
and the compression or restitution δ l  and its speed, defined as 

 δ l = l0 − l   (11) 

with l0  the initial length of the leg. 
- The force due to the ground which is 

 
 
Fg = Fg K ,B,δ y,δ y

i⎛
⎝

⎞
⎠   (12) 

where Fg  is generally a non-linear equation depending on the ground 
characteristics and the compression δ y  and its velocity. 

3.4.3 Impact dynamics between soil and leg 
The most intriguing part of simulating the interaction between the soil and a 
leg is the modelling of impact dynamics. The difficulties arise from the fact that 
to the best of the knowledge of the authors of this study, no unified approach 
towards the description of this kind of impact exists. On one hand, this is 
reasonable, as in general, different soil behave differently [18]. On the other 
hand some commonalities exist, which can be combined with well-established 
impact theory results, [19]. 

In fact, the problem is the dynamic nature of walking. The motion of the 
quadruped cannot be described via classic approaches of terramechanics. 
There is not a constant pressure from a tire, and the main driving force is the 
normal force of impact which in turn affects the tangential impact 
characteristics. On the other hand, static walking requires the stance phase 
duration to be several hundreds of milliseconds or even seconds, depending 
on the required forward velocity. Therefore this motion can be considered only 
partially as an impact. That is, dynamic walking requires a different approach 
which takes into account the fast dynamics of impact. As stated already at the 
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introduction of this chapter, the compliant model has been selected as a 
candidate for modelling the impacts. 

First of all it is necessary to examine the existing models of this kind. 
Fortunately there are several ways to implement the viscoelastic impact. The 
two main models are the Kelvin-Voigt model, 
  F = K ⋅ x + B ⋅ x   (13) 
and the Hunt and Crossley model 

  F = K ⋅ xn + B ⋅ x ⋅ xn   (14) 
where K ,B  are the stiffness and damping coefficients of the ground, n  a 
parameter which depends on the material and x  the depth of penetration. It is 
known that the first model suffers from the fact that it starts and ends with 
discontinuity, and also that the force can take negative values, even if it is not 
a sticky or tensile terrain. Note that due to this modelling, the point where 
force crosses zero, has no physical meaning, and it is just a mathematical 
result. On the other hand, the Hunt and Crossley model, Fig.7, usually used 
with n = 3 2  to resemble a Hertzian contact, has been experimentally proven 
as a robust model for viscoelastic impacts, e.g. [20]. The area inside the curve 
represents the loss of energy during dissipation, and which is related with 
damping. In [18], the interested reader can find some more versions of non-
linear models. It should be mentioned that the authors of [20] present an 
approach similar to the proposed solution, considering that the end of impact 
ends at a non-zero depth, still the implementation lacks in terms of generality: 
as their focus is in changing the damping parameters, the authors refer to 
some cases which cannot be efficiently modeled. 
 

 
Figure 7. Impact curve using the Hunt- Crossley model. 

 
Many researchers implement different approaches towards the more 

accurate determination of the parameters of both models, and especially the 
non-linear Hunt and Crossley (HC) model. However, all approaches have 
some common characteristics.  
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i. In general stiffness and damping can be non-linear functions. 
However as they describe the whole impact procedure, it is 
assumed that the impact starts and ends at x = 0 . That is the 
impact ends at the same position it begun. 

ii. The case of a plastic deformation is not described. Theoretically 
this is correct from the point of view of strict viscoelastic description 
of the process. However, even in this case of plastic deformation, 
the behaviour of the material itself also has characteristics which 
can be modeled via lumped elements, without loss of generality. 

iii. The case where the viscoelastic element has a delay in restitution 
(creepage) is not modelled via the non-linear model. In fact, that 
would not be a problem in very slow impacts, where the impacting 
solid almost «rests» on the material. That is the impact may end 
before the material reaches again x = 0 . 

iv. It is known that terrains have specialized characteristics, which 
have to do with material properties, like behaviour under repetitive 
loading or compaction characteristics. For example consider the 
case of the wet soil at a beach. It is consistent with our 
understanding, that when we run on this soil, the surface sinks, and 
recovers for just a fraction, while we have to give more power to 
the legs to make the same motion, compared to the case where the 
surface were a solid material. This situation is not depicted in any 
non-linear model currently in use, and it is considered at the best 
case as an external disturbance. 

Problems ii, iii and iv are examined in more detail, in the case of legged 
locomotion. As shown in Fig. 8, the spring element above the contacting mass 
m  has an elongation according to the relative motion between m  and the 
main body M . Using an HC model to examine the impact, it is reasonable to 
assume that the stance phase ends, when the surface of the material reaches 
again x = 0 . The spring then will have a particular elongation u1 , and of 
course, the analogous potential energy stored. However, the impact on a wet 
soil will end sooner than x = 0 , that is x > 0  (positive depth is considered 
towards the ground), and the elongation (and thus the potential energy stored) 
will be in general u2 ≠ u1 . This may introduce significant deviations from the 
first case, and must be taken into account in the controller, if possible not as a 
disturbance, but as part of the deterministic description of the controlled plant. 

In order to fully understand the proposed model, it is imperative to 
examine again the impact phases, but under a different point of view. We start 
by examining the classical approach. Let us say we have a body M that hits 
the ground. At the moment of impact, the relative velocity between these is 
positive (towards the ground). As the body compresses the material the 
interaction force is increased, the depth is increased and the relative velocity 
is decreased. Note that in general, at non-linear viscoelastic models, the 
maximum force can be achieved before the end of the compression phase 
(see for example Fig. 6). When the relative velocity is zeroed, the maximum 
compression has been achieved. During restitution phase, the relative velocity 
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increases but in the opposite direction, the depth decreases, and the 
interaction force decreases. The most critical point here is how these two 
phases are separated – via the change of sign of the relative velocity. Note 
that the restitution ends when both x = 0  and interaction force is zeroed, but 
in fact this is due to the closed form of the impact models. What really matters 
is that the interaction force is zeroed or in other words, there is no contact 
between the impacting body and the terrain any more. 

Now it is time to examine the proposed model, Fig. 8. As the body m  
comes into contact with the terrain, a fictional spring and damper that 
corresponds to the elastoplastic parameters of the contacting materials is 
compressed. As the compression proceeds, a part of the energy is stored to 
the spring, a part of the energy is dissipated through internal vibrations and 
other forms of energy loss and a part is dissipated because of the shape 
deformation. During compression this does not actually matter: the material 
that has been lost (e.g. via cratering around the impact point or compaction), 
“produced” their part of stiffness and damping and play no other role now. 

As we reach the restitution phase, there is “less” material in the direction 
of motion, which might also become more stiff because of the compaction (or 
similar procedures). The spring now cannot be extended until the initial height 
(except it is a very sticky material), and also there is not so much elastic 
energy stored – the spring has been “broken”. The impact restitution phase 
will be “stiffer” and faster. In other words, we have a strong non-linearity in the 
fictional spring, which takes the form of a piecewise equation, between 
compression and restitution. 

 

 
Figure 8. Different approaches of the usual viscoelastic models and the 

proposed model. 
 

Therefore, as the leg touches the ground, it feels the first fictional spring 
and damper. A classic HC model, until the point of maximum compression, 
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can model this. At this point another stiffer spring should operate. The 
restitution phase begins. When the interaction force is zeroed, the impact has 
finished. Some notes are necessary: 

I. Apparently a stiffer spring exerts a higher force for the same depth. 
An algebraic manipulation in order to have a smooth curve is 
required. 

II. Theoretically there is the capability for the terrain, after the end of 
interaction, to have negative force. This negative force can be 
considered for example for grounds with creepage. Take for 
example an elastic terrain, which inherently delays its restitution. 
The end of the interaction with the impacted body does not 
coincide with the return of the terrain at its initial depth. 

The final model has the following form for an impact instant “i”, 

 

 

Fg =
λc (i) ⋅K ⋅ xn + B ⋅ x ⋅ xn ,

λr (i) ⋅K ⋅ xn + B ⋅ x ⋅ xn + Fconst ,
x ≥ 0
x < 0

⎧
⎨
⎪

⎩⎪
  (15) 

where, 

 Fconst = K ⋅ xn ⋅ λc (i)− λr (i)[ ]   (16) 

and, 

  λr (i) ≥ λc (i)  (17) 

Eq. (17) is necessary for the model to have a physical meaning. Finally 
the interaction between m  and the ground ends when no force exists 
anymore and at the same time this defines the final depth xe  
 Fg = 0→ x = xe   (18) 

The above model has several advantages: 
I. The model can be used also with other models, like Kelvin-Voigt, or 

models with non-linear dampers. It does not affect their 
performance, because it does not affect any of their properties. The 
use of the HC model is purely a choice of preference, because this 
model has been found to be very accurate on describing impact 
processes. 

II. If the parameters in Eq. (17) are equal, then the model 
degenerates to a simple HC model. This means that the fictional 
spring of Fig. 8 retains its stiffness between compression and 
restitution. 

III. After the impact at time “i” the soil has been compressed and its 
characteristics may change. For some materials, this can be 
characterized by: 

 
λc (i) = λc (i +1) = λc (i + 2) = ...= 1
λr (i) ≤ λr (i +1) ≤ λr (i + 2) ≤ ...

  (19) 
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That is the terrain is stiffer during restitution or it can retain its 
stiffness during each cycle as 

 
λc (i +1) = λr (i)
λc (1) = 1

  (20) 

and can be compressed only with higher forces (or for the same 
force it can be compressed fewer). This can be repeated according 
with the required model construction, until the terrain cannot be 
further compressed or become a completely elastic material but 
with extremely high stiffness, and thus this impact can be modeled 
with a HC model with 

 λc (i +1) = λr (i +1) = λr (i)   (21) 

IV. Of course due to iii), if for some reason, the external force becomes 
larger (e.g. a sudden impact) during restitution, the new λc  can be 
used. 

If a material has creepage properties, it may continue to deform after the 
impact has finished. To this end, the final position of the ground may be on a 
position defined by Eq. (15) or another equation (e.g. with a linear form). This 
way, if another impact occurs on the ground point, the depth may be different 
than xe .  

The ratio of Shape Deformation, λ , could be determined by experimental 
results directly or indirectly. That is λ  could be defined per se, or via another 
equation. This equation should have the following properties: i) At first 
compression λ = 1, ii) during restitution a λr  should apply and iii) by proper 
selection, as the compression reaches a point where the terrain behaves like 
a rigid body, no further change of λ  should occur. It is important to 
understand that the ratio of Shape Deformation is not the same as the 
Stiffness, although in essence it directly affects this value. For example: 

 A very stiff ground, e.g. a terrain made of cement, is expected to have 
a very high stiffness. On the other hand the Shape Deformation ratio is 
1 during impacts in this case: the terrain has no permanent deformation 
or hysteresis during restitution. 

 Walking on wet sand however, it is expected to have low stiffness but 
very high ratio of Shape Deformation: That is, it is expected to easily 
penetrate it, but due to compaction and other physical phenomena, the 
level remains almost near the maximum compression. 

It is interesting to see the exact impact curve that describes the 
phenomenon, see Fig. 9. Here the simulations are for a mass of 1 kg falling 
from a height of 0.5m (no initial velocity) and the interaction lumped 
parameters are K=30000 and B=1.5*0.5*K in SI units. 
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Figure 9. Impact curve of the proposed model. 

 

For λ = 1, the curve has the shape of the HC model. Increasing the 
Shape Deformation ratio, the exit point of the impact moves to the right. 

Let now examine further the physical notion of the proposed impact 
model. To this end see Fig. 10. During compression (area “1”) the required 
energy includes the stored energy to the (in general) non-linear spring, the 
energy dissipated through waves or other sinks because of the (in general) 
non-linear damper and finally, the permanent deformation of the terrain at the 
particular point. If this deformation does not exists, then the restitution returns 
as in Fig.5. Similarly an area of dissipation due to various sinks but not 
permanent shape deformation near the impact point happens in area “2”. The 
model however takes into account the shape deformation near the impact 
point. The area numbered “3”, is the energy loss due to shape deformation, 
which cannot be restored. 

 

 
Figure 10. Energy dissipation due to shape deformation and other means. 
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In order to examine the difference between changing the damping 
coefficient and the shape deformation coefficient, a number of simulations 
were executed for a falling ball, which hits the ground, Fig. 11. Evidently for 
different B but same stiffness, it can be seen that the velocity is affected, but 
also the curve of velocity change is different. On the other hand, for the same 
B, but for different λ , one can see that the impact up to maximum 
compression is the same. However during restitution, the exit velocity is lower. 
This means the loss of larger portion of the initial total energy to non-
reversible phenomena. 

 

 
Figure 11. Velocities during impact for various cases. 

 

3.4.4 Friction and tangential effects 
As it has been already stated in this study, the effect of friction is modelled as 
Coulomb friction. Knowing the normal force to the toe, which is the vectorial 
sum of the force due to the dynamics of the multibody system and the impact 
force, and using the coefficient of limiting friction, it is examined on whether 
the tangential force is larger than the maximum tangential force before sliding. 

For the purposes of this research, if this is violated, the simulation stops. 
The reason is that we need to know whether friction allows a stable gait of 
some kind, but have no interest in controlling an unstable gait. The interested 
reader is advised to check the technical literature, for example [13]. 

3.4.5 Equivalent stiffness and damping 
Ground effects complicate the simulations a lot, and increase computational 
time dramatically. To obtain results in shorter times, one can use 
approximations. These include the following: (a) if the ground is very stiff 
compared to leg stiffness, then the equivalent stiffness is that of the leg. (b) If 
the ground is very compliant compared to the leg, then the compliance of the 
ground can be used. (c) When the two compliances are similar, then an 
equivalent compliance corresponding to two compliances in series can be 
used. 
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3.5 Computer Programs for Environmental Parameters 

3.5.1 Ground Parameters 
In order to acquire robust conclusions about the effect of each environmental 
parameter to the gaits, two different approaches have been selected and 
therefore two different programs developed. In all cases one or more files can 
be produced with different  

 gravitational acceleration, 
 slope, 
 soil characteristics (equivalent stiffness, equivalent damping, coefficient 

of friction). 
Note that all programs include extensive comments that make easy to the 

user to understand their logic. Here for the sake of simplicity, only the main 
ideas are given. Additionally, if it is needed, the user can change the functions 
that create the values for each parameter, in order to increase randomness, 
etc. 

3.5.2 Interactive Program 
The interactive program allows the user to define particular characteristics 
according to requirements, even the exact path. The user defines some basic 
characteristics and can select the kind of the terrain that is preferred. 

More specifically, the program asks the user to define the kind of celestial 
body, the tolerance of the segments and the type of path or area (there is also 
the option to load a user-made path). The program processes the information 
and allocates characteristics to each segment. Then it plots the results and 
asks the user if it is needed to save the results for use on the multibody 
model. 

 

File: mainenv.m 

Functions: getcelest.m, pathdes.m, envselect2.m 

3.5.3 Program for batch files creation 
The second program produces batches of files with various terrain 
characteristics. The user defines the minimum and maximum value for each 
parameter and the program covers all possible values according to some 
programming step (also user defined). For each combination of parameters a 
new file is being created. 

This way it is more convenient to produce file batches in order to use 
them to create smooth mappings of the effect of each environmental 
parameter at the behavior of the quadruped, and makes easier for the 
researcher or the designer of such a robot, to find the operational point for 
each case of interest. 

 

File: mainenvlight.m (for path), mainvenvlight3.m (for area) 
Functions: pathdeslight.m, envselectlight.m 
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3.5.4 Contact Interaction 
This is a function based on the proposed impact model, however by setting 
the Shape Deformation parameter equal to 1, a simple HC model is 
implemented. The algorithm examines if the impact started, if the maximum 
compression has been reached and whether the impact has finished or not. It 
has as inputs the position and velocity of each toe, and produces the impact 
force from the ground, which is the output back to the main multibody model 
of the legged robot. 

This function is incorporated in the larger simulation of the legged robot 
and is being evoked every time the main program detects collision with 
ground. Note that this function is highly stiff mathematically; therefore for 
better results appropriate tolerances should be employed. 

 
Function: Impact_Forces_Calculations_nim.m 
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4 Gait Classification 

4.1 Concept 
Simulation-provided gaits were analysed with methods such the ones used in 
biological research. A classification was undertaken using the Hildebrand 
method. 

4.2 Motivation 
The first level of classification using the gait diagram distinguishes gaits into 
symmetrical and asymmetrical. Symmetrical gaits have the footfalls of each 
pair of feet (front or rear) evenly spaced in time. Each foot of a pair contacts 
the ground for the same duration and usually fore contacts are the same as 
rear contacts. A gait diagram classifies the gaits according to two variables, 
one in each axis. The duration of the ground contact, or the duty factor, is 
expressed as a percentage of the cycle duration. For example, walking gaits 
in horses present a duty factor around value 60, which means that each foot 
in on the ground 60% of the cycle time and therefore, 40% of the cycle time 
off the ground. The second variable describes the phase difference between 
the rear and the front leg of the same side; again it is calculated as a 
percentage of the cycle time after which the front footfall follows the rear on 
the same side. Hildebrand plotted 1200 gaits for different animals in a single 
gait diagram and the result was a single irregular cloud proving that gaits are 
not discrete but they form a continuum. 

4.3 Literature Survey 
Initial research on gait classification done by Muybridge lead to the support 
sequence [21], a sketch that indicates the sequence of combinations of 
supporting feet in each gait cycle. Although it is a simple and useful method, 
the support sequence does not show the relative durations of the various 
phases of the support that can differ in gaits with the same sequence. To deal 
with this shortcoming, Hildebrand introduced the gait diagram [22], which plots 
the support by each foot versus a time scale or a count of frames of the 
motion-capture video. 

4.4 Contents of this work 

4.4.1 Hildebrand Diagrams 
The simulation environment can provide the ordinate values of the CM of the 
robot, their respective time values and their respective phase indicator. 

At first, we compute the time moment in which the evolution from the 
transient to the steady state occurs so as to be able to discriminate between 
these two phases of the robot locomotion. This is the time instance, for which, 
the pair of the local minimum value and the local maximum value of the robot 
CM ordinate coordinate, which appear first, after that, (i.e., the transitional 
time), contains exactly these two CM ordinate values, that differ from each 
one of the following local minimums and local maximums, respectively, less 
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than a user-defined tolerance. Here, we need to compute the vector that holds 
the indexes that correspond to both the local maximum and minimum values 
of the CM ordinate (versus time). We do this by detecting the monotonous 
(increasing or decreasing) sub-arrays that form the one-dimensional array of 
CM ordinate values, and then, we save the index of each ordinate value that 
is located between a couple of these sub-arrays. These sub-arrays are 
alternated sequentially, and that leads to an alternating finding of local 
maximums and minimums. We start by finding a maximum value, since the 
running process starts by dropping our robot from some height and with some 
initial horizontal velocity. 

Secondly, we compute four vectors that hold the lift-off (lo) and 
touchdown (td) time instances of both the hind (back) and the fore (front) feet. 
In order to build these four vectors (”lo_hind” for the lo times of the hind feet, 
“td_fore” for the td times of the fore feet, and, similarly, “td_hind” and 
“lo_fore”), we check the succession of the phase indicators (integers in the 
range from one to four, 1 := double flight, 2 := back stance, 3 := double 
stance, 4 := fore stance) in a row-vector which is generated by the sets of 
differential equations, which are successively integrated in order to produce 
the simulated movement. According to the result of this check (different every 
time, in general) we update the appropriate time vector with the time value 
that corresponds to the last phase indicator which we inspected, before we 
detect a change in the values of the indicator vector, e.g., if at some part of 
this array the sequence of the indicators is […] 1 1 1 1 2 2 2 2 […], then we 
the update the td_hind vector with the time moment that is respective to the 
last “1” that appears. 

To proceed, we calculate the three scalar quantities that form the gait 
diagrams. These quantities are the duty factors (DF’s) for both the hind and 
the fore feet and the phase relationship (PR) between the fore and hind 
ground contacts. For the computation of the DF’s (same procedure for both 
the hind and the fore feet), what we do is to compute every possible DF value 
that corresponds to one of the identified gait cycles of the robot motion, and 
then we consider their mean value as the final output value. We adopt this 
procedure because we want to calculate the most typical value of each DF. 

The algorithm of computing one, of the many DF values, is fairly simple as 
it implements straight the definition schema [22]. For example, for the above-
stated computation, we consider a pair of successive td time instances of a 
pair of feet and the unique lo event of the same pair of feet that is located 
between these two td events. In the end, we calculate the ratio of the time 
interval that separates the first (smaller of the two) td value from the lo value 
to the time interval between the two td values. We apply this for every pair of 
adjacent td incidents of the current pair of feet (hind or fore) and then we take 
their mean value as stated above. 

Subsequently, we compute the value of the PR between the footfalls of 
the hind and fore feet. To do this, we implement two different methods. 

The first is the classical method [22]. According to it, the value of the PR, 
of a gait, is equal to the ratio of the time interval between the td of the hind 
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feet and the td of the fore feet (where hind footfall precedes fore footfall, since 
the stride here is defined as the robot movement between two successive 
footfalls of the hind feet) to the time interval between the two successive 
landings of the hind feet. 

The second is a variation of the classical method [23]. According to it, the 
PR value is equal to the ratio of the time interval between the td value of the 
fore feet and the td of the hind feet (here, the fore feet are used as reference 
in the definition of the gait cycle) to the time interval that separates the two 
consecutive touchdowns of the fore feet that are matched to the current gait. 

To conclude, the PR computation is completed after we calculate every 
possible PR value, using both of the two pre-mentioned methods and after we 
consider as our final value the mean value of all realistic values that emerged. 

Note that not all of the computed values are realistic. For example, if the 
fore feet hit the ground before the hind feet in the “beginning” of two 
successive gaits, and the “classic” computational method is employed, then a 
non-realistic value for the PR of the “first” gait is calculated. This is due to the 
fact that the touchdown incident of the fore feet of that gait is located very 
close to the second touchdown of the hind feet of the same gait, in proportion 
to its stride duration (the time interval between two successive footfalls of the 
hind feet). In other words, it is a percentage of 0% to 25%, which leads to a 
75% to 100% value for the PR. For a similar reason, the value of the PR, 
computed using the alternate procedure, of the “first” gait of a couple of 
successive gaits where the hind feet touch the ground before the fore feet, in 
the beginning of that gait, is also non-realistic. 

4.4.2 Results 
In this section, a number of characteristic Hildebrand Diagrams is presented 
for the Earth, Mars and the Moon, for the transient and the steady state 
states. Other variables that affect these include the desired forward velocity, 
the ground inclination and the leg spring stiffness. 
 
Case No: 1 Gravity: Earth-like gravity environment 
desired 
forward 
velocity: 

1.00 m/s ground 
inclination: 

0 deg spring 
stiffness 

2200 N/m 

 

  
0 10 20 30 40 50 60 70 80 90 100

RH

RF

LF

LH

Transient State

Percentage of Stride Duration

Fe
et

 L
oa

di
ng

 In
di

ca
to

r

0 10 20 30 40 50 60 70 80 90 100

RH

RF

LF

LH

Steady State

Percentage of Stride Duration

Fe
et

 L
oa

di
ng

 In
di

ca
to

r



 31/48 

Case No: 2 Gravity: Earth-like gravity environment 
desired 
forward 
velocity: 

1.00 m/s ground 
inclination: 

0 deg spring 
stiffness 

6000 N/m 

  
 

Case No: 3 Gravity: Earth-like gravity environment 
desired 
forward 
velocity: 

1.00 m/s ground 
inclination: 

0 deg spring 
stiffness 

12000 N/m 

  
 

Case No: 4 Gravity: Earth-like gravity environment 
desired 
forward 
velocity: 

0.50 m/s ground 
inclination: 

0 deg spring 
stiffness 

6000 N/m 
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Case No: 5 Gravity: Earth-like gravity environment 
desired 
forward 
velocity: 

1.50 m/s ground 
inclination: 

0 deg spring 
stiffness 

9200 N/m 

  
 

Case No: 6 Gravity: Earth-like gravity environment 
desired 
forward 
velocity: 

1.70 m/s ground 
inclination: 

0 deg spring 
stiffness 

12000 N/m 

  
 

Case No: 7 Gravity: Mars-like gravity environment 
desired 
forward 
velocity: 

1.00 m/s ground 
inclination: 

0 deg spring 
stiffness 

2800 N/m 
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Case No: 8 Gravity: Mars-like gravity environment 
desired 
forward 
velocity: 

1.00 m/s ground 
inclination: 

0 deg spring 
stiffness 

3100 N/m 

  
 

Case No: 9 Gravity: Mars-like gravity environment 
desired 
forward 
velocity: 

0.50 m/s ground 
inclination: 

0 deg spring 
stiffness 

7400 N/m 

  
 

Case No: 10 Gravity: Mars-like gravity environment 
desired 
forward 
velocity: 

0.50 m/s ground 
inclination: 

0 deg spring 
stiffness 

1200 N/m 
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Case No: 11 Gravity: Mars-like gravity environment 
desired 
forward 
velocity: 

0.30 m/s ground 
inclination: 

0 deg spring 
stiffness 

850 N/m 

 
 

Case No: 12 Gravity: Mars-like gravity environment 
desired 
forward 
velocity: 

0.30 m/s ground 
inclination: 

0 deg spring 
stiffness 

3900 N/m 

  
 

Case No: 13 Gravity: Moon-like gravity environment 
desired 
forward 
velocity: 

0.50 m/s ground 
inclination: 

0 deg spring 
stiffness 

1780 N/m 
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Case No: 14 Gravity: Moon-like gravity environment 
desired 
forward 
velocity: 

0.50 m/s ground 
inclination: 

0 deg spring 
stiffness 

1810 N/m 

  
 

Case No: 15 Gravity: Moon-like gravity environment 
desired 
forward 
velocity: 

0.40 m/s ground 
inclination: 

0 deg spring 
stiffness 

1810 N/m 

  
 

Case No: 16 Gravity: Moon-like gravity environment 
desired 
forward 
velocity: 

0.40 m/s ground 
inclination: 

0 deg spring 
stiffness 

2000 N/m 
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Case No: 17 Gravity: Moon-like gravity environment 
desired 
forward 
velocity: 

0.30 m/s ground 
inclination: 

0 deg spring 
stiffness 

600 N/m 

  
 

Case No: 18 Gravity: Moon-like gravity environment 
desired 
forward 
velocity: 

0.30 m/s ground 
inclination: 

0 deg spring 
stiffness 

4000 N/m 
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5. Optimization 

5.1 Concept 
In this part of the study, we analyse first quadruped robot gaits that result from 
an extensive search process. An optimization procedure using MathWorks 
fmincon is employed to determine the optimum motion initial conditions, 
quadruped model physical parameters and the desired motion parameters 
with respect to energy efficiency. Environmental conditions taken into 
consideration include gravity, topographic features, surface and subsurface 
characteristics. A point contact/ impact between foot and surface is assumed. 

A number of figures are produced that depict the gait graphs resulting 
from simulations differing by a single significant parameter each time, e.g. leg 
stiffness. Resulting “multiple gait graphs” show that as gravity increases, the 
mean value of the Duty Factor also increases. Also, when ground inclination 
increases the Phase Relationship value increases, too. However, when leg 
stiffness increases the mean value of the Duty Factor decreases. 

5.2 Motivation 
The extensive analysis using passive dynamic robot models and numerical 
return maps reveal fixed points, i.e. forward speed, apex height, pitch or roll 
rate, for different constant values of touchdown angles and for different gravity 
and soil properties. Using the same extensive analysis, the apex height and 
forward speed can have constant values according to mission requirements, 
while touchdown angles are the states of the searching procedure. This 
search answers the question, “which touchdown angles can achieve specific 
motion characteristics in different environments”. The methodology is 
employed and extended to different gravity environments (planets) to 
determine the conditions required to permit steady state cyclic motion. 

5.3 Literature Survey 
Previous research showed that even simple passive planar models of a 
quadruped robot, like the one presented in Section 2.4 but without energy 
input (actuator torques) and losses, are able to capture a steady state 
behaviour without dependence on the details of the physical prototype [24], 
[25]. It was revealed, using numerical return map studies, that passive 
generation of a large variety of cyclic bounding motion is possible. Moreover, 
local stability analysis showed that the dynamics of the open loop passive 
system alone could confer stability of the motion.  

5.4 Contents of this work 

5.4.1 Extensive Search 
The extensive search scheme used in this work was set using the Matlab 
environment and has a two-layer structure. The inner layer involves the robot 
motion simulation. The equations of motion of each phase presented in 
Section 2.4 are solved using the ODE45 function. Which set of them is solved 
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each time is determined by the transition equations. The multipart controller 
function calculates during each flight phase the leg touchdown angles and 
actuator torques for the upcoming stance phase (rear, double or front). A 
simple PD-controller is used to position the legs to the calculated desired 
touchdown angles during the flight phase. The robot motion simulation was 
set to be terminated when the robot had completed 65 strides, i.e. complete 
cycles considered from a reference limb, e.g. rear left, flight phase till the next.  

The outer layer involves definition of the initial conditions, the quadruped 
model physical parameters, the environment parameters and the desired 
motion parameters. This definition is programmed as a loop function to make 
the extensive search through a range of values of the parameters of interest 
feasible. In this work, parameters of interest include the uncompressed leg 
length and stiffness, gravity and ground inclination, quadruped forward 
velocity, while Table 3 displays the parameter values that were kept constant 
during the extensive search scheme. 

 
Table 3. Constrained parameters during simulation. 

Parameter Value Parameter Value 
Initial robot CM vertical position 0.35 m Body mass 9 kg 

Initial body pitch 0 rad VLeg mass 0.62 kg 

Initial body pitch rate 0.5 
rad/s 

Prismatic joint 
viscous friction 

10 Ns/m 

Initial vertical velocity 0 m/s Hip joint distance 0.50 m 

Initial forward velocity 0.4 m/s Body inertia 0.56 kgm2 

Desired robot CM apex height 0.32 m   
 

5.4.2 MathWorks fmincon 
The initial conditions, the quadruped model physical parameters, the 
environment parameters and the desired motion parameters influence directly 
the robot motion and its characteristics. We seek to find their optimum values 
in order for the robot to traverse a specific distance while consuming the least 
amount of energy, which is directly associated to a measure of actuator 
torques. This corresponds to a constrained nonlinear multivariable problem, 
which can be solved using MathWorks fmincon and an appropriate problem 
formalization. 

The optimization vector is chosen to be: 

 
 
x = xcdes hdes x0 y0 θ0 k l0 d⎡

⎣
⎤
⎦   (22) 

where  xcdes  and hdes  are the desired robot forward velocity and apex height 
respectively,  x0 , y0  and  

θ0  are the initial forward velocity, vertical position 
and pitch rate respectively, while k , l0  and d  are described in Table 1. The 
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objective function is the square of the mean actuator applied torque and its 
value is obtained running the robot motion simulation. 

 f (x) = mean(torque)[ ]2   (23) 

The constraints include inequalities involving the optimization vector 
parameters. These are mainly due to physical or technological constraints or 
desired response characteristics: 

 

 

0.1≤ xcdes ≤ 5.0
l0 + 0.01≤ hdes ≤ l0 + 0.10
0 ≤ x0 ≤1.0
l0 + 0.01≤ y0 ≤ l0 + 0.10
xcdes − x0 ≥ 0
hdes − y0 ≥ 0
0 ≤ θ0 ≤1.0
100 ≤ k ≤ 20000
0.20 ≤ l0 ≤ 0.40
0.20 ≤ d ≤ 0.30

  (24) 

The initial vector x0  has the following value: 

 x0 = 1.0 0.30 0.4 0.35 0.20 6000 0.25 0.20⎡⎣ ⎤⎦   (25) 

5.4.3 Results 
The optimization procedure was used to determine the optimum motion initial 
conditions, quadruped model physical parameters, environment parameters 
and the desired motion parameters related to energy efficiency. The 
optimization algorithms described in Section 6.4.1 and 6.4.2 were used and 
the results for Earth-like and Mars-like gravity are presented in Table 4. 

 
Table 4. Optimization results. 

Parameter (SI Units) Earth Mars 

 xcdes  0.79 0.96 

hdes  0.33 0.32 

 x0  0.79 0.52 

y0  0.34 0.37 

 
θ0  0.00 0.19 

k  5631.00 6000.00 

l0  0.27 0.28 

d  0.20 0.25 
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To study the effects of the variation in a parameter in gait selection, a 
“multiple” gait graph is used (a figure in which the gait graphs of many 
simulated robot motions are depicted). The extensive search scheme 
presented in Section 6.4.1 is employed. 

In Fig. 12, the gravitational acceleration parameter is varied for four 
different planets. The values of the quantities that are associated to the 
simulation that lead to these diagrams are: m = 9.22kg , l0 = 0.3m , 
d = 0.25m,  k = 4200N m ,  

θ0 = 0.50 rad s ,  xcdes = 1.00m s , hdes = 0.32m , 
g = 9.81m s2  and 0o ground inclination. The variables  x0  and y0  for Mars 
and Moon, are equal to 0.5 m/s and 0.32 m, and, 0.3 m/ s and 0.32 m, 
respectively. Note that the horizontal line with ordinate value 3%, is defined to 
be the border that separates the pronking gaits (dots above that line) from the 
bounding gaits (dots below that line). In this figure, it can be observed that a 
spring constant increase leads to a duty factor decrease, while when the 
acceleration of gravity increases, duty factors increase. 

 

 
Figure 12. Multiple Hildebrand graph. As acceleration of gravity 

increases, the duty factor increases, too. As leg stiffness increases, the 
duty factor decreases. 

 

Fig. 13 has been produced for Earth and variable spring constant k , and 
for three different ground inclination values. The rest of the variables are the 
same as those in Fig. 12. The plot depicts that as the slope becomes steeper, 
the phase relationship increases. It also shows that as the spring constant 
increases the duty factor decreases. Again, the horizontal line at value 3% is 
the border that separates the pronking gaits (dots above that line) from the 
bounding gaits (dots below that line). 
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Figure 13. Ground inclination and compliance effects presented on a 
Hildebrand graph. The acceleration of gravity corresponds to Earth. 

 

In Fig. 14 the alteration of the non-dimensional r = (k*lo)/ (m*g) parameter, 
as it is defined in [24], is visualized while the spring constant k  and gravity 
acceleration g  are varied. Note that this figure is a different way of presenting 
the data in Fig. 12 that contains only the gait graphs (dots), which lead to a 
value of r that has not been observed until then. The rest of the quantities are 
the same as in Fig. 12. 

Figures 15 and 16 also display the same data, but in these, values for r 
appear in the plots. In Fig. 15, the data used in Fig. 14 are presented again 
but at different depth of resolution and with colour usage for the contour-areas 
of r. Parameter n* is a number that belongs in the set [n – 2, n + 2) and it is 
used for the labelling of the r-parameter contour areas. In Fig. 16, the data in 
Fig. 15 are presented in the same depth of resolution as in Fig. 14, for 
comparison reasons. The coloured contour areas, here, are accompanied by 
vertical dotted lines followed by an n*-format number that characterizes the 
respective contour area. 

From these figures, it can be seen, that as r increases, the legs remain on 
the ground for less time. The range of values for the non-dimensional 
parameter r is 4.59 to 84.58. It can be observed that a spring constant k  
increase leads to an r value increase, while a gravity acceleration g  increase 
leads to an r value decrease. In the first case, the g  value and in the second 
case, the k  value are constants.  
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Figure 14. Compliance - gravity effect on a Hildebrand graph as a 

function of the dimensionless parameter r. The vertical lines correspond 
to fixed r values, indicated by the figure next to them. 

 

 
Figure 15. Compliance – gravity (non-dimensional r) Hildebrand 

graph. Coloured contour areas.  
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Figure 16. Compliance –gravity (non-dimensional r) Hildebrand 

graph. n* coloured contour area. 
 

Figures 17-19 depict the effect of design and environment parameters, 
and desired values of controlled parameters, on robot gait. The data was 
acquired using the simulation environment. A very loose criterion for steady 
state identification was used, since the nature of the simulations at these 
cases was very aperiodic. We traded off the accuracy of the steady state 
motion computation schema over the production of a number of results. 
These lead us into a conclusion-generating process about the effects of the 
alteration of various parameters in the quantities that characterize the way 
that a quadruped walks. 

More specifically, an increase in the hip joint distance does not affect 
substantially the walking behaviour (i.e., the phase relationship (y – axis) and 
the mean value of the duty factors (x – axis)). This is visible in Fig.17.a, that 
is, the first dot (with respect to the least hip joint distance value) that appears, 
does not differ from the last emerging dot (with respect to the biggest hip joint 
distance) more than 4% in either the vertical or the horizontal axis. We also 
note that the range of hip joint alteration is the largest possible, i.e., each 
value outside this region did not lead to successful simulations. 

The rest of the varied parameters derive a significant impact. In detail, an 
increase in leg rest (uncompressed) length, or in body mass, or in 
gravitational pull, leads to an increased mean value of the duty factors. An 
increase in the value of the desired apex height leads to a decreased duty 
factor mean, while, increasing the value of the desired forward speed results 
in decreased duty factors mean and increased phase relationship. 
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  (a)     (b) 

Figure 17. (a) Hip joint distance and (b) leg uncompressed length effect 
Hildebrand graph. 

      
  (a)     (b) 

Figure 18. (a) Gravitational pull and (b) body mass effect Hildebrand graph. 
 

  
  (a)     (b) 

Figure 19. (a) Desired forward speed and (b) desired apex height effect 
Hildebrand graph. 
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5.5 Computer Programs for Gait Graphs and Optimization 
To produce the results in Chapters 4 and 5, a number of Matlab files were 
used. These include: 
• Extensive search: 

 quadruped_sim_1_5.m quadruped robot motion simulation 
 quadruped_sim_5.m parameters of interest definition 

• Optimization: 
 quadruped_sim_1_5.m quadruped robot motion simulation 
 quadruped_sim_2_5.m quadruped robot motion simulation with 

objective function calculation 
 func_1.m objective function calculation routine call 
 opt_spacegaits.m starting point, constraints and environment 

parameters definition.  
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6 Conclusions 

Although research in legged robots over the last three decades led to several 
models, control algorithms and designs, a general systematic approach to the 
design and selection of appropriate gaits is lacking. 

This work focused to the systematic use of Hildebrand gait diagrams in 
analysing gaits that are the result of an optimisation process according to 
criteria important for space missions, i.e. motion speed, energy efficiency, 
payload capability. 

A lumped parameter model of a quadruped robot in the sagittal and the 
coronal plane, was obtained using the Lagrangian methodology, and used in 
a simulation set-up to tackle the body pitch/ roll stabilization problem. 
Appropriate models for the environment including gravity and soil properties 
were used. An optimization study based on an extensive analysis using 
numerical return maps and passive robot models used to determine the 
conditions required to permit steady state cyclic motion. 

The results were evaluated using an appropriate objective function, an 
optimization algorithm and a complex robot model. The optimum gaits were 
classified using an automated scheme based on the Hildebrand diagrams. 

A Hildebrand diagram computation procedure for legged robots has been 
developed. Combined with an extensive search scheme or an optimization 
procedure leads to optimum gait parameters and design guidelines. 

The main results include the following: 

 As gravity increases the Mean Duty Factor increases. 
 As ground inclination increases the Phase Relationship increases. 
 As leg stiffness increases the Mean Duty Factor decreases. 

Also, the range of the relative leg stiffness r value has been presented, under 
the variation of leg stiffness and gravity. The results show that: 

 As the spring constant k  increases, the value of r increases. 
 As gravity g  increases the value of r decreases. 

Overall, this study examined the effects of gravity, slopes, and stiffness to 
the gaits achieved by quadruped robots in dynamic walking and running. The 
study showed that it is possible to obtain stable gaits despite the varied 
conditions encountered in planetary exploration, and therefore, it indicates 
that legged robots can be used in such missions. It also presented important 
design guidelines that can be useful in designing robots able to complete their 
exploratory tasks successfully. 
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