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1 INTRODUCTION 

A major challenge in the field of control is to achieve reliable, aggressive, high-speed control of 

autonomous vehicles. In space, this may involve spacecraft that need to land under harsh conditions, 

or even – in an extreme scenario – negotiating asteroid debris fields at high speeds. On earth, the 

exemplar task that draws most attention currently is high-speed autonomous flight of drones. 

Studying this problem on drones is of relevance to space as well, since drones can only carry very 

limited sensing and processing, resulting in restrictions that are similar to those of space systems. 

 

Concerning high-speed control of drones, much research focuses on designing controllers which can 

track a reference guidance trajectory also when considering unmodeled dynamics, nonlinearities and 

disturbances which become significant when the maneuver of the drone gets aggressive [1], [2]. In 

terms of guidance, multiple methods varying from a simple setpoint to high order polynomial 

trajectory generation methods have shown their feasibility in guiding a quadrotor to the desired target 

including some time optimality principles. 

 

Two fundamentally different approaches are used to obtain aggressive quadrotor trajectories. The 

first one is differential flatness based trajectory generation and control [3], [4]. This method is able 

to generate aggressive trajectories for quadrotors (based on a minimum-time polynomial guidance), 

and hence it is widely used in real quadrotor flights. However, the resulting trajectory can be far from 

being truly time optimal. 

 

The second approach uses optimal control theory to find and fly a trajectory that incorporates the 

required optimality principles. Due to the time-consuming nature of this calculation, this method is 

unsuitable for an online implementation [5], [6]. Several methods have been proposed to address this, 

where the most common is to represent the system dynamics as a series of simpler linear systems 

with analytical solutions [7], [8]. Unfortunately, this simplification can lead to an inaccurate 

representation of the nonlinear response of the system and can thus negatively impact performance. 

An alternative approach is to find and use, on-board, a sub-optimal solution instead. For example, by 

using the result of the first iteration of a nonlinear programming (NLP) solver [9] which, although 

incomplete, is faster to compute. 

 

In recent years, leveraging significant advances in machine learning techniques and in particular in 

artificial neural networks, a number of new methods have been proposed relevant to the aggressive 

control of quadrotor trajectories. Reference trajectories have been optimized using DNNs [10], 

waypoint tracking has been achieved by means of reinforcement learning [11] and trajectory tracking 

using RBFNN [12]. Tang et al. [13] combine both optimal control and machine learning. Their 

experimental results have shown that a trained neural network can predict an optimal trajectory to the 

target point, which can then be tracked using PID control. This work is an important step towards 

online optimal control, however the main computation is done on a workstation (i.e. not on-board) 

and, since a PID controller is introduced to track the reference, there are delays during the tracking 

as a result of which the controls may violate the constraints due to the feedback term. In a different 

context (i.e. spacecraft landing and mass optimal control) Sanchez et al. [14] successfully introduced 

the use of imitation learning of optimal controls to train DNNs capable of safely steering the system 

to desired target positions. Following that work, Tailor and Izzo [15] made an extensive study of the 

technique on simulated drone dynamics and Izzo et al. [16] introduced the term G&CNets (guidance 

and control networks) to refer to these networks and showed how to study the stability of the resulting 

trajectories analytically via differential algebraic techniques. 

 

In this Ariadna study, we present an approach for the on-board optimal control problem of a quadrotor 

that does not need a PID controller to track the trajectory and we test it during real flights. In our 

approach, 250,000 optimal trajectories are generated offline. Then, a G&CNet---which is a neural 



network trained to learn this dataset---is computed. Instead of predicting an optimal trajectory as the 

work in [13], G&CNet predicts the required optimal thrust directly which will be transferred to the 

optimal pitch rate acceleration and sent to the controller, and thus can be seen in the context of non-

Linear MPC. Since the work of [13] is difficult to reproduce, we made the comparison between 

G&CNet and the differential flatness based trajectory generation and control (DiffG&C) in 

simulation. The simulation results show that the proposed G&CNet can guide the drone to the target 

points much faster while satisfying optimality principles. Finally, the developed G&CNet and 

DiffG&C controllers are verified in real-world flight tests where the results show that the on-board 

G&CNet can guide the drone to the target with a resulting real-time trajectory that is very close to the 

theoretical optimal solution. 

 

2 DESIGN OF THE G&CNET 

2.1 The dynamic system 

 
Fig. 1. Axis definition 

 

Specifying the state of a quadrotor in the 𝑥𝑜𝑧 plane as 

 

  𝒙 = [𝑥 𝑧 𝑣𝑥 𝑣𝑧 𝜃 𝑞] (1) 

 

 as defined in Fig. 1, the dynamical model for which we compute the optimal control is: 

 

 𝑓(𝒙,𝒖) =

[
 
 
 
 
 
 
 

�̇� = 𝑣𝑥

�̇� = 𝑣𝑧

�̇�𝑥 = − [𝑢Σ
Δ𝐹

𝑚
+ 2

𝐹

𝑚
] sin 𝜃 − 𝛽𝑣𝑥

�̇�𝑧 = − [𝑢Σ
Δ𝐹

𝑚
+ 2

𝐹

𝑚
] cos 𝜃 − 𝑔0 −𝛽𝑣𝑧

�̇� = 𝑞

�̇� =
𝐿

𝐼𝑥𝑥
Δ𝐹(𝑢2 − 𝑢1) ]

 
 
 
 
 
 
 

 (2) 

 

where Δ𝐹 = 𝐹 − 𝐹 = 0.59𝑁 is the range of the thrust magnitude, 𝐹 = 2.35𝑁 is the maximum thrust, 

𝐹 = 1.76𝑁 is the minimum thrust, 𝛽 = 0.5 is the drag coefficient, 𝑚 = 0.389𝑘𝑔 is the quadrotor 

mass, 𝐿 = 0.08𝑚 is the length of the quadrotor, 𝐼𝑥𝑥 = 0.001242𝑘𝑔𝑚2  is the moment of inertial 

about the x-axis, 𝑢 = [𝑢1, 𝑢2] ∈ [0,1] are the left and right throttles respectively, and 𝑢Σ = (𝑢1 +
𝑢2). 
 

2.2 The optimization problem 

The cost function we need to minimize for the optimal controls is: 

  

 𝐽(𝜖, 𝑡𝑓, 𝒖(𝑡)) = (1 − 𝜖)𝑡𝑓 + 𝜖 ∫ (𝑢1
2(𝑡) + 𝑢2

2(𝑡))d𝑡
𝑡𝑓
0

 (3) 



 

where 𝜖 ∈ [0,1] is a hybridization parameter. When 𝜖 = 0, the cost function is exactly time-optimal, 

and when 𝜖 = 1, the cost function is exactly power-optimal. With this parameter we are able to 

generate datasets from time-optimal to power-optimal continuously. Similar to the weighting factor 

of [17], we set ϵ close to zero (ϵ = 0.2) to improve the numerical convergence of the problem and 

avoid difficult to track control profiles. We trained two networks for ϵ = 0.5 and ϵ = 0.2 in order to 

compare how well the quadrotor is able to track and execute the optimal controls with differing 

degrees of aggressiveness. As we are more interested in time-optimal guidance and control, the 

dataset and training details focus only on the ϵ = 0.2 controller, but the same arguments and methods 

apply to the ϵ = 0.5 controller.  

 

min
𝒖,𝑡𝑓

𝐽 (𝜖, 𝑡𝑓, 𝒖(𝑡)) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      �̇� = 𝒇(𝒙,𝒖), ∀𝑡 (4) 

𝒙(0) = 𝒙0 

 

 𝒙(𝑡𝑓) = 0 

 

Using a direct transcription and collocation method (Hermite-Simpson transcription), the trajectory 

optimization problem is transformed into an NLP problem [17]. The AMPL modelling language was 

used to specify the NLP problem which was then solved via SNOPT, an SQP NLP solver. Solving 

for 250,000 trajectories with initial states, 𝒙0 , drawn uniformly from  𝑥0 ∈ [−10,10] 𝑚 , 𝑧0 ∈
[−10,10] 𝑚 , 𝑣𝑥0 ∈ [−5,5] 𝑚𝑠−1 ,  𝑣𝑧0 ∈ [−5,5] 𝑚𝑠−1 , 𝜃0 ∈ [−𝜋/3, 𝜋/3] 𝑟𝑎𝑑 , and 𝑞0 ∈
[−0.01,0.01] 𝑟𝑎𝑑𝑠−1, we obtain a database of state-control pairs of the form: 

 

 𝑘𝑖 = (𝒙𝑗
(𝑖)

, 𝒖𝑗
(𝑖)

)
𝑗=1

𝐾
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where 𝑖 indexes the trajectories and 𝐾 = 81 is the number of grid points in the Hermite-Simpson 

transcription [17]. We solved for 250,000 trajectories of which 214,210 converged, and following an 

80-10-10 split, these trajectories were split into training, validation and test sets. Overall, this 

translates to 13,880,808 state-control pairs that the network was trained on, and 1,735,101 that the 

network was tested on. 

2.3 Network architecture and training 

We construct neural network architectures in the same manner as [17] with 3 layers, 100 hidden units 

with softplus activation functions, and sigmoid activation functions for the output controls. 

 

Thus, we train on the loss function: 

 

 𝑙 = ‖𝑁(𝒙) − 𝒖∗‖2 (6) 

 

with a minibatch size of 256 and a starting learning rate of 10−3 using the Adam optimizer. For 

further details on network training and construction, refer to [17]. From this training, the ϵ = 0.2 

network was able to achieve a mean absolute error (MAE) of 0.0105 for 𝑢1 and 0.0107 for 𝑢2 on the 

training set, and a MAE of 0.0108 for 𝑢1 and 0.0109 for 𝑢2 on the test set. 

 



3 SIMULATION RESULT AND ANALYSIS 

In this section, we analyse the theoretical performance of the proposed optimal controller. First we 

discuss the simulated stability characteristics of the G&CNet(ϵ = 0.2) controller. Then we introduce 

the aforementioned DiffG&C as a benchmark controller. Finally, we detail the simulation of both 

methods and present a comparison between simulations. 

3.1 Stability of Neural Network Controller 

 
Fig. 2. Pitch (top) and the left thrust (bottom) during a G&CNet driven trajectory simulated with control 

delays of 0ms, 18ms and 36ms. The vertical dashed lines show the initial and final time of the true optimal 

trajectory. The horizontal dashed lines show the target final states: 𝜃(𝑡𝑓) = 0.0and 𝑢1(𝑡𝑓) = 𝑢ℎ𝑜𝑣𝑒𝑟. 

 

One of the foremost important things is the stability of any controller used on the quadrotor as an 

unstable controller can lead to failure. The primary stability concerns arise due to the fact that in a 

real quadrotor there is a measurable delay between the computation of the controls, the state given to 

the controller and the controller response which arises due to factors such as the time taken to compute 

the state, and the inertia of the rotors. This delay can be modeled by a fixed time between the 

command and the execution of the control command: 

 

 𝒖(𝑡) = 𝑁(𝒙(𝑡 − 𝜏)) (7) 

 

where 𝜏 is the time delay. Using the methods developed in [16], we find that the stability margin of 

the G&CNet(ϵ = 0.2) controller is 𝜏𝑠 = 63.8𝑚𝑠. Although this stability margin is high, it mostly 

provides information as to the hovering stability of the quadrotor, but we are more interested in the 

general stability during flight. Fig. 2 shows the effect of an increasing time delay on the G&CNet(ϵ =
0.2) controller left thrust and pitch for delays of 𝜏 = 0𝑚𝑠, 𝜏 = 18𝑚𝑠 and 𝜏 = 36𝑚𝑠. Here we see 

that, as the delay increases, the controller becomes increasingly unstable up to the point where it is 

no longer able to track the optimal trajectory nor hover in the final state. 

3.2 Differential flatness based aggressive trajectory generation and 

control (DiffG&C) 

A commonly used aggressive trajectory generation method is to use high order polynomials  𝑃(𝑡) =
𝒑T𝒕 to connect the initial point, the waypoints and the final point [3], [4]. Thanks to the differential 

flatness properties of the quadrotor, the thrust on each rotor can be directly related to the 4th order 

derivative of the position curves 𝒖 = 𝑓(𝒑, 𝑡) [3], [18]. In particular, in this method, we use the same 

kinematics model as the reference [18] with Bebop's drag coefficient 𝐷 = diag(−𝛽,−𝛽,−𝛽)), mass 

𝑚 = 0.389kg and length 𝐿 = 0.08m.  

 



 {

�̇� = 𝒗
�̇� = 𝒈 + 𝑻 + 𝑹𝑇𝑫𝑹𝒗

�̇� = 𝑹′𝒒
 (8) 

 

where thrust 𝑻 = [0,0, 𝑇]T  and body rate 𝒒 = [𝑝, 𝑞, 𝑟]T  are the inputs of the system with the 

assumption that the low-level acceleration controller and rate controller can track the reference well. 

Equation 9 is used to check the feasibility of the thrust each rotor can provide. 

 

 �̇� = 𝑰−𝟏(𝜏 − 𝒒 × 𝑰𝒒) (9) 

 

From the computed polynomial trajectory, the body rate 𝒒 and the rotor thrusts can be determined. 

For a given arrival time 𝑡𝑓, the best trajectory connecting two states is the one with minimal snap. By 

decreasing the arrival time 𝑡𝑓  until the constraints are violated, the polynomial trajectory with 

minimum arrival time and minimal snap can be found. 

 

 min
𝑡𝑓

{min
𝑷

∫ 𝑃(4)(𝑡)d𝑡
𝑡𝑓
0

} = min
𝑡𝑓
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𝑷

𝑷T𝑸𝑷} (10) 

 𝑠. 𝑡. 𝑨𝑷 = 𝒃 (11) 

 𝒇(𝑷, 𝑡) < 𝒄 (12) 

 

where (10) is the optimization target, the integral of the 4th order derivative of the polynomial which 

can be written as a quadratic form. Equation 11 is the constraints of the polynomial and (12) gives 

the input constraints. The readers are referred to [4] for the detailed derivation of matrix 𝑸.  

 

The feed-forward control inputs are computed from the polynomial trajectories and a feedback PID 

controller is used to compensate for disturbance. The readers are referred to [18] for further details 

on the controller implementation. 

 

We only investigate the movement in the 𝑥𝑜𝑧 plane by setting any movement in the 𝑦 direction to 0. 

This way, the model given by (8) can be simplified to the model in (2). 

3.3 Simulation of the G&CNet Controller 

In this simulation, we use the model from (2) as our dynamical model with the rate acceleration �̇� 

and total thrust 𝑇 as the inputs. The reason is that on the real drone, there are different low-level 

controllers which can track the thrust and the rate acceleration accurately, one of which is the 

incremental nonlinear dynamic inversion controller (INDI) [1]. We calculate the desired thrust and 

rate acceleration command from the G&CNet controller outputs using Eq. (13)   

 

 {
�̇�𝑐𝑚𝑑 =

(𝑢1−𝑢2)∆𝐹𝐿

𝐼𝑥𝑥

𝑇𝑐𝑚𝑑 =
(𝑢1+𝑢2)∆𝐹

𝑚

 (13) 

 

 



(a) A simulated trajectory using G&CNet(ϵ = 0.2). 

 
(b) Force of the front rotors and the rear rotors along the simulated trajectory. 

Fig. 3. An example simulation of G&CNet(ϵ = 0.2). In each simulation step, the controller receives 

𝑥, 𝑧, 𝑣𝑥 , 𝑣𝑧, 𝜃, 𝑞and outputs the thrust command of the front rotors and the rear rotors. The desired total 

thrust 𝑇 and rate acceleration �̇� are calculated by (13) and sent to model 2 for integration. 

 

3.4 Comparison between DiffG&C and G&CNet 

In this section, a comparison is made in simulation between DiffG&C and G&CNet. The time 

required by the drone to reach the target is used to derive a performance index. In each trial, the initial 

position of the drone is set to be [𝑥0, 𝑧0] = [0𝑚, 2.5𝑚] and the same target 𝑥𝑓 ∈ [1,10], 𝑧𝑓 ∈ [0,5] is 

set for both controllers. To quantify the performance of a method, we introduce an index 𝜎: 

 

 𝜎 =
𝑡𝑓
𝐷𝑖𝑓𝑓𝐺&𝐶

−𝑡𝑓
𝐺&𝐶𝑁𝑒𝑡

𝑡𝑓
𝐷𝑖𝑓𝑓𝐺&𝐶  (14) 

 

where 𝑡𝑓
∗ is the arrival time of each controller. When 𝜎 > 0, the G&CNet controller is faster than 

DiffG&C and vice versa. Fig. 4 gives the simulation results of multiple target points with ϵ = 0.2 

and ϵ = 0.5. From Fig. 4(a), it can be seen that, in most cases, G&CNet(ϵ = 0.5) has a shorter arrival 

time than DiffG&C outside the region delineated by the black border, and in this region arrival time 

is always shorter and up to 60% faster than DiffG&C. 

 

  
(a) ϵ = 0.5 (b) ϵ = 0.2 

Fig. 4. Comparison of arrival time between DiffG&C and G&CNet. Despite power optimality being 

weighted equally to time optimality, G&CNet(ϵ = 0.5) can, in most cases, steer the drone to the target points 

in less time than DiffG&C (the black line shows the region border where G&CNet outperforms DiffG&C). 

On the other hand, G&CNet(ϵ = 0.2) is always faster than DiffG&C. 

 

Fig. 5 shows a comparison plot of the trajectories and controls of DiffG&C, G&CNet(ϵ = 0.5) and 

G&CNet(ϵ = 0.2). It can be seen that all three controllers reach the target, but the control profiles 

and arrival times differ significantly. With DiffG&C, due to the polynomial representation of 

trajectories, the quadrotor inputs cannot be fully utilised, and thus the time-optimality cannot be 



guaranteed. On the other hand, G&CNets are able to saturate the inputs and arrive at a similar or 

smaller time. 

 

  
(a) (b) 

Fig. 5. An example of comparison between DiffG&C and G&CNet(ϵ = 0.5) when 𝑥𝑓 = 5, 𝑧𝑓 = 2.5. 

4 EXPERIMENT SETUP AND RESULT 

In this section we show the experimental setup for real-world flights and the flight performance of 

each method. 

4.1 Experiment Setup 

To verify the proposed G&CNet, we use a commercial Parrot Bebop 1 as our flying platform (Fig. 

6). The This fully replaced by an open-source autopilot, Paparazzi-UAV. This autopilot provides full 

access to the raw sensor data and rotor commands. 

 

 
Fig. 6. A Parrot Bebop 1 is used as the flying platform. The original autopilot is fully replaced by an open-

source autopilot called Paparazzi UAV. 

 

In this experiment, the position and velocity feedback are from Opti-track motion capture system. 

The attitude estimation is from an on-board complementary filter, which is inevitably biased. The 

angular rate estimation is from the on-board gyroscope. The control architecture is shown in Fig. 7. 

For G&CNet, the lateral movement and heading are controlled by the original outer-loop PID 

controller and inner-loop INDI controller to keep 𝑦 = 0 and 𝜓 = 0°. The maneuver on the vertical 

plane is taken over by the proposed G&CNet. In each control update, G&CNet receives the state 

estimations and outputs the desired pitch acceleration �̇� and the thrust 𝑇. For the benchmark DiffG&C, 

after the trajectory is generated, the desired angular rate 𝒒 can be directly calculated. Then a feedback 

controller is used to compensate the deviation caused by the model inaccuracy, and the state 

estimation bias. 



 

 
 

(a) The control structure of G&CNet. A PD 

controller and an INDI controller are used to keep 

the quadrotor at 𝑦 = 0 and 𝜓 = 0°. 

(b) The control structure of DiffG&C. The feed-

forward signal is directly computed from generated 

trajectories. A feedback controller is used to correct for 

deviations. 
Fig. 7. The control structure of the proposed G&CNet and the benchmark DiffG&C. 

 

In the real-world flight tests, we test 3 controllers which are DiffG&C, G&CNet(ϵ = 0.5) and 

G&CNet(ϵ = 0.2) respectively. For each controller, the start position is set to be 𝒙0 = [0m,−1.5m]T 

and 3 targets which are𝒙𝑓
1 = [5m,−2.5m]T, 𝒙𝑓

2 = [5m,−1.5m]T and 𝒙𝑓
3 = [5m,−0.5m]T are set to 

be tested. For each target, we have 10 independent flights. To evaluate the performance of one 

controller, we have 2 indices which are average arrival time ∆𝑡∗  and average tracking error 

∆𝑥∗ defined by 

 

 ∆𝑡∗ =
∑ ∆𝑡∗

𝑖𝑁
𝑖

𝑁
 (15) 

 ∆𝑥∗ =
∑ ∑ ‖𝒙∗

𝑖,𝑗
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𝑖,𝑗
‖

𝑛𝑖
𝑗=1

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

 (16) 

 

where ∆𝑡∗
𝑖 is the arrival time of ith flight of method *. N is the number of the flight of one controller, 

which is 10 in our case. 𝒙∗
𝑖,𝑗

 is the position of ith flight's jth sample measured by the Opti-track system. 

𝒙𝑟,∗
𝑖,𝑗

 is the corresponding position reference. It should be noted that in DiffG&C, 𝒙𝑟 is the reference 

trajectory while in G&CNet, it is the simulated trajectory. 

4.2 Experiment Result 

The experiment is set up as described in the previous section and we have 90 flights in total (3 

controllers × 3 targets × 10 flights, depicted in Fig. 8). The average arrival time is listed in Table I 

and the average tracking error is listed in Table II. 

 

   
(a) DiffG&C (b) G&CNet(ϵ = 0.5) (c) G&CNet(ϵ = 0.2) 

Fig. 8. The real-world flight data of different controllers to different targets 
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Table I. Average arrival time ∆𝑡∗ to targets 𝒙𝑓
𝑖  

Controller 𝒙𝑓
1 𝒙𝑓

2 𝒙𝑓
3 

DiffG&C 2.63𝑠 ∓ 0.05𝑠 2.18𝑠 ∓ 0.02𝑠 2.10𝑠 ∓ 0.04𝑠 

G&CNet(ϵ = 0.5) 236𝑠 ∓ 0.02𝑠 2.20𝑠 ∓ 0.02𝑠 2.13𝑠 ∓ 0.01𝑠 

G&CNet(ϵ = 0.2) 1.96𝑠 ∓ 0.03𝑠 1.88𝑠 ∓ 0.03𝑠 2.91𝑠 ∓ 0.04𝑠 

 
Table II. Average tracking error ∆𝑥∗ to targets 

Controller 𝒙𝑓
1 𝒙𝑓

2 𝒙𝑓
3 

DiffG&C 0.06m 0.07m 0.07m 

G&CNet(ϵ = 0.5) 0.13m 0.09m 0.10m 

G&CNet(ϵ = 0.2) 0.17m 0.15m 0.28m 

 

From Table I, it can be seen that when the target is set to  𝒙𝑓
1, G&CNet(ϵ = 0.5) reaches the target in 

a shorter time DiffG&C, whereas for targets 𝒙𝑓
2 and 𝒙𝑓

3, it is on par with the benchmark. On the other 

hand, G&CNet(ϵ = 0.2) always reaches the target in faster time. These experimental results confirm 

the simulation results that were obtained in Section 3. 

 

In terms of tracking error, DiffG&C has the smallest tracking error ∆𝑥 followed by G&CNet(ϵ =
0.5), and finally G&CNet(ϵ = 0.2). We find that G&CNet(ϵ = 0.5) outperforms G&CNet(ϵ = 0.2) 
in terms of the tracking error. This can be attributed to the fact that a lower ϵ corresponds to a more 

aggressive trajectory and, in turn, a high-frequency high amplitude changes of the inputs. As 

mentioned in Section 2, this is difficult for the quadrotor to track due to the inertial properties of its 

rotors. 

 

5 CONCLUSIONS 

We have proposed G&CNet as a novel online optimal controller for quadrotors that removes the need 

for expensive real-time optimal trajectory generation by learning a deep neural representation of the 

optimal state-control mapping. We have demonstrated, both in simulation and with real-world flight 

tests, that G&CNets are not only feasible for this purpose, but also competitive with a commonly used 

method, DiffG&C. Our results indicate that a G&CNet weighting equally power and time optimality 

(ϵ = 0.5)  is, at worst, 10% slower than DiffG&C and faster most of times while a G&CNet 

aggressively biased towards time optimality (ϵ = 0.2) is always considerably faster by up to 60%. 

 

The findings of the current study are highly relevant for space applications as well. The employed 

G&CNet was first proposed by the European Space Agency for spacecraft landing tasks. The main 

efforts in the current study, and the main novel findings, are on how to close the reality gap between 

a G&CNet trained based on a theoretically very “clean” model and a real-world system – in our case 

a drone. Taking into account saturations, delays, and employing high-speed low-level controllers have 

proven to be successful in closing this gap. These findings generalize to space systems that may 

employ the developed methodology. The presented study will allow future space systems to perform 

high-speed optimal control with limited onboard resources. It will further have spinoffs on earth, 

starting with high-speed drone flight, but with the potential to expand to any type of robot and type 

of locomotion. 

 

There are many avenues of exploration available. Future work can focus on adding the actuator model 

into the optimal control problem thus eliminating the issue of difficult to track bang-bang controls for 

the rotors. A further extension of our work would be to implement the optimal control problem in the 

full 3-dimensional model thus potentially adding more interesting maneuver capabilities to the 



quadrotor. Additionally, the network could be trained to achieve a nonzero velocity in the final state 

in preparation for consecutive maneuvers. 
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