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Abstract

This report describes the analysis and development of novel tools for

the global optimisation of relevant mission design problems. A taxonomy

was created for mission design problems, and an empirical analysis of their

optimisational complexity performed - it was demonstrated that the use of

global optimisation was necessary on most classes and informed the selection

of appropriate global algorithms. The selected algorithms were then applied

to the different problem classes: Differential Evolution was found to be the

most efficient.

Considering the specific problem of multiple gravity assist trajectory de-

sign, a search space pruning algorithm was developed that displays both poly-

nomial time and space complexity. Empirically, this was shown to typically

achieve search space reductions of greater than six orders of magnitude, thus

reducing significantly the complexity of the subsequent optimisation. The

algorithm was fully implemented in a software package that allows simple vi-

sualisation of high-dimensional search spaces, and effective optimisation over

the reduced search bounds.
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Chapter 1

Taxonomy of Mission Design

Problems

This chapter presents a review of problems relevant to the area of mission

design. It proposes a multi-dimensional taxonomy based upon problem char-

acteristics and the complexity of the considered models. This taxonomy will

be utilised in future during an analysis of the computational complexity.

1.1 Introduction

The gamut of mission design problems are of such variety that they cannot be

appropriately classified into a simple 1-dimensional taxonomy. Consequently,

this report attempts to classify different aspects of a mission design using

problem constraints, control type, spacecraft model, solar system model and

simulation accuracy.

The problem definitions given in the taxonomy consider mainly stan-

dard trajectory optimisation problems neglecting optimal attitude control,

although extending it to more effectively encompass such attitude control
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problems would be possible.

1.1.1 Notation

The notation used in this report is as follows:

X Uppercase bold indicates a matrix.

x Lowercase bold indicates a vector.

ẋ A dot indicates the first differential of a variable with respect to time.

f(t) A function of variable t.

1.2 Mission Design Problems

This section describes a list of mission design problems and their properties

in ascending complexity. This list will then be used to create an efficient

taxonomy for such problems.

1.2.1 Trajectory Design Problems

Point-to-point transfer

The most basic problem in trajectory design is creating a trajectory from

one fixed point in an inertial frame (frequently heliocentric) to another. It is

often assumed that the transfer is a Keplerian orbit, although non-Keplerian

transfers are also possible.

Lambert’s problem

If additional constraints are added such that the point-to-point transfer must

occur in time t, and the transfer path is a Keplerian orbit, then this is known

6



as a Lambert’s problem [3, 10]. A single impulse is utilised to achieve the

transfer orbit. This problem has a unique solution that must be obtained

using numerical methods.

The parameters of a Lambert problem are the angle and magnitude of

the thrust, which may create a two (2D astrodynamic model) or three (3D

astrodynamic model) dimensional continuous search space.

Minimum Delta-V Lambert’s problem

The Minimum Delta-V problem differs from a standard Lambert problem by

removing the time constraint and instead minimising the amount of thrust

required to achieve the manoeuvre [37, 10]. The problem dimensionality is

the same as for the standard Lambert’s problem as it is usually solved with

a single impulse.

Orbit-to-orbit transfer

In orbit-to-orbit transfers it is usual to assume Keplerian orbits for both ini-

tial and final orbits.

Hohmann transfers

Hohmann transfers are bi-impulsive manoeuvres and were developed as an

efficient way of transferring between circular orbits [20, 2]: the corresponding

expressions for the appropriate change in velocity, 4V, have a closed form

and hence no search is necessary. Such transfers have since been extended

to arbitrary elliptical orbits [36] resulting in a function of only one inde-

pendent variable whose first derivative is also known, thus allowing simple

optimisation [10].
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Continuous thrust transfer

Another problem of interest in orbital transference is that of the minimum-

time continuous thrust orbit transfer, where the transferral orbit is obviously

non-Keplerian.

Body-to-body transfer

A body-to-body transfer is the most complex of the standard trajectory de-

sign problems. A currently popular problem of this type is the design of

Earth-Mars trajectories [19, 47]. Because of the periodic motion of the plan-

ets multiple local minima exist and thus global search techniques (for ex-

ample, genetic algorithms [21, 13] or estimation of density algorithms [32])

must be employed. The dimensionality of such problems relies on the as-

trodynamic model, the type of control applied and the technique used to

optimise.

Gravity assists

Gravity assist manoeuvres (GAs) are frequently used to reduce 4V require-

ments of mission and also reduce mission duration [11]. A method suggested

for using multiple GAs to create resonant orbits was suggested in [45] using

a combinatorial approach to select putative swing-by sequences. Obviously

the selection of GA sequences introduces some discrete dimensions into the

optimisation problem with many local minima and hence global techniques

not reliant on gradients must be used. The dimensionality is affected by

both the number of possible GAs and the type of control employed by the

spacecraft.

Ultimately, the number of swing-bys could be itself a parameter to opti-

mise, hence resulting in a search space of varying dimensionality.
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1.2.2 Weak Stability Boundary Problems

Lagrange points

Lagrange points are points in space where the gravitational attraction of

two massive bodies rotating around their centre of mass combine to form a

point where a third body of negligible mass would remain stationary with

respect to the rotating frame. However, Lagrange points are (in dynamical

system terms) repellers and, therefore, small course corrections are constantly

required to remain in a Lagrange point

Weak Stability Boundary transfers

Weak Stability Boundary transfers exploit the invariant manifold structure

associated with the Lagrange points of a pair of massive bodies, with research

has mainly concentrating on modelling the primaries using the Planar Circu-

lar Restricted 3 Body Problem (PCR3BP) [27]. For two coupled three body

systems, such as the Sun/Earth/Craft and Earth/Moon/Craft systems, there

are regions where the invariant manifold structure of the Sun/Earth Lagrange

points interacts with the invariant manifold structure of the Earth/Moon La-

grange points [27, 28]. Applying a small 4V at an appropriate point can

therefore transfer from one manifold structure to the other, allowing a more

fuel efficient transfer than would be possible by a standard Hohmann transfer

(which are generally considered optimal).

One difficulty of modelling such trajectories that pass through or near

Lagrange points is that a high degree of numerical accuracy is required when

integrating the equations of motion. This is due to the sensitive chaotic

dynamics that can occur in these regions [4].
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1.2.3 Optimal Attitude Control

It has been shown that the problem of adjusting the orientation of a spinning

gyrostat can be transcribed into a sparse non-linear programming problem

and solved in the same way as trajectory design problems [24]. Therefore, the

problem of optimal attitude control can be described generally as imposing

boundary constraints in a similar way to a trajectory design problem, except

they are on orientation and angular velocity rather than position and velocity.

Also, in trajectory design problems it is important to be able to perform

effective reorientation manoeuvres on spacecraft in order to be able to apply

thrust in a desired direction [24], and this requires the modelling of the

spacecraft as a rigid body rather than as a point-mass. Ultimately, therefore,

all space missions must consider the problem of optimal attitude control in

order to manoeuvre, although good first guess solutions can be generated

by using a point-mass spacecraft model. However, neglecting the rigid body

dynamics can have a direct effect on the global optima of a problem as certain

control strategies computed using the point-mass approximation may not be

feasible in practise [51]. For example, large angular changes in thrust over

a small time period may not be possible when using momentum wheels to

adjust attitude.

Therefore considering attitude control adds additional constraints to the

optimisation problem while increasing the number of state variables associ-

ated with the spacecraft (which if solved using collocation will significantly

increase the problem dimensionality).
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1.3 Mission Design Taxonomy

The primary function of this taxonomy is to facilitate the assessment of

mission design problems in terms of their optimisational complexity, and

therefore attention will be paid to how each aspect of a problem can affect

this.

¿From the list of mission design problems in section 2 it is apparent that a

simple taxonomy of such problems in terms of optimisation properties is not

possible. Instead, it is more appropriate to classify different aspects of the

problem and the models used, and examine how these could contribute to the

difficulty of the optimisation. For example, the dimensionality of the problem

is reliant upon the type of control (impulsive or continuous), the solar system

model used (2D or 3D) and the method used to solve the optimal control

(collocation or single shooting [5]).

The five aspects of each mission design problem are the problem con-

straints, control type, variables to optimise, spacecraft model and astrody-

namic model.

A summary of the taxonomy presented in tabular form can be found in

Appendix A.

1.3.1 Problem Constraints

The first stage is to identify the actual problem that must be solved inde-

pendently of the quantities to be optimised i.e. what constitutes any valid

solution to the given problem. These then define constraints on the boundary

conditions such as the initial position xi, velocity ẋi and time ti and the final

position xf , velocity ẋf and time tf . For instance, a transfer between two

Keplerian orbits can be seen as imposing two constraints f(xi, ẋi) = 0 and
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g(xf , ẋf ) = 0: f and g are appropriate functions enforcing the constraint on

the position and velocity required to maintain a Keplerian orbit. A Lam-

bert’s problem, by comparison, imposes xi = a, ti = b, xf = c, tf = d, where

a, b, c and d are constants.

Consequently, each mission design problem imposes its own constraints

and it is the number of such constraints and their complexity which will

determine the complexity of the optimisation required to satisfy them. These

constraints can be divided into boundary constraints (initial and final) and

continuous constraints.

For missions consisting of multiple phases the complexity of each phase

can be classified separately (such as a series of GAs and deep-space manoeu-

vres), although achieving a global minima over the entire mission will be

more complex than optimising each given phase alone.

Initial constraints

Initial constraints may be applied to ti, xi and ẋi. In many cases one or more

of these may be a function of another. The possible constraints are described

below:

ti may be constant (such as in a Lambert’s problem) or unconstrained (not

used in optimisation or is a variable to be optimised).

xi may be constant, unconstrained or a function of time (starting in a given

orbit).

ẋi may be constant or a function of time (starting in a given orbit).
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Final constraints

Final constraints are applied to tf , xf and ẋf . In many cases one or more

of these may be a function of another. For example, if transferring to an

orbiting body then the final position is a function of time xf = f(tf ). Possible

constraints on the final conditions are:

tf may be constant (such as in a Lambert’s problem) or unconstrained (not

used in optimisation or is a variable to be optimised).

xf may be constant, unconstrained, a function of time (orbiting body) or be

a joint constraint with velocity (orbit).

ẋf may be constant, unconstrained or a joint constraint with velocity (orbit).

Other constraints

Constraints can also act continuously over a mission or at discrete points. For

example, a continuous constraint may be to maintain appropriate satellite

attitude or apply thrust to remain in a Weak Stability Boundary Orbit. The

interdependence of such constraints can be expressed through the use of an

appropriate function f :

x = f(t) Remain within a Lagrange point.

θ = f(x) Maintain attitude towards a fixed point in a given inertial frame.

θ = f(x, t) Maintain attitude towards a given orbiting body.

Tabular constraint definition

The initial and final boundary constraints can be succinctly defined in a

tabular form using the following notation:
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Table 1.1: Constraints applied to some example problems in tabular form.

ti xi ẋi tf xf ẋf Problem description

# # # # # # Lambert’s Problem

U O O U O O Orbital transfer

B f(t) f(t) U f(t) U Orbit-to-body transfer within a given launch window

# Constrained to a single value.

B Bounded within given limits.

U Unconstrained variable or is variable to be optimised.

O Orbit - This indicates a joint constraint between the position and velocity

of the spacecraft at the corresponding boundary.

f(t) Function of time.

Using this notation the boundary constraints of the mission design problem

can be concisely defined. To illustrate this, Table 1.1 demonstrates the def-

inition of some of the problems discussed in section 2. However, problems

such as Weak Stability Boundary orbits are difficult to define explicitly as

they rely heavily on the astrodynamic model in use. If only two body dy-

namics is used in an orbit transferral problem then the optimal solution will

be an appropriate Hohmann transfer, whereas by using three body dynamics

it becomes a ballistic capture using the Earth-Sun Lagrange point. Ideally,

a global optimisation technique would therefore locate solutions using WSB

without the need for explicit targeting (adding an additional constraint to

ensure the trajectory passed through the Lagrange point).
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1.3.2 Control Classes

The thrust that can be applied to a spacecraft can be divided into two main

classes: impulsive and continuous thrusts.

Impulsive manoeuvres

An impulsive manoeuvre is one that is assumed to approximate an instanta-

neous change in momentum of the spacecraft, although of course in practise

this change must take place over non-zero time.

Fixed n-impulse maneouvres

This control model utilises a fixed number of impulses where the parameters

are the time, angle and magnitude of the impulses. The corresponding search

space is therefore continuous and of dimensionality 3n (2D model) or 4n (3D

model).

For example, a Hohmann transfer is a bi-impulsive manoeuvre used to

complete an orbit transfer between two coplanar circular orbits, whereas

Lambert’s problem (transfer from point A to point B in time t) is solved

using a single impulse to put the spacecraft into the appropriate orbit. Tri-

impulsive manoeuvres have been shown to be more efficient than Hohmann

transfers when transferring to much larger orbits.

Variable n-impulse manoeuvres

In this control model the number of impulses itself becomes a parameter, thus

introducing a combinatorial element into the optimisation. Consequently, the

dimensionality of the search space could vary during the optimisation and

additionally produces a non-continuous search space, thus constraining the

possible optimisation algorithms.
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Continuous thrust

Usually a low power drive such as ion propulsion, the angle of the control over

time is the control variable. As a consequence, continuous thrust intrinsically

has infinite dimensionality, unlike impulsive control, and so methods must

be employed to approximate this control curve. The simplest way to achieve

this is to use n discrete time slices, where ui is the control vector at time

slice i. However, in order to obtain smooth control a large n is required and

therefore the dimensionality is increased proportionally.

Alternatively, the control curve can be modelled as a polynomial such as

a spline, in which case the dimensionality of the problem may be effectively

reduced, at the expense of perhaps not being able to reproduce the globally

optimum curve dependent on the polynomial order selected.

Continuous thrust can be further subdivided into simple and complex op-

timisation cases dependent on the propulsion system.

Simple continuous thrust

Simple continuous thrust is defined as a propulsion system that can exert the

same thrust magnitude independently of position and attitude. Example of

simple continuous thrust are RTGs (radioisotope thermal generator) or ion

propulsion engines.

Complex continuous thrust

Complex continuous thrust is provided by propulsion systems such as solar

sails [14, 41], where the available thrust magnitude and direction is con-

strained by position and attitude relative to the sun, thus increasing the

complexity of the control optimisation.
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1.3.3 Decision variables/objectives

This section describes the variables that are used as either decision variables

or objectives during the optimisation of a mission design problem

Time

In manned missions, minimising aspects of mission time is essential due to

radiation exposure and the amount of supplies required by the crew. In probe

design mission time is less crucial although pre-bounded limits are usually

set on the trajectory optimisation. Time can be both an objective and/or

a decision variable: when optimising multiple gravity assist trajectories, the

decision vector can be phrased as the time between successive planetary

encounters, and it may also be desirable to minimise the mission time.

Thrust

In probe design, the mission time is generally less important than minimising

the overall propellant required, and therefore the overall thrust 4V required

by the mission. Thrust is normally used as an objective: less thrust equates

to a larger scientific payload for a mission.

Velocity

An example of using velocity as an objective would be to minimise the swing-

by velocity of a body of interest so that more measurements can be obtained.

Although similar to optimising thrust, larger velocities do not affect the

amount of propellant required and therefore the payload mass of the space-

craft.
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Angular Momentum

When considering optimal attitude control it is useful to utilise total angular

momentum as an objective. Minimising this quantity over a manoeuvre will

also minimise the cost of propellant required by attitude thrusters or energy

required by momentum wheels.

Multi-objective optimisation

Research is currently ongoing designing manned missions to Mars, where

characteristics such as flight trajectories, energy requirements, travel times,

and surface stay times are all variables that are desirable to optimise. This

leads to the creation of pareto fronts in the search space representing families

of optimal solutions with different weighting to the corresponding objectives

[19]. Performing a global optimisation on a given weighting of multiple ob-

jective function corresponds to a given point on a pareto front, and hence it

is beneficial to consider the front as a whole as more mission design options

become apparent.

1.3.4 Spacecraft Model

During mission design, the spacecraft can be modelled at varying levels of

complexity, corresponding to varying levels of optimisational complexity. The

point-mass spacecraft may be the simplest model, but optimal solutions gen-

erated using it may be found to be non-optimal when considering controlling

the attitude and angular momentum of the spacecraft.
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Point-mass model

The point-mass model is the simplest way of modelling the spacecraft and is

frequently used for the generation of first guess solutions. Any thrust applied

is in the global frame of reference rather than being dependent on the state

of the spacecraft.

Rigid body model

With the rigid body model the inertia of the spacecraft must also be taken

into account, and consequently control must be calculated relative to the

attitude of the spacecraft and its angular momentum. Obviously, in order

to consider optimal attitude control problems the model must be at least of

this complexity. The rigid body assumption in effect constrains the angle of

thrust that can be applied in a given time period, and thus the feasible set

of trajectories is a subset of those found using the point-mass model.

Low level control model

The highest level of modelling complexity considers optimising the torque

required to control the spacecraft’s angular momentum, thus allowing the

design of minimum-torque manoeuvres.

1.3.5 Astrodynamic Model

This section describes the varying complexities of astrodynamic models that

may be applied in mission design problems and their impact on the properties

of the optimisation of such problems.
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n-body dynamics

The simplest astrodynamic model is the restricted 2 body problem, where

the mass of the spacecraft is assumed negligible and only the gravitational

field of the orbited body (usually the Sun) is considered. However, in order

to use Lagrangian points or design a Weak Stability Boundary orbit at least

3 body dynamics must be used. The Sun/Earth/Moon/Spacecraft 4 body

system can be effectively approximated as two coupled 3 body systems [28].

Increasing the number of considered bodies can affect the optimisation by

the generation of additional minima - with 2 body dynamics the Hohmann

transfer is the most efficient way achieve a Moon orbit, but by including

the Moon and Sun additional minima are created through the use of the

Lagrange points. Also, using 3+ body dynamics allows the use of Gravity

Assists that produce new global minima, although it is best to take these into

account explicitly using the link-conic method [46] rather than integrating

the state equations.

Planar/non-planar models

The orbital inclination of the planets relative to Earth’s orbital plane differs

by less than four degrees in most cases (Mercury and Pluto being the excep-

tions). Consequently, when considering planet-to-planet transfer a coplanar

model is generally sufficient to generate good first guess solutions. 3D mod-

els increase the number of parameters to specify an angle from one to two

and the amount of state variables from four to six (assuming point mass

spacecraft), and thus increases the complexity of the optimisation.
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Circular/elliptic orbits

Using circular orbits is a simple method of testing the efficacy of techniques,

but in general is an inaccurate way of modelling the solar system. As an

example, a popular design task is the creation of trajectories between Earth

and Mars: using circular orbits each opposition will be at the same distance

(approx. 78 million km), but by taking into account Mars’ orbital eccentricity

(0.0934) the opposition in August 2003 was only a distance of 56 million km.

However, calculating elliptic orbits is more expensive than circular ones as

Kepler’s equation must be solved using an iterative method such as Newton’s.

In general, the transferral from circular to elliptic orbits will not alter the

nature of the optimisation significantly: it just improves the accuracy of the

located solution.

Other factors

Other factors that may be modelled to increase accuracy are atmospheric

drag, nutation and non-uniform gravitational fields provide more accurate

results but will not fundamentally alter the properties of the search space,

merely perturb the positions of optima.

1.4 Discussion

This section provides a short discussion on the mission taxonomy.

1.4.1 Numerical Accuracy

For most preliminary mission optimisation problems the numerical accuracy

has only to be high enough to preserve the basic qualitative properties of the
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trajectory such that it can act as a good first guess solution to a highly accu-

rate optimiser such as DITAN. When considering WSBs, however, a much

higher level of accuracy is required due to the sensitive chaotic dynamics that

occur in such regions.

1.4.2 Dimensionality of the Search Space

The dimensionality of a given mission design problem cannot always be easily

defined, as the technique used to solve the problem can radically alter the

dimensionality. For example, a popular direct technique for trajectory opti-

misation is collocation [18]: this radically increases the problem dimensional-

ity while simultaneously making the problem amenable to local optimisation

tools such as sparse SQP [5].

Additionally, by considering variable impulse manoeuvres and variable

length swing-by sequences the resulting transdimensional search problems

would be difficult to solve using standard methods and therefore are worthy

of further consideration.

1.4.3 Other Properties of the Search Space

Although it is not possible to characterise exactly the properties the search

space of each problem this early in the investigation, some broad observa-

tions are possible. The simpler problems, such as planar orbital transfer and

point-to-point transfer in 2 body dynamics, correspond to smooth continuous

search spaces with few local minima, although singularities can be possible

if planets are modelled as point-masses. The more complex problems, such

as WSB transfers and interplanetary transfers, can contain multiple local

minima and have a highly oscillatory (non-smooth) nature. The use of col-

location to solve problems requiring global optimisation may not be ideal, as
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global methods may not be able to take advantage of the underlying sparsity

in the way sparse SQP does, and hence using a single shooting method may

be preferable in such cases.

1.4.4 Simultaneous Optimisation of Multi-complexity

Models

An interesting method of optimisation that has received little attention in

the literature is the automatic optimisation of trajectories using a hierarchy

of model complexities. Instead, it is usual to optimise fully using a simple

model that use that solution as a first guess for optimisation with a more

complex model. As an alternative to this it may be possible to consider

different levels of modelling as part of a single overall global optimisation.

This might be achieved by using a form of distributed optimisation, in which

a population of agents optimise solutions for simple models and gradually

upgrade the corresponding modelling complexity, thus ensuring an overall

global optima.

1.5 Conclusion

This report has described a general multi-dimensional taxonomy for mission

design problems that can include the vast majority of commonly encountered

situations. By considering the effect of each problem aspect on the resulting

optimisation problems will facilitate further analysis into the complexity of

optimising problems within this taxonomy.
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Chapter 2

Analysis of Problem

Complexity

This report presents an empirical and theoretical analysis of the complexity

of some relevant mission design problems, thus facilitating the selection of

appropriate optimisation algorithms to solve them. The type of each prob-

lem is classified using the taxonomy developed in Work Package 1, and its

complexity classified according to the work of Törn.

2.1 Introduction

This report analyses the complexity of a representative selection of mission

design problems, thus facilitating the selection of appropriate global tech-

niques to solve them. The methodology described by Törn [44] will be the

main tool to analyse problem complexity.

An analysis will be performed of three problems identified as being im-

portant - optimal bi-impulsive interplanetary transfer, optimal low thrust

interplanetary transfer, and multiple gravity assist trajectories.
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2.1.1 Notation

The following notation will be used throughout this report :

f ∗ a minimum value of objective function f ;

f̂ ∗ an estimate of f ∗;

x a vector in Rn;

ẋ the derivative of x with respect to time.

2.2 Analysing Complexity

The purpose of analysing computational complexity is to characterise the

intrinsic difficulty of a given optimisation problem. Using this information

an appropriate optimisation algorithm may then be selected.

2.2.1 Convexity

The idea of convexity is key in optimisation, in that for a convex function

any local minima must also be a global minima, and therefore optimisation

will be much simpler than for non-convex functions - a local optimisation

algorithm will be sufficient.

Consider a function f : A → R where A is a non empty set in Rn. f is

convex over A if

f(λa + (1− λ)b) ≤ λf(a) + (1− λ)f(b), (2.2.1)

for a,b ∈ A and for all λ ∈ (0, 1). Geometrically, this can be interpreted as a

line drawn between any two valid input vectors, a and b, must not intersect

with the function manifold over A, as illustrated in Figure 2.1.
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Figure 2.1: An example of a convex function illustrating the principle of the

convexity criteria

Of course, if a function is non-convex over a set A, it is likely to be convex

over some subset of A, unless the function has fractal properties. Similarly,

as the size of the domain A is increased the convexity of a function can only

decrease. Therefore, when considering non-linear functions it is important to

optimise over a minimal domain in order to maximise convexity.

Unless the function has constant Hessian, or has a very special structure,

convexity is not easily recognisable. Even for multivariate polynomials there

is no known computable procedure to decide convexity [34]. Since it is known

that many local optima exist in mission design problems due to periodic

planetary motion, then over a large enough launch window the majority of

mission design problems will be non-convex.
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Due to these factors, it is judged that an empirical investigation of the dif-

ficulty of optimising relevant mission design problems would be more effective

than theoretical analysis of the problems. Through the use of search space

characteristics found in practical test cases, some qualitative estimate of the

optimisational difficulty of the problems may be found. This classification

can then be used to help select appropriate optimisation methods.

2.2.2 Methodology

This section describes the methodology recommended by Törn [44] for analysing

the complexity of unconstrained global optimisation problems through the

use of empirical investigation. The goal is to find

f̂ ∗ = f(ẑ∗), (2.2.2)

where

ẑ∗ ∈ A ⊂ Rn (2.2.3)

so that the obtained minimum is within some tolerance of the global mini-

mum f ∗

|f̂ ∗ − f ∗| < ε. (2.2.4)

As theoretical analysis of general problem complexity is, in general, pro-

hibitively difficult, Törn recommends empirical investigation of problems in

order to determine their difficulty. For example, the size of the domain A
can have a major effect. The four features identified as being important for

problem complexity are:

• Size of the basin of attraction of the global optimum.

• The affordable number of function evaluations.
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• Embedded or isolated global minima.

• Number of local minimisers.

Size of the basin of attraction of global optimum

The size of the basin of attraction of the global optimum can be found by sam-

pling uniformly within the domain A and using a strictly descending local

minimisation with an infinitely small step to find the corresponding mini-

mum. This will then give an approximation of the proportion of the domain

that the basin of attraction fills. Although such a minimisation is impossible

in practice, all local optimisation algorithms will give some approximation of

this underlying objective function geometry. The local optimiser that will be

used in this report will be Sequential Quadratic Programming (SQP) [5, 18],

as it has been previously utilised very successfully in the solution of sparse

mission design problems.

Note that the relative size of the basin of attraction of the global minimum

is inversely proportional to the size of the domain A, and therefore a minimal

search domain should always be selected to maximise this proportional size,

as well as to maximise convexity. For instance, if the domain A is the box

[0, 1]n, and the proportional size of the basin of attraction (relative to A) is

p̂∗, then the probability of selecting a point within the basin is 1 − p̂∗. If A
is increased in size to [0, 2]n, then size of A is increased by a factor of 2n and

consequently the probability of selecting a point in the basin is reduced to

1 − p̂∗
2n . Therefore it is of significant importance to minimise the size of the

search domain whenever possible.
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Affordable number of function evaluations

Any global optimisation may be achieved in infinite time using a trivial uni-

form random search or an exhaustive method, but this is certainly not the

best way of solving general optimisation problems. Therefore, there must

be some number of function evaluations Nf that causes the optimisation to

be considered intractable, although this is obviously subjectively dependent

on the perceived acceptable timescale and computing resources that may be

available, and therefore Nf cannot be defined except under stringent con-

straints.

However, if the overheads associated with the optimisation algorithm can

be considered negligible compared to the expense of evaluating the objec-

tive function then it is valid to compare the number of function evaluations

required by different optimisation algorithms.

Embedded or isolated global minima

Törn defines the embeddedness of a global minimum as the presence of lo-

cal minimisers close to the global minimiser in the search space, such that

locating one of these local minimisers may aid in locating the global min-

imiser. This is justified since any stochastic global optimisation method has

a possibility of progressing through multiple local minima towards the global

minimum. A global minimum with other local minima nearby is embedded,

otherwise it is isolated.

The embeddedness of the global minimum between two different problems

can be compared as follows. Firstly, normalise the search space to the unit

hypercube, and then plot a histogram of the density of local minima as

Euclidean distance away from the global minimum increases. The Euclidean

distance of local minima is further normalised by a factor of
√

n, the hyper-
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diagonal of the normalised search space, such that search spaces of varying

dimensionality can be directly compared.

The number of local minimisers

Although a global minimum surrounded by local minima can be beneficial,

they nevertheless reduce the basin of attraction of the global minimum. Con-

sequently, the more local minima a problem has the more difficult it is to

globally optimise it.

As well as point minimisers, it is possible that valleys will be encountered,

which represent an infinite number of local minimisers. Empirically, these

can be identified as manifolds of local minima found using a gradient descent

method, although it is non-trivial to identify whether the valley floor itself

is smooth or oscillatory and therefore whether such a manifold represents a

true valley or many adjacent point minima.

Classification of problem complexity

Table 2.1, replicated from [44], shows the system devised by Törn to clas-

sify optimisation problems as either easy, moderate or difficult based upon

the number of minima, probability of sampling the basin of attraction of

the global minimum and embeddedness of the global minimum. The system

also includes some qualitative recommendations of the types of suitable op-

timisation algorithms - this will prove beneficial in Work Package 3, as it

considers the selection of appropriate global optimisation algorithms to solve

these problems. In the techniques column, + indicates that the technique is

usable whereas ++ recommends that the main effort should be made using

this technique. The three types of technique considered are local, global and

adaptive. An adaptive technique is one that uses no gradient information
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but gradually samples more points in the regions where good solutions have

been found, such as genetic algorithms [21]. Similarly, in the ‘local’ column

ld shows a strictly local method would be superior whereas gd favours global

descent : local improvement through adaptive sampling.

Unimodal is considered the easiest class to optimise, and may comprise

both convex and non-convex problems. The difference between the 1 and 2

subscript for each difficulty class is the number of local minima the problem

has: for problems with few local minima local descent should be used whereas

global descent is required in the case of many local minima.

Table 2.1: Table summarising Törn’s method for classifying the difficulty of

optimisation problems

Problem Features Solution techniques

Class Complexity (1− p̂∗)Nf Embeddedness #mins glob local adapt

U unimodal 0 none 1 (+) ++ld +

E1 easy small any few + +ld +

E2 small any many + +gd +

M1 moderate large embedded few + ++ld +

M2 large embedded many + ++gd +

D1 difficult large isolated few ++ +ld -

D2 large isolated many ++ +gd -

2.3 Earth-Mars Transfer

This section analyses the difficulty of optimisation of a thrust optimal Earth-

Mars transfer including a braking manoeuvre at Mars. The control is bi-

impulsive. The decision variables are the launch date, t0 (in MJD2000) and

t, the mission time, in days. This is the same problem as described in [47],

although with different bounding constraints. The position of the spacecraft
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is denoted x, and the velocity of the spacecraft ẋ.

2.3.1 Classification of problem type

The problem can be classified in the taxonomy developed in Work Package

1 as follows:

Variable U # B f(t) O

xi X N/A

ẋi X N/A

ti X N/A N/A

xf X

ẋf X

tf X N/A N/A

Additional Constraints

Control Class Subclass Check/Value

Impulsive Fixed n-Impulsive 2

Continuous Simple

Impulsive Variable Impulsive

Continuous Complex
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Objective Check

Thrust X

Mission time

Velocity

Angular momentum

Other variables

Spacecraft Model Check

Point-mass X

Rigid body

Low level control

Astrodynamic Model Check/Value

n-body dynamics (2+) 2

Non-planar model X

Elliptic orbits X

Other factors

2.3.2 Thrust optimal transfer

The initial objective function f to be investigated is the total 4V required

in order to effect the interplanetary transfer:

f = |ẋi|+ |ẋf |, (2.3.1)

where ẋi is the initial hyperbolic excess velocity (relative to Earth) and ẋf

is the velocity relative to Mars on entry to Mars’ sphere of influence. ẋi and

ẋf are determined for a given t0 and t by solving the associated Lambert
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problem [2, 17, 10] 1. The bounds on the decision variables were chosen such

that several synodic periods would be present. Multiple revolution solutions

to the Lambert problem were not considered. The bounds were

• t0 ∈ [800, 3800] MJD2000

• t ∈ [100, 400] days.

Figure 2.2 shows the underlying geometry of the objective function in the

2D search space. It can be seen that several local minima are present, and

the objective function is quasi-periodic in nature due to the synodic period.

If the orbits were circular and coplanar then all minima would be identical

global minima, as in each synodic period exactly the same relative planetary

positions would be evident. However, with the presence of eccentric orbits

and non-coplanar orbits a single global optimum is evident over any practical

launch window.

In order to examine the basins of attraction of the global optimum the

search space was discretised into 50 sections in both dimensions. For each grid

point, an SQP search was performed and the corresponding local minimiser

found. Minima located within a Euclidean distance of 1.0 day were classed

as identical, thus allowing the basins of attraction of each minimum to be

identified. Using this technique, eleven unique minima were found. Figure

2.3 shows the basin of attraction associated with each minimum by identically

colouring initial positions that correspond to the same basin of attraction.

Minima with less than a relative basin of attraction size of less than 0.01

have been omitted as these tend to coincide with SQP failing to converge

correctly.

1the solver utilised is currently unpublished work by Dario Izzo
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Figure 2.2: Objective function landscape of the Earth-Mars optimal thrust

problem

Results

Table 2.2 shows the values of decision variables and objective function for all

minima located with SQP. Note that minima 9 to 11 are not true minima,

merely the result of the bounding constraints on the decision variables: if

these bounds were relaxed these minima would no longer be evident. Figure

2.4 shows the globally thrust optimum trajectory.
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Size of the basin of attraction of the global minimum

Table 2.3 shows the proportionate size of each minimum located within the

search space. It is apparent that over this domain the global minimum (min-

imum 1) has a basin of attraction p̂∗ corresponding to approximately 25% of

the domain. This is associated with a small value for (1 − p̂∗)Nf , the prob-

ability of not selecting a point within the basin of attraction of the global

optimum after Nf uniformly random samples.
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Figure 2.3: Basins of attraction for thrust optimal Earth-Mars transfer
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Table 2.2: The decision variable and objective values of located minima in

descending order of quality

Minima t0(MJD2000) t(days) |vi|(km/s) |vf |(km/s) f

1 1253.7 202.9 2.968 2.699 5.667

2 3573.4 323.2 3.207 2.466 5.673

3 2812.5 344.2 3.659 2.564 6.223

4 1225.5 233.2 3.539 2.816 6.353

5 2057.5 216.5 4.180 2.654 6.835

6 3597.8 273.5 4.364 2.497 6.861

7 2048.2 350.5 4.170 2.936 7.106

8 2834.3 246.0 4.768 2.601 7.369

9 3766.8 400.0 10.027 11.606 21.633

10 800.0 400.0 26.195 18.094 44.292

11 3800.0 126.7 37.877 25.439 63.289

Number of function evaluations

Using the information in table 2.2 it is possible to estimate the number of

SQP searches, and therefore the approximate number of function evaluations

required, in order to attain a 99% probability of having located the global

minimum. The probability pfail of not having selected a point in the basin of

attraction of the global minima after k function evaluations is

pfail = (1− p̂∗)k, (2.3.2)

and therefore to achieve a specific value of pfail the required number of samples

is

k =
log pfail

log (1− p̂∗)
. (2.3.3)
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Calculating for this problem, a minimum of 16 SQP searches with random

initial conditions would be required in order to achieve a 99% probability

that the global optimum had been required by one or more of them. This

result can also be generalised well to any given launch window: since four

Earth-Mars synodic periods were included in the launch date and p̂∗ ≈ 1/4

then, assuming the same global minimum, the relative size of the basin of

attraction will be approximately p̂∗ ≈ 1
i
, where i is the number of synodic

periods included in the launch window. Therefore, an approximation of the
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Figure 2.4: The globally optimum trajectory for a thrust optimal Earth-Mars

transfer
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Table 2.3: The approximate proportional size of the basins of attraction

found using SQP

Minimum # Basin proportion

1 0.2520

2 0.1680

3 0.1652

4 0.0032

5 0.0852

6 0.0476

7 0.1704

8 0.0820

9 0.0004

10 0.0256

11 0.0004

number of searches required is

k ≈ log pfail

log (1− 1
i
)
, (2.3.4)

and since log (1− x) ≈ −x when 0 < x ¿ 1, then

k ≈ −i log pfail. (2.3.5)

Hence the required number of SQP searches increases approximately linearly

with the size of the launch window. Therefore, if the SQP parameters were

initialised appropriately (in terms of step size) the computational expense of

SQP may remain relatively constant with respect to the number of synodic

periods considered, and hence the time complexity of this problem relative

to launch window size sw would be approximately O(sw).
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Number of local minima

Over the selected launch window ten local minima have been identified. Fol-

lowing Törn’s classification of the ‘Shekel10’ function [43], which also pos-

sesses 10 minima, it can be concluded that the Earth-Mars optimal thrust

transfer belongs to a family of optimisation problems with few local minima.

Embeddedness of global optimum

Figure 2.5 shows a histogram of the normalised distance of each local min-

imum from the located global minimum. It can be seen that there are no

local minima very close to the global minimum, and therefore this minimum

is isolated.
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Figure 2.5: A histogram showing the number of local minimisers with respect

to their normalised distance from the global minimiser
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Classification of problem complexity

It has been established that (1− p̂∗)Nf is small in this problem, the number

of minima is few and the global minimum is isolated. This problem therefore

belongs to class E1 (see Table 2.1), and thus can be considered easy to

optimise.

(1− p̂∗)Nf Small

Embeddedness Isolated

#mins Low

Classification E1 - easy

Recommended technique Local

2.3.3 Multi-objective optimisation

Obtaining minimal thrust on a mission is important, but is not the only

factor to be taken into consideration in practice. Therefore, this section

considers the analysis of a multi-objective thrust/mission time optimisation

through the recovery of pareto fronts, thus allowing the recovery of a family

of solutions rather than a single point. For a set of objectives where fi(z)

returns value of the ith objective function, the pareto front is the infinite set of

values of x whose objective function values are not dominated by any other.

Assuming minimisation, for two points within the search space, z1, z2 ∈ A,

z1 dominates z2 if ∀ifi(z1) < fi(z2).

An approximation of the pareto fronts can be found in the following way:

Grid sample the objective function to form a set S
Let x be the first item of S.
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Repeat

Disregard any members of S that are dominated by x.

Let x be the next item of S.

Until (all members of S have been considered)

Another way of considering multi-objective optimisation in this case is as

a weighted scalar objective function of the form

f = a(|ẋi|+ |ẋf |) + bt, (2.3.6)

where the ratio of a and b determine the relative importance of the objectives.

Figure 2.6 shows the approximation of the pareto fronts found using a

grid sampling density of 100 in both dimensions. However, unlike most il-

lustrations of pareto fronts, one of the objectives is also one of the decision

variables in this case (mission time), and hence the pareto front tends to-

wards the bottom of the graph. The pareto front describes a line at t = 100

days, corresponding to a = 0 (no weighting on thrust), due to this coupling

between decision variable and objective.

An approximately vertical line can be observed from the t = 100 line

to the thrust-optimal global optima as b → 0. Therefore, it is clear that

regardless of whichever weighting between the objectives is desired, the search

space of interest lies in a small portion of the originally defined decision

variable bounds. Figure 2.7 shows a 3D representation of the optimal thrust

manifold, with black crosses marking those points found to be on the pareto

front - as expected, they traverse down the deepest part of the valley from

the optimal time solution (t = 100 days) to the optimal thrust solution.
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Figure 2.6: A graph of the thrust/mission time pareto front overlaid onto

a contour plot of the thrust objective function. The optimal thrust minima

are shown as red stars.

2.3.4 Discussion

This section has examined the complexity of finding an optimal thrust bi-

impulsive interplanetary transfer from Earth to Mars. By examining the

number of minima and the size of the basin of attraction of the global opti-

mum, it has been determined that the difficulty of optimising such a problem

is low. A multi-objective optimisation was then considered between thrust

and mission time and the Pareto front was identified as being small and

simple to locate.
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2.4 Gravity Assist Trajectories

Gravity assist manoeuvres provide an effective way of reducing the propellant

required for a mission, although usually at the cost of increased mission

times [30, 45, 48]. This makes them ideal for non-manned missions to the
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Figure 2.7: A graph of the thrust/mission time pareto front overlaid onto a

3D surface of the thrust objective function. The optimal thrust minima are

shown in red.
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outer planets that would be infeasible using a standard Hohmann manoeuvre

[20, 37]. Also, the optimisation of swing-by sequences is of particular interest

as it combines both combinatorial and continuous optimisation.

For this report, a simplified version of the Cassini-Huygens Earth-Saturn

mission will be considered as a test case, given that only unpowered swingbys

will be allowed. Consequently, since the actual Cassini-Huygens mission

required at least one significant gravity assist 4V during in the EVVEJS

transfer, only the simplified EJS may be considered:

• 2 body dynamics (only gravitational attraction of the Sun is consid-

ered).

• Elliptic, non-coplanar orbits using analytical Ephemeris.

• Point-mass spacecraft assumption.

• Link-conic approximation for gravity assist (unpowered swingby)

The orbital injection will remain the same as the original Cassini-Huygens

mission, with the following parameters:

• Eccentricity, e = 0.98

• Radius of periapse, rp = 1.0895× 105km

Orbital injection is achieved with a single impulsive thrust at the periapse

of the hyperbolic orbit, thus creating a highly eccentric elliptic orbit. The

desired angular momentum h of the orbit can be calculated simply as follows

by finding the semi-major axis a, semi-latus rectum l

a =
rp

1− e
(2.4.1)

l =
a

1− e2
(2.4.2)
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h =
√

lGM, (2.4.3)

where G is the gravitational constant and M is the mass of Saturn. The

magnitude of the velocity at periapse, vpf , is then simply

|vpf | = h

rp

. (2.4.4)

The magnitude of the velocity the probe will achieve at the periapse of the

orbit, |vpi| can be calculated simply from the transferral of potential energy

to kinetic energy, so

|vpi| =
√
|vo|2 +

2GM

rp

, (2.4.5)

and therefore the braking manoeuvre is of the magnitude

|4V| = |vpi| − |vpf | (2.4.6)

2.4.1 Classification of Problem Type

Multiple Gravity Assist trajectories do not fit directly into the taxonomy

developed in Work Package 1, although each interplanetary phase may be

characterised in the same way as the bi-impulsive Earth-Mars transfer as

discussed in Section 2.3. However, since each Gravity Assist adds another

dimension to the search space of the problem, then each additional phase

may be assumed to have a multiplicative effect on the problem difficulty.

2.4.2 Earth-Jupiter-Saturn

The mission to be used as the benchmark for Gravity Assist missions is the

Cassini-Huygens mission. A launcher is to be used to provide the initial C3,

although the probe itself must provide the thrust required to achieve orbital

insertion at Saturn.
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The mission was split into two sections, the Earth-Jupiter phase and the

Jupiter-Saturn phase.

The decision variables were the launch date t0, the length of the Earth-

Jupiter leg, t1 and the length of the Jupiter-Saturn leg, t2. For each date

the corresponding Lambert problem was solved. The decision vector x was

therefore

x = {t0, t1, t2}. (2.4.7)

The bounds on the decision variables were based on the transfer time of a

Hohmann transfer assuming coplanar and circular orbits: the lower bound

was 10% of this value and the upper bound was 300% of this value. The

launch window was selected to be a period of several years including the ac-

tual Cassini-Huygens launch date of 15th October 1997. The overall bounding

constraints were

• t0 ∈ [−1278, 546] days

• t1 ∈ [100, 2992] days

• t2 ∈ [366, 10981] days

An equality constraint was used to ensure that the magnitude of the

incoming and outgoing velocity at Jupiter (relative to Jupiter) was the same,

thus effecting an unpowered gravity assist. The minimum altitude allowed

for a gravity assist was 10% of the planetary radius.

The objective function was grid sampled with a density of 50 in each

dimension (125000 function evaluations overall). Figure 2.8 shows the fea-

sible solution set in the 3D search space in terms of the solutions with a

difference in velocity magnitude at the gravity assist of less than 100m/s.

The large tolerance of 100m/s was used to compensate for the nature of the
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grid sampling which is unlikely to directly locate minima that fully satis-

fied the constraint. Additionally, each valid point is coloured according to

the required hyperbolic excess velocity from Earth. It can be seen that five

main, approximately planar, manifolds exist within the search space with

increasingly optimal solutions as t2 increases up to about 6000 days. These

manifolds are, as expected, quasi-periodic as the launch date is varied due

to the Earth-Jupiter synodic period, and the motion of Saturn causes the

variation in each manifold. Other manifolds also exist for very high values

of t2.
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Figure 2.8: Manifold of valid solutions for an EJS unpowered swingby
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2.4.3 C3 optimal trajectory

The first objective to be considered is the launch energy from Earth (the

square of the required hyperbolic excess velocity).

The search space was sampled uniformly randomly and at each point a

SQP search was performed, thus allowing the calculation of approximate

basins of attraction. The number of trials performed was 5000.

Before the identification of minima, results which contained gravity assist

errors were discarded. An error was defined as a swingby altitude of less

than 110% of the planetary radius, or a discrepancy between incoming and

outgoing velocity of greater than 10m/s.

Identical minima were then grouped using a tolerance of 10 for the Eu-

clidean distance between the decision vectors. In total, 1302 unique optima

were identified that satisfied the unpowered swingby criteria, although 1199

of these were found two or less times throughout the trials. From all the

located optima, 296 had a C3 of less than 100km2/s2, which is feasible but

limits the mass of the probe to approximately 300kg (based on the perfor-

mance of an Ariane 44L launcher).

Table 2.4 shows the values of the decision variables and objectives for

the forty best minima in terms of C3. Interestingly, it can be seen that the

minima come in pairs, corresponding to an identical Earth-Jupiter transfer

and then a short or a long Jupiter-Saturn transfer.

Figure 2.9 illustrates the positioning of the located minima within the

search space. Again there is clear quasi-periodicity in the launch date t0,

and it is obvious that the search space consists of valleys rather than point

minima, which could prove beneficial when using global optimisation rather

than local optimisation if they can be traversed in an effective way.

Three mission options will now be presented, representing three of the
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most interesting minima - these were identified manually as minima 1, 83

and 272.
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Figure 2.9: All the minima located using SQP in the EJS problem
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Table 2.4: The forty best minima found by applying SQP with a randomly
selected starting point over five thousand trials. The minima are presented
in increasing value of C3
Minimum t0(MJD2000) t1(days) t2(days) 4VE(km/s) 4VS(m/s)

1 -177.2362 913.3063 4413.467 8.9179 432.1834
2 -177.3634 910.5667 4403.1539 8.918 432.0287
3 -177.3951 910.1847 6119.5224 8.9181 489.5624
4 -177.0969 917.0883 6133.418 8.9182 489.1924
5 -177.4859 907.65 4391.993 8.9185 431.8756
6 -177.7005 902.2847 6103.7275 8.9201 490.165
7 -177.8217 897.672 6094.6342 8.9219 490.6031
8 -177.9112 891.9186 4328.731 8.9248 431.2465
9 -175.9127 929.5323 4472.4369 8.9249 433.3292
10 -177.9778 890.2654 6080.1377 8.9257 491.4427
11 -178.3261 873.0997 4245.0416 8.9369 430.8767
12 -178.4967 866.6389 4214.1 8.9418 430.84
13 -178.599 861.6709 4189.6806 8.9457 430.8449
14 -178.7889 853.0536 4145.7216 8.953 430.9184
15 -178.845 849.8523 4128.9479 8.9558 430.9672
16 -178.9169 847.9958 4118.9198 8.9575 430.9996
17 -178.9554 845.5392 4105.7548 8.9597 431.0501
18 -173.1533 954.4039 6213.4049 8.9646 489.4496
19 -179.1572 837.3038 4060.0809 8.9676 431.267
20 -179.2849 833.2153 4036.5704 8.9717 431.4025
21 -179.2546 822.8718 3976.6917 8.9826 431.8341
22 -179.6337 817.6133 3943.1189 8.9885 432.0946
23 -171.4161 965.2712 4586.6657 8.9937 436.9473
24 -179.7507 813.0815 3914.5697 8.9937 432.3464
25 -179.9091 806.1342 3869.7324 9.0022 432.7764
26 -179.98 804.2098 5914.3338 9.0046 515.1292
27 -179.9023 799.1557 3824.1549 9.011 433.2602
28 -180.1451 793.2928 3783.3657 9.0189 433.7081
29 -180.2666 789.294 3755.179 9.0245 434.0343
30 -180.2965 786.1101 3732.7701 9.029 434.305
31 -180.5248 779.1051 5867.1603 9.0394 528.0789
32 -180.5413 776.3488 3661.2292 9.0436 435.2009
33 -180.5803 774.8725 3650.1375 9.046 435.3447
34 -180.5163 770.6256 3618.9376 9.0526 435.766
35 -180.6876 769.1977 3607.1309 9.0551 435.9158
36 -180.7227 766.1807 3583.9941 9.06 436.2312
37 -180.8309 761.0211 3543.4634 9.0689 436.791
38 -180.9428 755.1663 3496.5249 9.0794 437.4544
39 -180.999 753.1702 3480.1556 9.0831 437.6878
40 -181.1842 750.6304 3458.3838 9.0881 437.9933
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Evaluation of minimum 1

The first minimum to be examined is the global minimum relative to the

C3 objective, and has the following values of decision variables and objective

values:

Decision Variables
t0(MJD2000) -177.2362

t1(days) 913.3063
t2(days) 4413.467

Objectives
Mission Time (days) 5326.7733

4VE(km/s) 8.9179
4VS(m/s) 432.1834
4VGA(m/s) 0.00028098

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

−177.2362MJD2000

Multiple Gravity Assist Trajectory

Astronomical Units

736.0701MJD2000

5149.5371MJD2000

A
st

ro
no

m
ic

al
 U

ni
ts

Figure 2.10: Global optimum for minimal launch C3
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The trajectory associated with the global minimum is shown in Figure 2.10,

and corresponds to a spiral orbit that travels significantly outside the orbit

of Saturn before reaching apoapsis and proceeding to rendezvous.

Evaluation of minimum 83

Minimum 83 is worthy of individual consideration as it permits a much

shorter mission time (only 4.3 years rather than 14.6 for minimum 1). How-

ever, although it requires only slightly more C3, significantly more thrust is

necessary in order to achieve orbital insertion at Saturn (1.678km/s rather

than 0.432km/s). Therefore, in this case, much more of the probe’s weight

will have to be fuel than for minima 1 and 2. It should be noticed that in

some cases a large decrease in mission time might be considered an important

improvement.

Decision Variables
t0(MJD2000) -983.6982

t1(days) 722.1952
t2(days) 852.5393

Objectives
Mission Time (days) 1574.7345

4VE(km/s) 9.1881
4VS(m/s) 1678.2072
4VGA(m/s) 0.0011995
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Figure 2.11: Trajectory plot for minimum 83

Evaluation of minimum 272

This gravity assist transfer is the orbital insertion thrust optimum, requiring

a 4V of only 296m/s. However, the launch energy is higher, thus further

decreasing the maximum mass of the probe, although it would depend of the

performance of the launcher whether more payload mass would be available

overall through this solution or minimum 1. Another advantage of this tra-

jectory is that it is much shorter than minimum 1, at 2907 days rather than

5326 days.
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Decision Variables
t0(MJD2000) -965.435

t1(days) 974.1727
t2(days) 1932.4136

Objectives
Mission Time (days) 2906.5863

4VE(km/s) 9.7385
4VS(m/s) 296.2322
4VGA(m/s) 7.635e-005
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Figure 2.12: Trajectory plot for minimum 272

Basin of attraction of global optimum

Table 2.5 gives an approximation of the size of the basin of attraction p̂∗ of

each minimum. It can be seen that the majority of the near optimal minima

have a very small basin of attraction, being located only one or twice over
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Table 2.5: Table showing the proportional size of the basin of attraction for
the 40 best minima located

Minimum p̂∗ Minimum p̂∗

1 0.077473 2 0.0014804
3 0.006415 4 0.0051813
5 0.00074019 6 0.00049346
7 0.00049346 8 0.00024673
9 0.00049346 10 0.00049346
11 0.00024673 12 0.00024673
13 0.00049346 14 0.00024673
15 0.00024673 16 0.00074019
17 0.00074019 18 0.00024673
19 0.00024673 20 0.00024673
21 0.00098692 22 0.00074019
23 0.00024673 24 0.00049346
25 0.00074019 26 0.00049346
27 0.00074019 28 0.00024673
29 0.0012337 30 0.00024673
31 0.00024673 32 0.00024673
33 0.00049346 34 0.00024673
35 0.00024673 36 0.00024673
37 0.00074019 38 0.00049346
39 0.00024673 40 0.00024673

the five thousand trials. However, the basin of attraction of the best solution

found is comparatively large at 7.7% of the search space. Therefore, it can

be said that (1− p̂∗)Nf is small.

Number of function evaluations

Using a simple link conic model for the gravity assists negates the requirement

of any numerical integration, and therefore the main source of computational

expense for calculating the objective function comes from the two Lambert

problems that must be solved. Hence, for n gravity assists the objective

function is n + 1 times as expensive as a single interplanetary transfer, and

therefore the number of acceptable function evaluations for multiple gravity
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assist trajectories would be a fraction 1
n+1

of the Earth-Mars case.

Number of local minima

The minimum number of local minima under these bounds is 1302. Follow-

ing Törn classification of the Griewank2 function [43] (which has 500 local

minima) as containing many local minima then the EJS problem must be

classified similarly.

Embeddedness of global minimum

Figure 2.13 shows a histogram of the normalised distance of the local minima

from the global minimum. It is noticeable that there are no minima greater

than a normalised distance of 0.6 from the global optimum, but this is simply

explained by the fact that the global optimum is located near the centre of

the search space volume. A large number of optima are apparent close to the

global optimum, undoubtedly due to the manifolds observed in Figure 2.9.

Therefore, the EJS problem can be considered to have an embedded global

optimum.

Classification of problem complexity

¿From this analysis, it is apparent that the EJS problem is more difficult to

optimise than the Earth-Mars trajectory, the differing factor being the much

larger number of optima within the search space.

(1− p̂∗)Nf Small
Embeddedness Embedded

#mins High
Classification E2 - easy

Recommended technique Local with global descent

From this classification, the recommended technique for solving this type

of problem is not SQP, but a global optimisation technique that is able to
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Figure 2.13: Histogram showing distribution of local minima from the global
minimum

achieve global descent. A genetic algorithm would be an example of such a

technique. It is worth noticing that genetic algorithms have been previously

applied successfully to Multiple Gravity Assist problems.

2.4.4 Multi-objective optimisation

It is apparent from the analysis of the C3 optimal minima that a single

objective optimisation is flawed as it allows good solutions to be overlooked

that are slightly less optimal in the single objective but would be considered

superior overall. Therefore it is logical to use a multi-objective optimisation

in preference to a single objective optimisation.
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C3 and mission time

One useful multi-objective optimisation problem is a simultaneous minimi-

sation of C3 and mission time. By optimising C3 alone it is easy to ignore

trajectories that require marginally more thrust yet significantly reduce mis-

sion time. Rather than grid sample, as for the Earth-Mars transfer, it was

found to be more effective to initialise the pareto front algorithm with the

minima found by SQP, as these tended to fit the unpowered swingby con-

straint very well and the large number of minima more densely covered the

pareto front. Using this method, it was found that 62 out of the 5000 located

minima lay close to the pareto front. Using grid sampling with a density of

50 (125000 function evaluations in all) only 8 such points were located.

Figure 2.14 represents the approximation of the pareto front as blue circles

onto a plot of all the identified minima. The C3 optimal solution has also

been added as a red star and labelled to confirm that it lies on the pareto

front. The front is divided into three discrete sections, where each section is

spread over one of the t0 quasi-periodic manifolds - this division of the pareto

front is attributable to the unpowered swingby constraint.

2.4.5 Discussion

The EJS transfer is the simplest Gravity Assist trajectory, and therefore the

classification of its optimisational complexity certainly does not apply to all

Multiple Gravity Assist trajectories. This is because as more gravity assists

are considered the problem complexity will obviously increase due to the

curse of dimensionality, particularly when the sequence of swingby planets

is also allowed to vary, thus introducing a combinatorial elements into the

problem. Also, by relaxing the constraint of only unpowered swingbys many

more minima will be introduced into the search space. This would likely
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Figure 2.14: An approximation of the Pareto front of the EJS Gravity Assist
problem

lead to the creation of valleys rather than many point optima, and therefore

the embeddedness of the global minimum would be much greater, increasing

its effective basin of attraction to that of the entire valley. However, the

complexity of optimisation will rise with the number of swingby planets.

When solving joint combinatorial and continuous optimisation it is more

intuitive to use global techniques such as genetic algorithms as they can im-

mediately be applied to such hybrid domains. An alternative approach is

to consider the combinatorial and continuous aspects separately by selecting

combinations of swingby planets and then optimising the remaining continu-

ous function using an appropriate local method. The former may suffer from
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the problem of ignoring most of the continuous gradient information within

the search space, whereas the latter can be very computationally expensive.

Therefore, some compromise is desirable that can effectively exploit gradients

within continuous dimensions while meaningfully exploring combinatorial el-

ements.

2.5 Low Thrust Arcs

The third relevant mission design problem to be considered is that of low

thrust arcs. This problem is of interest as probes with low thrust propulsion

have much higher fuel efficiency than standard chemical thrusters, or in the

case of solar sails require no propellant at all for primary propulsion [14].

Consequently, such propulsion systems are suitable for long-term exploration

of the outer planets within the solar system, especially when combined with

gravity assist manoeuvres.

The test case for this problem is a low thrust Earth-Mars transfer. The

probe is assumed to escape the Earth’s gravitational influence with the aid of

a launcher, and then exerts a constant thrust throughout the mission where

the control trajectories of the thrust angle must be optimised.

2.5.1 Classification of Problem Type

This problem can be classified within the taxonomy developed during Work

Package 1 as follows:
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Variable U # B f(t) O
xi X N/A
ẋi X N/A
ti X N/A N/A
xf X
ẋf X
tf X N/A N/A

Additional Constraints

Control Class Subclass Check/Value
Impulsive Fixed n-Impulsive

Continuous Simple X
Impulsive Variable Impulsive

Continuous Complex

Variable Check
Thrust X

Mission time
Velocity

Angular momentum
Other variables

Spacecraft Model Check
Point-mass X
Rigid body

Low level control

Astrodynamic Model Check/Value
n-body dynamics (2+) 2

Non-planar model X
Elliptic orbits X

Other factors

The control trajectories are defined, in spherical co-ordinates, by the func-
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tions of time θ(t) and φ(t). The thrust vector, ~ζ, at time t is therefore

~ζ =
T

m− ṁt




cos θ(t) sin φ(t)

sin θ(t) sin φ(t)

cos φ(t)


 (2.5.1)

relative to the spacecraft’s current direction of travel, where ṁ is the rate of

decrease of mass due to propellant flow. This infinite dimensional optimal

control problem is solved by approximating the functions θ(t) and φ(t) using

B-Splines.

2.5.2 B-Splines

As with all continuous control problems, some technique must be used to

reduce the infinite-dimensional control problem to a finite-dimensional one

[5]. An effective way of doing this is through the use of piecewise continuous

polynomials known as splines. One convenient form that can be utilised is

that of B-splines [49], which are a generalisation of bezier curves. A B-spline

is defined by a set of p control points, a knot vector and an order r.

A B-Spline is defined as

y(t) =

p∑
j=1

B(j, r, t)cj, (2.5.2)

where cj is the jth control point and B(j, r, t) is the blending function.

The Cox-de Boor formula is used to calculate the blending coefficients.

This formula is recursive, and therefore is split into a base case and a general

case. The base case is very simple:

B(j, 1, t) =





1, if tj ≤ t < tj+1;

0, otherwise.
(2.5.3)
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For r > 1 the formula recurses, each recursion requiring the evaluation of

two blending functions of lower order, hence requiring 2r evaluations overall.

B(j, r, t) =
t− tj

tj+r−1 − tj
B(j, r − 1, t) +

tj+r − t

tj+r − tj1
B(j + 1, r − 1, t) (2.5.4)

Due to the interpreted nature of MATLAB, using higher order splines is very

computationally expensive and hence only second order splines will be used

for this investigation, although with subsequent implementations in C++

this will be feasible.

2.5.3 Decision Variables

The decision variables to be optimised were

• t0, the launch date (in MJD2000);

• t, the mission time (in days);

• T , the thrust of the probe (in Newtons);

• v0, the hyperbolic excess velocity from Earth (in km/s);

• 6 B-Spline control points α0..5 to define θ(t) (in radians);

• 6 B-Spline control points β0..5 to define φ(t) (in radians).

The acceptable levels of thrust and specific impulse were selected to be feasi-

ble using xenon ion propulsion systems, for example the Boeing 702 thruster

[9]. The specific impulse of the fuel was assumed to be 3000s, and the thrust

level between 50mN and 200mN. Two main simplifying assumptions are made

here: the thrust is constant over the trajectory and the hyperbolic excess ve-

locity is constrained to be parallel to the Earth’s velocity at launch. The

knots within the B-Splines were spaced uniformly throughout the mission

time. The overall optimisation problem is therefore 16 dimensional.
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The bounds on the variables were as follows:

• t0 ∈ [800, 3800]

• t ∈ [150, 500]

• T ∈ [0.05, 0.2]

• vi ∈ [2.5, 3.0]

• α0..5 ∈ [−pi, pi]

• β0..5 ∈ [−pi
2
, pi

2
]

The search space was normalised to the unit hypercube in order to aid con-

vergence of SQP. However, it is worth noting that if a much larger launch

window (ten times or above) were considered such a normalisation would im-

pede convergence as the objective function would be immensely oscillatory

at that scale. With bounds covering only 4 synodic periods this is not an

issue.

2.5.4 Objective function

Although it is usual when using SQP to utilise a multiple shooting method

and add equality constraints at each breakpoint [18], this methodology is not

practical when considering global optimisation algorithms, since the number

of decision variables increases significantly compared with a single shooting

method. Therefore, a single shooting method with a scalar objective function

was developed, since this is more amenable to global optimisation algorithms.

For the numerical integration, 100 equally sized steps of fourth-order Rünge-

Kutta [38] will be used. Although using a variable step length procedure

would increase accuracy, using the fixed step size allows a simple method of
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including the thrust control as the thrust direction can be assumed to be

constant over a small time period.

Overall, this problem can be seen as a generalisation of the low thrust

arc considered in [47] with the addition of non-zero C3.

Rather than using a linear combination of terms as an objective func-

tion, a quadratic function was selected in order to increase the convexity of

the objective function. The constraint on reaching Mars was enforced by a

penalty term, and therefore the objective function was of the form

f = a · v2
f + b ·m2

p + c · r2
f . (2.5.5)

where vf is the final velocity relative to Mars at the end of the trajectory

(m/s), mp is the total mass of propellant required (kg) and rf is the distance

from Mars at the end of the trajectory (km). The weights were selected using

heuristic considerations as a = 1
140

, b = 1
500

and c = 1
rs

, where rs is the radius

of Mars’ sphere of influence (1.08× 106km). Although it would seem advan-

tageous to place a larger weight on the positional discrepancy, it was found

that using such weighting led to reaching Mars reliably but with a large rela-

tive velocity. Subsequently, it was discovered that by significantly increasing

the importance of optimising the velocity, such that the importance of both

positional and velocity discrepancy would be approximately equal initially,

much better solutions were located.

2.5.5 Results

SQP was run to a terminal number of 200 iterations and the resulting minima

was recorded. A total of 180 minima were obtained overall. When the minima

were grouped, using a relatively large minimum Euclidean distance of 0.25

(after normalisation of the decision vectors), 176 unique minima were found.
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Table 2.6 shows the best forty minima in terms of objective score f ,

although it can be seen that this is almost identical to ordering by increasing

propellant mass. This is due to the design of the objective function, as once

a trajectory with a small positional and velocity discrepancy has been found

the mass term becomes the most significant.

Although the lower bound on the mission time is 150 days, it is evident

that the best minima have relatively long mission times at greater than 300

days. Figure 2.15 shows the launch date and mission time of all the optima

- as expected there is a quasi-periodicity with respect to t0 and the min-

ima correspond well to the valleys observed in the bi-impulsive Earth-Mars

transfer objective function (Figure 2.2). The four best minima will now be

presented in decreasing order of quality.
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Table 2.6: The forty best minima located by SQP in the low thrust arc
problem
Minimum t0(MJD2000) t(days) f rf (km) vf (m/s) mp(kg)

1 2796.1903 469.6504 0.045838 10876.3428 7.1599 105.967
2 2040.2173 397.4957 0.046638 1109.2421 1.0653 107.9572
3 2038.1235 398.189 0.047629 4340.8604 3.1651 108.9179
4 2038.355 390.0254 0.050538 6715.2394 1.2911 112.3305
5 2038.4939 362.408 0.050623 1887.9589 1.8789 112.4315
6 2808.2024 500 0.051422 6014.5115 3.1503 113.173
7 2038.045 351.6834 0.05231 3498.444 1.7322 114.2932
8 2032.8415 408.4244 0.054447 1373.0241 0.8913 116.6545
9 2796.2383 440.5307 0.054688 6515.2971 14.9337 113.0081
10 2801.7847 447.7984 0.054732 1539.4369 1.3083 116.9429
11 2035.3783 357.9382 0.055346 2951.8443 1.3385 117.5904
12 2801.0424 420.6035 0.055486 1062.7311 0.65268 117.7696
13 2032.0505 384.02 0.056146 1531.2477 1.1432 118.4515
14 3552.833 485.0083 0.056432 7566.8566 2.7957 118.5937
15 2803.7189 439.2496 0.057121 1351.7074 1.1334 119.4767
16 2035.2439 359.1207 0.05733 2058.113 1.4726 119.6788
17 2033.6303 374.3617 0.057454 3688.8252 2.5623 119.7257
18 2793.8601 457.9182 0.060124 1705.0256 1.174 122.576
19 1257.8589 337.2365 0.060223 2336.8227 1.2326 122.6726
20 2041.1421 431.6797 0.060673 1469.6377 1.3396 123.1284
21 2038.8212 412.1151 0.061181 38709.9541 7.4229 121.4648
22 2799.3874 414.6924 0.061396 5548.4891 1.3028 123.8367
23 2033.3507 402.7306 0.061945 5057.9882 3.1346 124.2637
24 1252.506 339.7791 0.062111 1562.8953 1.1744 124.5857
25 2030.1049 356.8136 0.062349 3394.796 1.0516 124.8212
26 2806.2716 425.9285 0.062609 9391.8813 3.7412 124.8091
27 2031.0278 375.8207 0.06279 1909.8359 1.2131 125.2626
28 2036.6804 444.5512 0.06315 1067.7365 0.88478 125.6346
29 2800.7225 427.3024 0.063477 2282.0005 1.6818 125.9238
30 2042.0018 350.4631 0.06428 6862.8627 3.708 126.5102
31 1247.5734 320.8222 0.064799 6609.0642 2.029 127.177
32 2038.7419 397.796 0.064923 1258.9612 0.8616 127.3866
33 1253.6328 335.1578 0.066144 8257.887 3.2116 128.3752
34 1255.0665 368.596 0.066232 2051.0805 1.0155 128.6582
35 1248.4221 302.1041 0.066271 1954.8465 1.2188 128.6897
36 3559.5261 477.9605 0.067779 2295.5367 1.1005 130.1487
37 1256.1459 318.007 0.068089 7183.5941 3.4362 130.2454
38 2033.0183 346.1051 0.068157 2097.5758 1.125 130.5115
39 1242.5572 315.849 0.070938 2639.5153 1.2889 133.1399
40 2043.3409 388.1688 0.070999 1262.8674 0.84742 133.216
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Figure 2.15: A plot of launch date vs mission time to illustrate the quasi-
periodicity in t0

Evaluation of minimum 1

Minimum 1 is the best solution found, both in terms of the requisite propel-

lant mass and the overall objective function value (0.045838). The values of

the decision variables and objectives for the best solution follow in tabular

form:
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Decision variables
t0(MJD2000) 2796.1903 t(days) 469.6504

T (N) 0.076855 vi(km/s) 2.693
θ0(rad) 0.39363 θ1(rad) 0.3253
θ2(rad) 0.57601 θ3(rad) 0.39823
θ4(rad) 0.1728 θ5(rad) 0.022781
φ0(rad) -0.76365 φ1(rad) 0.78749
φ2(rad) -0.080502 φ3(rad) -0.16416
φ4(rad) -0.48796 φ5(rad) -0.70066

Objectives
f 0.045838 rf (km) 10876.3428

vf (m/s) 7.1599 mp(kg) 105.967

The resulting trajectory is shown in Figure 2.16 and the corresponding con-

trol trajectories in Figure 2.17. The blue line plotted at each integration step

indicates the orientation of the thruster. The mission time is close to the top

bound of 400 days, and the transfer angle is large at over 4.5 radians - this is

compared to the optimal bi-impulsive trajectory located in section 3.5 which

had a transfer angle of significantly less than π radians.

Due to the small number of samples (180) and the high dimensionality

of this problem, it is likely that this solution is not the true global optimum.

However, by considering this solution as a test case, conclusions may still be

drawn about the complexity of finding good solutions and it follows that this

forms an upper bound on the true global optimum.

Evaluation of minimum 2

Minimum 2 is both the second best solution by propellant as well as by ob-

jective function value. The associated decision variable values and objectives

are shown in tabular form:
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Figure 2.16: The resulting low thrust arc for minimum 1
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Figure 2.17: The optimised control trajectories for θ(t) and φ(t) for minimum
1
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Decision variables
t0(MJD2000) 2040.2173 t(days) 397.4957

T (N) 0.092511 vi(km/s) 2.8682
θ0(rad) -0.42454 θ1(rad) 0.013761
θ2(rad) 0.45645 θ3(rad) 0.20598
θ4(rad) 0.58845 θ5(rad) -1.3898
φ0(rad) -1.1732 φ1(rad) 1.258
φ2(rad) 0.45972 φ3(rad) 0.17527
φ4(rad) -0.40909 φ5(rad) -0.0024878

Objectives
f 0.046638 rf (km) 1109.2421

vf (m/s) 1.0653 mp(kg) 107.9572

The corresponding transfer trajectory and control trajectories can be ob-

served in Figure 2.18 and 2.19. The launch date is approximately two years

later than minimum 1, but the mission is significantly shorter at 397 days

compared to 469 days.
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Figure 2.18: The resulting low thrust arc for minimum 2
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Figure 2.19: The optimised control trajectories for θ(t) and φ(t) for minimum
2
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Evaluation of minimum 3

The values of the decision variables and objectives for the 3rd best solution

follow in tabular form:

Decision variables
t0(MJD2000) 2038.1235 t(days) 398.189

T (N) 0.093172 vi(km/s) 2.9603
θ0(rad) 0.19127 θ1(rad) 0.72799
θ2(rad) 0.59077 θ3(rad) 0.92772
θ4(rad) 0.028092 θ5(rad) -0.99898
φ0(rad) 0.91057 φ1(rad) 0.35657
φ2(rad) 0.41216 φ3(rad) 0.71962
φ4(rad) -0.26583 φ5(rad) -0.57385

Objectives
f 0.047629 rf (km) 4340.8604

vf (m/s) 3.1651 mp(kg) 108.9179

The low thrust arc is displayed in Figure 2.20 and the control trajectories

in Figure 2.21. The trajectory and launch date/mission time are very sim-

ilar to Minimum 2, although the control trajectories can be seen to vary

significantly.
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Figure 2.20: The resulting low thrust arc for minimum 3
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Figure 2.21: The optimised control trajectories for θ(t) and φ(t) for minimum
3
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Evaluation of minimum 4

The values of the decision variables and objectives for minimum 4 follow in

tabular form:

Decision variables
t0(MJD2000) 2038.355 t(days) 390.0254

T (N) 0.098103 vi(km/s) 2.8647
θ0(rad) -1.9858 θ1(rad) 0.35929
θ2(rad) 0.12126 θ3(rad) -0.15128
θ4(rad) 0.85795 θ5(rad) -0.95531
φ0(rad) -0.24717 φ1(rad) 0.83485
φ2(rad) 0.25799 φ3(rad) 0.69296
φ4(rad) -0.53301 φ5(rad) -0.054793

Objectives
f 0.050538 rf (km) 6715.2394

vf (m/s) 1.2911 mp(kg) 112.3305

The corresponding trajectory and control trajectories are shown in Figure

2.22 and 2.23, respectively. It is evident that this solution is similar to minima

2 and 3 in terms of launch date/mission time, although again significantly

different control trajectories are observed. It appears that this family of

solutions are close to optimal, and since minimum 1 requires only 2kg less

propellant than minimum 2 yet has mission time of over two months longer,

in practical terms minimum 2 can be considered superior.
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Figure 2.22: The resulting low thrust arc for minimum 4
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Figure 2.23: The optimised control trajectories for θ(t) and φ(t) for minimum
4
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2.5.6 Size of the basin attraction of the global mini-
mum

Although the best solution located empirically is probably not the true global

optimum, it is most likely that the size of the basin of attraction of the true

global optimum is smaller than that of the best optimum found, which allows

qualitative conclusions to be drawn. Therefore, using an unbiased estimator

the upper bound for p̂∗ can be determined by

p̂∗ <
1

d + 1
, (2.5.6)

as the best solution was located only once out of d trials. For 180 trials, this

yields p̂∗ < 0.0056.

A basin of attraction that occupies less than 1% of the search space means

that (1− p̂∗), the probability of not sampling within the basin of attraction,

may be classified as large.

2.5.7 Number of function evaluations

The acceptable number of function evaluations, Nf , is much lower for low

thrust arcs than the problems investigated in Sections 3.5 and 2.4. This

is because the numerical integration required to propagate the trajectory is

much more computationally expensive than solving Lambert problems.

It is also worth noting that the hypervolume of the 16D search space is

incredibly large and consequently very difficult to analyse effectively. For

example, consider grid sampling the objective function (as implemented on

the Earth-Mars transfer and Gravity Assist trajectories) - even with a quan-

tisation of only three samples in each dimension forty-three million objective

function evaluations would be required.

78



2.5.8 Number of local minima

The number of unique local minima is determined by grouping together min-

ima with a Euclidean distance between their decision vector smaller than

some tolerance, ε. However, due to the vastly differing bounds of the search

space, it is necessary to normalise this search space to the unit hypercube in

order to find identical minima, otherwise any tolerance used will be meaning-

less. It was found that even using a relatively high tolerance of 0.25 (when

the hyper-diagonal of the space is 4), only four of the minima are classed as

identical to another minimum. Therefore, the number of local minima must

be much higher than one hundred and eighty in order to observe such a small

overlap.

2.5.9 Embeddedness of best solution

Figure 2.24 shows a histogram illustrating the distribution of the number of

local minima with the Euclidean distance from the best solution found. It

can be seen that the best solution is isolated as there are no local minima

within a normalised distance of 0.1 from it. As a comparison, Figure 2.25

shows similar diagrams using four randomly selected minima instead of the

best solution: the graphs are visually very similar to that in Figure 2.24.

Also, for any of these five minima used as a centre point there are no minima

located at a distance greater than 0.5. It is hypothesised that the minima are

scattered approximately uniformly within the search space - this is supported

by the fact that the hypervolume of a 16D incremental hypersphere with

radius in the interval [r, r + δr] is proportional to r16, hence for low r the

hypervolume is negligible. This explains why no minima are found at these

distances, but then the count increases rapidly with the radius, followed by a

decrease. This results in the mode observed on the histograms. Notice that
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the decrease observed in the histograms is explained by the intersection of

the incremental hypersphere with the boundary of the search space, which is

a hypercube. As r increases, the hypervolume of this intersection decreases.
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Figure 2.24: A plot of the number of local minima as a function of distance
from the global minimum

2.5.10 Classification of problem complexity

The low thrust arc problem can therefore be classified as follows:

(1− p̂∗)Nf Large

Embeddedness Isolated

#mins High

Classification D2 - difficult

Recommended technique Global optimiser
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Figure 2.25: Plots of proximity of other local minima from randomly selected
minima

2.5.11 Discussion

Although for this experiment numerical propagation was used in order to

integrate trajectories, future work will investigate the use of exponential si-

nusoids [35], as these remove the need for numerical propagation and are

thus more computationally efficient [31].

2.6 Conclusions

This report has described some relevant mission design problems and char-

acterised their complexity through empirical investigation of four main prop-

erties: the size of the basin of attraction for the global optimum, the num-
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ber of acceptable function evaluations, the embeddedness of the global opti-

mum and the number of local minima. By performing such a classification,

as discussed by Törn, appropriate methods for their effective solution may

be selected. The mission design problems that have been studied were bi-

impulsive interplanetary transfers, Multiple Gravity Assist manoeuvres and

interplanetary low thrust arcs.

Future work will consider appropriate global techniques that can be used

to solve such problems, based on the analysis of the properties of the search

space presented here, and then proceed to develop and analyse novel tech-

niques for this purpose. It is perceived that by approaching each problem

individually and incorporating domain knowledge into novel optimisation

algorithms the efficacy of their solution may be increased. Ideally, such al-

gorithms would contain both effective global and local aspects in order to

obtain an optimal ratio of exploration and exploitation.
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Chapter 3

Selection of Appropriate Global
Algorithms

This report discusses the selection of appropriate global algorithms to op-

timise the relevant mission design problems of interplanetary transfers, and

multiple gravity assist trajectories (both with and without deep space ma-

noeuvres). Both deterministic and stochastic algorithms are considered and

tested on a series of benchmarks for standardised comparison before being

applied to the selected actual mission design problems. It is shown that

modern global optimisation methods perform significantly better on mission

design problems than standard genetic algorithms.

3.1 Introduction

Work Package 2 provided an analysis of the complexity of three relevant

mission design problems: impulsive thrust optimal interplanetary transfers,

gravity assist trajectories and low thrust interplanetary transfers.

The purpose of Work Package 3 is to select appropriate global optimisa-

tion algorithms to optimise relevant mission design problems and assess their

performance. The focus here will be on multiple gravity assist trajectories,

although interplanetary transfers will also be investigated. The manually in-
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tegrated low thrust transfer example used in the previous work package was

not considered as it does not represent the state of the art for optimising low

thrust transfers: exponential sinusoids [35] provide a more computationally

efficient way to optimise such transfers, and so may be investigated in fur-

ther work in the context of adding low thrust arcs to multiple gravity assist

trajectories.

Section 2 describes the classification of global algorithms, based on the

reliability with which they reach the global minimum. Section 3 then presents

a selection of modern optimisation techniques including deterministic, model-

based and instance-based stochastic methods that have performed well on

standardised benchmarks. Section 4 proceeds to compare all these algorithms

directly on a custom set of benchmarks, and sections 5 and 6 on the desired

mission design problems.

3.1.1 Notation

The following notation will be used throughout this report :

f ∗ a minimum value of an objective function f ;

f̂ ∗ an estimate of f ∗;

x a vector in Rn;

ẋ the derivative of x with respect to time.

3.2 Classification of Global Algorithms

Neumaier [33] describes four classes of global optimisation algorithms. These

are incomplete, asymptotically complete, complete and rigourous methods in

ascending order of robustness.
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Incomplete Incomplete methods use heuristics for searching but have no

safeguards if the search gets stuck in a local minima

Asymptotically Complete Asymptotically complete methods will reach

a global minimum if allowed to run indefinitely, but have no means of

determining whether a global optimum has been found

Complete Complete methods reach a global minimum after indefinite run-

time, and know after a finite time that a global minimum has been

found to a prescribed tolerance

Rigourous Rigourous methods are complete methods that reach a global

minimum even in the presence of rounding errors, except in near-

degenerate cases where the tolerances may be exceeded

From the above description, it initially appears that all incomplete meth-

ods should be discarded in deference to asymptotically complete and better

methods, but this is not necessarily so. Although incomplete methods can-

not guarantee a global minimum, due to the fact that most such methods are

stochastic, they can guarantee a high probability of locating it in a feasible

number of function evaluations.

Conversely, complete methods can guarantee the location of the global

minimum (to a tolerance) after a finite time, but this is generally only after a

number of function evaluations rising exponentially with problem dimension-

ality - on most real optimisation problems this is not practical. Hence, some

heuristic stopping criteria must be applied, yielding an incomplete search.

For example, a grid search at a desired resolution is a complete method, as

the solution is definitely reached after a finite time, but it would certainly

not be a good choice for accurate high-dimensional continuous global opti-

misation due to the vast number of function evaluations required.
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Therefore, the fact that stochastic algorithms such as Genetic Algorithms

and Particle Swarm Optimisation are incomplete in nature should not dis-

courage their application to black box objective functions: in all realistic

cases, all applied algorithms will similarly produce an incomplete search.

3.3 Global Algorithms

This section describes the different global algorithms to be applied to mission

design problems. The selection includes deterministic algorithms, and both

model-based and non-model-based probabilistic algorithms.

3.3.1 Deterministic Algorithms

The two deterministic algorithms that have been considered are both based

on the branch and bound methodology, although Multi-level Coordinate

Search (MCS) also makes use of local search to increase efficiency.

DIRECT - Divided Rectangles

DIRECT, [25], is a complete deterministic global optimiser for bound con-

strained optimisation. The simple principle allows Lipschitzian optimisation

of a given objective function without a priori knowledge of the Lipschitz

constant. To achieve this, DIRECT samples the centre of the set of hyper-

rectangles S, and then subdivides those that lie on the convex hull of hyper-

diagonal length to objective function value (see Figure 3.1). In infinite time,

this method performs an exhaustive search of the entire search space. The

following algorithm description is taken from Baker, 2001. [1].
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DIRECT algorithm

1. Normalize the search space to be the unit hypercube.

Let c1 be the centerpoint of this hypercube and evaluate f(c1).

2. Repeat

3. Identify the set S of potentially optimal rectangles (those

rectangles defining the bottom of the convex hull of a scatter

plot of rectangle diameter versus f(ci) for all rectangle

centres ci).

4. For all rectangles j ∈ S:

5. Identify the set I of dimensions with the maximum side

length. Let d equal one-third of this maximum side length.

6. Sample the function at the points c± δei for all i ∈ I,

where c is the centre of the rectangle and ei is the ith unit

vector.

7. Divide the rectangle containing c into thirds along the

dimensions in I, starting with the dimension with the

lowest value of f(c± δei) and continuing to the dimension

with the highest f(c± δei).

8. end

9. Until Convergence

MCS - Multilevel Coordinate Search

MCS [23] is a complete deterministic global optimiser that uses branch-

ing and local search. It was based on the principles encapsulated by the

DIRECT algorithm but applies a more flexible branching scheme and in-

corporates local search to more effectively estimate the lower bounds of sub-
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Figure 3.1: Diagram illustrating the subdomain selection process of DI-
RECT(reproduced from Baker, 2001)

domains. Although MCS has many integrated heuristics and lacks the el-

egant simplicity of DIRECT, it has proven to be a very effective global

optimiser over a range of benchmarks [22]. The complexity of the algorithm

prohibits a summary, and for more information readers are referred to the

original paper [23].

3.3.2 Model-Based Stochastic Algorithms

Model based algorithms use some probabilistic model of the parameter space

in order to bias the sampling of the search space towards good points, and

therefore fall under the umbrella term of Estimation of Density algorithms

[32]. The probabilistic model is then updated based on the results of the

current sample. The simplest methods assume a unimodal distribution for

each parameter i.e. all parameters are independent, although more complex

approaches use Bayesian techniques to infer relationships between different

variables.

PGSL - Probabilistic Global Search Lausanne

PGSL [39] is an incomplete probabilistic model based global optimiser.

PGSL differs from most other global optimisation algorithms in that it repre-
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sents the probability distribution as a histogram rather than in a parametric

form. This has the advantage that PGSL can handle arbitrary multi-modal

distributions, unlike others, such as Cross Entropy, which use Gaussian mod-

els.

The PGSL algorithm uses four embedded loops - the iteration cycle, fo-

cusing cycle, probability updating cycle and sampling cycle.

PGSL: Main algorithm

1. Choose complete domain A as the current sub-domain. Set

best domain, B, to NULL.

2. Repeat

3. Complete Nfc iterations of the focusing cycle: select

the subdomain with best solution A?.

4. If f(A?) < f(B) then update B.

5. Choose a smaller sub-domain centred around B as the

current sub-domain.

6. Until Convergence.
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PGSL: Focusing Cycle

1. Assume a uniform PDF throughout current subdomain, set

SUBDOMAIN-BEST to NULL.

2. Repeat

3. Complete NPUC iterations of the probability updating

cycle; select the best solution, PUC-BEST.

4. If f(PUC −BEST ) < f(SUBDOMAIN −BEST ),

Update SUBDOMAIN-BEST

5. Subdivide the interval containing the PUC-BEST and

redistribute probabilities according to an exponential

decay function.

6. Until Terminal Iterations.

PGSL: Probability Updating Cycle

1. Set PUC-BEST to NULL

2. Repeat

3. Sampling cycle: Evaluate NS samples. Select the best as BEST-SAMPLE.

4. If f(BEST-SAMPLE) < f(PUC-BEST), Update PUC-BEST

5. Increment the probability of the interval containing PUC-BEST.

6. Until Terminal Iterations.

CE - Cross Entropy

Cross Entropy, originally developed for combinatorial optimisation [29], uses

a Gaussian distribution to progressively bias the sampling of point towards

a global optimum. Although the model used is unimodal for each decision

variable, CE can also function well under significant relaxation of this as-

sumption.
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Cross Entropy algorithm

1. Initialise µ and σ

2. Repeat

3. Sample k points from current probability distribution

4. Select kγ samples with best objective function value

5. Calculate µ′ and σ′ from the selected samples

6. Update µ = αµ + (1− α)µ′

7. Update σ = ασ + (1− α)σ′

8. Until Convergence

The standard termination criteria for CE occurs when the standard devi-

ation for each decision variable becomes smaller than some given tolerance.

3.3.3 Instance-Based Stochastic Algorithms

Stochastic algorithms that do not retain some probabilistic models of the

search space are instance based.

GA - Genetic Algorithm

The Genetic Algorithm [21] has been frequently applied to mission design

problems [6, 47, 48], and therefore is included in this study to provide a di-

rect comparison with the more modern global optimisation techniques. The

decision variable vector was encoded as a series of real values, rather than a

full binary encoding. This increases the probability of the crossover opera-

tion generating better solutions. As a mutation operator a small perturbance

was added to a given decision variable: this was generated by a zero mean

Gaussian distribution with a standard deviation of 0.03 times the size of the

domain for the given decision variable.
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Genetic Algorithm

1. Initialise population vectors uniformly over search space.

2. Repeat

3. Evaluate objective function for all population members

4. Select proportion of population γ with best objective function values

5. For each individual in selected set xi

6. Select another individual in the set to be ‘mated’ with

7. Produce two children through using crossover/mutation operator

8. end

9. Replace the less fit members of the population with the newly

generated children

10. Until Convergence

PSO- Particle Swarm Optimisation

PSO [26] was originally designed as a simulation of flocking behaviour in

birds, although its potential for optimisation was recognised shortly after-

wards. Each particle, analogous to the idea of an individual in genetic algo-

rithms, has a position within the search space and a velocity, both of which

are initialised randomly.

As iterations progress, each particle keeps tracks of the position of the

best solution it has so far encountered, and also knows the globally best

solution found by the entire population. The velocity is updated by two main

components: the cognitive component, which attracts the particle towards its

own best solution, and the social component, which attracts the particle to

the best known solution. The algorithm can be summarised in the following
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equations:

xi = xi + vi (3.3.1)

vi = ωvi + η1r1(x
?
p − xi) + η2r2(x

?
g − xi), (3.3.2)

where x?
p is the personal best solution of the ith particle, x?

g is the globally

best known solution, and r1, r2 are uniform random numbers in the interval

[0,1].

Particle Swarm Optimisation Algorithm

1. Initialise x uniformly randomly over search space.

2. Initialise v uniformly randomly within hyperparallelipiped

of scale vmax of the search space.

3. Repeat

4. For each population vector xi

5. Calculate objective function fi

6. If (fi < f ?
pi)

7. f ?
pi = fi

8. x?
pi = xi

9. end

10. If (fi < f ?
g )

11. f ?
g = fi

12. x?
g = xi

13. end

14. vi = ωvi + η1r1(x
?
p − xi) + η2r2(x

?
g − xi)

15. xi = xi + vi

16. end

17. Until Convergence
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MPSO - Multiple Particle Swarm Optimisation

Multiple Particle Swarm Optimisation (MPSO) is a novel technique based

on PSO. It is similar to that investigated by Blackwell [8], which showed sig-

nificantly improved performance over the basic algorithm. MPSO includes

aspects of niching genetic algorithms, in that each swarm evolves separately,

for the main part. However, every 3 iterations the swarm membership of two

randomly chosen particles is exchanged, effectively introducing new infor-

mation into those swarms as to the position of other minima. This method

has been found in preliminary tests to significantly decrease the probability

of PSO getting stuck in a local minimum. Varying the number of swarms

manipulates the ratio between exploration and exploitation - only 1 swarm

performs a fast optimisation with a significant probability of converging to

a local optimum (standard PSO), while a larger number of swarms is more

robust but exploits minima less effectively.

DE - Differential Evolution

Differential Evolution [42] is a novel incomplete probabilistic global optimiser

based on Genetic Algorithms [21], and was the highest ranked GA-type al-

gorithm in the First International Contest on Evolutionary Computation.

Additionally, DE is the standard global optimisation algorithm implemented

in Mathematica [50]. In their paper, Rainer and Storn [42], considered two

crossover schemes, DE1 and DE2. Scheme DE1 will be used as the crossover

operator as it was shown to perform the best on the most complex test

function they examined, which was an 8 dimensional Chebychev polynomial

fitting problem.
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Differential Evolution Algorithm (DE1)

1. Initialisation: select population vectors uniformly randomly over

search space

2. Repeat

3. For each population vector xi

4. Select two other individuals uniformly randomly over entire

population, x2 and x3

5. Create test vector x′i = xi + F (x3 − x2)

6. Evaluate f ′i .

7. If (f ′i < fi)

8. Replace xi with x′i

9. end

10. end.

11. Until Convergence
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3.4 Benchmarking Global Optimisation Al-

gorithms

Before focusing on the desired mission design problems, it is useful to consider

the performance of these algorithms on standardised benchmark functions.

Since such objective functions are much less computationally expensive than

mission design problems, they provide both a standardised test and a time

efficient way to initially compare algorithms and determine which may be

appropriate for a given problem. Also, because the global optima of such

test functions are well known this allows validation of the functioning of each

global optimisation algorithm and allows comparison with much of the global

optimisation literature.

3.4.1 The test function set

Eight different functions were selected in order to assess the performance on

multi-modal functions with multiple local minima. This test function set is

based on that of Jones et al [25], but has had the Rosenbrock and Rastrigin

functions added in varying dimensionality to increase the difficulty of the

test set.
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Branin’s function

Branin’s test function has 3 global optima.

f = h + a(x2 − bx2
1 + cx1 − d)2 + h(1− e) cos x1, (3.4.1)

where a = 1, b = 5.1
4π2 , c = 5

π
, d = 6, h = 10 and e = 1

8π
. The boundary

constraints for this function are x1 ∈ [−5, 10], x2 ∈ [10, 15]. Figure 3.2 shows

the function.
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Figure 3.2: The Branin global optimisation test function
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Six hump camel function

The six-hump camel function is 2 dimensional and has 2 global minima and

4 local minima [12].

f = (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2, (3.4.2)

with x1 ∈ [−3, 3], x2 ∈ [−2, 2].
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Figure 3.3: The six hump back camel optimisation test function
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Shubert function

The Shubert function is two dimensional and has many local minima and 18

global minima.

f =
5∑

i=1

i cos [(i + 1)x1 + i]
5∑

i=1

i cos([(i + 1)x2 + i]) (3.4.3)

with x1 ∈ [−10, 10], x2 ∈ [−10, 10].
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Figure 3.4: The Shubert optimisation test function
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Goldstein-Price function

The Goldstein-Price function [16] is a well-known two dimensional global

optimisation function. It contains three local minima and a single global

minimum of f = 3.0 at [0,-1]. It is calculated as follows:

f = ab, (3.4.4)

where

a = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)) (3.4.5)

b = (30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)) (3.4.6)

and x1 ∈ [−2, 2],x2 ∈ [−2, 2].
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Figure 3.5: The Goldstein-Price optimisation test function
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Shekel functions

The Shekel 5, Shekel 7 and Shekel 10 functions have 4, 6 and 9 local minima

respectively and a single global optimum. All three functions are 4 dimen-

sional and are calculated by

f = −
m∑

i=1

1

(x−Ai)(x−Ai)T + ci

, (3.4.7)

where

A =




4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3.6 7 3.6




, c =




0.1

0.2

0.2

0.4

0.4

0.6

0.3

0.7

0.5

0.5




, (3.4.8)

and Ai, ci return the ith row of A and c, respectively. The Shekel functions

use their corresponding number as the value of m. The domain for all the

Shekel functions is xi ∈ [0, 10].

Hartman functions

The Hartman 3 and Hartman 6 functions are 3 and 6 dimensional global

optimisation functions, respectively, both with bounds xi ∈ [0, 1]. They each

have a single global optimum multiple local minima.
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Rosenbrock’s function

Rosenbrock’s function is unimodal, but it useful to consider in global optimi-

sation as the function is a deep valley with large gradient near the boundaries

but very small gradients on the valley floor. The function can be defined in

an Euclidean space <n as follows:

f =
n−1∑
i=1

(1− xi)
2 + 100(xi+1 − xi)

2 (3.4.9)

with bounds of xi ∈ [−5.12, 5.12]. Previous work has shown that mission

design problems, particularly multiple gravity assist trajectories, contain val-

leys of solutions and therefore any appropriate global optimisation function

should be able to optimise Rosenbrock’s function. Increasing dimensionalities

of 5, 10 and 15 were added to the test set.
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Figure 3.6: Rosenbrock’s optimisation test function
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Rastrigin’s function

Rastrigin’s function is a highly multimodal transdimensional function, but

has only a single global optimum. However, the local minima are regularly

spaced, and therefore could give unfair advantages to some algorithms. The

original global optimum is at the origin but for the purposes of these ex-

periments has been moved to x = [1, 1, 1, . . .]. The reason for this is that

some algorithms initialise by sampling the centre of the search space (such

as DIRECT), and therefore would converge immediately and not give a true

indication as to the algorithm’s performance.

f = 10n +
n∑

i=1

(xi − 1)2 − 10 cos 2π(xi − 1). (3.4.10)

The bounds for this function are the same as the Rosenbrock function: xi ∈
[−5.12, 5.12]. Increasing dimensionalities of 5 and 10 were added to the test

set.

−5

0

5 −5

0

5

0

50

100

x
2

x
1

f

Figure 3.7: Rastrigin’s optimisation test function
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3.4.2 Test conditions

The algorithms were allocated a maximum of 4000n2 function evaluations

for each test function, where n was the dimensionality of the problem. Each

algorithm was run either until the located solution was within a threshold

of 1× 10−5 of the known global minimum or the allowed number of function

evaluations was exceeded. For non-deterministic algorithms each test was

performed 20 times in order to examine the range of solutions it provided.

In all, the performance on 14 different test functions was evaluated for each

algorithm. Due to differences in implementation languages, PGSLwas not

applied to Shekel or Hartman functions.

3.4.3 Test results

The performance of the global optimisation algorithms on the benchmarking

function is shown in tables 3.1 through to 3.14. Each table displays the

minimum, maximum and median for both function evaluations required to

converge and the distance from the global optimum. These measures are

useful as they provide insight into how the algorithm performs both when it

converges and when it does not.

For clarity, a check mark replaces the distance from the global optimum

if that distance is within the given tolerance of 1 × 10−5. This allows easy

visual identification of which problems a given algorithm fails on.

A dash indicates that the algorithm was not applied to this test function

because of unavailability of that test function in an appropriate language.
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Table 3.1: The benchmark results for the Branin test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 85 85 85 X X X

DIRECT 195 195 195 X X X
DE 1000 2940 1880 X X X
PSO 560 1120 700 X X X

MPSO 660 4840 1300 X X X
CE 1040 1520 1200 X X X
GA 1240 16020 16020 X 4.0008e-005 1.1289e-005

PGSL 880 4234 1767 X X X

Table 3.2: The benchmark results for the Six-hump Camel test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 101 101 101 X X X

DIRECT 177 177 177 X X X
DE 840 2020 1590 X X X
PSO 100 1280 660 X X X

MPSO 540 2100 1260 X X X
CE 880 2400 1280 X X X
GA 1520 14080 5100 X X X

PGSL 56 1096 773 X X X

Table 3.3: The benchmark results for the Goldstein-Price test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 203 203 203 X X X

DIRECT 305 305 305 X X X
DE 1140 2000 1660 X X X
PSO 560 1360 1020 X X X

MPSO 1120 2980 1720 X X X
CE 880 16000 1320 X 0.4227 X
GA 3720 16020 16020 X 0.00076014 4.2653e-005

PGSL 898 1806 1363 X X X
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Table 3.4: The benchmark results for the Shubert test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 299 299 299 X X X

DIRECT 16041 16041 16041 4.0664e-005 4.0664e-005 4.0664e-005
DE 3540 9100 5220 X X X
PSO 1080 2260 1770 X X X

MPSO 3400 16000 10030 X 0.22398 X
CE 3360 16000 4600 X 0.18454 X
GA 16020 16020 16020 1.3522e-005 0.062937 0.003256

PGSL 1590 13712 2748 X X X

Table 3.5: The benchmark results for the Hartman 3 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 196 196 196 X X X

DIRECT 51199 51199 51199 X X X
DE 1440 2220 1620 X X X
PSO 840 1530 1215 X X X

MPSO 1530 3540 2595 X X X
CE 1200 1560 1440 X X X
GA 1920 36030 7620 X 1.1127e-005 X

PGSL - - - - - -

Table 3.6: The benchmark results for the Shekel 10 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 190 190 190 X X X

DIRECT 4955 4955 4955 X X X
DE 7080 13200 9060 X X X
PSO 2520 64000 6820 X 8.1147 X

MPSO 8720 19720 14060 X X X
CE 3200 64000 3360 X 6.6332 X
GA 51480 64040 64040 X 7.6653 0.0010797

PGSL - - - - - -
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Table 3.7: The benchmark results for the Shekel 5 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 164 164 164 X X X

DIRECT 317 317 317 X X X
DE 6440 13960 9760 X X X
PSO 2880 64000 64000 X 7.5227 5.0752

MPSO 7840 19880 14400 X X X
CE 3040 64000 3680 X 7.5227 X
GA 64040 64040 64040 7.6411e-005 7.5227 5.098

PGSL - - - - - -

Table 3.8: The benchmark results for the Shekel 7 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 201 201 201 X X X

DIRECT 4821 4821 4821 X X X
DE 6160 13960 9220 X X X
PSO 2520 64000 64000 X 7.651 5.2741

MPSO 10280 19880 13860 X X X
CE 3200 64000 3360 X 6.6786 X
GA 64040 64040 64040 3.8291e-005 7.6371 5.997

PGSL - - - - - -

Table 3.9: The benchmark results for the Hartman 6 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 216 216 216 X X X

DIRECT 11235 11235 11235 0.13455 0.13455 0.13455
DE 9840 45300 15960 X X X
PSO 2880 144000 3690 X 0.11921 X

MPSO 23520 144000 46500 X 0.0017043 X
CE 3840 144000 4200 X 0.11921 X
GA 14280 144060 85410 X 0.11921 0.059608

PGSL - - - - - -
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Table 3.10: The benchmark results for the Rosenbrock 5 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 135 135 135 X X X

DIRECT 8345 8345 8345 X X X
DE 55200 68400 62850 X X X
PSO 3550 5900 4525 X X X

MPSO 12850 25000 19825 X X X
CE 100000 100000 100000 0.023658 10.6953 2.7557
GA 100050 100050 100050 0.00054007 14.67 3.0413

PGSL 4184 14906 8546 X X X

Table 3.11: The benchmark results for the Rosenbrock 10 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 310 310 310 X X X

DIRECT 45763 45763 45763 X X X
DE 400000 400000 400000 0.47992 1.5287 0.73752
PSO 17300 26700 21000 X X X

MPSO 400000 400000 400000 1.5114e-005 0.056707 0.0066537
CE 400000 400000 400000 0.56349 23.1648 9.6636
GA 400100 400100 400100 0.65791 33.925 7.6539

PGSL 400000 400000 400000 0.0056635 0.8467 0.18643

Table 3.12: The benchmark results for the Rosenbrock 15 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 563 563 563 X X X

DIRECT 216093 216093 216093 X X X
DE 900000 900000 900000 2.6686 10.9423 5.4643
PSO 900000 900000 900000 0.011476 6.0989 0.64084

MPSO 900000 900000 900000 0.00032344 15.0716 0.48488
CE 900000 900000 900000 0.37928 52.1148 13.0352
GA 900150 900150 900150 0.2946 29.1816 5.1513

PGSL 900000 900000 900000 0.14192 5.0832 2.8948
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Table 3.13: The benchmark results for the Rastigrin 5 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 405 405 405 X X X

DIRECT 100159 100159 100159 1.9899 1.9899 1.9899
DE 10750 15350 12450 X X X
PSO 6450 100000 100000 X 6.9647 1.9899

MPSO 38300 100000 100000 X 0.99496 0.99496
CE 7600 100000 8900 X 0.99496 X
GA 100050 100050 100050 0.0010724 0.070909 0.005654

PGSL 100000 100000 100000 0.99495 2.9849 0.99495

Table 3.14: The benchmark results for the Rastigrin 10 test function
Evaluations Distance from global optimum

Name Min Max Median Min Max Median
MCS 217 217 217 X X X

DIRECT 406873 406873 406873 8.0029 8.0029 8.0029
DE 107100 129600 117000 X X X
PSO 400000 400000 400000 2.9849 25.8689 9.9496

MPSO 400000 400000 400000 0.99611 6.0754 2.9868
CE 19600 400000 26000 X 0.99496 X
GA 400100 400100 400100 0.00046412 0.0088303 0.0022301

PGSL 400000 400000 400000 1.9899 5.9697 4.9748
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3.4.4 Summary

It is clear from the obtained results that MCS showed by far the best per-

formance on the benchmark tests, even on the highly dimensional, highly

multi-modal Rastrigin function. Of the stochastic algorithms, Differential

Evolution was the most robust.

Although MPSO consistently outperformed PSO over most of the test

functions, PSO was most effective on the Rosenbrock 10 function. However,

this is to be expected as this function is unimodal and PSO is primarily a

local optimiser - the added global exploration capabilities of MPSO were in

this case unnecessary.

From these results, a ranking of these algorithms over a broad number of

trials can be created. Firstly, they can be characterised in terms of the prob-

ability of converging successfully on a given problem over all trials. Where

algorithms have not converged, the median error of such trials gives an in-

dication of how close to convergence the algorithm was, or whether it had

converged to a local minimum. Therefore, as a secondary value to compare

algorithms with a similar convergence rate the mean value of these errors is

presented.

Table 3.15 shows the summary table and the ranking of the all the consid-

ered algorithms. MCS ranks first, as expected, but interestingly the stochas-

tic Differential Evolution and Multiple Particle Swarm Optimisation proved

to be more effective than the other deterministic algorithm, DIRECT. In

terms of non-convergence errors, CE produced the largest - this demonstrates

that it has the largest tendency to converge to local minima, as had been

observed throughout the experiments. PSO produced the second largest

non-convergence error, as it too is known to get stuck in local minima.

All the algorithms proved to be more effective than the standard Genetic
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Table 3.15: A summary of the performance of the global optimisation algo-
rithms on the benchmark tests

Algorithm % Converged Mean of median
non-convergence errors

MCS 100 0
DE 85.7 0.4429

MPSO 71.4 0.3197
DIRECT 71.4 0.7234

CE 68.6 3.4869
PSO 65.0 2.5347
PGSL 55.6 1.0057
GA 21.8 1.9921

Algorithm used for comparison, which only managed to converge in 21.8%

of trials in the allowed number of function evaluations. However, the GA

did outperform MPSO on the Rastrigin 10 function, which was the most

difficult benchmark: it is hypothesised that this is due to the regular minima

spacing that would make the crossover operation unusually effective - any two

individuals that lay at the bottom of different minima would always produce

a child also at the bottom of a minimum.

Therefore, the conclusion of this benchmarking is that MCS, DE and

MPSO are the most promising global optimisation algorithms.

Shortcomings of Rastrigin function

Although the Rastrigin function is popular for testing global optimisation

functions, some major shortcomings have been identified during the course

of experimentation. The main one is that the parameters are completely

independent, a weakness not shared by the Rosenbrock function. Therefore,

performing a 1D global optimisation over one parameter, regardless of the

values of any other parameters, will yield the globally optimum value for

that parameter. Consequently, a conjugate gradient method would give very

111



good results with few function evaluations.

In real mission design problems the parameters are certainly not inde-

pendent, and therefore a good performance of an algorithm on the Rastrigin

function will not necessarily correlate with good performance on mission de-

sign problems.

Properties of MCS

Experimentally, MCS proved to be by far the most efficient algorithm over

all the test functions. However, it will be shown that subsequent tests on

real mission design problems fail to replicate this achievement. It is suspected

that MCS has been specifically tuned to function very well on standard test

functions, both in terms of initialisation parameters and branching heuristics,

but as a result is much more prone to getting stuck in local minima on real

problems.

The following function was constructed as a trivial modification of the

Rastrigin function with exactly the same properties

f = 10n +
n∑

i=1

(xi − 3)2 − 10 cos 10π(xi − 3). (3.4.11)

The oscillation of the function has been increased by a factor of 5, and the

global optimum has been moved to x = [3, 3, 3 . . . , 3].

MCS now fails to converge within the 100000 function evaluations even

in the 5 dimensional case and terminates with a best solution of 0.31994.

DE, however, can still converge successfully in this case.

PGSL performed the second most poorly on the test functions, and thus

will be disregarded for application to real mission design problems. Although

performing the least effectively, the standard genetic algorithm will be re-

tained for comparison due to it’s popularity in the field of mission design.
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3.5 Global Optimisation of Thrust Optimal

Interplanetary Transfers

This section examines the global optimisation of a thrust optimal Earth-Mars

transfer including a braking manoeuvre at Mars. The control is bi-impulsive.

The decision variables are the launch date, t0 (in MJD2000) and t, the mission

time, in days. This is the same problem as described in [47], although with

different bounding constraints. The position of the spacecraft is denoted x,

and the velocity of the spacecraft ẋ.

The objective function f to be investigated is the total 4V required in

order to effect the interplanetary transfer:

f = |ẋi|+ |ẋf |, (3.5.1)

where ẋi is the initial hyperbolic excess velocity (relative to Earth) and ẋf

is the velocity relative to Mars on entry to Mars’ sphere of influence. ẋi and

ẋf are determined for a given t0 and t by solving the associated Lambert

problem [2, 17, 10]. The bounds on the decision variables were chosen such

that several synodic periods would be present. Multiple revolution solutions

to the Lambert problem were not considered. The bounds were

• t0 ∈ [800, 3800] MJD2000

• t ∈ [100, 400] days.

3.5.1 Results

For the population based algorithms (DE, PSO and MPSO) 50 individuals

were allocated rather than the 20 that would be used according to the stan-

dard scheme. This was because the local minima are quite isolated within the

search space of this problem, and a small population increases the probability

of convergence to a local minima.
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Due to the low dimensionality of this problem the global optimum can be

reliably identified as 5667.1964m/s.

Table 3.16 show the results obtained after applying all the global opti-

misation algorithms to this problem. A checkmark is again used to indicate

convergence to the global optimum within a tolerance of 1×10−5m/s. Out of

Table 3.16: Algorithm performance on bi-impulsive Earth-Mars transfer
Evaluations Best solution (km/s)

Name Min Max Median Min Max Median
MCS 126 126 126 X X X

DIRECT 12009 12009 12009 5667.1997 5667.1997 5667.1997
DE 3550 9050 6775 X X X
PSO 2800 12000 4025 X 5669.5491 X

MPSO 3200 12000 6150 X 5667.2032 X
CE 12000 12000 12000 5669.5491 6143.3754 5753.6501
GA 12020 12020 12020 5667.1998 5670.1203 5668.8033

all the global optimisation functions, only DIRECT and CE did not manage

to locate the global optimum to 4.d.p. at least once in the allowed number of

function evaluations. Out of the stochastic functions, only DE located the

global minimum to the required tolerance in every trial.

Therefore, for bi-impulsive interplanetary transfers, the MCS algorithm

is recommended. If a stochastic algorithm were to be applied, though, DE

would be the best choice.

In the final application deliverable DE will be provided as an optimiser

for this problem rather than MCS. Although MCS has proved itself to be

more effective on this problem, it is a complex algorithm that is unavailable in

C++ and would take an impractical amount of time to reliably convert under

given timescales. DE, however, is a much simpler algorithm and conversions

to C++ are already available.

In practical terms, the number of function evaluations required by DE
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would still correspond to negligible run time on a standard PC and so imple-

menting the more effective MCS would not make a perceivable difference.

3.6 Global Optimisation of Multiple Gravity

Assist Trajectories

The test case for Multiple Gravity Assist trajectories will be the Cassini-

Huygens mission.

This section considers the Cassini-Huygens Earth-Saturn mission as a test

case. The following mathematical models and assumptions were used:

• 2 body dynamics (only the gravitational attraction of the Sun is con-

sidered).

• Elliptic, non-coplanar orbits using analytical Ephemeris.

• Point-mass spacecraft assumption.

• Link-conic approximation for gravity assist.

Gobetz’s method [15] was used to determine the appropriate thrust at the

hyperbolic periapse to transfer between the desired incoming and outgoing

hyperbolic asymptotes. Swingbys where the periapse radius is less than 110%

of the planetary radius are considered to be infeasible.

The orbital injection will remain the same as the original Cassini-Huygens

mission, with the following parameters:

• Eccentricity, e = 0.98

• Radius of periapse, rp = 1.0895× 105km

Orbital injection is achieved with a single impulsive braking thrust at the

periapse of the hyperbolic orbit, thus creating a highly eccentric elliptic orbit.
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The desired angular momentum h of the orbit can be calculated simply as

follows, by finding the semi-major axis a, and the semi-latus rectum l

a =
rp

1− e
(3.6.1)

l =
a

1− e2
(3.6.2)

h =
√

lGM, (3.6.3)

where G is the gravitational constant and M is the mass of Saturn. The

magnitude of the velocity at periapse, vpf , is then simply

|vpf | = h

rp

. (3.6.4)

The magnitude of the velocity the probe will achieve at the periapse of the

orbit, |vpi|, can be calculated simply from the transferral of potential energy

to kinetic energy, so

|vpi| =
√
|vo|2 +

2GM

rp

, (3.6.5)

and therefore the braking manoeuvre is of the magnitude

|4V| = |vpi| − |vpf | (3.6.6)

The objective function was the total 4V, including launch thrust, of the

entire mission, so was of the form

f = 4V1 +4VGA1 +4VGA2 + . . . +4Vinsertion. (3.6.7)

Although this objective function is not the most useful in practical mission

design, as the C3 will be provided by a launcher, it is good for testing the

optimisational capabilities of the global algorithms for producing optimal

missions.

A more useful objective function for MGA mission design would be to

optimise the probe thrust alone with some kind of penalty term added if the
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C3 was over some acceptable limit. A further improvement on this would

be the inclusion of launcher characteristics into the objective function, thus

allowing the scientific payload itself to be maximised which is, in the majority

of cases, the true objective function. When creating the final application for

optimisation of multiple gravity assist missions all these objective functions

will be included as options.

Direct comparison with results from literature is problematic, as the

Ephemeris used, minimum swingby periapse and swingby model all signifi-

cantly influence the global minimum of the search space. For example, re-

ducing the minimum swingby radius to 100% of the planetary radius in the

EVEJS case from 110% yields over a 200m/s difference in the global min-

imum. Consequently, the results from this report will be directly used to

assess the final optimisation product in terms of accuracy and efficiency.

3.6.1 Algorithm Initialisation and Test Conditions

Each algorithm was initialised as follows, in order to maximise the repeata-

bility of these experiments:

MCS Default initialisation

DIRECT Default initialisation

DE Population = 10n, Crossover prob = 0.5, Scale = 0.8

PSO Population = 10n, ω = 0.65, η1 = 2.0, η2 = 2.0

MPSO Population = 10n, Clusters = 3n, ω = 0.65, η1 = 2.0, η2 = 2.0

CE Population = 40n, α = 0.7, β = 0.8, q = 5, µ placed in centre of search

space, σ equal to half search space size.
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GA Population = 10n, Crossover prob = 0.5, Perturbance prob = 0.1

A limit of 4000n2 function evaluations was applied to each algorithm, where

n is the dimensionality of the problem.

Multiple Gravity Assist problems are significantly more complex than in-

terplanetary transfers, and as a consequence in the higher dimensional cases

it is difficult to know the exact global optimum for a given set of mathemat-

ical models. However, preliminary trials on the EJS and EMJS case have

reliably yielded a single best solution which will be assumed to be the global

optimum. Although it would be infeasible to prove that these are the true

global minimum there is a very high probability that this is the case. The

reason for this assumption is that the speed of convergence can be assessed

for each algorithm on the simpler problems.

On the EVEJS and EVVEJS, though, each algorithm will be run for a

terminal number of function evaluations and the algorithm that consistently

produces the best results will be considered the best algorithm, although in

this case it is unknown whether the true global optimum has been located.

3.6.2 Earth-Jupiter-Saturn transfer

The simplest case, and the one previously analysed in Work Package 2, is

the Earth-Jupiter-Saturn transfer. The search space for this problem is 3

dimensional and the form of the decision variable vector x is

x = [t0, t1, t2], (3.6.8)

where t0 is the launch date, t1 is the Earth-Jupiter transfer time and t2 is the

Jupiter-Saturn transfer time. The bounds on the decision variables were:

• t0 ∈ [−1278, 547] MJD2000
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• t1 ∈ [99.71994.8] days

• t2 ∈ [366.07320.9] days

The best solution found in preliminary trials by DE, PSO and MPSO

showed reliable convergence to a minimum of 9351.7902m/s, and this was

taken as being the global optimum.

The stopping criteria for the algorithms was defined as reaching within

a tolerance 1m/s of the global minimum. Table 3.17 shows the obtained

results by applying the selected global algorithms to this problem. Although

performing fantastically well on benchmark problems, here MCS locates the

worst solution of all the algorithms, at 9419.1137m/s. The best performing

algorithm here is DIRECT. Out of the stochastic algorithms, DE was ranked

first although it did not located the global optimum most robustly, but not

in all trials. PSO, MPSO and CE also located the global optimum at least

once.

Figure 3.8 shows the trajectory corresponding to the globally optimum

EJS transfer.

Table 3.17: Algorithm performance on EJS transfer
Evaluations Best solution (km/s)

Name Min Max Median Min Max Median
MCS 18019 18019 18019 9419.1137 9419.1137 9419.1137

DIRECT 8101 8101 8101 X X X
DE 4350 18000 7230 X 9417.8245 X
PSO 1440 18000 18000 X 9573.9828 9417.8245

MPSO 1710 18000 18000 X 9426.1464 9359.0939
CE 3600 18000 18000 X 9603.0661 9422.3257
GA 18030 18030 18030 9352.8717 9716.5473 9431.0415
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Figure 3.8: The globally optimum trajectory for an EJS transfer

Decision Variables
t0(MJD2000) -177.3075

t1(days) 911.8806
t2(days) 4409.1811

Objectives
Mission Time (days) 5321.0617

4VE(m/s) 8917.8984
4VS(m/s) 433.8919
4VGA(m/s) 2.2216e-4

It can be seen that these values match closely to those found in Work Package

2 for an unpowered EJS transfer, although the match is not exact as the

Ephemeris routines have been updated to correct a minor error in planetary

velocity calculation. Approximately 15% of the probe weight here would be

fuel assuming an Isp of 300s.
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3.6.3 Earth-Mars-Jupiter-Saturn transfer

The next trajectory to consider is that of the Earth-Mars-Jupiter-Saturn.

The search space for this problem is 4 dimensional and the form of the

decision variable vector x is

x = [t0, t1, t2, t3], (3.6.9)

where t0 is the launch date, t1 is the Earth-Mars transfer time, t2 is the

Mars-Jupiter transfer time and t3 is the Jupiter-Saturn transfer time. The

bounds on the decision variables were:

• t0 ∈ [−1278, 547] MJD2000

• t1 ∈ [25.91035.5] days

• t2 ∈ [112.62252.7] days

• t3 ∈ [366.07320.9] days

Table 3.18 shows the obtained results by applying the selected global al-

gorithms to this problem. Again, MCS performed poorly, highlighting the

brittle nature of the algorithm. The best performing algorithm was MPSO,

which converged on over 50% of trials, with PSO just behind. DE per-

formed the third best and CE the fourth. Overall, the best solution found

was 9185.9709m/s.

Figure 3.8 shows the trajectory corresponding to the globally optimum

EMJS transfer.
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Table 3.18: Algorithm performance on EMJS transfer
Evaluations Best solution (km/s)

Name Min Max Median Min Max Median
MCS 32019 32019 32019 9756.1777 9756.1777 9756.1777

DIRECT 32027 32027 32027 11749.4932 11749.4932 11749.4932
DE 22840 32000 32000 X 9447.7202 9283.1935
PSO 2640 32000 32000 X 10437.2662 9236.4378

MPSO 10360 32000 17340 X 9283.104 X
CE 32000 32000 32000 9189.0797 9690.2242 9232.9727
GA 32040 32040 32040 9197.0195 12188.6793 10166.5942
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Figure 3.9: The globally optimum trajectory for an EMJS transfer

Decision Variables
t0(MJD2000) -1249.87396872206

t1(days) 1000.96320973301
t2(days) 1116.97463451417
t3(days) 4974.14021342797

Objectives
Mission Time (days) 7092.0781

4VE(m/s) 7067.8258
4VM (m/s) 1684.3675
4VJ(m/s) 0.0000
4VS(m/s) 433.7777
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The optimum EMJS mission requires significantly less C3 than the corre-

sponding EJS transfer (50km2/s2 compared to 79km2/s2), thus increasing the

mass of probe which could be launched, but requires over 4 times as much

4V by the probe. The proportion of the probe that would be fuel would be

approximately 50% (assuming an Isp of 300s).

3.6.4 Earth-Venus-Earth-Jupiter-Saturn transfer

The third sequence of planets to be considered is Earth-Venus-Earth-Jupiter-

Saturn. This results in a 5 dimensional search space. The bounds on the

variables were:

• t0 ∈ [−1278, 547] MJD2000

• t1 ∈ [14.6584.3] days

• t2 ∈ [14.6584.3] days

• t3 ∈ [99.71994.9] days

• t4 ∈ [366.07320.9] days

Preliminary results had not shown repeated convergence to a given best min-

ima, and therefore each algorithm was run to a terminal number of iterations

and the final solutions recorded. Table 3.19 shows the results obtained: The

best known optimum for this problem is 7548.3646m/s (from the preliminary

trials), which was not improved upon in this experiment although MPSO

reached within a tolerance of 0.3m/s of it, and PSO within 1.3m/s of it.

There is a significant probability that this value is close the global optimum,

although it is much less certain than in the EJS and EMJS cases.

123



−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

8313.7443
MJD2000

217.4726
MJD2000

−71.4973
MJD2000

Multiple Gravity Assist Trajectory

Astronomical Units

−229.498
MJD2000

1888.8677
MJD2000

A
st

ro
no

m
ic

al
 U

ni
ts

Figure 3.10: The best found trajectory for an EVEJS transfer
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Figure 3.11: A close up on the EVE part of the EVEJS transfer
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Table 3.19: Algorithm performance on EVEJS transfer
Evaluations Distance from global optimum(km/s)

Name Min Max Median Min Max Median
MCS 50023 50023 50023 11938.1793 11938.1793 11938.1793

DIRECT 50017 50017 50017 9719.8932 9719.8932 9719.8932
DE 50000 50000 50000 7600.2166 8925.9367 7704.702
PSO 50000 50000 50000 7549.0635 16854.074 8456.0771

MPSO 50000 50000 50000 7548.5853 8229.8574 7713.8165
CE 50000 50000 50000 7716.8575 9762.8498 8642.0969
GA 50050 50050 50050 8012.8772 14114.8682 11602.9307

Decision Variables
t0(MJD2000) -229.497976766197

t1(days) 158.00066587151
t2(days) 288.96992264231
t3(days) 1671.39505180009
t4(days) 6424.87661250939

Objectives
Mission Time (days) 8543.2423

4VE(m/s) 2960.676
4VV (m/s) 0.3259
4VE(m/s) 3976.4275
4VJ(m/s) 0.0180
4VS(m/s) 611.1379

Again, the best solution with respect to overall 4V is longer in the EVEJS

case than in the EMJS and EJS cases. However, the C3 has been decreased

significantly to 8km2/s2 from 50km2/s2 in the EMJS case, so the spacecraft

can have a much larger launch mass. Again, the required probe 4V has

increased to about 4600m/s, and this means that approximately 80% of the

spacecraft will consist of fuel (assuming an Isp of 300s). The trajectory is

shown in Figures 3.10 and 3.11.
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3.6.5 Earth-Venus-Venus-Earth-Jupiter-Saturn trans-
fer

The final gravity assist sequence to be investigated will be Earth-Venus-

Venus-Earth-Jupiter-Saturn: this is equivalent to the Cassini-Huygens mis-

sion without the Deep Space Manoeuvre between the two successive Venus

swingbys. This problem yields a 6 dimensional search space. The bounds on

the variables were:

• t0 ∈ [−1278, 547] MJD2000

• t1 ∈ [14.6584.3] days

• t2 ∈ [22.5898.7] days

• t3 ∈ [14.6584.3] days

• t4 ∈ [99.71994.8] days

• t5 ∈ [366.07320.9] days

Table 3.20: Algorithm performance on EVVEJS transfer
Evaluations Distance from global optimum(km/s)

Name Min Max Median Min Max Median
MCS 72048 72048 72048 15771.2693 15771.2693 15771.2693

DIRECT 69831 69831 69831 12678.9257 12678.9257 12678.9257
DE 72000 72000 72000 6141.9986 13463.4896 8419.0533
PSO 72000 72000 72000 6971.814 32268.5934 17105.7534

MPSO 72000 72000 72000 7834.3541 14772.6228 11797.0875
CE 72000 72000 72000 17175.5585 25583.5021 20109.437
GA 72060 72060 72060 9183.1234 30484.8734 16105.2964

DE located the best minima at 6142.00m/s (see Figures 3.12 and 3.13 and

also performed the consistently the best on the problem - PSO was ranked
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Figure 3.12: The best found trajectory for an EVVEJS transfer
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Figure 3.13: A close up on the EVVE section of the EVVEJS transfer

129



second in this case and MPSO third in terms of best solution located. In the

preliminary trials, however, MPSO found a better solution of 5986.75m/s.

For this case further experimentation has shown that the global optimum

in this problem is less than 5400m/s, and hence it is certain that none of

the algorithms have converged correctly. Analysing the range of solutions

over the trials shows that the algorithms did not produce the same solutions

more than once, indicating that many more function evaluations would be

required on such problems in order to obtain proper convergence.

However, these results still give an indication as to the speed of conver-

gence of the algorithms on the problem, and this rank order compares well

to the rank order of convergence on problems with known global optima.

3.6.6 Summary

For multiple gravity assist trajectories without a Deep Space Manoeuvre, the

MPSO algorithm consistently found better solutions than the other algo-

rithms over the 20 trials. However, DE consistently produced a significantly

smaller range of results and can therefore be considered more robust.

3.7 Global Optimisation of Multiple Gravity

Assists with Deep Space Manoeuvres

Deep Space Manoeuvres can be used to reduce thrust requirements in multi-

ple gravity assist trajectories, as in the case of the Cassini-Huygens mission.

The swingby before the DSM is forced to be unpowered, with the periapse

radius and B-plane now decision variables. The orbit is then analytically

propagated using a universal variables formulation [3] up until the DSM, at

which point the Lambert problem point from the DSM point to the next

gravity assist planet is solved. Consequently, using a single DSM introduces
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3 additional decision variables:

• 1/rp - the reciprocal of the periapse radius. rp is measured in appropri-

ate planetary radii. The reciprocal is used so that the decision variable

can be easily bounded between 0 and 1, where 1 is a swingby with

minimum acceptable periapse radius and 0 is a swingby at infinity.

1/rp ∈ [0, 1].

• φ - The deflection from the planet is initially calculated in the plane

formed by the incoming velocity and heliocentric position vector of the

planet. φ then defines the rotation of the outgoing velocity using the

incoming planet relative velocity as a rotational axis. φ ∈ [−π, π]

• α defines the point in the trajectory where the DSM is applied. It is

the proportion of the time until the next desired gravity assist. α ∈
[0.1, 0.9].

The global optimisation of two examples will be considered here - an EJS

transfer with a Deep Space Manoeuvre between Jupiter and Saturn, and

an EVVEJS transfer with a DSM between the two Venus swingbys (the

Cassini-Huygens mission).

The number of function evaluations allowed for each algorithm was 4000n2,

with n being the problem dimensionality.

3.7.1 EJS With Deep Space Manoeuvre

Consider first the addition of a DSM to the EJS transfer - adding a DSM

may well increase the flexibility of the mission. The overall search space is

now 6 dimensional.

The best solution obtained here by DE is identical to that found for the

same transfer without a DSM - 9351.8m/s. Therefore, it seems that adding a
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Table 3.21: Algorithm performance on EJS transfer with DSM
Evaluations Best solution (km/s)

Name Min Max Median Min Max Median
MCS 144035 144035 144035 9566.0357 9566.0357 9566.0357

DIRECT 144007 144007 144007 9418.2578 9418.2578 9418.2578
DE 144000 144000 144000 9351.7902 10370.7557 9616.3622
PSO 144000 144000 144000 9417.8245 11243.5548 9630.8354

MPSO 144000 144000 144000 9352.095 9953.2427 9616.3622
CE 144000 144000 144000 10075.6434 11394.8907 10604.3133
GA 144000 144000 144000 9472.9115 11204.2255 10366.1252

DSM to this trajectory does not decrease the thrust required, and therefore

the DSM can be considered redundant in this case. The redundancy of the

DSM can also be observed in Figure 3.14, which can be compared exactly

to the non-DSM trajectory in Figure 3.8.

Only DE managed to locate the minimum to 4 d.p. in one trial out of all

the algorithms, although MPSO found it to within an acceptable tolerance

of 0.5m/s. Observing the converged values for DE and MPSO over all the

trials show that local minima exist near the global optimum with values

f = 9616.36m/s, f = 9417.82m/s, and f = 9523.57m/s - these values were

converged to in more than one trial and the probability of this occurring if

these values were not local minima is negligible.
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3.7.2 EVVEJS with Deep Space Manoeuvre

Adding a DSM to the EVVEJS trajectory yields a 9 dimensional search

space. The bounds on t0 to t5 are the same as those for the EVVEJS transfer

without DSM considered in 3.6.5. Unlike the EJS trajectory, adding a DSM

to the EVVEJS transfer has obvious advantages, as the best solution has

increased significantly from 5986m/s to 4589m/s (as found by DE), although

MPSO too located a better trajectory than previously known. The statistics

of the best solution (located by DE) were as follows:
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Figure 3.14: The optimal EJS transfer with a DSM
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Table 3.22: Algorithm performance on EVVEJS transfer with DSM
Evaluations Best solution (km/s)

Name Min Max Median Min Max Median
MCS 324000 324000 324000 9428.5978 9428.5978 9428.5978

DIRECT 324019 324019 324019 13923.3797 13923.3797 13923.3797
DE 324000 324000 324000 4589.0632 15474.594 6615.9064
PSO 324000 324000 324000 6516.9291 20456.933 11038.169

MPSO 324000 324000 324000 5217.6691 12860.2774 7489.6959
CE 324000 324000 324000 10270.8495 28923.1056 13983.1441
GA 324000 324000 324000 7330.348 21068.3104 13762.2777

Decision Variables
t0(MJD2000) -796.4637

t1(days) 188.1997
t2(days) 428.5360
t3(days) 52.9901
t4(days) 1004.4382
t5(days) 4508.6936

φ -0.79218925
1/rp 0.85811739
α 0.49116994

Objectives
Mission Time (days) 6183.4147

4VE(m/s) 3900.2989
DSM(m/s) 220.9456
4VV (m/s) 0.23693m/s
4VE(m/s) 0.076045m/s
4VJ(m/s) 0.42476m/s
4VS(m/s) 467.0809m/s

This mission, shown in Figures 3.15 and 3.16, is significantly better than

the actual Cassini-Huygens mission in terms of every objective apart from

mission time - it takes over 3 times as long, although it is still shorter than

the best EJS, EMJS and EVEJS trajectories found that did not use a

DSM. However, all the swingbys are effectively unpowered, only a small

DSM is required and the C3 is relatively low (at 15.21km2/s2). As less than

900m/s 4V is required by the probe, a much larger scientific payload could

be achieved. In comparison, over half of the mass of the Cassini-Huygens
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craft was fuel.

3.7.3 Summary

The results show that Differential Evolution is the most effective algorithm

for optimising multiple gravity assist transfers with a deep space manoeuvre,

with Multiple Particle Swarm Optimisation being ranked second. However,

even with a very large amount of function evaluations (324000) neither were

able to consistently find the global optimum.

Following the results from the non-DSM transfers investigated, it seems a

valid assumption that the algorithms which locate the best solutions are also

significantly more likely to converge to the global minimum in the more com-

plex transfer problems. For example, in the EJS transfers with DSM, only

DE and MPSO converged within an acceptable tolerance to the (assumed)

global minimum, and these two algorithms also found the best solutions

in the more complex EVVEJS case, even though they failed to converge.

Therefore, it is likely that if the number of allowed function evaluations was

increased the same two algorithms would be most likely to converge.

3.8 Conclusions

This work package has investigated the performance of global optimisation

algorithms both on a representative set of well known benchmark functions

for simple comparison and also on two relevant mission design problems:

interplanetary transfers and multiple gravity assist trajectories (both with

and without deep space manoeuvres). The genetic algorithm, included for

it’s popularity in mission design, performed poorly in comparison to mod-

ern robust estimation techniques such as Differential Evolution and Particle

Swarm Optimisation. Similarly, the deterministic algorithms investigated,
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Figure 3.15: The best found trajectory for an EVVEJS transfer with DSM
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DSM
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Table 3.23: Summary of investigation
Mission Design Problem Primary Selection Secondary Selection
Interplanetary Transfer MCS DE

MGA transfer (without DSM) MPSO DE
MGA transfer (with DSM) DE MPSO

DIRECT and MCS, did not perform well on the more complex MGA tra-

jectory design problems, even though theoretically they are much more robust

than stochastic methods.

Table 3.23 summarises the findings and selection of algorithm for each

mission design problem: Differential Evolution was ranked either first or

second for all three considered problems, and hence will be given the highest

priority for inclusion in the final application deliverable.

From the Multiple Gravity Assist results, it is clear that even modern

global optimisation algorithms that perform extremely well on benchmarks

find it difficult to optimise such trajectories efficiently and consistently. Since

Multiple Gravity Assist trajectories are of great interest in trajectory de-

sign, both due to their ability to reduce fuel expenditure and also increase

scientific yield from analysis of the swingby planets, it would be of great

interest to develop a novel algorithm that could effectively optimise this spe-

cific problem. From the analysis in this report and from Work Package 2, it

has been concluded that the vast majority of the MGA search space con-

sists of completely infeasible solutions i.e. those that have impractical C3

or require enormous thrusts during gravity assists. Therefore, it seems that

a method that could efficiently prune the MGA search space through the

use of domain knowledge, such that only good solutions were left, would be

very useful. Conventional global optimisation methods could then be applied

much more effectively to the pruned search space as the basin of attraction

of the global minimum would be much larger, proportional to the size of the
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search space. This approach is in keeping with the methodology of Törn

[44], who recommends minimising the size of the search space wherever pos-

sible. Usually, this would mean only considering small ranges of launch dates

and transfer times, but with effective pruning large launch windows could be

efficiently considered.

Work Package 4, which concerns the development of novel global optimi-

sation tools, will concentrate on the possibility of this type of approach with

a view to creating a method that can quickly and efficiently prune the MGA

trajectory space. Further work could consider expanding the scope of this

technique to allow deep space manoeuvres and low thrust arcs.
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Chapter 4

Development of Novel Methods
for Global Optimisation of
Multiple Gravity Assist
Trajectories

4.1 Introduction

Work Package 3 analysed the performance of a variety of modern global

optimisation techniques on multiple gravity assist trajectories. Although

there were some algorithms (most notably Differential Evolution [42]), that

showed significantly better performance than the rest, it was concluded that

the best way of developing a tool for optimising trajectories was to develop

a method for utilising domain knowledge to prune the search space in order

to yield a significant improvement in performance.

This work package considers the problem of multiple gravity assist tra-

jectories with a known planetary sequence and no Deep Space Manoeuvres.

In such cases, it has been shown that the vast majority of the search space

consists of infeasible, or very undesirable, solutions. Therefore, rather than

developing a better optimiser a method for producing reduced search spaces

for pruning was created, thus allowing standard global optimisation tech-
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niques to be applied more successfully to the reduced box bounds.

The technique created is named the Gravity Assist Space Pruning (GASP),

and is fully implemented in a Windows XP application created using Borland

C++ Builder 5.

4.2 Gravity Assist Space Pruning Algorithm

This section describes the motivation behind and functionality of the GASP

algorithm.

Consider the MGAproblem with a defined planetary sequence (e.g. Earth-

Venus-Venus-Earth-Jupiter-Saturn) and no Deep Space Maneouvres. The

decision vector for this problem is as follows

x = {t0, t1, t2, t3...}, (4.2.1)

where t0 is the launch date, t1 is the phase time from the first to second

planet, t2 from the second to third planet etc. A Lambert solver1 is then used

to calculate appropriate Keplerian orbits between the planetary positions in

the given time, and then a powered swingby model is applied, such as that

designed by Gobetz [15].

4.2.1 Single interplanetary transfer

Firstly, let us consider the simplest case of a single interplanetary transfer

with a braking manoeuvre at the target planet.

The objective function assumed is a simple minimisation of total thrust

(the sum of the initial hyperbolic excess velocity, vi, and braking manoeuvre,

vf ), so

f = vi + vf . (4.2.2)

1unpublished work by Dario Izzo

141



The decision vector in the single transfer case will be x = {t0, t1}. An im-

portant observation is that this search space will contain a line for each time

t, that a probe can arrive at the final planet, such that t0 + t1 = t. Obviously,

at a given time t, regardless of the launch time or departure time, the target

planet will be in the same position and have the same velocity. Therefore, it

is beneficial to consider the search space as t0, t0 + t1 i.e. departure time at

the first planet compared to arrival time at the second.

The optimisation method to be investigated is grid sampling. Grid sam-

pling is usually considered a very inefficient optimiser, and this is true in high

dimensionalities. For example, using the enumerative search in the Swingby

Calculator application [7] yields optimisation times approaching an hour for

relatively small search spaces (on a 600Mhz Pentium Processor). However,

for only 1 and 2 dimensions grid sampling is relatively efficient, as long as the

search space is reasonably smooth and the exact optimum is not required.

Therefore, the objective function for a single interplanetary transfer may

be grid sampled at an appropriate resolution in the departure time vs ar-

rival time domain efficiently, although in this case most other optimisation

methods would undoubtedly yield better results in terms of objective func-

tion evaluations. However, the grid sampled version will require many less

Ephemeris calculations, as the same positions/velocities need not be recal-

culated for a given departure or arrival time. If the 2D search space was

discretised into x cells in each dimension, only 2x Ephemeris calculations

are required for the entire sampling, and x2 Lambert problem solutions. By

comparison, 2 Ephemeris calculations would be required by each objective

function evaluation in a standard optimiser.

Even in the single interplanetary transfer case, a large proportion of the

search space corresponds to undesirable solutions i.e. those with impractical
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C3. To illustrate this, the optimisation of an Earth-Mars transfer was con-

sidered between the dates (-1200 to 600 MJD2000) and phase times of 25

to 515 days. A sampling resolution of 10 days was used in both axes. Only

12.5% of this search space had a C3 of less than 25km2/s2. Figure 4.1 shows

this search space plotted as departure time vs arrival time - the diagonal red

lines delineate the sampled portion of the search space, and the black regions

within the lines indicate trajectories with a C3 of greater than 25km2/s2.

Figure 4.1: A grid sample Earth-Mars transfer. The black regions within the
delineating red lines indicate solutions with a C3 of greater than 25km2/s2

Even allowing an enormous C3 of 100km2/s2, only 33% of the search space

becomes valid. As a consequence, in gravity assist and multiple gravity assist

cases starting with an Earth-Mars transfer in these bounds, at least 87.5%

of the overall search space must correspond to undesirable solutions.

The GASP algorithm was design to efficiently detect and prune infeasible

parts of the space, leaving several sets of box bounds with vastly smaller

contents. These reduced box bounds may then be optimised efficiently using

a standard optimisation method.
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Hyperbolic Excess Velocity Constraint

The maximum allowable hyperbolic excess velocity is the first main constraint

of the GASP algorithm, as it determines possible launch dates to the first

target planet.

Braking Manoeuvre Constraint

As well as the C3 constraint, it is logical to add a constraint on the max-

imum braking manoeuvre that the spacecraft can perform. Applying a C3

constraint of 25km2/s2 and a braking manoeuvre constraint of 5km/s yields

the search space shown in Figure 4.2. Less than 5% of the search space now

yields feasible trajectories.

Figure 4.2: An Earth-Mars transfer with both C3 and braking manoeuvre
constraints applied

By applying two very simple constraints to the interplanetary case it

has been shown that a very significant reduction in search space can been

achieved, leaving clear launch windows and arrival time windows.
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4.2.2 Forward Constraining

It has been shown that the C3 and braking manoeuvre constraints alone

significantly reduce the search space content for an interplanetary transfer.

From Figure 4.2, it can be seen that many of the horizontal lines of pixels are

completely black - this implies that it is not possible to arrive at the target

planet on the corresponding date within the current constraints.

This information is the key to the functionality of the GASP algorithm:

if no feasible trajectories arrive at a planet on a given date then there can be

no departures from the planet on that date (assuming the change in velocity

from the swingby is instantaneous).

Now consider a trajectory with a single gravity assist. Using grid sam-

pling on this function would usually involve sampling in 3 dimensions, and

hence as additional planets were added the number of objective function eval-

uations would increase exponentially. Instead, with GASP, the search space

is sampled as a cascade of 2 dimensional search spaces, each with possible

departure dates in the horizontal axis and prospective arrival dates in the

vertical axis. Because of this, the number of Lambert problem evaluations is

vastly reduced.

4.2.3 Gravity assist thrust constraint

Two constraints are added in order to maximise the probability of gravity

assists being feasible. The first such constraint is the gravity assist thrust

constraint, which limits the maximum absolute difference between incoming

and outgoing velocities during a gravity assist to some threshold, Tv. This

threshold is set separately for each gravity assist.

The following is then performed for every arrival time at a planet:

1. Calculate the bounds on incoming velocity, vi
min and vi

max.
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2. Invalidate any outgoing trajectories that do not have outgoing velocities

in the range [vi
min−Tv−Lv, v

i
max +Tv +Lv], where Lv is an appropriate

tolerance based on the Lipschitzian constant of the current phase plot.

3. Calculate the modified bounds on outgoing velocity, vf
min and vf

max.

4. Invalidate any incoming trajectories with velocities outside the range

[vf
min − Tv − Lv, v

f
max + Tv + Lv].

4.2.4 Gravity assist angular constraint

The gravity assist angular constraint removes infeasible swingbys from the

search space on the basis of them being associated with a hyperbolic periapse

under the minimum safe distance for the given gravity assist body. This is

determined over every arrival date at a planet as follows, assuming x valid

incoming trajectories and y valid outgoing trajectories:

1. For all x incoming trajectories

2. For all y incoming trajectories

3. If the swingby is valid for the current incoming

and outgoing trajectory, mark both incoming and

outgoing trajectory as valid.

4. End

5. End

6. Invalidate all trajectories not marked as valid

The swingby angle is decreased by an appropriate Lipschitzian tolerance

θL, in order to compensate for the grid sampled nature of the search space.
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4.3 Time and Space Complexity

This section determines the time and space complexity of the GASP al-

gorithm. It will be shown that GASP scales quadratically in space and

quartically in time with respect to the number of gravity assist manoeuvres

considered. For simplicity, the following analysis assumed that the initial

launch window and all phase times are the same.

4.3.1 Space Complexity

Consider a launch window of size discretised into x cells and a mission phase

time also discretised into x cells. For the first phase x2 Lambert problems

must be sampled. The next phase will need to sample (x+x)x = 2x2, as the

number of possible times that the planet may be arrived at is doubled (mini-

mum launch date, minimum phase time to maximum launch date, maximum

phase time). The third phase will require 3x2 Lambert function evaluations,

and the nth phase nx2. This gives the series

O(n) = x2 + 2x2 + 3x2 + . . . + nx2 (4.3.1)

O(n) = x2(1 + 2 + 3 + . . . + n) (4.3.2)

O(n) = x2n(1 + n)

2
. (4.3.3)

Therefore, the amount of space required for n phases is only of the order

O(n2), rather than O(xn) for full grid sampling.

Similarly, it is clear that the space complexity with respect to the reso-

lution x, is also of the order O(x2).

4.3.2 Time Complexity

The memory space required is directly proportional to the maximum number

of Lambert problems that must be solved, and hence the time complexity
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of the sampling portion of the GASP algorithm must also be of the order

O(n2).

Launch energy constraint complexity

The launch energy constraint is only applied in the first phase, and hence is

independent of the number of swingbys. The time complexity is O(x2) with

respect to resolution.

Gravity assist thrust constraint complexity

The time complexity of applying the gravity assist thrust constraint is O(n2)

with respect to dimensionality, due to the inevitable increase in size of later

phase plots to encompass all possible arrival dates.

The first phase requires operations of the order 2x × (x + 3x) in order

to perform the constraining of outgoing velocity from incoming velocity (the

back constraining may be ignored at this point). The second phase requires

operations of the order 3x × (2x + 4x). In general, the nth phase requires

operations of the order 2n2x3. Therefore, the total number of operations over

all phases is

2x2[22 + 32 + 42 + . . . + n2] = 2x2n(n + 1)(2n + 1)

3
(4.3.4)

Therefore, applying this constraint yields cubic time complexity in dimen-

sionality and quadratic complexity in resolution.

Gravity assist angular constraint complexity

The maximum number of swingby models that must be calculated for the

first phase is close to x × 2x × 3x = 6x3. For the second swingby, this is

2x × 3x × 4x = 24x3. In general, for n phases, the upper bound on the
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number of swingby calculations, α, is

α = 3.2.1.x3 + 4.3.2.x3 + 5.4.3.x3 + . . . + (n + 2)(n + 1)nx3 (4.3.5)

From [40], it can be shown that the total number of these operations must

be

α = x3

n∑
1

(n + 2)(n + 1)n =
n(n + 1)(n + 2)(n + 3)

4
. (4.3.6)

Therefore, the overall time complexity with respect to resolution is O(x3),

while the time complexity with respect to dimensionality is O(n4). Therefore,

the gravity assist angular constraint is the most computationally expensive

and hence is applied after GA thrust constraint in order to minimise the

number of swingby models that must be calculated.

Overall time complexity

The overall time complexity, taken from the most complex part of the algo-

rithm (the gravity assist angular constraint), is cubic with respect to resolu-

tion and quartic with respect to dimensionality.

4.4 Results

This section demonstrates the improvements that GASP can make over

Differential Evolution alone and compares GASP with the grid sampling

option of Swingby Calculator.

4.4.1 Earth-Venus-Mars-Earth

The first trajectory to be considered is EVME, culminating in a flyby of

Earth. This trajectory was considered in [7] as a test case for the Swingby

Calculator application developed by JAQAR Space Engineering. The bounds

chosen were as follows:
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• t0 ∈ [3000, 4000] MJD2000

• t1 ∈ [14, 494] days

• t2 ∈ [21, 491] days

• t3 ∈ [25, 495] days

The above bounds are significantly more relaxed than those used when val-

idating swingby calculator - the optimisation in that case took 27 minutes

with a sample resolution of 7 days, and 7311616 trajectory possibilities were

considered using grid sampling. Using GASP, in total only 45330 Lambert

problems were solved and 2074 Ephemeris calculations required: the sample

resolution was also higher at 5 days. Altogether, this took less than a second

on a 2.8GHz Pentium 4 processor. Applying differential evolution (40 indi-

viduals, 2000 iterations) to the located solution families took several more

seconds, and the best found trajectory compares closely to that presented in

[7] (see Figure 4.3).

To determine the reliability of the bounds created by GASP, differen-

tial evolution was applied to the reduced bounds over 20 trials. 14 out of

these converged to the best known minimum (5044m/s), and 6 to the sec-

ond best minimum (5058m/s, which only requires 14m/s additional thrust).

However, when applying differential evolution alone over the full problem

domain bounds, only 9 out of 20 trials converged to the global minimum, 3

to the second best minimum and the rest on significantly poorer solutions.

These results confirm that the pruned spaces produced by GASP are

indeed valid, in that they will encompass the global optimum if the thresh-

olds are appropriately chosen: differential evolution over the entire domain

did not find any superior solutions. Also, the level of success of DE alone

on this problem indicates that several restarts would be required in order to
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Figure 4.3: An optimal Earth-Venus-Mars-Earth trajectory with flyby

guarantee the global optimum - GASP, by comparison, had a 100% success

rate in finding one of the two best solutions, and application of the GASP

algorithm was significantly less computationally expensive than a single dif-

ferential evolution trial (which requires 240000 Lambert solutions and 320000

Ephemeris calculations)

4.4.2 Earth-Venus-Venus-Earth-Jupiter-Saturn trans-
fer (short launch window)

This section considers the optimisation of an EVVEJS transfer with an or-

bital insertion, where the objective function is the minimisation of the sum

of the launcher and probe thrust. The bounds on the decision vector were

as follows:

• t0 ∈ [−1200, 600] MJD2000

• t1 ∈ [14, 284] days
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• t2 ∈ [22, 442] days

• t3 ∈ [14, 284] days

• t4 ∈ [99, 1989] days

• t5 ∈ [366, 7316] days

GASP was applied to this problem with a sampling resolution of 10 days.

In order to complete the sampling, 144498 Lambert problem solutions were

required, and 3749 Ephemeris calculations.

The following constraints were defined in the GASP algorithm:

• THEV = 8000m/s

• TGA1....4 = 1000m/s

• TBrake = 5000m/s

This configuration yields two major solution families, one with a launch win-

dow of -920 to -660MJD2000, and the other 280 to 490MJD2000. Differen-

tial Evolution was applied to the accumulation of each solution family (the

tightest decision vector bounds that all solution family nodes exist within).

A population of 40 individuals was used and a terminal number of 2000 it-

erations were allowed. Note that this corresponds to 40× 2000× 5 = 400000

Lambert problem solutions and 480000 Ephemeris calculations.

The later launch window was eliminated immediately as applying Differ-

ential Evolution did not yield any valid solutions. Further optimisation on

this launch window has consistently optimised to the same invalid minima.

The earlier launch window proved much more promising and, as a con-

sequence, 20 optimisation trials were performed. Of these trials, 19 found

the second best known optima to this problem (5225m/s) to within 1m/s,
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and one came close to the best known optima, (4870m/s). Experimentation

has shown this minimum has a very small basin of attraction with respect to

this objective function, and is exceptionally hard to find even in the reduced

search space.

When applying Differential Evolution alone to the entire search space,

only 7 out of the 20 trials found the second best minimum, and none the

best known. Using GASP, it is apparent that there is an extremely high

probability that at least the second best solution will be found.

The objective function was then altered to penalise any trajectory with

hyperbolic excess velocity of greater than 3000m/s, and the trials run again.

Now only 2 of 20 of the GASP constrained trials failed to find the best

known solution to within 10m/s (instead finding the second best one), while

again 7 out of 20 optimisation of the entire domain found the second best

solution, and none located the best.

Again, these results highlight the added power of using the GASP al-

gorithm. Not only does it allow effective visualisation of the search space,

but it drastically reduces the requirement for optimisation restarts in order

to find good solutions, and at a fraction of the computational expense of an

optimisation restart.

4.4.3 Earth-Venus-Venus-Earth-Jupiter-Saturn trans-
fer (long launch window)

The above optimisation problem was retested with identical parameters apart

from the initial launch window was 10000 days (over 27 years) rather than

1800. Applying GASP to this search space required 496865 Lambert prob-

lem solutions, and 11949 Ephemeris calculations. 111 Megabytes of memory

were allocated for the grid sampled tables. The C3 constraint was here low-
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ered from 8000m/s to 5500m/s, reducing the number of solution families to

only two - these corresponded very closely to the solution families located for

the short launch window.

Applying Differential Evolution alone to the entire domain in 20 trials

(with the same parameters) yielded only 4 trials that came close to the second

best minima. When Differential Evolution was applied the GASP defined

bounds, all 20 trials located the second best known minima.

Therefore, although GASP does not guarantee that the global optimum

can be located on this problem, it certainly increases the probability of lo-

cating good solutions.

4.5 Conclusions

This report has described the Gravity Assist Space Pruning algorithm, proved

that it has both polynomial time complexity and space complexity, and fur-

thermore demonstrated that it produces significant benefits over optimising

the entire domain with relatively little computational expense. Additionally,

the GASP algorithm allows intuitive visualisation of a high dimensional

search space, and facilitates the identification of launch windows and differ-

ent mission options.
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Appendix A - Taxonomy Summary Tables

Tables 2 to 6 illustrate the use of the mission design problem taxonomy

presented in this report to define specific mission design problems. Each

table represents choices along one dimension of the taxonomy. By following

the instructions in the captions, the reader can characterise different mission

design problems by working through Tables 4.1 to 4.5.

Table 4.1: Checkbox for problem constraints - check one in each row
Variable U # B f(t) O

xi N/A
ẋi N/A
ti N/A N/A
xf

ẋf

tf N/A N/A
Additional Constraints

Table 4.2: Summary of control classes - Select one. Later options indicate
increased optimisational complexity.

Control Class Subclass Check/Value
Impulsive Fixed n-Impulsive

Continuous Simple
Impulsive Variable Impulsive

Continuous Complex

Table 4.3: Decision variables/Objectives - check one or more
Quantity Decision Variable Objective

Thrust
Mission time

Velocity
Angular momentum

Other variables



Table 4.4: Spacecraft model complexity - check one. Later options indicate
increased optimisational complexity.

Model Complexity Check
Point-mass
Rigid body

Low level control

Table 4.5: Astrodynamic model - check applicable and add appropriate val-
ues. Optimisational complexity increases with each checked item and in-
creased n body dynamics

Model Complexity Check/Value
n-body dynamics (2+)

Non-planar model
Elliptic orbits

Other factors




