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Quantum theory is the fundamental framework which describes all of modern physics except
gravity. Despite its tremendous successes, fundamental questions regarding its foundations and
interpretation are still actively investigated. A key question is to understand the quantum-to-
classical transition without relying on ad-hoc postulates. The decoherence program, a significant
step towards answering this question, has recently been renewed by considering the information flow
from a system into its environment. This led to a paradigm shift called "quantum Darwinism" in
which the environment is now seen as a quantum communication channels between the system and
observers. In this study, we propose to push this idea forward by considering the full (quantum)
network of observers in the quantum Shannon theory framework.

Our main result is the clarification of the information theoretical criteria for independent and
shared objectivity as well as the identification of the corresponding shared quantum states between
the system and the quantum observers. This leads to a (non-trivial) separation between the clas-
sical information broadcasted to the observers by the system and the (correlated) quantum noise
they experience, clarifying the structure of the global correlations in the "observed system/many
observers" quantum system.
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I. INTRODUCTION AND MOTIVATION

A. Motivation

The emergence of the classical world from quantum
theory and of a consensus among different observers is
a long-standing problem for the foundations of quantum
theory.

Already within classical physics, Einstein emphasized
the crucial role played by the correspondance between the
way different observers perceive and describe the same
reality. Developing the theory of special relativity, he
derived such correspondance, both for space-time coor-
dinates and for tensor fields over space-time, from the
invariance of the speed of light [20]. To extend special
relativity to general relativity [22], Einstein went further
and considered more general transformations between ob-
servers; and promoted the general covariance of physical
laws to the status of a fundamental dynamical princi-
ple of Nature. Together with the equivalence principle
[21], this led to the general theory of relativity. In this
description, as well as in any consideration involving ob-
servers in classical physics, the act of observation does
not perturb the system in a fundamental way: in princi-
ple, it is always possible to perform an infinite-precision
measurement, and copy the “local physical reality” into
the observer’s memory. The correspondance between ob-
servers then consists of transition functions between the
observers memories satisfying certain consistancy condi-
tions, as sketched on Fig. 1. Local observers, their mem-
ory records, together with suitable transition functions

between them, form what we will call a relational de-
scription, and is the kinematical framework of any clas-
sical relativistic model1.

Remarkably, such relational description is sufficient to
reconstruct a geometrical interpretation, according to
which the observer’s memory record “points” (or more
general concepts) associated with an underlying geomet-
rical object2. This geometrization of physics, which
started with Minkowski [52], was one of the unexpected
consequences of Einstein’s work [24]. While this is often
interpreted as the existence of an underlying absolute re-
ality behind the relational description by all observers,
as pointed out by Einstein himself [22], the absoluteness
of the geometric object itself is however more subtle than
one could naively expect.

It should be emphasized that Einstein’s relativity, and
more generally any classical model, posits a clear separa-
tion between the obsevers on the one hand, who can map
the part of space-time accessible to them using clocks and
rules, and the physical quantities on the other hand, such
as local fields, which the observers can measure. As in
any classical theory, the state of the system under study
is not altered by an ideal measurement. This clear dis-
tinction between the object – here, the system – and
the subject – here, the observers –, is not valid in quan-
tum theory. As Heisenberg already pointed out, any act
of measurement disturbs the system in a fundamental
way, thereby constraining the observer’s ability to infer
information about the system [38]. As a consequence,
understanding the process of measurement itself requires
in principle a detailed modelization of the observer’s in-
struments, which leads to a much more involved situation
than in classical physics.

A workaround to this last problem was proposed by
von Neumann [67], who formalized the so-called mea-
surement postulate, which enables the extraction of pre-
dictions from the quantum formalism. This came at the
price of cornering the observer away from the quantum
formalism, under the form of a classical intruder whose
back-action on the system’s state is described by the mea-
surement postulate.

But, as stressed out by Everett [27], if quantum theory
is to be a complete description of Nature, the question of
“relativity” in a quantum universe has to addressed in its
full complexity. In particular, the observers themselves
should be treated as physical systems. This led Everett
to discuss a gedanken experiment [27] (known today as
the Wigner’s friend experiment [71]), and whose conse-
quences are still highly debated [1, 32, 46]. To close this
debate requires extending the kinematical framework of

1 Notice that relativity is not necessarily Einsteinian: non-
relativistic physics is described using models that have Gallilean
invariance and therefore are “Gallilean relativistic” models.

2 In classical field theory, the geometric object is a fiber bundle
over a manifold, called space time, and a configuration of the
classical field is a section of this fiber bundle.
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classical relativity theories, to a quantum universe. This
basic question is the main motivation behind the work
presented in this report.

B. Towards quantum relativity

Trying to extend the ideas of relativity to the quantum
realm immediately rises several questions. In this section,
we formulate them in order of increasing complexity.

The first question concerns the definition of “quan-
tum observers”: in the quantum universe, what plays
the role of Einstein’s classical observers, who can recon-
struct their own image of a physical reality? As pointed
out by Everett, observers should be treated as subsys-
tems within the quantum universe, acquiring informa-
tion about the system through physical interaction. In
the quantum formalism, this inevitably leads to quantum
correlations between the system and all the observers.

In essence, this is reminiscent of Laudauer’s insight
that information only “exists” through the physical sys-
tems carrying it [48]. As explained in this report, this has
led us to define quantum observer as quantum subsys-
tems within the universe, able to perform general quan-
tum measurements on the local degrees of freedom (DoF)
they can access. These DoF are not directly the system’s
DoF they are trying to characterize. Instead, they corre-
spond to certain “fragments” of the systems’environment,
carrying incomplete information about the system it-
self. The operations perfomed by the observers result
from physical interactions within the quantum universe,
thereby promoting the observers to the status of active
participants. This situation should be contrasted to clas-
sical physics, where ideal observers play only a passive
role in acquiring information. As summarized in Fig. 1,
the quantum observer is the embodiement of the classical
observer’s idea in a world where information can only be
acquired via physical interactions.

Along the same lines, we shall also discuss the relation-
ship among the different observers observations. The ab-
stract transition functions of classical theory are replaced
with physical subsystems, namely communication links.
This perspective brings classical and quantum communi-
cation theory into the game.

After formulating this general framework, one must
identify the circumstances under which this quantum re-
lational description reduces to the classical one. Under
which circumstances does a classical reality emerge from
within a quantum universe? This grand-problem has
been addressed since the very inception of quantum the-
ory. Significant progress has been made with the theory
of decoherence [72–74, 76], which explains the effective
disappearance of quantum interference effects in open
quantum systems. But this did not answer the ques-
tion of the emergence of a unique and common classi-
cal reality. The idea of quantum Darwinism, originally
introduced by Ollivier, Poulin and Zurek [55] recently
opened a new perspective on this problem. This lead to

promote the environment of a quantum system to the
status of an active communication medium, and to dis-
cuss the question of a concensus among the observer us-
ing information-theory concepts. One of the main ob-
jectives of the present project was to explore the rele-
vance of these two paradigm shifts to build an appro-
priate framework for “quantum relativity”. These devel-
opments would enable to explore the quantum geometric
object – if any – which lies behind the quantum rela-
tional description. The existence of such an object has
been intuitively pushed forward following Everett’s orig-
inal work, and is indeed present in Everett’s PhD thesis
entitled The theory of the universal wave function [27].

In this report, we shed light on these problems using re-
cent advances in multipartite quantum information the-
ory. Besides their interest for fundamental physics, they
are relevant to quantum sensing and metrology when con-
sidering a quantum network of stations equipped with
quantum sensors. This situation indeed captures the
essence of using quantum probes for space and universe
exploration.

C. Main results

The main results obtained in this project are the fol-
lowing:

• Quantum observers have been defined. A dictio-
nary between the observer approach to quantum
Darwinism and quantum Shannon theory is pro-
posed and a link to estimation theory discussed.
A hierarchy of quantum observers is proposed, de-
pending on their communication capabilities, and
the degree of collaboration among them.

• The quantum Darwinism framework has been ex-
tended to account for different situations, based
on the above-mentioned hierarchy of quantum ob-
servers: information-theorey criteria for the emer-
gence of objectivity in each of the observer classes
have been obtained, and the corresponding shared
quantum state structure established (up to one
class for which it is still a conjecture).

• Various “phases” of objectivity corresponding to
"shared maximally entangled states”, “information
locking”, “secret sharing” and finally “quantum Dar-
winian objectivity” are discussed. The role of scal-
ing in this hierarchy of phases (each one appearing
at a specific scale) has been explored at a prelimi-
nary level, opening a way to understand the emer-
gent character of Everettian branches in a quantum
multiverse.
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FIG. 1: Cartoon summary of the emergence of the quantum relativity framework from classical relativity and quantum
measurements. Classical relativity box : Observers Oj pace space and time around them using clocks and rules (or radar
signals) in order to map the various events in their vicinity into their local memory. The transition function fij maps the
description for Oi into the one for Oj . Quantum measurement box : a general quantum measurement consists of the interaction
of the system and its environment and an ideal projective measurement performed in its environment. It can be modeled as a
measurement performed on the output of a quantum communication channel. This doesn’t need a caption

D. Organization of the report

This report is intended to be almost self-sufficient. It
presents the results obtained during this project, but also
reviews the basic concepts and existing works needed to
recast them in a broader perspective. Technical details
and proofs are presented in the Appendices.

In Section II, we introduce the notion of a quantum ob-
server, by extending the classical (Einsteinian) notion of
observer. We first consider ideal classical measurements,
while imperfect classical measurements are discussed in
Section II A. The role of communication and of informa-
tion theory are already emphasized at the classical level.
Quantum observers are then introduced in Section II B.
The main questions addressed in this report are formu-
lated in this framework in Section IIC.

Then, Section III is devoted to the discussion of cor-
relations. The important concept of quantum discord
is introduced in Section III B, in order to quantify the
amount of non-classical correlations between quantum
subsystems. Quantum Darwinism is then reviewed in
Section III C.

Section IV presents the main results obtained during
the project. The distinction between objectivity of ob-
servables and objectivity of observations is discussed in
Section IVA. A brief review of an important and gen-
eral theorem (ref. [10]) is presented in Section IV B. In
Section IV C, we introduce a hierarchy of objectivity lev-
els, and discuss the information-theory criterion defining

each level. We also unravel the structure of quantum
states corresponding to each level of the hierarchy. To-
gether with the framework introduced in Section II, these
form the main results of our work.

Finally, Section V summarizes our results, and presents
several perspectives for fundamental physics, quantum
technologies, and potential space applications.

II. FROM CLASSICAL RELATIVITY TO
QUANTUM OBSERVERS

A. Classical observers

In this section, we review measurement in classical
physics, first by discussing in Section IIA 1 the ideal mea-
surement framework that underlies all classical theories3.
Then, we will discuss noisy classical measurements by one
classical observer in Section II A 2, connecting it to esti-
mation problem and showing the relation to information
theoretical quantities through the asymptotic equipar-
tition theorem. Classical noisy measurements by several

3 This framework was mainly introduced to discuss special [20] and
then later general relativity [23] by A. Einstein but it can also be
used to discuss any type of classical theory, even non-relativistic
mechanics.
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classical observers will then be discussed in Section IIA 6.

1. Ideal classical observation

A classical observer O having complete access to the
state X of a classical system records it in their own local
memory as XO. If several observers Oi have access to
the same system, one defines transition functions FOi,Oj

which maps XOi
onto XOj

. Such transition functions
satisfy the following compatibility condition:

FO1,O3 = FO2,O3 ◦ FO1,O2 . (1)

The transition functions satisfying Eq. (1) form what we
call a classical relational description. In such a descrip-
tion, a transition function between two observers tells us
which pairs of quantities are totally correlated.

Interestingly, such a classical relational description
always define a geometric structure which is locally
mapped by each observer in its own memory records.
More specifically, in the case of classical field theory, spec-
ifying these compatibility conditions correspond to math-
ematically define space-time as a (differential) manifold
and field space as a fiber bundle over space time as well
as field configurations as (local) sections of this fiber bun-
dle. In a measurement-oriented view, only the relational
description is considered and, in classical physics, there is
always an objectively-existing geometric object underly-
ing this description (up to the appropriate isomorphism).

This is only a (very compact) review of the kinematic
framework of observation in classical physics, for the spe-
cial case of ideal observers having a complete access to
the system’s degree of freedom with infinite precision. In
a more realistic framework, the observers do not have a
perfect and complete access to the system: first of all,
measurements are not perfect and one should also take
into account the noise introduced by the measurement
itself. Next, each observer could have access to only a
part of the physical quantities, thereby giving them an
incomplete reconstruction of physical reality. Hence, we
shall now discuss more realistic (i.e. noisy) classical mea-
surements.

2. Noisy classical measurements

As depicted on the left panel of Fig. 2, a noisy classi-
cal measurement can be viewed as an estimation prob-
lem. In this approach, the system S, characterized clas-
sically by its microstate s, broadcasts information on the
value X(s) of a certain observable X. The system is thus
placed on the encoder end of a noisy classical communi-
cation channel C, which represents both the experimental
apparatus and noise induced by the environment. On the
receiver end of the channel, an ideal measurement termi-
nal together with a signal processor play the role of the

decoder. The signal processing task consists in an esti-
mation algorithm, which provides an estimate Xest(m)
for x = X(s) from the measured values m.

The noisy communication channel plays the role of the
experiment with its imperfections and the decoder plays
the role of the classical observer. Notice that here, the
encoder is fixed. The system S can be in various mi-
crostates that are characterized by a probability distri-
bution pS(s) but the encoding stage of this system is the
same, regardless of the microstate.

The noisy communication channel is characterized by
the noise probability matrix formed by the conditional
probabilities p(m|x) for the measurement results, know-
ing the value of the observable X. This represents the
imperfection of the measurement apparatus.

In full generality, the observer wishes to reconstruct
the value of the observable from the measurements. The
probability for guessing the correct result is defined as

pguess(x|Xest, C) = Em [δ(Xest(m)− x)] (2)

in which m = M(x) is a random variable distributed
according to p(m|x). This quantity depends: 1) on the x
we wish to estimate; 2) on the estimation algorithm Xest;
and 3) on the noisy communication channel C.

Various estimation scores can be defined. The most
natural one for physicists is the average on all the possible
values of x:

Q[Xest|C, pX ] = Ex [pguess(x|Xest, C)] (3)

in which the average over x is taken according to the
macro-state of S which induces a probability distribu-
tion pX(x) for the values of X. It quantifies the quality
of the estimation algorithm Xest for a given imperfect
measurement C and a given macro-state of the system4.
In computer science as well as in all critical applications,
one considers the worst case scenario score:

W[Xest|C, pX ] = min
x

[pguess(x|Xest, C, pX)] . (4)

It is easy to prove that the quality of the esti-
mator Q[Xest|C, pX ] is maximized by the maximum-
likelihood estimator Xest(m) = argmax[p(x|m)] in
which the likelihood of x for a given m is p(x|m) =
p(m|x)p(x)/(

∑
x p(x)p(m|x)), defined using Bayes rule.

For such a choice,

Q[Xest|C, pX ] =
∑
m,x

p(x)p(m|x)δx,Xest(m) (5a)

=
∑
m

p(m,Xest(m))

=
∑
m

p(m)p(Xest(m)|m) . (5b)

4 This amounts to say that it depends on the joint probability
distribution p(m,x) = p(m|x) pX(x).
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This last quantity is maximized if, for all m, we choose
Xest.(m) = argmax[p(x|m)] which is the maximum like-
lihood estimator denoted by ML. Of course consider-
ing this optimal estimation algorithm gives the highest
guessing probability for the noisy channel, or equivalently
noisy measurement, considered. The guessing probabil-
ity pguess(C, pX) = Q[ML|C, pX ] then only depends on: 1)
the channel p(m|x); and 2) on pX . Equivalently, it is a
function of the joint distribution p(x,m) for the input x
and output m of the channel. Note that, as it depends
on pX , this indicator is defined for a given macro-state
of s. It is appropriate to assess the performance of the
measurement in a given experimental situation. We shall
come back on this point later, when discussing the notion
of single-use capacity of C.

The inverse of pguess(C, pX) represents the typical num-
ber of independent trials needed to obtain a correct es-
timate of the quantity X(s), for a given distribution pX
on the system. We can then define the “min-entropy” as

Hmin(X|M) = − log2(pguess(C, pX)) (6)

which represents the size of the register needed to store
the data associated with the typical number of indepen-
dent trials to get a correct estimate. But before showing
how this estimation-based entropy connects to informa-
tion theoretical entropies, let us make things more ex-
plicit by discussing the simple example of the noisy esti-
mation of a binary valued quantity.

We consider the bit-flip channel Cp in which a classi-
cal bit is flipped with probability p. We also assume that
both values of x are equiprobable. The Bayesian likehood
for having x given a result y is then pB(x|y) = p(y|x)
which is 1 − p whenever x = y and p whenever x ̸= y.
Consequently, for p < 1/2, the maximum likehood algo-
rithm is XML(0) = 0 and XML(1) = 1. This enables
us to estimate the guessing probabilities: pguess(0) =
pguess(1) = 1 − p which is the probability for obtaining
y = 0 (resp. y = 1) for x = 0 (resp. x = 1). Con-
sequently, averaging over x leads to pguess(Cp) = 1 − p
and thus Hmin(Cp) = − log2(1 − p) for p < 1/2. In the
case p > 1/2, then the ML estimation algorithm gives
XML(0) = 1 and XML(1) = 0. When x = 0 is emit-
ted, the probability for having the correct estimation thus
corresponds to the case y = 1 which occurs with proba-
biloty p and thus pguess(0) = pguess(1) = p, which leads
to pguessCp) = p or equlivalently Hmin(Cp) = − log2(p)
for p > 1/2.

3. Classical noisy measurements: many-realizations

Note that, so far, we have defined an estimation prob-
lem which involves only one realization of the microstate
s and therefore, a single value of X and thus only one
measurement result. This can naturally be generalized
to the case of an N -realizations estimation problem as
follows:

• Instead of considering a single use of the noisy com-
munication channel, one considers N uses of the
communication channel, fed with the same value of
x corresponding to N realizations of S prepared in
the same microstate s.

• We can allow for independent measurements, which
amounts to replacing M by N independent copies
of M , or collective measurements, replacing M⊗N

by MN acting on the N outputs of the physical
noisy channels. This clearly makes sense in quan-
tum theory as we shall see later.
In the case of classical systems, the latter possi-
bility seems less natural so we will restrict our-
selves to M⊗N : starting from (x, · · · , x), we obtain
m = (m1, · · · ,mN ) where the mj are independent
random variables, each of them distributed accord-
ing to p(m|x).

• The estimation algorithm Xest,N takes the N mea-
surement results (m1, · · · ,mN ) and gives an esti-
mate of x from the N realizations. It may consist
of N parallel use of the single realization estimation
algorithm and a decision process that computes the
final estimation from these N estimation processes,
for example through a majority vote. More gen-
erally, it may work directly on (m1, · · · ,mN ) and
compute an estimate by exploiting all these values.
This is the case of the maximum likelihood algo-
rithm applied to m.

From these, a guessing probability and an estimation
score can also be defined which depend on EstN and on
C⊗N which describes the parallel use of the imperfect
measurement apparatus C.

It is expected that the estimation is much better in the
case of a large number of realizations N ≫ 1. Results in
this directions are well known from estimation theory, re-
viewed in [15, Chapter 11], which focuses on the problem
of distinguishing between two different values of x, say 0
and 1, each of them leading to a probability distribution
p0(m) = p(m|0) and p1(m) = p(m|1) for the measure-
ment results. The problem then becomes, starting from
a string of N values m = (m1, · · · ,mN ) independently
distributed according to the same px (x = 0 or x = 1), to
recognize from the statistics of the m whether they come
from x = 0 or from x = 1.

The total probability of error P
(N)
err for the N -

realization measurement corresponds to the probability
for estimating 0 when x = 1 and 1 when x = 0 weighted
by the actual probabilities for x = 0 and x = 1. It can
be shown that P (N)

err decays exponentially with N ≫ 1:

min(P (N)
err ) ∼ 2−ND

∗
(7)

with an exponent given by the Chernoff bound:

D∗ = − min
λ∈[0,1]

[
log2

(∑
m

p0(m)λp1(m)1−λ

)]
. (8)
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Remarkably, the exponent D∗ only depends on the prob-
ability distributions p0(m) and p1(m) that we are trying
to discriminate, namely, on the channel itself, and not on
the probability p(x) with which x ∈ {0, 1} is sent at the
input of the channel.

The connexion to information theory quantities can be
made through the following alternative expression

D∗ = D[pλ∗∥p0] = D[pλ∗∥p1] (9)

in terms of the Kullback-Leibler divergence [16, Section
2.3.4]

D[p∥q] =
∑
m

p(m) log2

(
p(m)

q(m)

)
(10)

using the probability distribution

pλ(m) =
p0(m)λp1(m)1−λ∑
m p0(m)λp1(m)1−λ

(11)

evaluated for λ∗ defined by the equation

D[pλ∗∥p0] = D[pλ∗∥p1] . (12)

This optimum corresponds to the maximim likehood es-
timator for Bayesian probabilities p(0|m) and p(1|m) for
the N -realizations experiment.

4. From estimation quality to communication theory

So far, we have defined quality estimators for noisy
measurements which quantify the error in the reconstruc-
tion of the values of a given observable during a noisy
measurement experiment.

But in the spirit of this report, we would like to quan-
tify the amount of information that can be extracted from
such a noisy measurement. Information represents the
size (in bits) of memory registers that are needed to store
some relevant information. For example, the Shannon
entropy of a probability distribution [16, Section 2.2]

S[p] = −
∑
x

p(x) log2(p(x)) (13)

represents the size of such registers for a faithful compres-
sion of the source emitting x = (x1, · · · , xM ) where the
xi are distributed according to p in the limit M → +∞.
In this limit, there exist a coding algorithm Enc send-
ing the x onto MS[p] bits and a decoding algorithm
Est which will have a total guessing probability equal
to unity. This is why, as we shall explain in the next
section, the compression theorem of Shannon should be
viewed as an asymptotic – i.e (M ≫ 1)-shot – error-less
result. The classical noisy channel capacity [16, Section
2.5] is a result of the same type: it tells us that the
error-less capacity of a noisy communication channel C
connecting an emitter X to a receptor R in the asymp-
totic limit is C[C] = maxX(I[X,R]) with I the mutual
information.

However, asymptotic quantities such as Shannon en-
tropies are not appropriate in our description of measure-
ments: the experiment is indeed not repeated an infinite
number of times; ultimately, it is only performed once. In
principle, we should rather consider a single-shot frame-
work, or a N -shot framework where N observers aim at
inferring together the value of x emitted by the system.

Therefore, the proper notion of capacity in this con-
text would quantify the number of bits of information
which can be recovered from a noisy measurement pro-
cess. As we have seen in Section IIA 2, the estimation
process introduces errors, as a result of the noise in the
measurement. Formally, an error is a wrong estimation
of x. The error probability is therefore perr(C, pX) =
1− pguess(C, pX) where pguess(C, pX) has been defined in
Section II A 2. The error probability depends both on the
distribution pX of input values, as well as on the channel
C.

We then define the ϵ-error single shot capacity of the
channel as the maximum number of bits that can be
retrieved from the output m, in a single shot experi-
ment (up to error ϵ). We therefore imagine that x is
drawn from a finite set ΩX with uniform probability
pΩX

(x) = 1/|ΩX |, and consider the maximum of |ΩX |
such that the inferrence of x fails with error probability
perr(C, pΩX

) at most ϵ [14]:

C(1−shot)
ϵ [C] = max

(Est,ΩX)∈Aϵ

(log2(|ΩX |)) (14)

in which the maximum is taken over sets ΩX , and over
all estimation algorithms such that the error probability
is bounded by ϵ:

Aϵ =
{
(ΩX ,Est) s.t. perr(Est|ΩX

|C, pΩX
) ≤ ϵ

}
. (15)

5. Noisy classical measurements: M > 1 experimental runs

In the last two subsections, we have considered the
case of a single experimental run, performed on N real-
izations of a given microstate of the system, which clas-
sically leads to N identical values x of the observable X
we are considering. From a communication-theory point
of view, only one message (emitted as x and received
as (m1, . . .mN ) with probability p(m1|x) . . . p(mN |x)) is
sent across the noisy communication channel. This ex-
plains why the capacity defined by Eq. (14) and (15) is
called a “single-shot” or “single-use” capacity.

On the other hand, the quantities originally introduced
by Shannon [64] are obtained in a so-called “asymptotic
limit”: a stream of M messages (x1, · · · , xM ) is sent
into the communication channel and the coding/decoding
stage is considered in the limit of M → +∞. Physically,
this corresponds to performing M successive experimen-
tal runs: each of them leads to a different micro-state sj
(1 ≤ j ≤ M) and thus to a different xj . When a sin-
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System X OM Sig. Proc. xest

Noisy
channel System

O1

O2

On

...

FIG. 2: A Shannon view at noisy classical measurements: (Left Panel) Recasting of measurement by a single observer in terms
of a noisy communication channel. The system S is placed on the emitting side of a noisy communication channel into which it
injects values of the observable X. The noise represent the experimental noise from the experimental system (not the system) to
the imperfection of the measurement apparatus. The decoder combines an ideal noiseless measurement device M and a signal
processor Sig. Proc. which together lead to an estimate xest = Est(m) for the value of X from the measurement results m.
This end of the noisy channel is the classical observer O. Right panel: when several classical observers O1, . . . ,ON are present,
the system is connected to several noisy communication channels (in black). Comparing the result of the post-processed data
obtained by the observers is done by using ideal communication channels connecting them (in grey).

gle realization is available for each experimental run5, we
have m = (m1, · · · ,mM ) measurement results. Assum-
ing that the experiments are independent, and that the
behavior of the channel is the same for all the M experi-
mental runs, the measurement result m is obtained with
probability:

p(m|x) =
M∏
j=1

p(mj |xj) . (16)

This is called the i.i.d case (independent and identically
distributed) and corresponds to a stationary and memo-
ryless channel. Exactly as in the single use of the channel,
an estimation process at the output of the channel en-
ables one to infer xest(m) from the measurements results
m; and to define an error probability as Prob(xest ̸= x),
minimized over all possible choices of the estimation algo-
rithm. This leads to define the average error probability
for the M -use of the channel, which depends on: 1) the
distribution p

(M)
X (x) over the input messages x; and 2)

on the channel C, defined by p(m|x). Exactly as in the
previous subsection, a M -shot (or M -use) channel capac-
ity C(M−shot)

ϵ [C] can be defined as 1/M times the size, in
bits, of the maximum set of x that can be estimated with
error probability below ϵ.

While this inferrence framework (either in a 1-shot,
or in a M -shot setting), seems the most natural one to
discuss the emergence of a consensus among a collec-
tion of observers, it is traditional in studies of quantum
Darwinism to focus on Shannon-theory quantities. Dis-
cussing the precise and quantitative link between infer-
rence theory (with estimators and Pguess as central ob-
jects), and Shannon theory, goes beyond the scope of this

5 Considering M realizations corresponds to changing the di-
mensionality of the space of measurement results as well
as the probability of these, replacing p(m|x) by p(m|x) =
p(m1|x) . . . p(mN |x).

report. In brief, it can then be shown that, in the limit
M → +∞, M -shot quantities can be related to Shannon-
theory quantities. For instance, for any ϵ > 0 the M -shot
capacity of the noisy channel converges towards the Shan-
non capacity C[C]. This result connects the finite-use,
finite-error capacities, to Shannon’s capacities which are
error-less in the asymptotic regime. Together with other
results such as [35] for example, it establishes Shannon’s
information theory as the asymptotic limit of M -shots
information-theory notions.

To conclude this discussion, let us mention that there
exists a vast area of work [35] which aims at studying the
largeM , finite ε > 0 limits of channel capacities. Review-
ing this topic would go far beyond the scope of the present
report but, from a physicist’s point of view and to get
a better understanding of the positioning of Shannon’s
theory in the landscape of noisy measurement presented
here, it is useful to notice that Shannon’s compression
and noisy channel capacity’s theorem are “thermodynam-
ics theorems” (M → +∞) describing a behavior typical
of a phase transition in the thermodynamic limit: the er-
ror probability jumps from zero to unity when one tries
to compress or transmit at a higher rate than Shannon’s
rates of compression or transmission. The large but fi-
nite M limit deals with “finite size effects”, taking into
account that there is no threshold below which the error
ratio would be strictly zero or above which it would be 1.
A pioneer of these finite size effects is Strassen who has
showed that the M -shot capacity of a channle is given by
[66]:

C(M−shot)
ϵ ≃ C[C] +

√
Vϵ[C]
M

Φ−1(ϵ) +O
(
log2(M)

M

)
(17)

in which Φ−1(ϵ) is the inverse of the error function, and
Vϵ[C] is called the ϵ-channel dispersion [59]. This expres-
sion shows how the large M -shot capacity converges, at
fixed error rate ε, towards Shannon’s noisy channel ca-
pacity.

On the other hand, in the M = 1 case, we are very far
from the asymptotic limit of Shannon’s theory. Strictly
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speaking, the proper way to discuss noisy measurements
in the case of a single observation of a unique realization
of a physical system should rely only on the single-shot
version of information theory. As we hav not yet fully ex-
plored this path, in the forthcoming sections on quantum
observers, we shall introduce Shannon-theory quantities.

6. Many classical observers

The case of several observers can be viewed as a gen-
eralization of the situation we have just considered. Here
also a single source (the system) is connected to several
noisy communication channels in a star topology, but
they are allowed to measure different observables: instead
of having C⊗N , we haveN different channels (C1, · · · , CN )
as depicted on the right panel of Fig. 2. And of course,
each of them has his own decoding stage, corresponding
to a different observer, which we will now discuss.

Note that all the channels are fed with the same s
which gives (X1(s), · · · , XN (s)), the true values of the
observables for the micro-state s. In this case, the goal of
the observers is to recover the physicl quantity x = X(s).
One could imagine that the obserables Xj are multi-
dimensional so that each of the estimation algorithms
aim at reconstructing an estimate for x. Therefore, we
are left with the question of consensus: can they agree
on the same value of x, or, in estimation theory terms,
can they have a collective estimation stage that will give
them a consensual estimation whose quality can then be
assessed along the lines sketched above ?

But one could also imagine that the various observers
cannot reconstruct x individually because they don’t ac-
cess all the necessary observables. In such a case, they
have to use a collective estimation algorithm. In both
cases, they have to exchange information and that’s why,
in the present framework, we have to endow them with
classical perfect communication channels as shown on
Fig. 2. The collective estimation algorithm can be dele-
gated to one of the observers, so we don’t have to show
it on the figure.

Exactly as in the single observer discussed in Sec-
tion II A 4, the question of how much information can
be retrieved via a single use of the whole measurement
network with fidelity bounded by ϵ has to be asked. Of
course, the information might then be spread across all
the observers and then, the total number of bits that
could be retrieved is certainly higher when the observers
work collectively. Intuitively, this would lead to a single-
shot version of a noisy channel Slepian-Wolf problem. Let
us recall that the original Slepian-Wolf problem [65] deals
with the distributed compression of a classical source and
provides a zero-error result in the asymptotic limit [16,
Section 2.5.4].

As of March 24, 2023, we haven’t dug further along
this line but this is certainly worth pursuing. Instead,
we will now move forward to the extension of the present
framework to the quantum domain, stressing the main

SX

C1

C2

O1

O2

(b)

SX

C1

C2

O1

O2

(b)

FIG. 3: Two classical observers O1 and O2 are measuring the
same observable X of the system S through noisy channels C1

and C2: (a) the observers are not allowed to communicate (b)
O1 and O2 are allowed to use a perfect classical communica-
tion channel (in grey) and exploit correlations between their
imperfect measurements.

differences with the classical case.

B. Quantum observers

1. Definition

A quantum observer is an agent capable of local quan-
tum and classical operations as well as classical or quan-
tum communications. It is realized as a physical subsys-
tem that is macroscopic enough to be partly described as
classical, thereby explaning why it has classical memory
and computing capabilities as well as classical commu-
nication capabilities. But it has also quantum degrees
of freedom that can be completly isolated from the rest
on demand. The observer can then perform any unitary
quantum operation on these degrees of freedom. More-
over, these degrees of freedom can be extended by adding
more qubits or using the quantum communications links
with the other observers.

Among these degrees of freedom, the quantum mea-
surement apparatus of each observer is directly or indi-
rectly coupled to the system and therefore, each observer
can be thought of as having access to a part of the sys-
tem’s environment, exactly as in quantum Darwinism.
Consequently, after the phase of pre-measurement, the
system as well as the environmental’s quantum degree of
freedom are in a global entangled state |Ψtot⟩. Tracing
over the degrees of freedom that are not the system’s ones
of the quantum observers ones lead to a reduced density
operator ρSF describing the quantum state of the system
and of all the quantum observers under consideration.

2. Measurements

Measurement denotes the process by which any ob-
server extracts classical information from the quantum
degrees of freedom it has access to.
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Here, we will consider that the observer Oj has access
to general measurements which are described by a set of
Kraus operatorsMj,m wherem ∈ Rj denotes the possible
results. These operators act only on Hj and satisfy:∑

m∈Rj

M†
j,mMj,m = 1Hj

. (18)

When the observer Oj performs such a generalized mea-
surement and obtains the result m ∈ Rj , the state |Ψtot⟩
of the system and all the observer’s quantum degree of
freedom jumps to the relative state with respect to this
measurement result m:

|Ψtot[m]⟩ = Mj,m |Ψtot⟩√
⟨M†

j,mMj,m⟩|Ψtot⟩

, (19)

with probability:

p (m| |Ψtot⟩) = ⟨M†
j,mMj,m⟩|Ψtot⟩ . (20)

Such a collection of at most one experimental result col-
lected by each observer is called a measurement record.
Note that the relative state depends on the full measure-
ment record. The measurement records can be stored in
the memories of the observers and then processed clas-
sically or communicated among the various observers.
We thus have the notion of a quantum trajectory for
the full quantum state associated to the experimental
records collected by the observers. Note that this no-
tion only depends on the data that the observer is using
to retro-compute the quantum trajectory of the system
with respect to the records he is considering. Consider-
ing all the data collected by all the observers gives access
to the most refined quantum trajectory, which is then
independent on the observer as soon as they have access
to classical communications, and therefore to the same
measurement records.

3. Communication capabilities

The observers are capable of classical communications
but also of quantum communications. This means that
they can establish ideal quantum communication chan-
nels between them and send parts of their quantum de-
grees of freedom along these ideal quantum channels. Of
course, they have the same capabilities for classical com-
munications channels. Observers can also introduce new
quantum degrees of freedom into the game at will and
therefore, can also generate on demand maximally entan-
gled qubit pairs (called EPR pairs) between themselves.

Quantum and classical information quantities will be
used to quantify the amount of quantum as well as clas-
sical communication resources that they can use. We
will use the notations of resource calculus [17] (see [16,
Chapter 7] for a pedagogical introduction) to describe
protocols and relations between them.

4. Classical image extraction by quantum observers

For a quantum observer, extracting a classical image of
the world consists in performing a generalized measure-
ment on the quantum degrees of freedom it has access to.
However, by doing so, the relative state of the other ob-
servers and of the system will depend on its measurement
result. If all the observers perform such measurements,
the relative state of the system and of the environmental
degrees of freedom that are not included in any observer
will depend on the measurement results. If a set of n
quantum observers O1,...,n = (O1, . . . ,On) perform gen-
eralized measurements, we are left with a relative state
of the system and other untouched degrees of freedom
– the environment of (S,O1,...,n) – with respect to the
results of these n generalized measurements. Of course,
the measurement results are random and therefore, we
do not recover an ideal classical measurement. Moreover,
generically, the measurement results cannot be described
using a classical noise model, which amounts to assume
that the correlations between the various measurements
obey Bell like inequalities.

The question is precisely to determine under which
conditions there is a classical reality to be recovered and,
in such a case, how it can be recovered by the observers.
The above discussion tells us that this is clearly a far
more involved problem than in the classical world be-
cause here, it is first not obvious that there is such a
classical reality, and, as will be discussed in the present
record, it can be encoded in a more subtle way than in
the classical world. An important point is also that the
answer to at least the second question clearly depends on
the choice of generalized measurements by the observers,
on their communication capabilities. Obviously it also
depends on the global entangled state generated by the
quantum pre-measurement interaction.

To strengthen this intuition, let us first discuss more
precisely what the quantum observers perspective intro-
duced in the previous subsections can bring us. From this
point of view, allowing only local operations and classical
exchange of the measurements results (LO) corresponds
to what the observers discussed in Section II A 2 were do-
ing: they perform measurements and then compare their
results. We shall call them LO-observers.

A more powerful set of capabilities is obtained by al-
lowing the observers to condition the choice of measure-
ments they are performing to the results of other ob-
servers. Of course, this does not matter in the classical
world since measurement do not alter the state of the sys-
tem and therefore commute but this leads to non-trivial
possibilities in the quantum world because of the exis-
tence of incompatible quantum observables. This is the
full power of local quantum operation and classical com-
munication (LOCC) which enables them to perform a
kind of collective adaptative measurement (see Fig. 4).

By contrast, sharing entangled quantum states on top
of being able to perform all LOCC operations enables to
do more than with LOCC only. For example, the quan-
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FIG. 4: Circuit representation of operations performed by
observers: boxes represent classical measurements, double
lines represent classical communication and oblique solid lines
are perfect quantum channels. Left part: Alice and Bob who
are two quantum observers entangled with a system S, are
only using LOCC. Right part: by using quantum communi-
cation, Alice and Bob are performing a state transfer concen-
trating all their shared quantum information on Bob without
affecting the system and possibly leaving some entangled pairs
free for later use between them.

tum teleportation protocol expresses that sharing entan-
gled pairs enables to simulate quantum communication
between two observers. Therefore, a quantum observer
entitled with LOCC and shared entanglement with the
other observers can use quantum communication proto-
cols (QCPs) to transfer his share of the global quantum
state as well as its correlations with the system and with
the other observers away from him [2] (see Fig. 4). The
quantum observer which is the receiver in such a pro-
tocol can then performed generalized measurements on
the global state he now has in his hands. This means
that he potentially has access to all the correlations that
were shared between him and the sender of the quantum
state transfer protocol before it was executed. Conse-
quently, by using quantum non-local resources, the ob-
servers can access quantum correlations between them-
selves and even can characterize, in the large number of
realization limits, the quantum state they share by trans-
ferring correlations to one of them. The problem becomes
non trivial in thez case of a finite number of realizations:
this is the topic of quantum estimation theory which aims
at bounding the quality of an estimation of a quantum
state given a fixed number of realizations [16, Chapter
4].

Because it enables us to discuss the precise resources
that are mobilized for performing certain communication
tasks, the framework of quantum Shannon theory applied
to quantum observers appears as the proper framework
to understand the emergence of a classical picture for
physical observers embedded within a quantum universe.

C. Questions to be addressed

1. What is to be seen vs how it can be seen

As explained before, the main questions addressed in
these notes are: the question of (Q1) understanding
which classical “image of the world” (if any) can be ac-

cessed to the observers and (Q2) how it can be retrieved.
These questions are basically different : the first ques-
tion involves the structure of the global quantum state
for the system and the observers whereas answering the
second one is relative to the operational capacities of the
observers.

Concerning the first question (Q1) in the perspective of
reconstructing a classical reality, the issue of objectivity
can be formulated as the existence of a classical quantity,
independent of the observers which could, in principle, be
accessed by all the observers. This is the question of the
emergence of an objective observable. Whether or not
and how the observers have the capability to access it,
to reach a consensus about it, heavily depends on the
observers and, therefore, is part of the second question
(Q2) we have formulated. This is the question of the
objectivity of observations.

More precisely, questions about consensus between the
observers often implicitly refer to a comparison between
reconstructed classical images of the world by each ob-
server. In this case, it implies a comparison between the
observer’s experimental data. As such it makes sense
when considering LO-observers. In the case of LOCC-
observers fully exploiting the possibility to design coop-
erative adaptative measurements, a consensus emerges
automatically, almost by definition, from their collective
work to reconstruct a classical image of the world. They
can share it after their collaborative reconstruction pro-
cess. This difference between LO and LOCC-observers
shows that there is a hierarchy of notions of objectivity
depending on the constraints we put on information ex-
change. As stated in the Introduction, these questions
are discussed in Section IV.

In principle, one could also wish to formulate ques-
tions (Q1) and (Q2) in the perspective of reconstructing
a quantum reality, that is the quantum state of the sys-
tem. However, one should be careful that the state of
the system is not absolute but relative to the observer
[26, 27]. Several subtleties must therefore be addressed
when considering questions (Q1) and (Q2): the role of the
backaction of each measurement performed by each ob-
server on the entangled state of the system must be taken
into account and it is not obvious at all that a cooper-
ative reconstruction of the reduced state of the system
before any measurement takes place be always possible.
Secondly, the notion of objectivity of the reconstructed
quantum state has to be specified. Finally, since we ex-
pect these questions to be somehow connected to quan-
tum estimation problems, this is directly a problem that
deserves being studied for a finite number of realizations,
which we think makes it technically not so simple. As
of March 24, 2023, this is still left as a perspective and
most of this report will address questions (Q1) and (Q2)
in the perspective of reconstructing a classical reality.

To address these questions, three point of views will
be used throughout these notes, each of them with a dif-
ferent focus:

• Focusing on the structure of the state of the sys-
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tem and the observers will enable us to understand
which information they can access. This will be
closely related to the nature of correlations between
the system and the observers and between the ob-
servers themselves. Depending on their capacities,
they will be able to extract all, part or maybe none
of the information they are looking for on the sys-
tem.

• We shall use information theoretical quantities to
distinguish the various classes of system/observer
states and we shall also use information theoretical
measures of the abilities of the observers to recover
information on the system given their capacities.

• How the observers extract an image of the world,
either independently or collectively is an estimation
problem. The answer to it depends on the observers
capabilities. Of course, it would be interesting to
quantify the minimal communication and compu-
tation resources needed to perform such a task.

Of course, since information theoretical quantities are
notoriously difficult to compute, it might be interesting to
address these questions within a more operational frame-
work, that is by considering only specific set of observ-
ables accessible to the observers and focusing on correla-
tions between these observables.

2. Reconstructing an objective classical image

Let us first discuss the problem of reconstructing an
objective classical image. First of all, in quantum the-
ory, classical configurations correspond to perfectly dis-
tinguishable quantum states (mutually orthogonal).

Let us assume that such states of the system S are
denoted by |s⟩, indexed by s and that the whole envi-
ronment of S is denoted by E and contains the observers
quantum degrees of freedom which are denoted by F .
Then, assuming we are dealing with an observableX such
that x = X(s) is a coarse-graining of s, reconstructing a
classical image means being able to distinguish between
x ̸= x′ by performing measurements on F . In order for
this to be possible, we need the state of F relative to the
various values of x to be orthogonal. These relative or
conditional states are defined by

ρ(F |x) = trS (ΠxρSF ) (21)

where Πx is the projector onto the subspace spanned
by all |s⟩ such that X(s) = x, and ρSF denotes the
joint state of S and F . Note that in general, ρSF =
TrE \ F (ρSE) contains coherences between different val-
ues of x and x′. Assuming that no such coherences exist
is an extra hypothesis which amount to saying that there
are extra quantum degrees of freedom, not in S not in F
which select an orthogonal basis for F . This einselection

[58, 74, 76] is precisely what defines the objectivity of x
of S for F . This extra assumption implies that:

ρSF =
∑
x

p(x)Πx ⊗ ρ(F |x) . (22)

in which x 7→ p(x) is a probability distribution and
ρ(F |x) denotes a conditional state of F relative to the
value of x for S. The orthonormal projectors {Πx}x then
define an objective observable X for S: it is the same for
all the observers in F .

The same definition can be given for a generalized mea-
surement M on S with values x : in this case, there exist
mutually orthonormal projectors Πx, acting on a register
space HE\F , and non orthonormal projectors Πψx

on HS

such that

ρRSF =
∑
x

p(x)Πx ⊗Πψx ⊗ ρ(F |x) (23)

where R denotes the space of register states (Πx). Taking
the trace over S, the quantum state of RF is then

ρRF =
∑
x

p(x)Πx ⊗ ρ(F |x) (24)

and consequently, we are in the same situation as before
except that we have traded S for the register’s degrees of
freedom. States of the form given by Eqs. (22) and (24)
are called classical–quantum states. As we shall see in
Section III, not all bipartite (S, F ) states are of this form.

A decomposition of the form (22) or (24) does not tell
us if the various observers in F can identify unambigu-
ously each value of x. For instance, it could be the case
that for all x, ρ(F |x) = ρ0(F ) with ρ0(F ) some state in-
dependent of x; in this case, the global state would be of
the form ρSF = ρS⊗ρ0(F ), so that the observers degrees
of freedom are uncorrelated with the system – no infor-
mation about x is available in F . But also in the other
extreme case where all ρ(F |x) are perfectly distinguish-
able for different values of x – so that the information
about x is, in principle, available in F –, it does not
tell us how the observers can, in practice, recover this
information. In particular, it does not tell us whether
this information about x is available, in principle, to ev-
ery observer individually, or to all observers only if they
share some information they extracted individually, or
to all observers only if they perform a global collective
measurement on all their degrees of freedom.

This precisely explains why, as suggested in Sec-
tion II C 1, we first have to distinguish two different no-
tions of objectivity:

• Objectivity of observables: different observers prob-
ing independent parts of the environment have ac-
cess to only one observable of the system.

• Objectivity of outcomes: different observers prob-
ing independent parts of the environment have full
access to the above observable and agree on the
outcome.
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The objectivity of observables states that the environ-
ment selects one specific observable of the system (one
specific measurement) which may be accessible by per-
forming a generalized measurement on F . In other words,
this is the pointer observable of S induced by its environ-
ment. The second aspect of objectivity states that, given
this pointer observable, all the observers agree on one
specific outcome (one specific measurement result). This
is the real consensus on memory records among many ob-
servers. Of course, this is a much stronger requirement.

As will be discussed in Section IVB, it has be shown
[10] that the emergence of an objective observable is in-
herent to the structure of quantum theory while the emer-
gence of one specific result is dependent on the global ρSF
state and on the observer’s capabilities. The first impor-
tant point is that a single generalized measurement on F
can unambiguously distinguish between x and x′ if and
only if ρ(F |x) ⊥ ρ(F |x′) (namely: Tr[ρ(F |x)ρ(F |x′)] = 0.
This is the global orthogonality condition which states
that quantum observers using fully quantum communi-
cation protocols between them can, in principle, cooper-
atively distinguish between s and x′ ̸= x. As we shall
see now, even when the global orthogonality condition
is satisfied, it is a non-trivial problem to assess whether
more limited observers can distinguish the various values
of x.

3. Observer capabilities

From a quantum communication point of view, we are
dealing with a quantum communication channel that en-
codes the classical information x using quantum states
ρ(F |x) received by the observers. In cryptographic terms,
we are encoding a secret. The ability to uncover this se-
cret is a function of the decoder’s capability at the recep-
tion’s end of the quantum communication channel. As
explained in the previsous section, introduce four differ-
ent classes of observers corresponding to different decod-
ing capabilities:

• Fully-Quantum observers (FQ-observers): each ob-
server can apply any local quantum operation and
is allowed to use any quantum non local communi-
cation resource.

• LOCC-observers: each observer can apply a lo-
cal quantum operation and classical communica-
tion is allowed between the observers. Therefore,
global adaptative protocols based on measurements
and quantum operations conditioned to classical in-
formation is allowed. Equivalently, the outcome
ρ(F |x) is split over the Fi’s which act as quantum
decoders only allowed to use classical communica-
tion.

• LO-observers: observers are allowed to apply local
operations but classical communication is only al-
lowed for comparison of the results. No adaptative

collective measurement is allowed. In cryptograph-
ics terms, this corresponds to 1-way decoding by a
set of independant decoders allowed to use classical
communication only.

Each of these observer classes therefore corresponds to
a set of allowed generalized measurements.

• 1−Obs: finally, we shall consider the ability of a
single observer, not allowed to communicate with
other observers, to recover x.

4. Guessing probability and min entropy.

In order to quantify the ability for the observers to infer
x, we introduce the probability Pguess that the observer,
receiving the quantum state ρ(F |x), correctly “guesses”
the actual value of x.

More generally, if the classical variable x is broadcasted
through a quantum channel, the oberver receives the con-
ditional or relative quantum state ρ(F |x) with probabil-
ity px as in Eq. (22). Here, the quantum state ρ(F |x) is
in general mixed, so that the classical case is recovered if
all ρ(F |x) are diagonal in the same basis |m⟩, and can be
viewed as classical probability distributions p(m|x) over
these states thanks to:

ρSF =
∑
x

p(x)Πx ⊗
∑
m

p(m|x)Πm (25a)

=
∑
m,x

p(m,x)Πx ⊗Πm , (25b)

where Πm = |m⟩⟨m|. However, note that this is not
generally the case: we are left with Eq. (22) in which
the relative states ρ(F |x) cannot be diagonalized in a
common basis.

In the present setting, the guessing probability is de-
fined by averaging over x a quantum guessing probability
for each x, corresponding to the best choise of POVM
{Nx}x by the observer:

Pguess[{px, ρ(F |x)}] = max
{Nx}

(∑
x

px tr[Nxρ(F |x)]

)
.

(26)
We then introduce the “min-entropy” as Hmin(S|F ) =
− logPguess[{px, ρ(F |x)}]. In general, as in the classical
domain, we have the inequality:

Hmin(S|F ) ≤ S(S|F ) (27)

where the relative or conditional entropy is defined as
S(S|F ) = S(ρSF )− S(ρF ) with S the von Neumann en-
tropy, and ρSF is the classical-quantum state defined in
Eq. (22).

It is worth mentioning that quantum estimation theory
is well developed: a quantum Chernoff bound is known [4]
as well as the quantum Stein lemma [39, 54]. This enables
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us to discuss error rates and the notion of a single-shot
classical capacity of a quantum channel has also been
defined [68]. A forthcoming book by Mark Wide [43]
should review this field.

Following the tracks of Section II A for the noisy clas-
sical measurements, we conjecture that single-shot quan-
tum information theory provides the proper framework
for discussing all the problematics of the emergence of a
classical reality for observers conducting one run of gen-
eral quantum measurements on a single realization of a
quantum system. However since we haven’t yet followed
this track and explored all its consequences, we shall now
introduce quantum Shannon’s quantities which certainly
appear in the limit of a large number M of experiments
but which will nevereless be useful to discuss under which
conditions the various classes of quantum observers can
reconstruct a classical image of the system, or at least of
one observable of the system (see Section IV).

5. Accessible information.

Anticipating on the following sections, one can define
the accessible information for each measurement class X
(LO, LOCC, etc.) by

Iacc(S, F ;X) = max
M∈X

(I[S,M ]) (28)

in which I[S,M ] represents the von Neumann mutual in-
formation of the reduced density operator after the mea-
surement M has been performed on the fragments F (see
Section III). From an information theoretical perspective,
this quantity is a kind of “constrained classical capacity”
of the quantum channel which has S on its emitting side6

and a receiver constrained to use a measurement in the
X measurement class. The classical information trans-
mitted along this quantum channel consists in the value
x considered in Eq. (22). In particular, for the Fully-
Quantum observer (FQ), Iacc(S, F ; FQ) is nothing but
the full accessible information on the F side of the quan-
tum channel that encodes x into ρ(F |x).

For a single observer, we consider any fragment Fi ac-
cessed by the observers. Then, the definitions imply that

Iacc(S, F ; FQ) ≥ Iacc(S, F ; LOCC)

≥ Iacc(S, F ; LO) (29)
≥ Iacc(S, Fi; 1−Obs) (30)

These accessible informations correspond to the commu-
nication capacity of the full communication system, from
the system S to the decoding by the Fi’s.

6 The encoding is fixed, hence the adjective constrained. This is
precisely the definition of the accessible information: the encod-
ing stage is fixed but one can choose the decoding state [16, Sec-
tion 7.3]. Channel capacities are obtained by maximizing over
the encoding stage.

The global orthogonality condition implies that
Iacc(S, F : FQ) = S[p(x)] –namely, there exists a global
measurement on F whose outcome identifies a unique
value of x–, but it does not imply that the information
about x can be accessed through LOCC or LO protocols
(see Section IV.

III. CORRELATIONS AND QUANTUM TO
CLASSICAL TRANSITION

In the previous section, we have modelled the system
as a source of classical information x, encoded into frag-
ments of the environment, which are quantum degrees of
freedom. We then considered the task to infer the value
of the classical variable x by measurement on the frag-
ments. By construction, in this situation, the system and
the fragments only share classical correlations. However,
in a general situation, also quantum correlations, such
as quantum entanglement, may be present. The goal of
this section is to clarify the distinction between classical
and quantum correlations. In order to do so, we focus
on information-theoretic quantities whose operational in-
terpretation is rooted in Shannon theory, generalized to
quantum systems. This point of view – traditional in the
field of quantum Darwinism – is somewhat at variance
with the inference point of view of the previous section;
and clarifying the relation between these complementary
perspectives is an important question for future studies.

In Section IIIA, we introduce the concept of quan-
tum mutual information, and the concept of “informa-
tion gained through a measurement”. While these two
quantities are identical in classical physics, they differ
for quantum systems, which leads us to introduce the
concept of quantum discord in Section III B, which is
a quantitative measure of non-classical correlations be-
tween two systems. The vanishing of the quantum dis-
cord allows to identify classes of states which have the
classical-quantum structure considered in the previous
section. Finally, in Section III C, we discuss the role of
the quantum discord in the quantum-to-classical transi-
tion.

A. Classical vs quantum correlations

We consider a bi-partite quantum system denoted AB
(for instance, A is the system, and B is one specific frag-
ment, the community of all fragments, or all the envi-
ronement of the system). We will discuss the nature of
correlations between subsystems A and B. In a classical
situation, Alice and Bob are viewed as sources of clas-
sical information (encoded in classical variables denotes
x for Alice and m for Bob), described by a joint proba-
bility distribution pAB(x,m). In the quantum case, they
are sources of quantum information encoded in the joint
quantum states ρAB .
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1. The mutual information

In classical information theory, correlations between
the A and B are quantified by the (classical) mutual in-
formation

I[A,B] = S[A] + S[B]− S[A,B] . (31)

In this equation S[A] = −
∑
x pA(x) log pA(x) denotes

the Shannon entropy of the marginal probability on A
[pA(x) =

∑
m pAB(x,m), and similarly for S[B], with

pB(m) =
∑
x pAB(x,m)], whereas S[A,B] denotes the

Shannon entropy for the joint probability distribution
pAB(x,m) for A and B subsystems. Its operational
meaning in classical communication theory comes from
the result of Slepian Wolf (see Appendix B): I[A,B] cor-
responds the economy in classical information transmis-
sion rate that can be made by using correlations in a
distributed compression protocol.

In the quantum case, the same formal definition can be
used, replacing Shnnon entropy of the classical distribu-
tions p by von Neumann entropy of the quantum states
ρ:

S[ρ] = − tr(ρ log ρ) . (32)

The corresponding von Neumann mutual information
will also be denoted by I[A,B] (we keep the same no-
tation for classical Shannon entropies and quantum von
Neumann entropies; the context will make clear the ap-
propriate quantity). The basic properties satisfied by this
quantity are recalled in Appendix C. Crucially, although
both the Shannon and the von Neumann mutual infor-
mation have the same lower bound, equal to zero when
the two systems are in a product state, they differ by
their upper bound which is equal to min(S[A], S[B]) for
the Shannon entropy and 2min(S[A], S[B]) for the von
Neumann entropy.

Figure 5 shows the region, in the I[A,B]/S[A] and
S[B]/S[A] variables in which correlations cannot be de-
scribed classically because the von Neumann mutual in-
formation is larger than the upper bound for the clas-
sical Shannon information. In this region, one of the
two conditional entropies S[A|B] = S[A,B] − S[A] or
S[B|A] = S[A,B]− S[A] has to be negative.

2. Information gain through a measurement

Before considering the various types of bipartite states,
let us revisit the problem of quantifying the information
gained through a measurement. We consider both the
classical and quantum situations.

Classical situation. Let us first consider the case
of an imperfect measurement in a classical situation –,
namely, the situation considered in Section II A 2. Al-
ice prepares subsystem A in the state x with probability
pA(x), and sends them to Bob through a noisy chan-
nel. Bob then measures the quantity MB on the sys-
tem B, obtained at the output of the channel, thereby

I[A,B]/S[A]

S[B]/S[A]0

1/2
1

2

1

FIG. 5: Bounds for the Shannon and von Neumann mutual
informations in units of S[A] in terms of S[B]/S[A]. The
dark grey zone corresponds to the classical bounds whereas
the light grey zone corresponds to values of I[A,B]/S[A] that
are not allowed in a classically correlated system and even not
in a separable state as shown in Appendix C 3.

obtaining results m which are randomly distributed ac-
cording to pB(m|x). From this result m, using Bayes
rule, Bob then infers a conditional probability distribu-
tion pA(x|m) = pAB(x,m)/pB(m) for the state of Al-
ice. The Shannon entropy of this distribution is denoted
S[A|m]:

S[A|m] = −
∑
x

pA(x|m) log pA(x|m) . (33)

Averaging over the measurement results m, the entropy
of A conditioned on the measurement MB performed by
Bob is:

S[A|MB ] :=
∑
m

pB(m)S[A|m]

= −
∑
m,x

pB(m)pA(x|m) log pA(x|m)

= −
∑
m,x

pAB(x,m)[log pAB(x,m)− log pB(m)]

= S(A,B)− S(B)

Performing the measurement has allowed Bob to reduce
his ignorance about Alice’s state x from S[A] to S[A|MB ],
so that the information gain is:

S[A]− S[A|MB ] = S(A) + S(B)− S(A,B) . (35)

This is exactly the mutual information defined in
Eq. (31):

Igain[A;MB ] ≡ I[A,B] . (36)

If the channel does not introduce noise, then Bob can
perfectly infer the value of x from his measurement
outcome m. In this case, S[A|MB ] vanishes, and the
information gained by the measurement is, by definition,
equal to the initial entropy of pA(x), namely S(A).

Quantum situation. In the quantum situation Alice
prepares a bipartite quantum state ρ(0)AB , and sends the
B subsystem to Bob through the noisy channel. Before
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performing a measurement, the initial density matrix for
Alice and Bob is ρAB . Bob then performs a generalized
measurement (POVM) MB = {Mm}, yielding the out-
come m. As a result of the measurement, the reduced
density operator for Alice is:

ρ(A|m) =
TrB(MmρABM

†
m)

pB(m)
. (37)

TheMm operators act on HB , and satisfy
∑
mM

†
mMm =

1B . The outcome m is obtained with probability
pB(m) = Tr[M†

mMmρAB ]. Notice that the conditional
state ρ(A|m) are not necessarily pairwise orthogonal.
Similarly to the classical case, Bob’s uncertainty about
Alice’s state is quantified by the conditional entropy:

S[A|MB ] =
∑
m

pB(m)S[ρ(A|m)] . (38)

The information gained by Bob through the measure-
ment MB is therefore Igain[A;MB ] = S[A] − S[A|MB ],
where the (unconditioned) reduced state for Alice is
S[A] = S[ρA] with ρA = TrB(ρAB). We have

ρA =
∑
m

pB(m)ρ(A|m) , (39)

as a direct consequence of the expression pB(m)ρ(A|m) =
TrB(MmρABM

†
m), and of the property

∑
mM

†
mMm =

1B . An equivalent expression for the information gain is
therefore:

Igain[A;MB ] = S [
∑
m pB(m)ρ(A|m)]

−
∑
m pB(m)S[ρ(A|m)] . (40)

This is exactly the Holevo quantity χ[(ρ(A|m), pB(m))]
which bounds the amount of information that can be
recovered if Alice encodes the values of m distributed ac-
cording to pB(m) using mixed states ρ(A|m) [40]. Note
that, by concavity of von Naumann entropy, this quan-
tity is always non-negative. Moreover, when the relative
states ρ(A|m) are mutually orthogonal, it reduces to the
Shannon entropy of the results, as would be expected,
since we are dealing with a maximally efficient general-
ized measurement.

As shall be discussed in Section III B, the information
on Alice’s state gained through a measurement by Bob,
as quantified by Eq. (40), is in general smaller than the
von Neumann mutual information, while both quantities
are equal in the classical case. This discrepancy leads to
introduce the quantum discord.

3. Bipartite state typology

In order to clarify the origin of the discrepancy
between the classical and quantum situations – leading
to introduce the quantum discord in the next section –,
it is useful to first clarify how classical correlations are

described within the quantum framework. This leads
us to introduce a hiearachy of four classes of bipartite
quantum states: classical–classical, classical–quantum,
separable, and entangled states.

Classical–classical states. A lassical–classical (CC)
state is a density operator of the form

ρcc
AB =

∑
x,m

pAB(x,m) |x⟩⟨x| ⊗ |m⟩⟨m| (41)

with (|x⟩)x is an orthonormal basis for Alice’s Hilbert
space, and (|m⟩)m an orthonormal basis for Bob’s
Hilbert space, and pAB(x,m) is a probability distribu-
tion. For such a state, the quantum mutual information
coincides with the Shannon mutual information of the
probability distribution pAB(x,m). Consequently, bipar-
tite states with quantum mutual information exceeding
the classical upper bound min(S[A], S[B]) cannot be
classical–classical. As is shown in Appendix C 3, they
are in fact entangled.

Classical–quantum states. Classical–classical
states are a special case of classical–quantum (CQ) states:

ρcqAB =
∑
x

pA(x) |x⟩⟨x| ⊗ ρ(B|x) (42)

in which |x⟩ an orthonormal basis and pA(x) defines a
probability distribution. CQ states can be interpreted as
the result of the following procedure: 1) a measurement
MA, diagonal in the basis (|x⟩)x, is performed on Alice’s
side, yielding outcome x with probability pA(x); 2) con-
ditioned on the outcome x of the measurement, the state
ρ(B|x) is sent to Bob.

It is important to notice the asymmetry between
Alice and Bob in this definition: a state could be
classical–quantum but not quantum–classical. Impor-
tantly, the states ρ(B|x) are not necessarily mutu-
ally orthogonal. To make manifest the difference with
classical–classical states, let us diagonalize each ρ(B|x) =∑
m pB(m;x) |m;x⟩⟨m;x| with pB(m|x) defines a proba-

bility distribution for the m variable, and (|m;x⟩)m form
an orthonormal basis for Bob. Then, we have

ρAB =
∑
x,m

pA(x)pB(x|m) |x⟩⟨x| ⊗ |m;x⟩⟨m;x| . (43)

This structure looks very similar to classical–classical
states [Eq. (41)], except for the fact that the bases
|m;x⟩)m are different for each x, and the complete
collection (|m;x⟩)m,x forms a family of states which are
not mutually orthoonal.

CC-states, CQ-states, and the accessible infor-
mation. CC-states and CQ-states can be distinguished
via information-theoretic measures of correlations. From
the information gain, introduced in Eq. (40), we are led to
introduce the notion of accessible information (namely,



17

the information about Alice which can be accessed by
making measurement on the Bob’s subsystem):

Iacc(A,B) = max
MB

Igain(A;MB) , (44)

where the max is over all (generalized) measurementsMB

which can be performed by Bob. Clearly, the definition
is asymmetric between Alice and Bob, and one can also
introduce the information about Bob accessible by Alice:

Iacc(B,A) = max
MA

Igain(B;MA) , (45)

where MA are generalized measurements performed by
Alice. One can finally introduce a symmetric notion
of accessible information, which quantifies the correla-
tions between measurement outcomes on Alice and Bob’s
subsystems. Indeed, if Alice measures MA and Bob
measures MB , one can define a joint probability dis-
tribution pMA,MB

(x,m) for obtaining the pair of out-
comes (x,m). Therefore, to every choice of measure-
ments (MA,MB) corresponds a classical mutual informa-
tion I(A,B;MA,MB) for the corresponding probability
distribution pMA,MB

(x,m) [Eq. (31)]. Maximizing this
classical mutul information over all choices of measure-
ments, we define the classical–classical mutual informa-
tion:

Icc(A,B) = max
MA,MB

I[A,B;MA,MB ] . (46)

The accessible information and the classical–classical
mutual information are non-increasing under local oper-
ations, and are non-negative. The accessible informa-
tion represents the maximum information about Alice
that can be obtained by performing a measurement on
Bob’s side (or vice-versa), whereas the classical–classical
mutual information represents the maximal information
which can be obtained by performing measurements on
both sides.

These quantites can be used to distinguish classical–
classical from classical–quantum states, as stated by the
following theorems that we admit (see appendix D):

Theorem A.1. The state ρAB is classical–classical if
and only if I(A,B) = Icc(A,B).

Theorem A.2. The state ρAB is classical–quantum if
and only if I(A,B) = Iacc(B,A).

Separable states. Before moving on to discuss quan-
tum discord, let us mention that quantum correlations
are not necessarily equivalent to quantum entanglement.
General bipartite entangled states are defined as the op-
posite of separable states and a bipartite state is called
separable if it can be written as a statistical mixture of
product states:

ρAB =
∑
i

pi σ
A
i ⊗ σBi (47)

where the pi’s define a probability distribution. Separa-
ble states form a convex set but there is no easy way to

determine whether or not a bipartite state is separable
or not: in full generality it is an NP-hard problem [33].

Entangled states. Entangled states are exploited in
quantum communication protocols such as quantum tele-
portation and superdense coding. Pure entangled states
also exhibit non-local characteristics such as violations of
Bell inequalities which express that the correlations they
lead to cannot be explained by any model based on local
hidden variables [11]. But in the case of statistical mix-
tures, entangled states are not necessarily showing non-
local correlations. The recent review [3] presents a clear
discussion of the different degrees of correlation between
different systems and an in depth review of the various
measures of the quantumness of correlations between two
or more subsystems.

B. Quantum discord

1. Basic definition

In the previous section, we introduced two measures
of correlations between Alice’s and Bob’s system: 1) the
mutual information:

I(A,B) = S(A) + S(B)− S(A,B) , (48)

where S = −Tr(ρ log ρ) is the von Neumann entropy; and
2) the accessible information:

Iacc(A,B) = max
MB

[S(A)− S(A|MB)] (49)

where S(A|MB) = −
∑
m pB(m)S[ρ(A|m)], with ρ(A|m)

the state of Alice conditioned on the measurement result
m obtained by Bob (see Section III A 2). The quantity
Igain(A;MB) := S(A) − S(A|MB) is the average infor-
mation on the state of Alice gained by Bob as a result
of his measurement. Maximizing Igain over all possible
measurements yields the accessible information. As dis-
cussed in Section III A 1, for classical probability distri-
butions pAB(x,m), the accessible information and the
mutual information coincide. However, this need not be
the case for quantum systems, leading to the definition
of the quantum discord :

DB(ρAB) = I(A,B)− Iacc(A,B) . (50)

Equivalenlty, with S(A|B) = S(A,B)−S(B) the relative
entropy, the discord may be defined as:

DB(ρAB) = min
MB

S(A|MB)− S(A|B) (51)

in which the B subscript recalls on which subsystem
the measurements are performed. The discord is non-
negative, vanishes only for quantum–classical states and
represents a measure of quantum correlations.

We can also define the discord relative to a spe-
cific measurement MB . This quantity is denoted
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DMB
(ρAB) = S(A|MB)−S(A|B), without the minimiza-

tion over the measurements. It will be useful when dis-
cussing Quantum Darwinism in Section III C.

2. Simple examples and bounds

The two simplest examples of discord are obtained
by considering a qubit Bell state where we can check
that DB [ΨAB ] = 1 and a maximally mixed state of |00⟩
and |11⟩ for which DB [ρAB ] = 0. More generally, for
a pure bipartite global state |ΨAB⟩, then S[A] = S[B]
and the mutual information I[A,B] reaches its maxi-
mum possible value 2S[A]. But in this case, the Schmidt
decomposition of |ΨAB⟩ tells us that S[A] is the min-
imum value S[ρA|MB ] over all the possible measure-
ments taken on B. Consequently, in this particular case
DB [|ψAB⟩] = S[B] + S[A] = 2S[A] = I[A,B]. As ex-
pected, all correlations between A and B are of quantum
origin.

However, as we shall see later, quantum discord goes
beyond simple entanglement to characterize non classical
features of quantum states since it can be non zero for
separable states. These considerations raise two immedi-
ate questions: what are the lower and upper bounds on
the quantum discord and what does it mean when they
are saturated?

Because Igain(A;MB) ≥ 0, we first obtain that the
discord is bounded from above by I(A,B): the quan-
tum part of correlations cannot exceed the total correla-
tion between A and B. Moreover, because of the upper
bound Iacc(A,B) ≤ I(A,B), the quantum discord is non-
negative. In summary:

0 ≤ DB(ρAB) ≤ I[A,B] . (52)

The upper bound is reached whenever all the correlations
are of quantum origin as in the simple example of a max-
imally entangled Bell pair. The lower bound is reached
in the case of a QC state defined in Section IIIA 3.

3. Operational meaning via quantum state merging

In order to be really meaningful in the context of infor-
mation theory, a quantity should be given an operational
meaning, usually related to an information processing
task. The purpose of this section is to discuss such a
meaning for the discord. We describe here two oper-
ational interpretations [12, 51] of the quantum discord
using the quantum state merging protocol [41]. Most re-
sults here should be understood in the asymptotic regime
of independently and identically distributed systems:

D(ρAB) = lim
n→+∞

D(ρ⊗nAB)

n
= I(A,B)− Iacc(A,B) .

(53)

E

A B

|ψABE⟩

[q → q]
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A B1 B2

B′
[qq]

FIG. 6: State transfer protocol: Alice and Bob share a cor-
related statistical mixture that can be purified using the envi-
ronment E into a pure state |ΨABE⟩. The state transfer pro-
tocol consists in transferring the quantum correlations shared
between Alice and Bob (see left part), as well as between Alice
and the environment in the hands of Bob using only classical
and quantum communication between Alice and Bob and do-
ing nothing on E. In the end (right part), |ΨABE⟩ is shared
between the environment E and some of the qubits B2 of Bob
whereas the protocol can leave us with extra entangled pairs
shared between Alice and Bob.

We first begin by reviewing the basics of the state
merging protocol.

Classical state merging. We imagine that Alice
and Bob have access to classical variables x and m, dis-
tributed according to pAB(x,m) (see Fig. 6). How many
bits of information does Alice have to send so that Bob
can recover the whole information content of x?

Naively, Alice could send S(A) bits of in-
formation where S is the Shannon entropy of
pA(x) =

∑
m pAB(x,m). But this is not optimal:

by performing a measurement MB and discover-
ing m, Bob acquires information about x; Bob’s
lack of information about x is now S(A|m), and
S(A|MB) == S(A,B) − S(B) on average. And indeed,
this intuition is correct, as it is possible to use the
correlation between x and m to lower the amount of bits
Alice has to send: Slepian and Wolf have shown that
Alice needs to send exactly S(A|MB) bits of information.

Quantum state merging. The quantum state merg-
ing protocol is the extension of this setup to the quantum
case [41]. The quantum version of Slepian and Wolf states
that, using a quantum communication channel, Alice can
transfer all her share of correlations initially shared with
Bob and the environment in Bob hands and that, in the
process, Alice and Bob may be left with extra maximally
entangled pairs shared together. Initially, Alice and Bob
share a quantum state ρAB , which we purify by intro-
ducing the environment E and a tripartite pure state
|ψABE⟩ shared between Alice, Bob and E. The corre-
sponding ressources that are needed to perform the state
transfert are given by

⟨ψABE⟩+
1

2
I[A,E] [q → q] ≥ 1

2
I[A,B] [qq] + ⟨ψB2E⟩ .

(54)
in which the state ψ⊗n

B2E
carries the same information
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as ψ⊗n
ABE in the large n limit. This inequality, which

is a typical resource inequality from quantum Shannon
theory [16, Sec. 7.2.4] should be read as follows: given
the quantum state ψ shared between Alice, Bob and E
and the possibility to use an ideal quantum channel [q →
q] to transfer I[A,E]/2 qubits from Alice to Bob, we
can arrive at a situation where a state almost identical
to ψABE is shared between qubits belonging to Bob –
denoted here by B2 – and the environment E and in
which there remain I[A,B]/2 maximally entangled pairs
[qq] between Alice and Bob (using the qubits B1). Note
that these are asymptotic inequalities, meaning that they
are realized in the limit of n→ ∞ realizations.

The protocol leads to another ressource inequality
which quantifies the amount of classical and quantum
communication resources that need to be used to achieve
the desired result without extra entangled pairs:

⟨ψABE⟩+ S[A|B] [q → q] + I[A,B] [c→ c] ≥ ⟨ψB2E⟩ .
(55)

but using an ideal classical communication channel [c→
c] to transfer I[A,B] classical bits. This protocol, called
the quantum Slepian-Wolf protocol expresses that, given
the shared state |ψABE⟩, one has to transfer I[A,B] clas-
sical bits and S[A|B] quantum bits (when positive!) to
Bob to achieve the transwer of this ABE-shared state in
the hands of E and B only. If the qubit transfer is real-
ized using quantum teleportation, it means that the state
merging protocol consumes S[A|B] maximally entangled
pairs [qq].

A conceptual subtlety arises in quantum theory since
the von Neumann relative entropy S[A|B] can become
negative. In this case, its opposite is called the coher-
ent information [50]. In this case, S[A|B] [q → q] can be
put on the r.h.s. of the resource inequality (55) and the
operational meaning of the quantum relative entropy is
then that the protocol leaves us with −S[A|B] possible
future uses of a quantum channel. Since, by the quan-
tum teleportation protocol, an ideal qubit transfer can
be emulated by a shared EPR pair and two classical bit
transfer, the state transfer protocol can be re-expressed
as the state merging protocol resource inequality

⟨ψABE⟩+ I[A,E] [c→ c] ≥ −S[A|B] [qq] + ⟨ψB2E⟩ (56)

whenever S[A|B] < 0. In this case, the (positive)
coherent information has an operational intepretation as
the number of distilled maximally entangled pairs in the
state merging protocol [41].

First operational meaning of the discord. In this
perspective, the first operational definition of the quan-
tum discord is given by the following theorem [51]:

Theorem B.1. The quantum discord DB(ρAB) is the
minimum increase in the cost of quantum communication
for state merging between A and B with a measurement
performed on the receiving end B.

Intuitively, a measurement on B destroys quantum cor-
relations between A and B and consequently increases

the cost for A to merge the post-measurement state with
B. The rigourous proof is given in Appendix E 1.

This result sheds some light on the properties of the
discord. First, measurement on B may lead to a loss
of correlations, and therefore increases the price for state
merging. This explains why the discord must be positive.
Secondly, Bob can at most recover S[B] qubits which is
therefore an upper bound on the discord. Finally, the
quantum discord is zero for a quantum–classical state of
the form

ρAB =
∑
m

pmρ(A|m)⊗ |m⟩⟨m| (57)

where the states |m⟩ diagonalize ρB . Measuring on
Bob’s side ρAB in this basis and forgetting the result
generates the same state state ρAB . This means that
the measurement causes no loss of information and all
the correlations between A and B are preserved in the
measurement process.

Second operational meaning of the discord. The
second operational meaning of the quantum discord is ob-
tained by extending the standard state merging protocol
by considering the preparation of the input state using
LOCC and local ancilla which they forget once the prepa-
ration is completed. We then have the theorem [12]:

Theorem B.2. The quantum discord is the total entan-
glement consumption in the extended state merging pro-
tocol:

D(A|C) = S[A|B] + EF [A,B] . (58)

in which

EF [A,B] = min
(pi,|ψAB

i ⟩)

[∑
i

piS[trA(ψ
AB
i )]

]
(59)

is the minimum amount of entanglement A and B have
to use to create the state ρAB by LOCC. In Eq. (59),
the minimum is taken on all the representation of ρAB
as a mixture of the pure states |ψABi ⟩. The quantity
EF (A,B) is therefore called the entanglement of forma-
tion of the state ρAB . Thus, S[A|B]+EF [A,B] quantifies
the amount of entanglement the two agents have to con-
sume to first prepare the state ρAB and then perform the
state merging protocol. This-two stage protocol is called
the extended state merging protocol. The rigourous proof
of this result is given in Appendix E 2.

This formula for the discord illustrates directly its
asymmetry. A difference between this characterization
and the previous one is that this one refers to one state
ρAB while the previous one referred to two different
states, ρAB and the one measured by Bob. Here, no
measurement by Bob explicitly appears.

As a general remark, those two operational charac-
terization of the quantum discord, while fulfilling their
purpose, do not really go beyond its mere definition
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DB(ρAB) = minMB
(S[A|MB ]) − S[A|B]. Indeed, they

essentially compare Bob viewed as a purely quantum sys-
tem with Bob viewed as performing measurements and
thus being a source of classical information. In the first
vision, we allow for a quantum conditionning of A by B
and therefore the proper conditional entropy is S[A|B]
whereas in the latter case, only conditioning by classi-
cal measurement results is allowed and we have to use
S[ρA|MB ]. In the next section, we will derive a different
operational characterization of the quantum discord that
does not rely at all from the start on a classical measure-
ment.

C. Quantum Darwinism

In the Quantum Darwinism approach to the emergence
of classicality that has been initiated by Zurek [9, 55, 56],
the environment is considered as a set of complex systems
collecting information on the state of the system. Each
observer has then access to a specific fragment or sets of
fragments of this environment. The quantum Darwinism
approach aims at establishing information theoretical cri-
teria for the emergence of a consensual classical view of
the state of the system by the observers. Thus, quan-
tum Darwinism appears to be very close, in the spirit,
to the discussion of classical measurement by many ob-
servers presented in Section II A 2. We shall therefore
review it briefly here and discuss more specifically the
quantumness of the correlations that are considered in
this approach.

1. A short review

Quantum Darwinism considers situations in which a
quantum system S is probed by multiple observers having
access to independent sets of data through parts of the
total environment E of the system as shown on Figure 7
represents schematically the shift on how to model the
environment.
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S

FIG. 7: Different structures for the environment. While stan-
dard decoherence models consider the environment as a huge
monolithic set of degrees of freedoms, the quantum Darwin-
ism approach focuses on the physics of fragments Fi of the
environment and their relations to the systems. Figure ex-
tracted from [75].

This framework is very simular to the one considered in
Section II A 2 except that here, the system is also quan-
tum as well as the environmental degrees of freedom each
observer can access.

To quantify the ability of one observer monotoring one
specific fragment F of the environment, Zurek et al con-
sider the von Neumann mutual information I[S, F ]. In
the same way, discussing the consensus between two ob-
servers respectively monitoring Fi and Fj is based on the
the mutual information I[Fi, Fj ].

Let us begin by considering the ability of a given ob-
server to access information on the state of the system.
To quantify the classicality of a state , we focus on the
region where the mutual information defined by Eq. (31)
is close the von Neuman entropy of the system:

I[S, F ] ≥ (1− δ)S[S] , (60)

where the small δ parameter quantifies a possible infor-
mation deficit that happens in every realistic setup. Thi
intuition is that the observer has enough information to
reconstruct classical information about the state of the
system7.

An average version of this quantity over the set of frag-
ments of the same size 0 < f ≤ 1 with respect to E is
more convenient to have a general view of the behavior
of the mutual information. Zurek et al thus consider

I[S, Ff ] = ⟨I[S, F ]⟩|F |/|E|=f (61)

in which the average is taken over all fragments size f .

0 f
0

I[S; fδ]

11
2

fδ

2S[S]

S[S]
(1− δ)S[S]

FIG. 8: Two of the typical behaviors of the mutual informa-
tion I[S, Ff ] as a function of the size f of the fragment. The
blue curve is the expected behavior for a randomly chosen
state in HS ⊗ HE while the red one with its plateau corre-
sponds to a Darwinian situation.

Figure 8 shows the two limiting cases for the behavior
of the mutual information. The most interesting case for

7 The distinction between quantum and classical correlations will
be discussed later using the quantum discord.
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the problem of the emergence of a consensus is when a
plateau around the Von Neumann entropy of the system
forms for a very small sized fragment of the environment.
Indeed, it means that, by probing a small set of degrees
of freedom of the environment, an observer has access
to all the classical information about the state of the
system. Moreover, other observers can do the same by
probing other degrees of freedom. Information accessible
to observers is information redundantly stored in the en-
vironment. This is in this sense that the information is
said to be objective. The redundancy Rδ is then defined
as the inverse of the minimum size reach the inequality
(60):

Rδ =
1

fδ
. (62)

What kind of states maximize this redundancy? In-
tuitively, pointer states of the system will maximize this
since by definition pointer states are states which are ro-
bust to the interaction with the environment and can
thus “live on” to proliferate their information into many
environment channels.

Before coming back on this question, let us spend some
time on discussing the nature of the correlations between
the system on a fragment F .

2. Discord in quantum Darwinism

As a preliminary, let us recall how to quantify the max-
imum amount of classical information that can be trans-
mitted though a quantum channel established betwee,
say Alice and Bob. Alice encodes the classical messages
a emitted with probabilities pa within not necessarily or-
thogonal quantum states ρ(A|a), thereby leading to the
statistical mixture

ρA =
∑
a

pa ρ(A|a) . (63)

The amount of classical information that can be retrieved
by Bob using classical measurements is bounded from
above by the Holevo quantity [40]:

χ[(ρ(A|a), pa)] = S

[∑
a

paρ(A|a)

]
−
∑
a

paS[ρ(A|a)] .

(64)
In quantum Darwinism, the quantity of interest is the
total correlation, measured by mutual information, be-
tween the system S and a fragment of the environment
F , assuming that S is totally decohered by its environ-
ment. It is then natural to decompose the mutual infor-
mation into a “classical component” given by the Holevo
quantity and a “quantum component”.

This can be done as follows. Let us assume that the
system has been decohered by the environment on a ba-
sis associated to to a measurement MS selected by the

environment . Consequently, the joint (S, F ) state is a
classical-quantum state (see Section III A 3):

ρSF =
∑
s

ps |s⟩⟨s| ⊗ ρ(F |s) (65)

where ps denote the probability for obtaining the result s.
Note that this does not imply that the ρ(F |s) are mutu-
ally orthogonal but only that the ρ(E|s) are: information
on s can be spread all over E. The non-orthogonality of
the ρ(F |s) is precisely what prevents an observer access-
ing only F to recover all the information about the values
s.

The mutual information of this decohered state be-
tween S and F can then be obtained as8:

I[MS , F ] = S

[∑
s

psρ(F |s)

]
−
∑
s

psS[ρ(F |s)] (66)

which is precisely the Holevo quantity for F prepared in
the mixture of the relative states ρ(F |s) with probabili-
ties ps (see Eq. (64)). We will denote it by χ(MS , F ). The
difference between the initial mutual information I[S, F ]
and the post-decoherence information χ(MS , F ) thus co-
incides with the quantity appearing in Eq. (50) but with-
out optimizing on the choice of the measurement on S.
This is the quantum discord [57] relative to the measure-
ment MS selected by the environment. It obeys [77]:

I[S, F ] = χ(MS , F ) +DMS
(ρSF ) . (67)

The left hand side of (67) doesn’t depend on the measure-
ment MS chosen by the observer while the decomposition
does. The information characterized by χ(MS , F ) is a
locally classical accessible information while DMS

(ρSF )
corresponds to the global quantum correlations. This
can be viewed as a kind of “conservation law” or alter-
natively as the expression of the objectivity of the total
correlation I[S, F ] between S and F with respect to the
choice of the measurement MS performed on the system.

We can have a refined understanding of the general
form of the mutual information as we vary the size of the
fragment when we make the assumption that the global
state ρSE is pure and that the measurement made on the
system is projective (a rank one POVM). In this case, we
have D(MS , E \ F ) = HS − χ(MS , F ). Indeed:

D(MS , E \ F ) = I[S,E \ F ]− χ(MS , E \ F )

= S[S]− S[SE \ F ] +
∑
s

p(s)S[ρ(E \ F |s)]

= S[S]− S[F ] +
∑
s

p(s)S[ρ(F |s)]

= S[S]− χ(MS , F ) ,

8 See discussion of [16, Sec.7.5.1].
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FIG. 9: Anti-symmetry between the quantum discord and the
Holevo quantity around (1/2, S[S]/2) for a global pure state
and a projective measurement on S. Note: on this figure
HS = S[S].

where we have used, for the second and last lines, the
definitions of the mutual information and of the Holevo
quantity and, for the third line, that the global state is
pure so that S[SE\F ] = S[F ] as well as the fact that, for
a rank one POVM, the relative state is also pure. This
equality can also be written in the more symmetrical form

χ(MS , F )− S[S]/2 = S[S]/2−D(MS , E \ F ) . (68)

which geometrically means that we have a symmetry
around S[S]/2. It shows that the larger the classical in-
formation is stored in the fragment F , the less quantum
information is stored in the larger fragment E \ F .

For an arbitrary state ρSE , we have instead the in-
equality:

D(MS , E \ F ) ≤ S[S]− χ(MS , F ) . (69)

Indeed, by considering a purification of the state from
an additional ancilla R, the previous computation gives
the equality D(MS , E \ F ) = S[S] − χ(MS , FR). Now,
from the data processing inequality Eq. (C7), we know
that the Holevo bound contracts when we trace over R
giving χ(MS , F ) ≤ χ(MS , FR), from which we obtain
the inequality.

If χ(MS , F ) ≥ (1− δ)HS then D(MS , E \ F ) ≤ δS[S].
Thus again the more classical information we have access
in F, the less quantum information we have in E \ F . A
world where classical information is present is a world
where quantum information is only accessible to global
observers.

The first important result is that the Holevo quantity
is largest when computed using pointer states and the
associated observable than when using another observ-
able. To show this, let us consider the so-called “branch-
ing state” which it is said to have the spectrum broadcast
structure [42]:

|ΨSE⟩ =
∑
s

√
ps |s⟩ ⊗

(⊗
k

|ψ(k|s)⟩

)
, (70)

where s indicates the outcomes of a pointer measurment
MS and k denotes the various environmental channels
within the environment E. Each fragment F corresponds
to a certain set of values of k. Because of the factorized
and pure form of ρ(E|s), the state of any fragment of the
environment relative to the value s of the pointer observ-
able is pure. Consequently, when considering the Holevo
quantity for the statistical mixture of the ρ(F |s) with
probability ps, the Holevo quantity is equal to the en-
tropy of the reduced density operator ρF =

∑
s psρ(F |s)

because we substract zero in the r.h.s. of (64) since all
the ρ(F |s) are pure. By contrast, when considering an-
other observable X of the system and decomposing the
global entangled state |ΨSE⟩ relatively to another observ-
able for the system, the state ρ(F |x) is no longer pure.
Consequently χ[(ρ(F |x), px)] ≤ χ[(ρ(F |s), ps)].

From the conservation law (67), we therefore expect
the discord to be minimal when computed relatively to
the pointer observable. More precisely, Eq. (67) tells us
that the discord has the form

DMX
(ρSF ) = DMS

(ρSF ) +
∑
x

pxS[ρ(F |x)] . (71)

The second term of the r.h.s. is always positive and
vanishes for the pointer basis MS showing that, for
such a choice, the discord is minimum. In the Dar-
winian case, the E \ F part of the environment is large
enough to completely decohere (S, F ) thereby leading to
a classical-quantum state of the form (65) for ρFS . On
the Darwinian plateau, I[S, F ] = S[S], thereby leading
to I[S, F ] − S[S] = S[F ] − S[SF ] = 0. For all practical
purposes, in the darwinian case, the discord vanishes and
therefore, Eq. (67) leads to:

I[S, F ] = χ(MS , F ) = S[F ] . (72)

In the end, the information relative to a pointer state
obtained from a small fragment F quickly saturates the
Holevo bound, meaning that only classical information
can be obtained from this fragment, even when we en-
large it. Of course, things change at the end of the Dar-
winian plateau: a global measurement encompassing al-
most the whole environment can provide more informa-
tion coming from the hidden quantum correlations char-
acterized by the discord. But in the Darwinian case, one
has to go to the end of the plateau – id est to very large
scales – to see quantum correlations (I[S, F ] exceeding
S[S]).

Note however the very important fact that both equal-
ities in Eq. (72) are necessary and not equivalent. In-
deed, the original plateau condition of quantum Darwin-
ism I[S, F ] = S[F ] is not sufficient to select classically
accessible information [42]. Indeed, there exists states
forming a Darwinian plateau composed in its majority
of quantum discord which means that the information
contained in a fragment cannot be classically accessed
which is what we should require for a natural notion of
independent objectivity. We shall discuss this subtlety



23

in more details in Section IVC. Hence, not only do we
have for all practical purposes both equalites in Eq. (72),
but we have to impose them both in the ideal situation
where each observer can recover with classical means all
the classical information about the system.

3. Perfect coding and decoding

Let us assume here that the reduced density opera-
tor of the system corresponds to a statistical mixture
of mutually orthogonal states |s⟩ with von Neumann en-
tropy S[S]. What does it mean if the capacity Iqc[ρSF ] =
maxMF

(I[S,MF |ρSF ]) is equal to S[S]? The answer is
given by the following theorem [56]:

Theorem C.1. Iqc[ρSF ] = S[S] if and only if there ex-
ists an observable MF on F such that S[S|MF ] = 0.
Moreover, in this case, S[F |XS ] = 0 where XS denotes
any observable of S that commutes with ρS.

Proof. We assume that Iqc[ρSF ] = S[S]. Consequently,
there exists a generalized measurement MF on F such
that S[ρSF |MF ] = 0 since, by definition, I[S,MF |ρSF ] =
S[S] − S[S|MF ]. Conversely, if there exist a generalized
measurement MF on F such that S[S|MF ] = 0, then
minM ′

F
(S[S|M ′

F ]) ≤ 0. But S[S|M ′
F ] ≥ 0 for any general-

ized measurement on F as we have seen in Section III A 2.
Consequently we have minM ′

F
(S[S|M ′

F ]) = 0. Therefore
I[ρSF ,MF ] = S[S]−minM ′

F
(S[S|M ′

F ]) = S[S].
Let us now turn to the second part of the theorem.

Assuming now that Iqc[ρSF ] = S[S], we will show that
S[SF |XS ] = 0 for any observable of S that commutes
with ρS . Because measurements performed on S and F
commute, we can always specify the action of the gen-
eralized measurement on F by its action on each ρ(S|s).
The post-measurement reduced density operator for F is
thus of the form:

ρ
(post MF )
S,F (F |s) =

∑
f

p(f |s) ρ(F |f, s)⊗ |f⟩ ⟨f | , (73)

in which the f are the possible results of the measurement
MF . Here, |f⟩ denote the auxiliary mutually orthogonal
ancillary quantum states that keep the record of the mea-
sured value f . Indeed, in the following, we shall include
these degrees of freedom within F . Therefore, the total
post-measurement density operator is:

ρ
(post MF )
S,F =

∑
(f,s)

p(s) p(f |s) ρS(s)⊗ ρ(F |f, s) , (74)

in which the ρ(F |f, s) and ρ(F |f ′, s′) are mutually or-
thogonal as soon as f ̸= f ′. The only way S[S|MF ] could
be zero is by assuming that the set of possible values of
f is partitioned into disjoint sets Js, each of them asso-
ciated with a value of s therfore defining a function that
associates to f a given s so that indeed, conditionning to
a value of MF leads to only one possible ρS(s) = |s⟩ ⟨s|.

We can then coarse grain the measurement performed
on F so that it associates a unique value f̃s to each s.
This coarse-graining defines a generalized measurement
on F which we denote by M̃F . After this coarse-graining,
the correspondence between s and the f̃s is a bijection.
Moreover, the state ρFS is indeed classical/classical:

ρSF =
∑
s

p(s)ρS(s)⊗ ρ(F |f̃s) (75)

in which the ρ(S|s) are mutually orthogonal as well as
the ρ(F |f̃) which are coarsed grained of reduced density
operators ρ(f, s), involving non-intersecting sets of values
of f for different s, and therefore are mutually orthogonal
for f̃s ̸= f̃s′ . Note that for the (S, F ) system, measuring
S and finding s is then equivalent to measuring on F and
finding f̃s:

ρ(FS|s) = ρ(FS|f̃s) = ρ(S|s)⊗ ρ(F |f̃s) . (76)

We thus have a perfect classical channel connecting the
classical values s and f̃s. Thus, given any observable XS

on S that admits |s⟩ as eigenvectors, S[F |XS ] = 0. We
thus have I[F,XS |ρSF ] = I[S, M̃F |ρSF ] = S[S].

To summarize, in terms of communication theory,
when Iqc[ρSF ] = S[S], the system sends some classical
information s into its environment and the fragment F
is such that there exist a way to decode it without any
ambiguity by choosing the appropriate generalized mea-
surement on F ’s side.

IV. MANY-OBSERVER STRUCTURES

A. Statement of the problems

In this section, we consider the many-observers situa-
tion: instead of focusing on one specific fragment of the
environment, we consider all of them and try to under-
stand the nature of correlations between the fragments
along a given decomposition in parts.

As mentioned in Section II B 4, the question of the
emergence of objectivity can be addressed at two dif-
ferent levels:

• Objectivity of observables: different observers prob-
ing independent parts of the environment have ac-
cess to only one observable of the system.

• Objectivity of outcomes: different observers prob-
ing independent parts of the environment have full
access to the above observable and agree on the
outcome.

The objectivity of observables states that the environ-
ment selects one specific observable of the state (one spe-
cific measurement) which is accessible to almost all ob-
servers. In other words, this is the pointer observable of



24

S induced by its environment. It can be shown [10] that
the emergence of an objective observable is indeed quite
generic and inherent to the structure of quantum theory.
We will review this work in Section IV B.

The second aspect of objectivity concerns the observers
and states that, given this pointer observable, all the ob-
servers agree on one specific outcome (one specific mea-
surement result). This is the real consensus on memory
records among many observers. Whether or not and how
the observers can achieve this depends on the observer’s
capabilities as explained in Section II C 3.

First, we wan assume that a decomposition into ob-
servers is given and ask whether or not, and how the
observers can reconstruct the values of the observable.
Elaborating on the discussion of Section II B 4, we will in-
troduce a hierarchy of objectivity notions. This amounts
to understanding the nature of correlations when recon-
struction is possible. It will be discussed in Section IV C.

B. Objectivity of observables

Let us consider a set of subsystems and chose one as
our system, calling it S. The rest of them forming its en-
vironment are denoted as F1, . . . , Fn. We suppose that
S is finite dimensional. We can model the dynamics of
S as a completely positive trace preserving (CPTP) map
denoted Λ. The fundamental result of Ref. [10] subse-
quently improved in Ref. [60] is the following9:

Theorem B.1. Let Λ : D(S) → D(F1 ⊗ · · · ⊗ Fn) be
a quantum channel and Λj the reduced channel to the
subsystem Fj. Given an integer q ≥ 1, there exists a
POVM {Mx}x and a set Q ⊆ {1, . . . , n} of size q such
that for all j ∈ {1, . . . , n} −Q:

∥Λj − Ej∥⋄ ≤ d3S

√
2 ln dS
q

, (77)

with Ej defined by

Ej(X) =
∑
x

tr(MxX)σj,x , (78)

for states σj,x ∈ D(Fj) and dS the dimension of the space
S.10

The operation Ej is called a measure-and-prepare map
since it can be obtained by Fj first by measuring Mx and
then preparing any state σj,x conditioned on the result

9 Here D(S) denotes the set of density operators on HS and Λ is
the positive super-operator that defines the quantum quantum
channel [16, Secs. 7.1 & 9.5].

10 The norm ∥ · ∥⋄ is the widely used “diamond” norm between
quantum channels. As its precise definition is not important for
our discussion, we refer to [69].

x. The system Fj can at most recover the information
about the measurement {Mx}.

The remarkable point of the theorem is that the mea-
surement Mx does not depend on the observers Fj . It
can be thought as the pointer basis of the interaction Λ.
Thus almost all the observers have a dynamics very close
to a measure-and-prepare dynamics with the measure-
ment Mx independent of them.

Another way of thinking about it is that the dynamics
is close to a situation where the system S is first mea-
sured by Mx and only then the classical information is
broadcasted and locally degraded into the state σj,x for
all the different observers Fj . Notice that the theorem
does not say that the quantum states σj,x broadcasted to
observer i are perfectly distinguishable (tr(σj,xσj,x′) = 0
if x ̸= x′). Therefore, in general, the observer j, who only
receives the statistical mixture Ej(X), has only a partial
information about the actual value of x.

As a remark, keep in mind that this result states the
existence of a least one pointer observable but does not
say anything about its uniqueness. Depending on the dy-
namics, it is still allowed to have different possible pointer
observables.

An important point here is that even if all the observers
Fj have access to the same measurement Mx, the theo-
rem does not say anything about a consensus around the
actual outcome of the measurement. Indeed, we see from
Eq. (77) that for each j, the evolution is only close to
a mixture of the states σj,x. The possibility still exists
that Fj can obtain the result xj while Fi with i ̸= j can
obtain xi ̸= xj . The objectivity of outcomes is not yet
quantified by this result.

Still we can go in this direction and obtain a slightly
more refined theorem:

Theorem B.2. Let Λ : D(S) → D(F1 ⊗ · · · ⊗ Fn) be
a quantum channel. Given integers q, t ≥ 1, there exists
a POVM {Mx} and a subset Q ⊆ {1, . . . , n} of size q
such that for any subset T ⊆ {1, . . . , n} of size t that is
disjoint from Q, we have

∥ΛT − ET ∥⋄ ≤ d3S

√
2(ln dS)t

q
, (79)

with:

ET (X) =
∑
x

tr(MxX)σT,x , (80)

for states σT,x ∈ D(⊗j∈TFj) and dS the dimension of
the space S.

Note the difference of this result compared to the previ-
ous one. Here we can state that the evolution of a collec-
tion of systems of size t is close to a measure-and-prepare
dynamics with measurement Mx still independent of the
subsystems. However, now, we know that after a mea-
surement, the joint state of the ensemble of systems T is
one of the σT,x with one outcome x: if the states σT,x
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are distinguishable from each other for different values of
x, then considering the community T as a whole there
is only one value of x that is consistent with the global
state. This means that in principle an internal consensus
can be reached between the members of the community
T . However, this consensus strongly depends on the al-
lowed operations within the community. If we consider
individual systems Fi for i ∈ T , they might not contain
information about the outcome x and as a result the dif-
ferent observers Fi for i ∈ T do not necessarily agree on
the outcome x.

C. Hierarchy of objectivity

In this section, we focus on the objectivity of outcomes.
We assume that our observers F1 . . . Fn can in principle
collectively reach a consensus on the value of X (which
we can think of as a measurement outcome). Mathe-
matically, this can be written as Pguess(X|F1 . . . Fn) = 1,
i.e., the optimal probability of correctly guessing X by
performing a measurement on F1 . . . Fn is 1. We also re-
call the definition Hmin(X|F ) = − logPguess(X|F ). Note
that the procedure for determining X will in general
involve all the systems F1 . . . Fn together. We are in-
terested in determining under what conditions, the ob-
servers can locally determine this objective value X?

Following [10], the states we consider in this section
have the following form:

ρXF1...Fn
=
∑
x

p(x)|x⟩⟨x| ⊗ ρ
(x)
F1...Fn

. (81)

1. Independent objectivity

Here, we consider the setting where the observers
are completely independent. We determine the condi-
tions under which each observer can completely deter-
mine X. In mathematical terms, this means that for all
i ∈ {1, . . . , n}, Pguess(X|Fi) = 1.

Theorem C.1. Let ρXF1...Fn
be a state as in (81). Then

the following conditions are equivalent:

1. Pguess(X|Fi) = 1 for all i ∈ {1, . . . , n}

2. Iacc(X,Fi) = S(X) for all i ∈ {1, . . . , n}

3. For all i ∈ {1, . . . , n}, there exists an isometry Wi

(i.e., W †
iWi = I) that maps the space Fi to X̄i⊗Ni,

where X̄i is isomorphic to X, such that

(

n⊗
i=1

Wi)ρXF1...Fn
(

n⊗
i=1

W †
i )

=
∑
x

p(x)|x⟩⟨x|X ⊗

(
n⊗
i=1

|x⟩⟨x|X̄i

)
⊗ ρ

(x)
N1...Nn

.

Proof. We will prove that (3) ⇒ (2) ⇒ (1) ⇒ (3).
For (3) ⇒ (2), the measurement on Fi can be taken to

apply Wi followed by a measurement of the register X̄i

in the basis {|x⟩}.
For (2) ⇒ (1), we have

Iacc(X,Fi)

= S(X)− min
measurement {Mz}z

with outcome Z

S(X|Z)

≤ S(X)−Hmin(X|Fi) .

So Iacc(X,Fi) = S(X) implies that Hmin(X|Fi) = 0
which is the same as Pguess(X|Fi) = 1.

For (1) ⇒ (3), Pguess(X|Fi) = 1 implies that there ex-
ists a measurement {M i

x}x on Fi such that tr(M i
xρ

(x)
Fi

) =

1 for all x. This implies that M i
x′ρ

(x)
Fi

= 0 for x ̸= x′

and thus M i
x′ρ

(x)
F1...Fn

= 0 for x ̸= x′. Now we define the
isometry Wi =

∑
x |x⟩⊗

√
M i
x. Thus, for any x, we have

(

n⊗
i=1

Wi)ρ
(x)
F1...Fn

(

n⊗
i=1

W †
i )

=

(
n⊗
i=1

|x⟩ ⊗
√
M i
x

)
ρ
(x)
F1...Fn

(
n⊗
i=1

⟨x| ⊗
√
M i
x

)

=

(
n⊗
i=1

|x⟩⟨x|

)
⊗

(
n⊗
i=1

√
M i
x

)
ρ
(x)
F1...Fn

(
n⊗
i=1

√
M i
x

)
.

This proves the desired result.

The structure of this state has in fine a very natu-
ral structure and transparently shows its objective na-
ture: each observer has access to the complete informa-
tion about x and can do it independently of what the
others are doing. Independent objectivity does not in
itself forbid the existence of a strongly correlated noise,
potentially relative to x but requires that each observer
can filter x out of it. Note that nothing can a priori be
said on the hardness of this filtering process, it is just
possible in principle.

2. Shared objectivity

It is simple to construct examples of states where inde-
pendent objectivity does not hold, i.e., information about
X is stored in the correlations between the different frag-
ments. Let X ∈ {0, 1} be uniformly distributed, and let
F1, . . . , Fn be classical systems with F1, . . . , Fn−1 be in-
dependent and uniform bits, while Fn = X ⊕

⊕n−1
i=1 Fi.

Then for n ≥ 2, we have I(X,Fi) = 0 for any i ∈
{1, . . . , n} whereas I(X,F1 . . . Fn) = S(X) = 1. In fact,
this example shows an even more extreme setting where
information is stored in the correlations: any group of at
most n−1 fragments does not get any information about
X. This is a simple example of a well-studied topic in
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TABLE I: Hierarchy of objectivity levels for a classical data. The examples illustrate that the objectivity levels we define
are all different. The letter ϵ denotes the existence of a family of states (in general with growing dimension) such that the
corresponding quantity can be made arbitrarily close to 0.

Assumptions State Recovery of X Objectivity Level
Iacc(X,F1 . . . Fn) = S(X) ∀x ̸= x′, ρ

(x)
F1...Fn

⊥ ρ
(x′)
F1...Fn

collectively from F1 . . . Fn Collective
∀i, Iacc(X,Fi) = S(X) see Th. C.1 individually from each Fi 1−Obs

Iacc,LO(X,F1 · · ·Fn) = S(X) see Th. C.2 via local meas. outcomes LO
Iacc,LOCC(X,F1 · · ·Fn) = S(X) via local adaptive meas. outcomes LOCC

Iacc(F1 . . . Fn) ≥ Iacc,LOCC(X,F1 · · ·Fn) ≥ Iacc,LO(X,F1 · · ·Fn) ≥ Iacc(Fi)
Global meas. Adaptive meas. Sharing meas. Indep. estimation Example states

S[X] S[X] S[X] S[X] Fi have a copy of X
S[X] S[X] S[X] 0 (secret sharing)
S[X] S[X] ϵ ϵ (information locking)
S[X] ϵ ϵ ϵ (data hiding)

information theory and cryptography called secret shar-
ing [7].

Considering quantum systems F1, . . . , Fn, it is natu-
ral to consider limited classical communication abilities
and ask whether the consensus on the value X may be
recovered by the fragments. The first setting that we con-
sider is when each fragment i can perform a measurement
{M i

z} obtaining an outcome Zi. When Z1 . . . Zn are suf-
ficient to recover X, we say that we have local operations
(LO) objectivity. Observe that the secret sharing exam-
ple that we just described does satisfy LO objectivity,
and in fact for classical states LO objectivity is equiv-
alent to collective objectivity. But for general quantum
states, this is not the case. We now state a result to
characterize the states satisfying LO objectivity in the
following theorem.

Theorem C.2 (Characterizations of LO-objectivity).
Let ρXF1...Fn

be a state as in (81). Then the following
conditions are equivalent:

1. For all i ∈ {1, . . . , n}, there exist mea-
surements {M i

z} with outcome Zi such that
Pguess(X|Z1 . . . Zn) = 1

2. Iacc,LO(X,F1 . . . Fn) = S(X)

3. For all i ∈ {1, . . . , n}, there exists an isometry Wi

(i.e., W †
iWi = I) that maps the space Fi to Z̄i⊗Ni

such that

(

n⊗
i=1

Wi)ρXF1...Fn(

n⊗
i=1

W †
i )

=
∑

z1...zn,z
′
1...z

′
n

f(z1,...,zn)=x
f(z′1,...,z

′
n)=x

p(x)|x⟩⟨x|X ⊗

(
n⊗
i=1

|zi⟩⟨z′i|Z̄i

)
⊗ ρ

(z,z′)
N1...Nn

,

for some function f .

Proof. We will prove that (3) ⇒ (2) ⇒ (1) ⇒ (3).
For (3) ⇒ (2), the measurement on Fi can be taken

to apply Wi followed by a measurement of the register

Z̄i in the basis {|z⟩}. Given the outcomes z1, . . . , zn, the
only compatible value of X is f(z1, . . . , zn) and hence
I(X,Z1 . . . Zn) = S(X).

For (2) ⇒ (1), there exists measurements {M i
z}z with

outcomes Zi such that

Iacc,LO(X,F1 . . . Fn)

= I(X,Z1 . . . Zn)

= S(X)− S(X|Z1 . . . Zn)

≤ S(X)−Hmin(X|Z1 . . . Zn) .

So Iacc,LO(X,F1 . . . Fn) = S(X) implies that
Hmin(X|Z1 . . . Zn) = 0 which implies that the out-
comes of measurements {M i

z}z can be used to guess X
perfectly.

For (1) ⇒ (3), given the POVMs {M i
z}z, we define the

isometry Wi =
∑
zi
|zi⟩Z̄i

⊗
√
M i
zi . As Z1, . . . , Zn can

be used to guess X perfectly, let us call f the guess-
ing function that maps z1, . . . , zn to the correspond-
ing guess x. With this notation, we have for any x,∑
z1...zn:f(z1...zn)=x

tr
(
(⊗ni=1M

i
zi)ρ

(x)
F1...Fn

)
= 1. This im-

plies that (⊗ni=1M
i
zi)ρ

(x)
F1...Fn

= 0 whenever f(z1 . . . zn) ̸=
x. As a result,

(

n⊗
i=1

Wi)ρ
(x)
F1...Fn

(

n⊗
i=1

W †
i )

=

(
n⊗
i=1

∑
zi

|zi⟩ ⊗
√
M i
zi

)
ρ
(x)
F1...Fn

(
n⊗
i=1

∑
zi

⟨zi| ⊗
√
M i
zi

)

=
∑

z1...zn,z
′
1...z

′
n

f(z1,...,zn)=x
f(z′1,...,z

′
n)=x

n⊗
i=1

|zi⟩⟨z′i| ⊗
√
Mzρ

(x)
F1...Fn

√
Mz′ ,

where we introduced the notation z = z1 . . . zn and Mz =⊗n
i=1M

i
zi . By defining ρ(z,z

′)
N1...Nn

=
√
Mzρ

(x)
F1...Fn

√
Mz′ we

get the desired result.

Not all states that satisfy collective objectivity satisfy
LO-objectivity. In fact, consider the state where F1 and
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F2 are qubit systems.

ρXF1F2 =
1

4

∑
x∈{0,1}
b∈{0,1}

|x⟩⟨x|X ⊗ |b⟩⟨b|F1 ⊗Hb|x⟩⟨x|F2H
b ,

(82)

where H is the Hadamard transform. Note that from the
point of view of F2, the state of system X is encoded in
a basis b chosen at random that F1 has access to. Be-
cause we are encoding with two complementary bases,
without knowing the basis, the observer F2 cannot fully
recoverX. This is sometimes called conjugate coding [70]
and can be quantified by uncertainty relations. Conju-
gate coding is widely used in quantum information, it is
at the basis of quantum key distribution protocols [8].
Encoding with different incompatible basis is also called
information locking [18, 29].

Observe that for the state in (82), if F1 and F2 are
allowed to communicate before performing the measure-
ment, then X can be recovered: F1 could send the value
of b to F2 who would then perform a measurement in the
basis b to extract X. This motivates our second shared
objectivity setting: the observers are allowed to commu-
nicate classically, and then perform measurements that
depend on this communication, obtaining outcomes Zi
and collectively Z1 . . . Zn are sufficient to recover X. We
say in this case that we have local operations and classi-
cal communication (LOCC) objectivity. As the example
in (82) shows, LO objectivity can be a strictly stronger
requirement than LOCC objectivity. Being adaptive,
LOCC operations are much more difficult to character-
ize, so we do not have for the moment a result about
the structure of LOCC objective states, similar to Theo-
rem C.2.

Note that LOCC objective states do not correspond to
all states with collective objectivity. In fact, considering

ρXF1F2
=

1

2

∑
x∈{0,1}

|x⟩⟨x|X ⊗ ρ
(x)
F1F2

, (83)

where ρ(0)F1F2
=

Πsym
tr(Πsym) and ρ

(1)
F1F2

=
Πantisym

tr(Πantisym) , where
Πsym is the projector onto the symmetric subspace of
Cd ⊗ Cd (i.e., the span of the vectors of the form |a⟩ ⊗
|b⟩ + |b⟩ ⊗ |a⟩) and Πantisym is the projector onto the
antisymmetric subspace of Cd ⊗Cd (i.e., the span of the
vectors of the form |a⟩⊗ |b⟩− |b⟩⊗ |a⟩ for a ̸= b). This is
the typical example of a data hiding state that are well-
studied in quantum information theory, see [19, 47] and
the references therein for more details.

V. CONCLUSION

A. Summary

In this report, we have introduced the notion of a
quantum observer network that generalizes the ideal ob-

server network underlying classical relativity. This def-
inition naturally embedded the paradigm shift intro-
duced by quantum Darwinism which is the promotion of
the system’s environment to an active quantum medium
through which the system braodcasts information about
its state. This also lead us us to propose an agent-based
hierarchy, where different levels of objectivity are defined
by the observer’s communication capabilities. We have
then used this framework to discuss how such a network
could reconstruct a classical image in a quantum world.
While, as shown by Brandao et al [10], the existence of
objective classical observable X is quite generic, the con-
ditions under which a consensus can emerge among the
observers remained unclear.

We discussed extreme cases where the information
about x (the value of the objective observable X) can
be perfectly extracted from either: (1) each observer in-
dividually (1–Obs level); (2) all observers after sharing
their measurement outcomes (LO level); (3) all observers
by exchanging classical information and feedback, in or-
der to optimize the reconstruction of x (LOCC level) and,
finally, (4) all observers by exchanging quantum informa-
tion (FQ level). We have discussed information-theory
criteria ensuring that such a reconstruction is possible
at these various levels, and discussed the structure of
the associated correlated quantum state shared by the
observers and the system. These results, which are sum-
marized in Table IV C, show that the levels of objectivity
form a strict hierarchy:

1-Obs-Obj ⊊ LO-Obj ⊊ LOCC-Obj ⊊ FQ-Obj . (84)

This should be contrasted to the classical situation,
where only two different levels of objectivy exist (namely,
the 1-Obs and LO levels).

Several questions remain open: first of all, the descrip-
tion of the shared quantum state for the LOCC class
has not been obtained. But most importantly, while he
levels of objectivity we have defined correspond to ideal
cases, a measure of objectivity should also be defined,
in order to quantify the “proximity” of a given situation
to these levels. Here, different inequivalent approaches
should be explored. First, one could, in the spirit of the
historical studies on quantum Darwinism by Zurek and
coworkers, focus on information-theory quantities such as
mutual informations. Operationally, such information-
theory quantities are meaningful in situations where one
operates on a very large number of identically-prepared
systems. Our work points however towards an alterna-
tive approach – and probably a more appropriate one;
namely: to focus on estimation-theory quantities such as
the probability of guessing the state of the system by the
observers. This approach has not been explored in the
context of quantum Darwinism, but seems appropriate
in situations where one operates on a single copy of the
system. Intuitively, quantum Darwinism aims at clarify-
ing why a fundamentally-quantum world appears classi-
cal; and the world is only given in a single copy, not as
a collection of infinitely-many identically-prepared sys-
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tems. In this context, the natural quantification of how
objective a given situation is, should be achieved via such
estimation-theory concepts.

B. Perspectives: from quantum data hiding to
quantum signatures of space-time

On the longer term, many perspectives are suggested
by the work done during this Ariadna project. We shall
discuss perspectives for different domains: 1) quantum
Darwinism; 2) quantum data hiding; 3) statistical
inferrence; 4) space applications.

Selection of a unique quantum observable by
the environment. To build our hierarchy of objectivity
criteria, we considered the system as a source of classical
information x encoded into quantum degrees of freedom
(or fragments Fi), broadcasted through a medium (for-
mally a quantum channel), and finally measured by dif-
ferent observers. The task for the observers was to infer,
collectively or individually, the value of x from their mea-
surement results obtained by measuring the fragments Fi.
The root for this framework was found in a theorem by
Brandao et al [10], who showed that this structure gener-
ically emerges from the formalism of quantum mechanics
itself, as a result of broadcasting the state of the system
to many observers.

A question left open by this theorem is the uniqueness
of the observable being reconstructed by the observers.
It is a priori not excluded that the observers can infer
the outcomes of different and incompatible quantum
observables of the system x, y from their measurements.
The precise ability of the environment to single out one
observable is left as an open question.

Hiding classical information into quantum cor-
relations. This “classical state broadcasting” framework
may be interpreted as a “data-hiding” situation, where x
(a classical variable) is encoded into multipartite quan-
tum states ρ(F |x) shared among all the fragments. On a
fundamental level, the possibility to sharply distinguish
the accessible information within each of the frameworks,
from 1-Obs to FQ, is not clear. For instance, it is ex-
pected that if both the number of fragments and the
local Hilbert space dimensions are finite, it is not pos-
sible to hide the information about x only at the FQ
level; incomplete, yet non-zero, information will always
be extractable from, e.g. LOCC observers. Increasing
the number of observers and the Hilbert space dimension
of the fragments could allow one to come arbitrarily close
to this ideal situation, but the precise way to achieve this
is an open question.

Furthermore, if the cost of exchanging classical or
quantum information among the fragments is not free, a
trade-off exists between the quality of the reconstruction
of x and the resources used to achieve it. Quantifying
this trade-off is also an important open question. In the

same spirit, the computational cost of the reconstruction
in the LO, LOCC and FQ cases remains to be estimated.

Inferring incompatible quantum observables.
To further clarify the structure of the many-body states
emerging from the Quantum Darwinism framework, an
interesting and fundamental side question must be ad-
dressed. Indeed, it is a priori not excluded that different
groups of observers, measuring different groups of frag-
ments, infer the value of incompatible quantum observ-
ables of the system (e.g. the position X̂ and the veloc-
ity P̂ of the system). Since X̂ and P̂ do not commute,
Heisenberg inequalities must constrain the possible accu-
racy of this inferrence process.

Clarifying the role of Heisenberg inequalities in such
an inferrence framework is an important open question
for future studies. As a matter of fact, this is already rel-
evant for experiments: in [31], it has been demonstrated
that a full tomography of a super-conducting qubit can
be performed by the monitoring of its fluorescence radia-
tion as well as of the scattering of off-resonant radiation
by averaging over all the measurement outcomes of
many realizations. The incomptability of the three basic
observables of the qubit manifests itself through the
statistical properties of the whole set of trajectories (see
[30, Chapter 6]). See also [34] for another experiment
accesing two incompatible observables of a qubit using
two QND measurements and [25] in which two qubits
are used to probe a multimode quantum electromagnetic
field in the time/frequency domain.

Space applications. We would like to conclude this
technical report with a few remarks concerning the po-
tential space applications of our investigations. Clearly,
the framework of Quantum Darwinism, where a single
source (e.g. a star) brodcasts information through a noisy
channel (e.g. the interstellar medium) towards several ob-
servers (e.g. telescopes), is precisely the situation of space
observations. First, it is clear that exploiting the corre-
lations between different detectors is already a key tool
in order to improve the resolution of space observations.
At a classical level, this corresponds to the LO-situation
we have described.

It is already interesting to notice that the exchange
of classical information, such as timestamps of photon
detection in coincidence detection experiments, can al-
ready reveal interesting quantum properties of the source.
For example, Hanbury Brown Twiss (HBT) interferme-
try, which was used to measure stellar diameters in the
50s [36], was then originally interpreted using classical
wave interferometry [37] but, in the quantum regime, is
indeed an example of two-particle quantum interference
effect [28]. It was used to demontrate differences between
classical and quantum field-theoretical descriptions for
the photoelectric effect [13] as well as the quantum na-
ture of the fluorescence light emitted by a single atom [44]
thereby revealing the quantum nature of the correlations
present in the light emitted by these sources.



29

However, quantum correlations between the detectors
could also contain useful information about the source
– quantifying this information at a theoretical level is
already an interesting perspective for future research.
Elaborating over the previous discussion on HBT exper-
iments, this suggests to revisit ideas of quantum signal
processing [61], put forward in electron quantum optics,
within the present framework (clearly, space applications
would require exploring these ideas in quantum photonic
interferometry).

In a second step, quantifying the resources (in terms of
quantum-communication channels) necessary to extract
this putative information, will be important. Finally, be-
yond exploiting quantum correlations to improve the in-
ferrence about a far-away body viewed as source of classi-
cal information, on may speculate on observing quantum
signatures of the source itself. Clarifying the role of the
interstellar medium in altering such quantum signatures
of the source will be a key challenge, together with estab-
lishing the limits for our detectors to reconstruct them.
Such considerations are especially important concerning
black holes, which are considered as the most appropri-
ate objects to probe the interplay of Einstein’s gravity
and quantum physics, potentially revealing quantum sig-
natures of space-time itself.

Appendix A: Quantum measurements

1. General measurements and POVMs

In quantum theory, the most general form of measure-
ment is described by positive valued operator measure-
ments (POVMs). These involve a sequence of positive
semi-definite operators Em (⟨ψ| |Em| |ψ⟩ ≥ O for any
state vector |ψ⟩) summing to 1. The probability for ob-
taining the result m when the system is prepared in the
statistical ensemble described by the density operator ρ
is

p(m|ρ) = Tr(ρEm) . (A1)

Because of the conditions imposed on the Em operators,
these probabilities are positive and sum to unity. The
key point is that the POVM only gives the probability
of obtaining a certain result but does not give the state
of the system conditionned to this result: it does not
describe the quantum backaction. We need to specify it.

In the most general case, an initial (pre-measurement)
state described a density operator ρ is sent onto a relative
state described by a conditional density operator

ρ(S|m) =
1

pm

∑
k

Mm,kρM
†
m,k (A2)

in which the Mm,k operators obey∑
k

M†
m,kMm,k = Em . (A3)

and pm = p(m|ρ) = Tr(ρEm) denotes the probability for
obtaining the result m.

These fully general measurement can be viewed as
obtained from the so-called generalized measurement,
which are described by Kraus operators Mm such that∑
mM

†
mMm = 1, by a process of coarse graining. Of

course, given a POVM, one can always build Kraus op-
erators by taking Um

√
Em in which Um is a unitary oper-

ator that corresponds to a feedback action on the system
determined by the measurement result. It is straightfor-
ward to check that M†

mMm = Em. But as explained in
the previous paragraph, this is not the only possibility.

To understand it, let us come back to the construction
of Kraus operators in a purified picture: they are associ-
ated with a projective measurmeent in the environment.
More precisely, given |ψ⟩ ∈ HS , we first consider that the
environment is prepared in a state |E0⟩ and make the two
systems through a unitary evolution operator acting on
HS ⊗HE thereby obtaining U(|ψ⟩ ⊗ |E0⟩). We then per-
form a projective measurement on the environment. In
full generality, it is described by a set of orthorgonal pro-
jectors Πm summing to 1 in HE . This leads to a POVM
through

Em = ⟨E0|U†ΠmU(|ψ⟩ ⊗ |E0⟩) . (A4)

If the projector Πm has rank strictly greater than one, we
can naturally write down a decomposition for the post-
measurement relative state of the form Eq. (A2) by using
|xm,k⟩ an orthonormal basis of the projection space of Πm
and defining

Mk,m |ψ⟩ = ⟨xm,k|U(|ψ⟩ ⊗ |E0⟩) (A5)

A straigtforward calculation shows that

M†
m,kMm,k |ψ⟩ = ⟨E0|U†Πm,kU(|ψ⟩ ⊗ |E0⟩) (A6)

thereby implying that
∑
kM

†
m,kMm,k = Em. Defining

the post-measurmement state by Eq. (A2) amounts to us-
ing a much finer generalized measurement defined by all
the Mm,k operators and then coarse-graining the (m, k)
through the forgetting of k.

In the case where the initial state is pure, this lead
to a relative state which is a statistical mixture whereas
considering Mm = Um

√
Em can be viewed as the most

efficient measurement: no information is forgotten in the
result and therefore, the post-measurement relative state
is still pure. The maximally efficient general quantum
measurements correspond to the ones introduced in Sec-
tion II B 2.

2. Ideal measurements

Ideal measurmeents are characterized by their repro-
ductibility: performing twice the same measurement
without letting the system evolve between them will lead
to the same result. In classical physics, because there is
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no a essentiel back-action on the system, ideal measure-
ments are noiseless measurement: the result is a func-
tion of the microscopic state of the system. In quan-
tum physics, reproductible measurements are the projec-
tive ones, characterized by a set of orthogonal projectors
which sum up 1.

Here, we will recall the known results on the informa-
tion gain through an ideal measurement process. As we
shall see, the information gain is always positive but the
balance equation for information satisfied in the classical
domain is not valid in the quantum realm because of the
essential backaction of the measurement on the system
[5].

Let us first consider the case of an ideal measurement
in the classical domain. A system is prepared in a statis-
tical ensemble characterized by a probability distribution
a 7→ pa of microstates. We then measure a quantity X,
thereby obtaining the values x which are of course ran-
domly distributed. The pre-measurement entropy is the
Shannon entropy of this ensemble S[A] = −

∑
a pa ln(pa).

After measurement, the average entropy is

S[A|X] =
∑
x

pxS[A|x] (A7)

where S[A|x] = S[pA(·|x)] is the Shannon entropy for
the conditional probability distribution p(a|x) for As mi-
crostates conditionned to the results of the measurement.
Consequently, the information gain is

∆I = S[A]− S[A|X] (A8)

which is nothing but the mutual information I[A,X].
Since an ideal (noiseless) measurement performs a coarse
graining of microstates according to the values of the
measured quantity, we have

S[A]− S[A|X] = −
∑
x

p(x) ln(p(x)) (A9)

which expresses that the information gain is exactly equal
to the entropy of the results. This can be viewed as a
conservation law for information: the results carry an
entropy which corresponds to the information gained on
the system.

Let us now discuss quantum ideal measurements,
which are projective measurements defined by a set of or-
thogonal projection operators Πm summing to 1. Start-
ing from an initial density operator ρ, the projective mea-
surement generates the “unread” post-measurement den-
sity operator

ρ(unread) =
∑
m

ΠmρΠm (A10)

which corresponds to summing, over all the possible re-
sults, the relative density operator conditionned to a spe-
cific measurement result

ρ(S|m) =
ΠmρΠm
p(m|ρ)

(A11)

weighted by the probability p(m|ρ) of obtaining m:

p(m|ρ) = Tr(Πmρ) (A12)

The post-measurement entropy is then the average of the
entropies of these relative density operator:

S(post) =
∑
m

p(m|ρ)S[ρ(S|m)] (A13)

which plays the analogue of Eq. (A7). Of course, the
Shannon entropy of the measurement results is

S(results) = −
∑
m

p(m|ρ) ln (p(m|ρ)) . (A14)

The entropy conservation law (A9) is then replaced by
three distinct results which are proved and discussed in
Ref. [5].

First of all, entropy conservation

S
[
ρ(unread)

]
− S(post) = S(results) (A15)

which is almost identical to Eq. (A9) except that the ini-
tial entropy has been replaced by the post-measurement
entropy without reading the results. Consequently, the
entropy of the results is not anymore the information
gained by through the measurement process.

The second result is that performing a projective
meaurement will necessarily kills some coherences and
therefore increases the entropy

S [ρ] ≥ S
[
ρ(unread)

]
(A16)

whihc shows that the information gain S [ρ] − S(post) is
smaller than the entropy of the results. Compared to
the classical case, this comes from the erasure of all the
information associated with the observables incomatibles
with the one that is measured [5].

The third result is that this price is never high enough
to make the information gain negative. Finally, we obtain
the general bounds

0 ≤ S[ρ]− S(post) ≤ S(results) (A17)

Note that, for projective measurements, the information
gain through the measurement can be expressed as

∆I = χ [(p(m|ρ), ρ(S|m))m]− (∆S)dec (A18)

in which the first term is the Holevo quantity for the
(p(m|ρ), ρ(S|m))m and (∆S)dec is the entropy increased
induced by the decoherence associated with the projec-
tive measurement process. This is the price to pay for not
reaching the maximal possible information gain, which is
here the Shannon entropy of the results.
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Appendix B: Operational meaning of the mutual
information

The operational meaning of the Shannon mutual in-
formation appears in the classical Slepian-Wolf proto-
col [65]. In this protocol, we are considering two cor-
related sources of information and we want to find the
mainimal information rate that they need to use to
transmit their joint content. Ignoring their correlations
would require RA ≥ S[A] and RB ≥ S[B] bits of infor-
mation whereas one can achieve full transmission with
RA ≥ S[A|B], RB ≥ S[B|A] and RA +RB ≥ S[A,B] by
taking correlations into account. The gain is therefore
S[A] + S[B]− S[A,B] = I[A,B].

In the quantum context, the analogous interpretation
is provided with the quantum Slepian-Wolf or state merg-
ing protocol[41]: we want to compress a bipartite quan-
tum source (A,B). Although the general solution to
this problem is not known, it is known when we allow
free classical communication between the parties. The
end result is that the full state can be compressed using
Svn[A,B] qubits, which is the Schumacher compression
rate [63] even in this situation where the source is split-
ted in two. This can be done by first transfering the
information shared between A and B to Bob who al-
ready holds the B source. This requires the consumption
of Svn[A|B] qubits (when the conditional entropy is posi-
tive) and Ivn[A,B] classical bits. Then, once Bob has the
equivalent of the full composite source in its hands, it can
use S[A,B] to transfer the full quantum information to
the third partner.

Appendix C: Classical and quantum bounds on
entropies

1. Sub-additivity and lower bounds

The conditional information S[A|B] defined as
S[A,B] − S[B] satisfies the following inequalities. First
of all, both the Shannon and the von Neumann entropies
are sub-addidive:

S[A,B] ≤ S[A] + S[B] . (C1)

with equality if and only off the two sources A and B are
uncorrelated.

The Shannon and von Neumann entropies of a com-
posed system differ by the lower bounds they obey. The
Shannon entropy of a composed system is always larger
than the Shannon entropy of each of the subsystems

S[A,B] ≥ max(S[A], S[B]) . (C2)

whereas the von Neumann entropy obeys the Araki-Lieb
inequality

Svn[A,B] ≥ |Svn[A]− Svn[B]| . (C3)

which enables the full system’s entropy to be lower than
the one of each component.

This also leads to the following bounds on the mutual
information I[A;B] = S[A] + S[B] − S[A,B]. Both the
classical (Shannon) and quantum (von Neumann) mutual
informations are positive as a consequence of Eq. (C1)
but their upper bounds differ. For the classical case, the
mutual information cannot exceed the Shannon entropy
of any subcomponent

I[A;B] ≤ min(S[A], S[B]) (C4)

whereas, it can reach twice that limit in the quantum
case

Ivn[A;B] ≤ 2min(Svn[A], Svn[B]) . (C5)

2. Strong subadditivity

Strong sub-additivity (SSA) is a property for tri-
partite systems. It is obeyed by the Shannon entropy
but also by the von Neumann entropy, for which it is a
far less trivial result [49] although simpler proofs have
been given recently [53, 62]. It states that

S[A,B,C] + S[B] ≤ S[A,B] + S[B,C] (C6)

which is equivalent to a statement on conditional en-
tropies called the data processing inequality11:

S[A|B,C] ≤ S[A|B] . (C7)

It thus expresses that forgetting a conditionning can only
increase the entropy. This bound translates into a bound
on mutual information

I[A; (B,C)] ≥ I[A;B] (C8)

stating that correlations between a smaller set of sub-
systems can only be smaller than correlations between
bigger sets.

The strong-subadditivity can finally be recasted as a
statement on conditional mutual information. We first
need to define the conditional mutual information by gen-
eralizing I[A;B] = S[A]− S[A|B] = S[B]− S[B|A]:

I[A;B|C] = S[A|C]− S[A|B,C] (C9a)
= S[A,C] + S[B,C]− S[A,B,C]− S[C]

(C9b)
= S[A|C]− S[A|B,C] = I[B,A|C] (C9c)

Then the strong-subadditivity expresses nothing but
the posititivity of the conditional mutual information:
I[A,B|C] ≥ 0.

11 See [6] for generalizations.
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The strong-subaddivity for the von Neumann entropy
can be shown to be equivalent to other important prop-
erties. First it is equivalent to the decrease of relative en-
tropy or Kullback-Leibler divergence under a completely
positive trace preserving (CPTP) operation. This prop-
erty, called Monotonicity of quantum relative entropy
states that for any CPTP N and any pair of density
operators ρ1 and ρ2, we have

D[N (ρ1)∥N (ρ2)] ≤ D[ρ1∥ρ2] (C10)

This is also equivalent to the monotonicity of quantum
relative entropy under partial trace. Considering two
density operators ρ1 and ρ2 for a composed system shared
by Alice and Bob, we have:

D[TrB(ρ1))∥TrB(ρ2)] ≤ D[ρ1∥ρ2] (C11)

Finally, the strong-subadditivity is equivalent to the joint
convexity of the quantum relative entropy.

3. Sufficient criterion for entanglement

By definition, bipartite entangled states are states
which are not separable, the latter being states whose
density operator can be written as (C12). Let us show
that for separable states, we have S[A|B] ≥ 0 and
S[B|A] ≥ 0. This shows that whenever S[A|B] or S[B|A]
is negative, the state is entangled.

This statement follows from the concavity of ρAB 7→
S[ρAB ]− S[TrA(ρAB)] since, starting from the separable
state

ρAB =
∑
i

piρA(i)⊗ ρB(i) (C12)

the concavity properties implies that

S[A|B] ≥
∑
i

piS[ρA(i)⊗ ρB(i)|ρB(i)]

≥
∑
i

piS[ρA(i)] ≥ 0 . (C13a)

Concavity of the quantum conditional entropy directly
follows from strong subadditivity through thefollowing
argument. Let us introduce 0 ≤ λ ≤ 1 and ρAB and ρ′AB
two density operators. The statistical mixture ρAB(λ) =
λρAB+(1−λ)ρ′AB is obtained by tracing over an arbitrary
qubit, which we call C, the density operator

ρABC(λ) = λρAB ⊗Π0 + (1− λ)ρ′AB ⊗Π1 (C14)

where Π0 = |0⟩ ⟨0| and Π1 = |1⟩ ⟨1|. Applying the strong
subadditivity property (C6) to ρABC(λ) directly leads to
the concavity of ρAB 7→ S[A|B].

Note that the positivity of both conditional entropies is
what leads to I[A,B] ≤ min(S[A], S[B]) since I[A,B] =
S[A] − S[A|B] = S[B] − S[B|A]. Whenever I[A,B]
exceeds this classical bounds means that S[A|B] or
S[B|A] ≥ 0 and therefore implies that the state is en-
tangled.

However, note that this is not necessarily a necessary
condition for entanglement.

4. Behavior under temporal evolution

The quantum mutual information being nothing but
the relative quantum entropy or Kullback-Leibler diver-
gence between the state of the full system ρAB and its
marginals ρA and ρB , property (C10) implies that it de-
creases under temporal evolution when completely posi-
tive trace preserving maps are separately applied ot each
part. It also decreases (see Eq. (C8)) when one discards
part of one of the subsystem. These results can be viewed
as the leak of correlations between two systems into all
the degrees of freedom they are connected to.

Appendix D: Proof the Theorem A.2

Proof. The proof relies on two lemma that we admit:

Lemma 0.1. Given a classical–quantum state ρAB =∑
x px |x⟩⟨x| ⊗ ρ(B|x), we have I[A,B] = Iacc(A,B) =

χ(px, ρ(B|x) where χ is the Holevo quantity. More-
over, Icc[A,B] = I[A,B] if and only if the states ρ(B|x)
are mutually commuting, therefore ρAB being classical–
classical.

Lemma 0.2. Given a state ρAB and two local maps ΛA
and ΛB, if I[(ΛA⊗ΛB)(ρAB)] = I[A,B], then there exists
inverse maps Λ∗

A and Λ∗
B such that (Λ∗

A ⊗ Λ∗
B)(ΛA ⊗

ΛB)(ρAB) = ρAB.

Let us now prove the theorem. First, if the state is
classical–classical, the result is straightforward by sim-
ply performing ideal measurements diagonal in the same
basis as the state. Conversely, suppose that I[A,B] =
Icc(A,B), and consider MA and MB optimal measure-
ments, s.t. I[A,B] = I(A,B;MA,MB). We define
ρcc
AB = ρAB(MA ⊗ MB). Then by the second lemma,

we have two inverse measurements M∗
A and M∗

B . Now
we can consider the quantum-classical state ρqc

AB =
ρcc
AB(M

∗
A ⊗ 1B). This is thus a QC state such that

Iacc(B,A) = Icc[ρ
qc
AB ] = Icc[ρAB ] = I[A,B]. Thus by

the second part of the first lemma we conclude that ρAB
is a CQ state (commutation of the marginals) and again
with the first lemma that ρAB is CC.

Appendix E: Alternative expressions of quantum
discord

1. Proof of theorem B.1

The argument starts with the inequality:

S[A|B,C] ≤ S[A|B] . (E1)

This version of strong additivity states that by disregard-
ing the system C, Alice and Bob have to share more in-
formation to apply the state merging protocol. The goal
of the argument is to relate this increase of the cost of
the protocol to the discord.
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Extend the Hilbert space so that measurement, that
we will denote Mi, can be modeled by a coupling to C.
Suppose C to be initially in a pure state |0⟩. In the
purified setting, Mi is represented by a unitary opera-
tor U acting on C and B. For the moment, we initially
have have S(A,B) = S(A,BC). After the evolution, we
have I(A,BC) = I(A′, B′C ′). Discarding C ′, we have
I(A′, B) ≤ I(A′, B′C ′). Apply the state merging pro-
tocol. S(A|B) = S(A|BC) = S(A′|B′C ′). Thus acting
on B with a unitary operator though an initially fac-
torized ancilla C doesn’t change the cost of the proto-
col. After forgetting C ′, we have I(A′, B′) ≤ I(A,B) or
S(A|B) ≥ S(A′|B′).

So the cost on state merging induced by the measure-
ment Mi is given by D(ρAB |Mi) = I(A,B) − I(A′, B′).
This quantity, which still depends on the measurement
performed by B, becomes the quantum discord when
our operation is a measurement maximizing I(A′, B′).
To see this, let’s compute explicitly I(A′, B′). We have
ρ′AB =

∑
j pjρA|j ⊗ πj where πj is the projector on the

subspace of the result j. The unconditioned reduced
states for A and B are respectively ρ′A =

∑
j pjρA|j = ρA

and ρ′B =
∑
j pjπj . Then, we have:

I(A′, B′) = S(A′) + S(B′)− S(A′, B′)

= S(A′) +H(p)− (H(p) +
∑
j

pjS(ρA|j))

= S(A′)−
∑
j

pjS(ρA|j) , (E2)

whereH(p) is the Shannon entropy of the probability dis-
tribution pj and the second line is obtained using the mix-
ing property of the von Neumann entropy. After maxi-
mization over the measurement MS , we obtain exactly
J [ρ′AB ], the asymmetric mutual information Eq. (49),
ending the proof of the theorem by recalling the defi-
nition Eq. (50) of the discord.

2. Proof of theorem B.2

The monogamy relation [45] for a tripartite pure state
|ψABC⟩ reads:

S[B] = EF [A,B] + I[B,Cc] , (E3)

where we used the notation Cc to mean that a measure-
ment has been performed on the subsystem C. We then
have:

EF [A,B] = S[B|Cc] = S[A|Cc] . (E4)

From the definition of the discord in terms of relative
entropies, we have:

D(A|C) = EF [A,B]− S[A|C] . (E5)

Since we prepared a pure state, S[A|C) = S[A,C] −
S[C] = S[B] − S[A,B] = −S[A|B]. Thus D(A|C) =
S[A|B] + EF [A,B], proving the result.
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