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Abstract— The spiders’ ability of walking and climbing on
different surfaces and in different conditions is taken into
account in this paper in order to define and study a suitable
spider-model for a future climbing-robot prototype that can
autonomously explore dangerous and extra-terrestrial surfaces.
Indeed, the spider shows all of the requisites for the exploration
in these non-structured environments: low mass, high motion
capabilities, climbing abilities and embedded decision elements.
In order to understand how the spiders can walk and climb,
the attaching mechanisms, the dynamics of the adhesion and
the legs’ movements are evaluated. Thanks to this approach
structural and dynamic directives for the model are found and
the mobility of the real spider can be studied in order to define
a suitable bio-mimetic model.
The found simplified model is analyzed from a kinematic point
of view considering the different conditions of contact and flight
for the eight available legs.
A kinematic simulator that controls the overall degree of adhe-
sion of the system and the locomotion pattern of the developed
spider model is implemented to confirm the effectiveness of the
choices.

I. INTRODUCTION

In recent decades, the progress in manufacturing automa-

tion and robotics allowed to think to replace the humans in

dangerous, inaccessible working environments.

Nanotechnology and microrobotics offered the possibility

of creating autonomous miniaturized structures used for a

wide range of tasks, like the use of robots in securing land-

mined areas, inspection of large mechanical structures that

present hazard (e.g. electric poles), exploration of narrow

and inaccessible environments like underwater structures,

industrial pipes or outer-space exploration. Exploration in

non-structured environments requires low mass, versatility,

climbing abilities and embedded decision elements. Two

of the most important requirements to satisfy, in order to

develop such devices, are the autonomous working capacity

without any linkage to a mother-structure, and very low

energy consumption.

Different types of locomotion have been attempted in order

to allow all-surface locomotion, but some of the methods,

like air-suction and electromagnets [1], [2], [3], presented

the disadvantage of very limited autonomy because of the

power supplies needed in order to work, along with the

limitations introduced by the surfaces that these mechanical

structures should climb. Moreover the problems due to the

lack of atmosphere in space applications have to be taken into
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account. So the attention turned to biological creatures able

to climb fast and run over various types of surfaces in un-

structured environments and in different weather conditions.

Replicating these creatures, like spiders, lizards or insects is

no easy task because the locomotion techniques used are not

fully understood and more advanced research using modern

measuring and observation equipments is required.

In this paper the attention is turned on spiders. These

arachnids are capable to efficiently operate and nimbly move

in unstructured environments. Spiders can climb on vertical

surfaces, upside-down, easily overcome obstacles thanks to

the mobility of their legs (not possible in other well studied

insects like cockroaches and geckos), build webs and can

also walk on them.

Several engineering prototypes of legged systems have been

developed but they are mainly based on macroscopic obser-

vations of the animal’s design and do not take into account

the climbing abilities of the real system.

In order to define a suitable model, the biological system and

the climbing abilities of the spider have to be evaluated.

II. THE SPIDER

The spiders and other arachnids have only two major

body parts. The anterior part is called the cephalothorax

or prosoma, and the posterior part is called abdomen,

or opisthosoma. Spiders have eight legs attached to the

cephalothorax and each leg is composed of seven segments

[4]. In order to be able to climb various surfaces the spiders

use two types of different attaching mechanisms: the claws

and the hairs.

The claws are used for locomotion, during climbing rough

hard surfaces (stone) or soft surfaces (tree bark, leaves),

and web building, in order to spin the silk threads or walk

on the already built web. Considering the micro-nano hairs

on the spider limbs, they allow the spider to attach to a

several different kind of surfaces thanks to the intermolecular

attraction forces between the spider’s hairs and the climbing

surface (tree bark, rock, stucco, metal, glass or plastics). Due

to these two different attaching mechanisms, such amazing

animals are able to cling to almost all the surfaces.

The jumping spider Evarcha arcuata can walk, climb over

and jump between different types of surfaces. In [5], [6] it

has been studied and observed from a biological perspective.

Like in other spiders, the tarsus of all the eight feet of the E.

arcuata is both covered with hierarchic setal structures used

for adhesion on any type of surfaces, and provided with two

claws for rough surfaces. The setal structures of E. arcuata

are a ramified hierarchical structure. The tip of the tarsus of

each leg is covered with the setae, a relatively long thin hairs,
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that split and branch at their end into the so called setulae.

Each of these setulae has a flattened tip called spatula that

allows to maximize the contact area with the substrate. From

the Atomic Force Measurement (AFM) analysis it results

that a single setula creates an attachment force of 38.12nN,

leading to a total adhesive force of 2.38 ·10−2N. The spider

E. arcuata can produce an adhesion force to sustain 160

times its body weight and be able to climb the substrates in

any condition and in safety.

The dynamic of the attaching and detaching movements has

to be evaluated and studied in order to mimic the abilities

of the spider locomotion and adhesion. First, observation of

other biological systems shows that the adhesion increases

when not only a normal load, but also a parallel load is

applied [7], [8]. Hence, it is possible to argue that in spiders,

as demonstrated for geckos [7], in order to establish an

intimate contact between the attaching elements and the

surface, not only a normal preload but also a parallel sliding

movement is necessary. Moreover, looking to the approach-

ing behavior in the attaching and detaching phases, an angle

and a succession of movements that enhance the adhesion

and allow to attach and detach rapidly the spiders’ feet can

be found. By studying a finite element model of a seta, Gao

[9] defined two mechanisms of adhesion failure depending

on the pulling angle: sliding off (< 30o) and detachment

(> 30o). When a 30o condition between the adhesive beams

and the substrate is reached, the maximum adhesion force is

achieved. This suggests that a suitable increasing of the setal

angle from 30o allows to rapidly detach the setae from the

substrate.

In a bio-mimetic robotic approach both the above remarks

have to be taken into account in order to control the angle

of adhesion and the proximal and distal movements of the

prototype’s legs. Considering that the spiders as the E.

arcuata have the attaching mechanisms on the tip of the

tarsus limbs, the considerations made about the correct angle

of adhesion of the setal structure can be extended to the last

limb of the leg’s chain.

An accurate control of the approaching angle between the

last limb of the leg and the substrate can bring to a correct

implementation of the adhesion and detachment phases.

A definition of a correct spider-model requires a kinematic

analysis of the real arachnid systems.

III. MOBILITY ANALYSIS OF SPIDER’S LEGS

The spider’s leg has seven limbs: coxa, trochanter, femur,

patella, tibia, metatarsus and tarsus. In Fig. 1,2 the leg with

the found angles of motion is shown.

Coxa is the first limb between the body and other limbs. As

there are seven limbs in the leg of a spider, there are seven

joints to be examined. It has been assumed that the joints

of various spider species are the same and these are of two

types: monocondylar and bicondylar. Looking at the analysis

made in [4], [10], [11], [12], [13], [14], [15], that investigate

the possible movements and rotations of each joint, the joints

can be evaluated from a mechanical point of view:

Fig. 1. Ranges of motion for joints in Y-Z plane (based on Foelix’s results
[4])

Fig. 2. Ranges of motion for joints in X-Y plane (based on Foelix’s results
[4])

1) Body-Coxa joint: this joint can be viewed as a three

degrees of freedom (DOFs) ball-and-socket joint;

2) Coxa-Trochanter joint: there are two different views

about this joint, either a 3-DOFs ball-and-socket or a

2-DOFs saddle joint.

3) Trochanter-Femur joint: this joint can be modeled as

a universal joint with 2-DOFs;

4) Femur-Patella joint: this joint can be modeled as a

hinge joint;

5) Patella-Tibia joint: it is possible to model this joint

as a hinge joint, or a universal joint with very limited

joint on Y-Z axis;

6) Tibia-Metatarsus joint: it is also possible to assume

this joint as a hinge joint, or a universal joint with very

limited motion on X-Y axis, in contrast with patella-

tibia joint;

7) Metatarsus-Tarsus joint: this joint can be modeled as

a universal joint.

The mobility of all the joints and the degrees of freedom

per leg depend on the position and condition of each leg.

In the free flight configuration (i.e. leg not in contact with

the substrate), the spider’s leg can be viewed as a 7-joint

manipulator while, in the contact condition (i.e. leg in contact

with the surface), an equivalent additional spherical joint

must be considered.

In order to carry out a mobility analysis of the spider system,

the mobility equation (Kutzback equation) is employed:

d = 6 · (n−1)−
j

∑
i=1

(6− fi)

where n is the number of links, j the number of joints, fi the

number of DOFs per every joint and d = number of DOFs

3078



per leg. Then, computing the mobility in the two different

cases, in the free flight case the DOFs result d = 14 and

in the contact case d = 17. In Tab.I the mobility analysis

results as a function of the number of legs in contact (g)

and the number of DOFs per leg (d) are shown. When

TABLE I

MOBILITY OF THE SPIDER SYSTEM.

d g
1 2 3 4 5 6 7 8

3 3 0 -3 -6 -9 -12 -15 -18
4 4 2 0 -2 -4 -6 -8 -10
5 5 4 3 2 1 0 -1 -2
6 6 6 6 6 6 6 6 6
7 7 8 9 10 11 12 13 14
8 8 10 12 14 16 18 20 22
9 9 12 15 18 21 24 27 30
10 10 14 18 22 26 30 34 38
11 11 16 21 26 31 36 41 46
12 12 18 24 30 36 42 48 54
13 13 20 27 34 41 48 55 62
14 14 22 30 38 46 54 62 70
15 15 24 33 42 51 60 69 78
16 16 26 36 46 56 66 76 86
17 17 28 39 50 61 72 83 94

d > 6, an increase of g brings to an augmentation of the

overall mobility of the system. If d < 6 an increase of g

brings to a reduction of the overall mobility of the system.

When d = 6 the mobility of the system is always 6 in spite

of the number of legs in contact with the surface.

Looking at the mobility of the real spider it is possible to

underline that the system has 94 DOFs when 8 legs are in

contact with the surface and 50 DOFs when 4 legs are in

contact with the surface. These results are justified by the

fact that the spider’s legs are used not only for walking but

also for manipulating objects, capturing prey and sensing

the environment. Due to these considerations, a reduction of

the complexity of the system, that for now is unimaginable

to mimic in a bio-robotic perspective, has to be made.

The robotic system has to allow the control of the body

system and, consequently, must have at least 6 DOFs (3

positions, 3 rotations). The number of DOFs per leg has to

be d ≥ 6 but as small as possible, in order to be feasible.

In the previous analysis it emerged that for controlling

the adhesion of every leg the approaching angle must

be suitably controlled. Then, at least one extra degree of

freedom per leg has to be available in order to define and

control the approaching angle between the tarsus link and

the substrate. Thus, in the following kinematic model the

DOFs per leg are set to 7.

IV. KINEMATIC MODEL OF THE SPIDER’S LEG

The simplified model of the spider, chosen according to the

previous analysis, is an eight legged structure with a round

body plate; the number of legs of the spider creates indeed a

good compromise between the stability and the complexity.

The legs are radially collocated with respect to the body, with

an interval of 45o between each two adjacent legs. In such

a manner the system is symmetrical and can be viewed as

head-less and tail-less. The legs structure is the same for all

the 8 legs, allowing the same capabilities in all the directions

of motion. In order to assure a correct mobility, when the leg

is in flight, every leg is defined with 4 DOFs with three links

and three joints (i.e. one universal and two revolute pairs).

In Fig. 3 the chosen leg model is shown.

When the leg is in contact with the surface an additional

spherical joint has to be considered in order to properly

model the contact condition. When the leg system touches

the substrate and adheres to it, a closed kinematic chain is

created and the contact point is known and fixed.

The study of the kinematics of the spider model is the

basis for an effective control of the position of the body

and the approach angle allowing the direct computation of

the approaching angle, of the body center of mass and the

validation of the chosen structure. For each leg the coordinate

systems can be fixed according to the Denavit-Hartenberg

(DH) convention (Fig. 4, [16]). The DH parameters, starting

from the body reference system, are represented in Table

II. Depending on the operative condition, the system can be

TABLE II

DH PARAMETERS FOR A SPIDER LEG.

di θi ai αi

Body → 0 0 θ0 lenhip 0

0 → 1 0 θ1 0 π
2

1 → 2 0 θ2 len f 0

2 → 3 0 θ3 lent 0

3 → 4 0 θ4 lenm 0

viewed with different approaches. Two possible targets can

be defined:

1) Free-flight kinematics: the body is considered known

and fixed, and the target is to solve the direct and

inverse kinematic problem for the free flight condition

of a leg, hence for a open-chain configuration;

2) Contact-kinematics: the position of the contact points

between the supporting legs (legs in contact with the

substrate) and the substrate is considered fixed and the

Z
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link 2 tibia
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(meta)tarsus


Fig. 3. Reduced model of the spider leg.
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Fig. 4. DH coordinate systems of a spider leg.

target is to control the position and orientation of the

body by solving the direct and inverse kinematics of

the system.

A. Free flight kinematics

In this analysis the body position and orientation are

known and the purpose is to control the (meta)tarsus of

each leg.

1) Direct kinematics: Once defined the values of the

revolute pairs, the position of the end-effector can be easily

computed. Defining A
j
i as the roto-translation matrix between

the joint j and i, the direct kinematics equation becomes (Fig.

4):

AR
4 = AR

B ·A
B
0 ·A

0
1 ·A

1
2 ·A

2
3 ·A

3
4

The matrix AR
B is known and the body can be considered as

the Base coordinate system. The direct kinematics problem

becomes:

AB
4 = AB

0 ·A
0
1 ·A

1
2 ·A

2
3 ·A

3
4

with the θ0 parameter of the AB
0 fixed and related to the

considered leg. Being fixed the relation between the B and

0 coordinate systems, the rototranslation matrix between the

coordinate system 4 and 0 is:

T0
4 = A0

1 ·A
1
2 ·A

2
3 ·A

3
4 =

[

a0 n0 s0 P0

0 0 0

]

where the approaching vector a0 is related to the X axes of

the last coordinate system and

P0 =
[

p0
x , p0

y , p0
z ,1

]T

2) Inverse kinematics: Considering the body as fixed the

task is to find the values of the joint angles in order to

bring the tip of the (meta)tarsus to a defined position and

orientation.

The inverse kinematics problem solution can be found by

looking at the particular configuration of the leg system (Fig.

4). In the XY plane of the body reference system works only

the first (θ1) revolute pair. Hence θ1 has 2 possible values:

θ1 = atan2(p0
y , p0

x),π +atan2(p0
y , p0

x)

The residual chain is made of a planar manipulator with

three links (Fig. 3). The 2,3 and 4 joints make a R-R-

R dyad, hence the inverse kinematics can be analytically

solved. Calling φ = θ1 + θ2 + θ3 the overall rotation on the

Z axis of the joint 2 coordinate system, the position of the

center of the 4th revolute pair (P4) becomes:

P4 = [p4x, p4y, p4z,1]T = P0
− lenm ·a0

where a0 is known once defined the target and the approach-

ing angle. For θ3 holds (c = cos; s = sin):

c3 =
p42

x + p42
y + p42

z − len2
f − len2

t

2 · len f · lent

,s3 = ±

√

1− c2
3

Once θ3 has been computed, θ2 can be found.

With some manipulations two equations in two unknown

quantities can be found:

c2 =
(len f + lent · c3) ·

√

p42
x + p42

y + lent · s3 · p4z

p42
x + p42

y + p42
z

s2 =
(len f + lent · c3) · p4z − lent · s3 ·

√

p42
x + p42

y

p42
x + p42

y + p42
z

directly linked to the θ3 solutions. Being:

θ4 = φ −θ2 −θ3

for θ4 there are two solutions and all the unknowns are found.

B. Contact kinematics

When a leg is in contact with the substrate, the kinematics

of the system changes. In such a case an extra spherical

joint between the (meta)tarsus and the surface has to be

considered. Hence a different kinematic problem appears.

In Fig. 5 and in Table III the additional DH coordinate

systems are imposed and the parameters defined.

TABLE III

ADDITIONAL DH PARAMETERS.

di θi ai αi

4 → 5 0 θ5 0 − π
2

5 → 6 0 θ6 0 π
2

6 → 7 0 θ7 0 0

The position and orientation of the spider’s body (6 DOFs)

have to be controlled, whereas the contact point between

the spherical joint and the substrate is known. From the
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Fig. 5. Model of the leg in contact.
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mobility analysis this system has 7 DOFs and, for the task

to satisfy, admits ∞1 solutions.

1) Direct kinematics: The direct kinematics can be ex-

pressed as:

TR
B = TR

6 ·T
6
5 ·T

5
4 ·T

4
3 ·T

3
2 ·T

2
1 ·T

1
0 ·T

0
B

and exploiting the considerations and results of the free-flight

kinematics solution:

TR
B = TR

6 ·T
6
5 ·T

5
4 · (T

B
4 )−1

By defining the values of the angles of the pairs, it is

possible to compute the position and orientation of the

spider’s body.

2) Inverse kinematics: In order to compute the values that

must be imposed to the joints in order to bring the body to a

desired position and orientation, the chain has to be evaluated

from the Body coordinate system.

For every leg the distance between the body reference system

and the origin of the coordinate reference system related to

the first revolute joint of every leg is fixed. By defining the

target as:

Body = [B;Θ] = [Bx,By,Bz,φB,θB,ψB]T

the roto-translation matrix between the Reference system and

the body can be expressed as:

TR
B =





cφ · cθ · cψ − sφ · sψ cφ · cθ · sψ − sφ · cψ cφ · sθ Bx

sφ · cθ · cψ + cφ · sψ sφ · cθ · sψ − cφ · cψ sψ · sθ By

−sθ · cψ sθ · sψ cθ Bz

0 0 0 1





Being known the rototranslation matrix between the body

and the first joint, the matrix TR
0 = TR

B ·T
B
0 is available. The

value of the θ1 angle is found considering Fig. 5. θ1 is the

rotation that allows to move the reference system 1 on the

reference system 0.

The point P can be expressed in the coordinate system 0 as:

P0 = (TR
0 )−1

·P = T0
R ·P

and θ1 can be calculated as in the free flight condition:

θ1 = atan2(p0
y , p0

x),π +atan2(p0
y , p0

x)

The O0 = O1 points, the Z0 axis and the contact point

between the end of the (meta)tarsus link and the surface (i.e.

P = O4 = O5 = O6 = O7) belong to the same plane π . By

exploiting that, the Z4 = Z3 = Z2 = Z1 axis can be found.

The Z4 axis is the third column of the rototranslation matrix

TR
1 . The spherical joint in P is a virtual spherical joint that

allows to define the rotations that have to be made in order

to put the coordinate system 7 on the coordinate system 4.

The three unknown angles are the Euler angles (ZYZ) with

respect to the coordinate system 4.

In order to move the Z7 axis to the known Z4 axis two

rotations are required (θ6 and θ7).

The spherical joint rototranslation matrix is:

T4
7 = T4

5 ·T
5
6 ·T

6
7

The Z7
4 axis is:

Z7
4 = T7

R ·Z
R
4

The T7
4 is equal to the transposed matrix (T4

7)
′

and then the

Z7
4 can be also expressed as:

Z7
4 =

[

−sθ6
· cθ7

,sθ6
· sθ7

,cθ6
,1

]T

By comparing the two expressions for Z7
4, the angles θ6 and

θ7 can be found. The unknown system is now reduced to the

four-sided made of the revolute joints defining the angles θ2,

θ3, θ4 and θ5. All these joints are in the same plane and all

the associated reference systems have the same Z axis. This

articulated mechanism has one DOF and admits ∞1 solutions.

This DOF can be used for choosing the best configuration

available in order to assure conditions on the overall adhesion

of the leg and the system. Hence, being known the points

O1 and O5, this DOF is used to impose the approaching

angle θ5. The spherical wrist is defined and the O3 origin

becomes available. The solution of the remaining problem

is an inverse kinematics of a R-R-R dyad, the same already

solved for the free flight configuration.

C. Overall kinematics

Once available the free-flight and the contact kinematics

the kinematics of the overall structure can be solved and

implemented by construction. In order to deal with realistic

conditions an analysis of the typical locomotion gait and

natural postures have to be made.

V. KINEMATIC SIMULATOR

A kinematic simulator has been developed in order to test

the kinematic solution and the developed model (Fig. 6).

The locomotion is simulated by considering the contact with

a flat inclined surface and available future adhesion systems

replicating the abilities of the spider. The implemented step-

ping gait is the spiders’ alternate tetrapod gait [4], consisting

of two main phases with four flight legs and four legs in

contact in order to form a tetrapod (e.g. in the first half of

the step the legs first and third on the right -R1,R3- and the

legs second and fourth on the left -L2,L4- are in contact; in

the second half R2-R4-L1-L3 are in contact) with the surface

according to an alternate pattern.

A fundamental step has been implemented and the cycle of

actions made by the spider in this time sequence is made by

two phases: the Support and the Motion phase (Detaching-

Return-Attaching).

In the Support phase the legs are in the best adhesion

condition (approaching angle between 25◦ and 35◦) and

support the body during the fundamental translation. The

four legs in contact exploit the support phase in different

manners.

The L1 (fore left leg) or R1 (fore right leg) moves from an

extended to a retracted condition.

The L4 (back left leg) or R4 (back right leg) pushes the

body far from the initial position, switching from a retracted

condition to an extended one.

The L3 (lateral back left leg) or R3 (lateral back right leg)
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Fig. 6. Spider-robot simulator.

makes two movements. The leg pushes the body switching

from a retracted to an extended condition and allows an

advancing of the body also with a lateral rowing movement.

The L2 (lateral front left leg) or R2 (lateral front right leg)

pulls the body switching from an extended to a retracted

condition and allows an advancing of the body also with a

lateral rowing movement.

In the return phase the legs start from a contact condition

but with an angle between the (meta)tarsus and the substrate

bigger than 70◦.

Hence they can be lifted with little efforts. The four legs of

the pattern are lifted up from the substrate, retracted near the

body, rotated about the first revolute pair of the kinematic

chain and finally extended in order to reach the correct

position for the subsequent support phase. The next position

of each leg is calculated and implemented taking into account

the behavior that the leg has to follow and the direction of

locomotion. Moreover the next positions are studied in order

to allow the inverse kinematic solutions and avoid collisions

between the legs. By overlapping part of the two half phases

of a step a transition phase with eight legs in contact with

the substrate is defined and a better adhesion condition can

be simulated.

The results confirm as the chosen kinematic and locomotion

model are feasible and efficient. The DOF available for each

leg allows to choose the correct approaching angle and the

wanted point of contact on the surface. Moreover, the radial

configuration and the same kinematics of the legs can allow

to move to the target point by selecting the shortest path

thanks to the end-less condition implemented.

VI. CONCLUSIONS AND FUTURE WORK

This work studied the spider system in a bio-mimetic

perspective.

Looking at the climbing abilities of the spider, directives

and constraints in order to replicate the dynamics of the

attach were found. Taking into account such directives, the

evaluation of the kinematics of the real spider has been done

in order to define a new spider-model for a future robotic

prototype. The overall kinematics of the developed spider-

system has been solved starting from the analysis of the

simplified leg model. A locomotion strategy inspired by the

real pattern of the spider has been studied and evaluated

for the simplified system taking into account the degree of

adhesion of each leg.

The spider-model, the overall kinematics and the locomotion

strategy have been implemented in a simulator that confirmed

the validity of our choices.

Current and future work will cover the study of the static

and dynamic control of the model, also taking into account

emerging bioinspired control techniques, and the integration

of artificial adhesive elements in a robotic structure, in

order to understand and fix other directives on the practical

realization of the system.
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