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REPORT 
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1 BACKGROUND 

Biomimicry is a multi-disciplinary science involving a wide diversity of other domains like 

electronics, informatics, medicine, biology, chemistry, physics, mathematics, and many 

others.  However, it is quite unusual to find key people or expertise centres that have 

cognition and expertise in all these disciplines as a whole.  Therefore, there is a need for the 

establishment of a capillary network of contacts through Europe and elsewhere that will 

enable to reach also those academic centres, which are not much visible due to their reduced 

dimension or recent origin.  Additionally, although some peculiar conditions characterizing 

space environments can be similarly encountered on earth (e.g. desert zones) and specific 

solutions found within these terrestrial contexts can be adapted to space conditions, there is a 

majority of cases, which are subject to conditions which are broadly different from those 

encountered on earth (e.g. gravity absence).  Therefore, the biomimetic approach in the space 

sector results more complex and has to be considered in a multidisciplinary and cross-

sectorial framework to overcome barriers.  The problems to be addressed to exploit the 

potential of the biomimicry approach in the space domain can be summarized as follows: 

o biomimicry has become a real science only in recent years 
and therefore there is no consolidated co-operation 
environment with space engineers; 

o research in biomimicry across Europe and Canada and more 
generally at world wide level is scattered and fragmented, it 
is not easy to locate the proper academic experts for a given 
space application; 

o biomimicry is a multi-disciplinary science and it requires 
several expertise which is difficult to locate in the same 
organization; 
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o some databases with information about possible natural 
phenomena, biomimetic products, ongoing biomimetic 
research, biomimetic researchers, published articles exist, but 
they lack a systematic and a large-scale exploration of the 
potential of nature in view of applications in engineering, 
especially as far as the space domain is concerned; 

o in current knowledge-basis the abstraction of the biological 
functionality is missing, therefore solutions inspired by 
nature are sporadic and random-governed; 

o space conditions are completely different from life forms 
habitats and space engineers are so far not fully aware of 
applications of biomimetics. 

 

Therefore, the overall objectives of the study consists in the development of a co-operation 

platform between space and biomimicry experts in order to bridge current gaps that exist for 

an effective application of natural mechanisms and phenomena in space system design and to 

foster the development of a new generation of space systems.  This has been achieved by: 

o performing a comprehensive collection and review of 
information concerning attempts made since today in Europe 
and elsewhere in finding solutions through a biomimic 
approach, including an insight into planned research activities 
and trends; 

o developing a detailed biomimicry knowledge map that allows 
to identify expertise and competencies in ESA member states 
and elsewhere; 

o providing an overview of the unique characteristics and 
properties of various life forms found in nature (e.g. animals, 
plants, etc) and to ascertain whether these characteristics 
could be an inspiration to create innovative space systems; 

o conceptualising several innovative space systems and 
components which incorporate the design, features and 
mechanisms of nature's life forms. 
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All the gathered information have been implemented into a database which is available online 

at www.bionics2space.org. The added value of the database is in the deep analysis made on 

each biological system described, supported by literature and reference articles, patents, etc.  

 

The project group has then been focusing on the analysis of the information collected and on 

whether any of these biological principles might hold potential for application to the design of 

space systems or provide solutions to space-related technical challenges.  

 

Therefore, the project group has identified twelve different cases in which the application of 

biological principles could bring a real added value to the solution of technical constraints 

within the space field. The identified case studies are reported below: 

o deployable digging mechanism for sampling below planetary 
surfaces; 

o energy storage structures for deployable systems; 

o rigidisation of deployable structures; 

o smart swarm on mars; 

o robust biologically inspired navigation techniques; 

o planetary exploration with free energy (based on sun 
flowers); 

o adaptive and versatile biologically inspired locomotion 
control; 

o balance between adaptability and stability; 

o automatic self-assembly in space; 

o landing and planetary exploration; 

o energy storage structures for deployable systems; 

o planetary exploration with free energy (based on dandelion 
seeds). 
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Such work has set the base from which a more detailed analysis has been performed: for each 

of the topics, a responsible among the Bionics Expert Team has been identified; such expert 

has been in charge of providing to the partners the assessment of the idea of application.  

 

The results of such detailed analysis have been presented in the framework of the Bionics 

workshop held in ESTEC on November 2004.  The output of such event has been the 

selection of four case studies which have been further assessed by proposing first attempts of 

engineering solutions inspired by nature.  Such case studies are the following: 

o energy storage structures for deployable systems; 

o case study on adaptability versus stability; 

o deployable digging mechanism for sampling below planetary 
surfaces; 

o landing and planetary exploration. 

 

In this report the work undertaken for “Adaptability versus Stability” case study is described.  
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2 ADAPTABILITY VERSUS STABILITY 

2.1 INTRODUCTION AND PROBLEM STATEMENT 

For their survival, animals need to maintain a fine balance between adaptability and stability, 

and this at multiple levels and multiple time scales.  Clearly, stability is important in order to 

maintain the animal’s general structure and metabolism, and to keep it as a living entity 

despite changes in its environment.  Similarly, adaptability is important when significant 

changes occur in the environment in order to adjust the structure and metabolism of the 

animal accordingly and to keep it viable.  In a dynamic environment, an excess of either 

adaptability or stability can be damaging or even fatal.  To take a simple example, an animal 

whose feeding habits and digestive system does not adapt quickly enough to seasonal changes 

from winter to summer might die during a season change.  Conversely, an animal whose 

feeding habits and digestive system changes too quickly with the smallest variation in the 

environment (e.g. changes between day and night, or small variations of location) might waste 

resources while adapting continuously, and might risk a total disruption (chaos) due to the 

strong reaction to fluctuating inputs. 

 

Many space related missions, such as the maintenance of a space station and a planetary 

exploration mission, face the same dilemma.  One would like to have systems that self-

organize, self-repair, and self-regulate using adaptation mechanisms, but at the same time 

maintain some notion of stability for carrying out the programmed tasks. 

 

In this document, we first review how the right balance between adaptability and stability is 

maintained in different biological systems, and what types of techniques have been developed 

inspired from those systems (Paragraph 2.2).  In particular we make an overview of the 

principles related to homeostasis, gene regulatory networks, bone generation, and 

reinforcement learning.  We then present three specific case studies in the domains of 

locomotion control (Paragraph 2.3), artificial immune systems (Paragraph 2.4) and robot 
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swarms (Paragraph 2.5).  We conclude the document with a short general discussion and 

suggestions for future projects. 

 

Such approach, enabled us to cover all possible levels of hierarchy in biological systems: sub-

organisms (immune systems), organism (locomotion) and super-organism level (swarm).  

This enabled us to describe all possible set of techniques, achievements and possible future 

development as complete as possible. 

 

2.2 PRINCIPLES, GENERAL TECHNIQUES, AND SYSTEMS 

The definitions of stability and adaptability vary from one scientific field to the other.  In this 

document, we will use the following meanings.  We see stability as the ability to maintain, 

and to return to, a steady-state behavior despite changes in the environment.  The steady-state 

behavior can be static or dynamic.  We see adaptability as the ability to change the structure 

and/or the functioning of a system according to changes in the environment.  By system, we 

mean a particular biological entity (e.g. a cell or an organism) or an artifact (e.g. a robot or a 

space station), and we assume that there is a (clear) boundary between the system and its 

environment, e.g. the membrane of a cell.  By environment we describe the medium which is 

outside the system under study, and which can possibly contain other systems (e.g. other 

cells).  We assume that there are interactions between the system and the environment, with 

the system changing states of the environment, and the environment changing states in the 

system. 

 

Using these definitions, it is clear that the processes of stability and adaptability have 

conflicting effects on a system.  In short, stability “cancels out” changes in the environment 

such as to maintain the structure and functioning of a system, while adaptability “makes use 

of” changes in the environment to modify the structure and functioning of the system.  How to 

correctly balance the two is intrinsically linked to the viability (or performance) of the system.  

Ideally the balance between stability and adaptability should be continuously adjusted during 

the life time of the system such as to optimize its viability/performance.  But the notions of 

viability and performance are difficult to define generally since they closely depend on the 
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type of system that is studied.  One could say that viability corresponds to maintaining the 

system in good working conditions; e.g. for a cell, viability means maintaining variables such 

as temperature, acidity level, concentrations of different chemicals, etc, within some 

metabolic ranges and avoiding lethal values. Performance is a notion that is related with the 

realization of a task (e.g. by an artifact) and is a measure of how well the task is realized; for 

example, the performance of a mining robot could be the amount of ore that it is able to 

extract and bring back to a base station.  In general, the optimization of the 

viability/performance of a system corresponds to a multi-objective optimization problem. 

 

The balance between adaptability and stability is maintained at multiple levels in biological 

systems, from gene networks, to cells, to organs, to living organisms, and even societies of 

organisms.  Examples of systems that exhibit this balance include the metabolisms of cells, 

the generation of bone structure, the immune system, learning by trial and error, the 

combination of memory and forgetting, the organization of a bee hive, to name a few.  In the 

sections below we will review some of these systems, before presenting in more detail three 

specific case studies in the domains of locomotion control, artificial immune systems and 

robot swarms. 

 

The balance between adaptability and stability in biological systems is explicitly explored in 

the domains of homeostasis and autopoiesis (see below).  It is otherwise implicitly addressed 

in multiple fields in biology (e.g. cell metabolism) and medicine (e.g. physiology).  In fact, 

the balance is most often studied in cases where the mechanisms maintaining it fail: examples 

include cancer (i.e. a repair mechanism which goes uncontrolled), HIV (a defense mechanism 

which becomes deficient), and osteoporosis (a repair mechanism which becomes too weak).  

 

In engineering, the balance between adaptability and stability is mainly studied in fields such 

as control theory and machine learning.  Reinforcement learning, a sub-area of machine 

learning, for instance specifically addresses the issue of balancing exploration (i.e. trying out 

new things) versus exploitation (i.e. using what you know), which is directly related to 

balancing adaptability and stability. 
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2.2.1 Brief overview of biological examples 

This section makes an overview of the principles related to homeostasis, gene regulatory 

networks, bone generation, and reinforcement learning.  Two specific case studies in the 

domains of locomotion control and artificial immune systems will be presented in more detail 

in the next sections. 

 

Principles of homeostasis 

It might be argued that to break new ground in terms of generating complex, adaptive, 

autonomous and crucially: self-organizing computational behavior all these properties are 

required for the implementation of systems capable of generating the type of behavior sought 

by researchers in fields such as robotics, artificial intelligence and operating system design.  

With this in mind we wish to focus on one of the most impressive abilities of living 

organisms: their ability to ensure a reasonably stable internal state despite wildly changing 

external environmental factors.  This property, often termed homeostasis, is a major 

contributor to an organism's autonomy, and is the biological embodiment of the type of 

behavior described above. 

 

The concept of homeostasis was first advanced by the physiologist Walter Cannon (Cannon, 

1932).  Drawing on earlier work of Claude Bernard, Cannon advanced the concept of 

homeostasis as a set of complex physiological systems that act to maintain the internal state of 

an organism.  In particular Cannon suggested that negative feedback may play an important 

role in the regulation of homeostatic mechanisms.  In recent times, the study of homeostasis is 

often linked to the study of the autonomic nervous system, which controls heart muscle, 

smooth muscle, and exocrine glands in the body (Iversen et al., 2001).  Artificial homeostasis 

takes inspiration from this ability of all living organisms to maintain a stable internal state in 

response to environmental factors.  In addition, this approach provides flexibility through the 

specification of an appropriate level of granularity with which to tackle the problem of 

stability. (Neal & Timmis, 2005).  A related and potentially relevant concept is that of 

autopoiesis (Maturana and Varela, 1980; Mingers 1994).  Autopoiesis is concerned, in part, 
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with how dynamic systems interact in such a way as to continually maintain the system. 

These concepts are particularly relevant to autonomous, adaptive or intelligent agents (Quick, 

2003; Di Paolo, 2005). 

 

Gene regulatory networks 

Gene regulatory networks (GRN) describe the interaction of genes and gene products.  

Underlying these networks is the observation that activated genes in organisms cause the 

production of various molecules (the gene is translated into a protein which may cause the 

synthesis of other products) and some of the molecules produced are capable of binding to 

DNA and affecting the transcription of the genes, either facilitating or inhibiting their action. 

 

Bone generation   

Bone is an interesting example of a biological system that presents a fine balance between 

adaptability and stability.  Bones have two structurally different parts, cortical bone on the 

outside and trabecular bone on the inside.  The former is dense and compact, while the latter 

has a honeycomb of vertical and horizontal bracing spars.  This structure is a beautiful 

example of Nature’s way of maximizing strength while minimizing weight, with the 

honeycomb structure providing amazing strength. 

 

Despite its image of an inert and solid material, bone is living, growing tissue.  Throughout an 

organism’s lifetime, old bone is removed (resorption) and new bone is added to the skeleton 

(formation).  During childhood and teenage years, new bone is added faster than old bone is 

removed.  As a result, bones become larger, heavier, and denser.  Bone formation continues at 

a pace faster than resorption until peak bone mass (maximum bone density and strength) is 

reached around age 30 (Figure 1).  After that age, formation tends to slow down which 

decreases the overall bone mass.  

 

The ratio between formation and resorption is dynamic and depends on the workload.  For 

instance the bone mass of astronauts staying in low gravity for a prolonged period will 

decrease, while the bone mass of a person training for heavy lifting will increase.  Similar 



Doc. No. 03-602-H8 
Rev. 0 - June 2005 
 

10 

mechanisms allow the bone to rapidly repair itself after breaks.  This mechanism of 

continuously forming and removing bone is therefore a powerful mechanism to adapt the 

bone’s strength to its payload and to repair it, while maintaining functionality.  When the 

mechanism is disturbed (e.g. in the case of osteoporosis which affects bone formation), 

serious problems can arise such as deformation of the spinal column (shortening of the height) 

and bone collapsing or breaking under normal load1. 

 

Reinforcement learning 

The field of reinforcement learning takes inspiration from the collection of natural phenomena 

called conditioning.  Conditioning is generally held to be the process of learning associations 

based on experience of interacting with one's environment to get reward (Kimble 1961).  It is 

what makes cats turn up when plates are being scraped, or dogs become excited if they hear 

their lead being moved.  These learning phenomena occur in many situations, in an enormous 

variety of different animal species. 

 

Conditioning is ultimately driven by reward: the animals learn associations that promote 

encounters with rewarding situations, such as finding food, or avoid encounters with 

undesirable situations such as predators or poison. 

 

In the laboratory, conditioning is divided into several different kinds, of which the best known 

are classical and instrumental conditioning.  In classical conditioning, animals learn to 

associate new sensory stimuli with existing ones.  The canonical example is Pavlov's dogs, 

who learned to associate Pavlov's presence, or the sound of a bell, with the smell of food and 

responded to his presence or the sound by salivating even when no food was present (Pavlov 

1960).  Classical conditioning is induced by presenting sensory stimuli in order with a suitable 

interval between them, with one of the stimuli (the unconditioned stimulus) generating a 

response from the animal.  Thus a dog that hears its lead being fetched shortly before being 

                                                 

1 See http://www.abpi.org.uk/publications/publication_details/targetOsteoporosis/ for more information about 

bone formation and osteoporosis. 
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taken for a walk (which it enjoys) will quickly come to associate the sounds of the lead with 

the walk. 

 

In instrumental conditioning, the animal learns an association between its own actions and 

their consequences (Mowrer 1956).  Unlike classical conditioning, in this case reward is given 

only when the animal does the desired action.  The canonical example of this is when pigeons 

or rats learn to request food by pressing on a lever.  Initially, the pigeon or rat will press the 

lever in its box by chance, as part of its exploration of the environment it is in.  However, 

having pressed the lever, some food is delivered.  The animal learns over time that pressing 

the lever results in the arrival of food, and will tend to press the lever readily and deliberately 

when put into the experimental box.  Animals can be trained to elicit quite complex sequences 

of behavior by this technique, building up the sequence a step at a time: the method is widely 

used to train animals for performance purposes. 

 

The most interesting facets of animal conditioning are apparent universality of the 

phenomenon – the variety of animal species that exhibit conditioning – and the individuality 

of it.  For instance, rats will readily learn to associate a sound with a painful stimulus (an 

electric shock, for example) but cannot associate a sound with poison; conversely they readily 

associate smells with poison but cannot associate smells with electric shocks.  Furthermore, 

certain animals can learn certain associations – particularly fear-driven ones – very quickly: 

sometimes in a single encounter.  Other associations can take much longer to learn.  Thus 

animals are not in general universal learners, able to associate any stimulus with any other 

stimulus or response; rather they have a finely tuned balance between what is learnable 

(adaptivity) and what is not (stability) that depends on their ecological niche.   

 

2.2.2 Brief overview of theories and techniques 

 

Control theory 

Control theory is a field in engineering which covers all aspects related to the design and 

analysis of control algorithms for processes and artifacts.  In particular control theory aims at 
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designing control laws for determining the behavior of a plant (e.g. a process or a machine) 

and at analyzing the conditions under which these control laws are “well-behaved”.  It is 

directly relevant to the current discussion, since it provides formal definitions of stability. 

 

First of all, control theory makes a distinction between robustness and stability. When a 

system is described as a dynamical system, i.e. a set of differential equations, it will have both 

state variables (quantities which vary) and parameters (quantities which remain constant).  A 

system is then said to be robust when its behavior does not change significantly when 

parameters of the systems are changed. Stability describes how the state variables evolve, e.g. 

after a perturbation.  Several levels of stability can be formally defined: e.g. Lyapunov 

stability, asymptotic stability, and exponential stability (Slotine and Li 1991).  Roughly 

speaking, Lyapunov stability describes a system that will remain in the vicinity of the 

equilibrium state after a perturbation, asymptotic stability describes a system that will 

eventually return to the equilibrium state after a perturbation, and exponential stability 

describes a system that will return to the equilibrium state faster than an exponential function.  

Furthermore these notions of stability can be local, i.e. only valid in a bounded region around 

the equilibrium state, or global, i.e. valid for the whole state space.  

 

These definitions of stability are in line with the loose one we previously defined.  The notion 

of adaptability is however much less present in traditional control theory, except for the 

subfield called adaptive control.  Astrom & Wittenmark present adaptive control in the 

following way: “In everyday language, "to adapt" means to change a behavior to conform to 

new circumstances.  Intuitively, an adaptive controller is thus a controller that can modify its 

behavior in response to changes in the dynamics of the process and the character of the 

disturbances” (Astrom and Wittenmark 1995).  In practice this implies that an adaptive 

controller is a controller with adjustable parameters, which is tuned on-line according to some 

mechanism in order to cope with time-variations in process dynamics and changes in the 

environment.  First examples of adaptive control were applied to automatic control of planes. 

Due to the complexity of the aerodynamics interactions, the control loops require different 

gains for different flying regimes (different speeds).  Different approaches have been 
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developed to tackle this kind of problems, including gain scheduling, model adaptive systems, 

self-tuning regulators, and dual control (see Sastry and Bodson 1994).  While a detailed 

review is out of the scope of this document, the framework of adaptive control is certainly 

relevant for future ESA-funded studies on the balance between adaptability and stability. 

 

Homeostasis in neural networks 

Biological inspiration in the design of Engineering systems has been a key concept over the 

past 50 years (Wiener, 1948).  One of the earliest electrical systems designed using the 

concept of homeostasis was the homeostat (Ashby, 1953), an electrical device which, when it 

was perturbed, searched for the configuration of variables that would return it to its initial 

condition.  More recently homeostatic principles have been used in the design of robot 

controllers (Di Paolo, 2002).  Artificial neural networks (ANN) have traditionally been used 

to map inputs to outputs via a non linear transformation.  This is often done in the context of 

pattern recognition, where networks are trained to detect the presence of patterns 

(correlations) in data sets.  One commonly used approach to the design and training of neural 

networks is the use of a multi-layer perceptron (MLP) networks trained through the use of 

back propagation techniques (e.g. Rumelhart et al., 1986; Hertz et al., 1991).  Sample 

applications which have used this approach are recognition of hand written digits (LeCun et 

al., 1989) and discrimination of sonar echoes (Gorman & Sejnowski, 1988a, b).  In this 

respect ANNs can be regarded as a relatively mature technology. Recently Neal and Timmis 

(2005) have proposed a framework for artificial homeostasis that involves the interaction 

between three distinct components: artificial neural networks (ANN), artificial endocrine 

system (AES) and artificial immune system (AIS).  Each of these component processes is 

allocated a particular task, and artificial homeostasis is in charge of the interaction between 

these components to achieve homeostasis within the artifact.  It achieves this using positive 

and negative environmental cues linked to an input-output model of the system.  These can be 

viewed as analogous to a neural reward system.  The success of this approach depends on the 

successful management of the reward system; this is one aim of artificial homeostasis. In this 

framework an ANN can be developed and trained using well-established techniques (e.g. 

Back Propagation), and homeostasis is introduced through the interaction of the ANN with 
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other systems.  This interaction has the effect of altering the learning algorithm used in the 

ANN.  The biological inspiration for this is the regulatory effects of different hormone 

concentrations on levels of excitability in neural tissue.  Hormone generation and 

concentration is controlled by separate “gland neurones”, information regarding the 

concentration of individual hormones is then passed to each neurone in the ANN in turn.  

Each neurone in the ANN maintains a list of hormone receptors, matching of a hormone by 

the receptors results in cell specific action to modify the neurone’s behaviour.  In the example 

of Neal and Timmis, the action is to modify individual weights, through a multiplicative 

action dependent on the product of hormone concentration, sensitivity of connection and 

match between receptor and hormone.  This allows homeostasis to readily interact with the 

ANN learning rule.  An important issue with ANN design is that of generalization, i.e. the 

ability of a specific neural network to adapt to changes in the input data with training.  This is 

essentially an adaptability-stability issue, and a range of techniques are available to analyse 

this problem in the context of ANNs (Lippmann, 1987; Hertz et al., 1991).  Neal and Timmis 

(2005) have applied the idea of artificial homeostasis to the control of a mobile robot platform 

equipped with ultrasound range sensors. 

 

Gene regulatory networks in evolutionary algorithms 

Gene regulatory networks GRN are computational models of the interaction of genes and 

gene products.  Underlying these models is the observation that activated genes in organisms 

cause the production of various molecules (the gene is translated into a protein which may 

cause the synthesis of other products) and some of the molecules produced are capable of 

binding to DNA and affecting the transcription of the genes, either facilitating or inhibiting 

their action.  Because GRNs implement dynamical systems, they can balance stability in the 

form of attractor states with adaptability as environmental conditions, such as externally 

produced proteins, switch them between different regions of their phase space. 

 

In the computational models, `genes' when active cause the production of `proteins' whose 

concentrations affect the activity of the producing, or of other, genes.  The proteins typically 

have a production rate dependent on the activation of their gene, and a decay rate which may 
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also be genetically fixed, while the instantaneous gene activation depends on the current local 

concentration of various proteins.  The result is a dynamical system whose state variables are 

the protein concentrations and the gene activities.  Proteins are usually also coupled to 

particular observable behaviors, for example actions if the GRN is being used as a control 

system for an agent, or transformations of a body structure if the GRN is being used to control 

the development of morphology. 

 

Early work on this kind of system was done by Torsten Reil (Torsten Reil, 1999).  The same 

principles, with somewhat varying implementations, have been used by Eggenberger Hotz 

(2003) for control of multicellular morphology by varying the local geometry of individual 

cells in a sheet so as to produce 3D effects such as folding, and by Taylor (2004) for control 

of a swarm of underwater robots. 

 

A key problem with a GRN, whether as a controller or a developmental system, is how to 

design it: what arrangement of genes and proteins is appropriate for a given system behavior.  

A way to finesse this problem is to use a suitable evolutionary algorithm, in which collections 

of genes are rewarded according to the fitness of the behavior they generate (measured by 

some suitable, typically but not necessarily system-designer-specified, criteria).  Collections 

of genes of high fitness are then allowed to `breed', producing child collections that have 

characteristics of several parents and hopefully inherit the fitness-producing tendencies of 

each.   

 

The typical implementation of an evolutionary GRN system uses a standard genetic algorithm 

in which each individual can be decoded into a GRN.  The individual contains a specification 

for each `gene' that determines which `protein' it makes, the decay rate and binding affinity 

for that substance, and the set of substances that can interact with the `gene' (its regulators).  

For each regulator the individual represents the sign and degree of influence that substance 

has on the activation of the gene.  Gene activation may be thresholded or continuously 

dependent on the regulators. 
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Evidence suggests that for complex behavioral results, evolutionary algorithms based on 

GRNs are rather more successful at producing good solutions efficiently than evolution of 

other representations, arguably because the GRN representation requires fewer evolved 

parameters to specify a complex behavior. 

 

Reinforcement learning algorithms 

Reinforcement learning algorithms are modeled loosely on the processes of natural 

conditioning described earlier.  In precise terms, the goal of reinforcement learning is to 

construct a relationship between the current sensed state of the world and the action one 

should take when in that state in order to maximize the received reward over the agent's 

lifetime.  The relationship between state and action is called the agent's policy. 

 

Reward is generally taken to be a scalar value, that is, a number, with positive rewards being 

desirable and negative ones not.  The reward may be given after every action or may be given 

intermittently when a `good' or `bad' situation is reached.  The further apart rewards are, in 

terms of the number of actions between them, the harder the learning problem is: the learner 

has to decide which action(s) in a sequence are responsible for the received reward and which 

are irrelevant or unhelpful.  This problem of apportioning credit or blame to individual actions 

is called the credit assignment problem. 

 

Almost all reinforcement learning algorithms in practice use discounted reward rather than 

total actual received reward.  This is largely for technical reasons: the actual reward collected 

by an agent with an infinite lifetime is infinite, while the discounted reward is finite and thus 

better behaved.  The discounting of a future reward is achieved by multiplying its value by a 

discount factor (usually denoted γ) once for each step into the future – that is, a reward that 

will be received in three steps time is now only worth γ3 of its value. 

 

The value of γ must lie between 0 and 1, with values such as 0.9 being common.  The closer γ 

is to 1, the further the agent's time horizon extends into the future (that is, the more distant a 

reward must be for its current worth to be negligible). 
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There are many reinforcement learning algorithms available, each with its own special 

properties.  The key theoretical result is that it is possible to learn the optimal policy for any 

reward regime, given only an agent executing actions and receiving reward, provided that all 

states of the environment can be distinguished and that each possible action is taken in each 

available state infinitely many times. 

 

Although there are many algorithms, there are two general approaches to reinforcement 

learning of which the algorithms are particular cases: model-free and model-based.  In the 

former, the agent learns the optimal policy represented by the expected future discounted 

reward available from each state (the value function), while in the latter the agent also learns a 

model of its interaction with the environment, in the form of a table of transition probabilities 

between states and of the reward associated with state-action pairs.  The tradeoff between 

these approaches is one of computation against experience: the model-based approach is 

generally able to make better use of experience than a model-free approach, at the cost of 

considerably more computation per experience. 

 

One popular model-free algorithm is Q-learning (Watkins and Dayan 1992).  In this 

technique, the agent represents the value function using a table of state-action pairs (S,A) and 

for each pair calculates an estimate Q of the discounted future reward it would obtain by 

taking action A in state S and following the optimal policy thereafter.  In operation, an agent 

in state s takes an action a (one of those possible in state s) and finds itself in state s' and with 

a reward r (if reward is intermittent, r may be 0 unless the new state is one in which a reward 

is actually delivered).  This is one experience.  The agent then computes an estimate of the Q 

value of the pair (s,a) based on the reward received and the discounted maximum Q value of 

any pair containing the new state s'.  The Q value of the pair (s,a) is then nudged a little 

toward this estimate.  The nudge of the Q-value toward the estimate is controlled by a 

learning rate parameter usually denoted α.  Technical conditions apply to the choice of the α 

parameter if the algorithm is to converge to the optimal policy. 
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An example of a model-based algorithm is Dyna (Sutton 1990).  In this case, the agent keeps 

a model of the transition probabilities for each transition (s,a) → s' and of the reward 

associated with each particular (s,a) pair.  These models are updated using each experience.  

However, the Q-value table is updated multiple times for each experience using the models to 

predict what transitions and rewards would occur for the updates not directly depending on 

the current experience.  These additional updates can be chosen randomly or based on the 

current experience and models.  An example of a non-random model-based (Dyna-like) 

method is prioritized sweeping. 

 

A comparison of Q-learning, Dyna and Prioritised Sweeping (PS) can be found on-line at: 

 

http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/node29.html 

 

where Leslie Kaelbling, Michael Littman and Andrew Moore demonstrates that for a well-

chosen example the model-based methods require between 5% (PS) and 11% (Dyna) of the 

experiences that Q-learning needs for equivalent performance, while taking 2 (PS) and 6 

(Dyna) times as much computational time. 

 

Within any reinforcement learning algorithm, there is an explicit need to balance exploitation 

and exploration – stability and adaptability.  Exploitation uses the knowledge collected so far 

to choose actions that maximize expected future reward, while exploration chooses actions 

that allow the agent to collect new information to improve the reliability of the future reward 

estimates.  An algorithm which does no exploration cannot find the optimal policy, since it 

cannot visit every state and take every action there infinitely many times: it will after some 

period always choose the same sequence of actions – those that maximize the rewards 

received according to its partial knowledge.  On the other hand, an algorithm cannot solely 

explore: to do so is to ignore the information on rewards being collected.   

 

Two common techniques for this are �-greedy and Boltzmann-Gibbs action choice.  The 

former chooses uniformly a random action possible in the current state with probability �, 
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otherwise the action with highest Q-value in the current state.  In a typical application � 

might be 0.1.  The latter computes a probability of choosing each action based on its Q-value 

and a `temperature' parameter T, such that each action's probability of being chosen is 

proportional to exp(Q/T) – this results in a Boltzmann-Gibbs distribution of action choices for 

each state.  The higher the `temperature' the more nearly an equal random choice of action.  

The exploration parameter may be kept constant, or may be reduced over time (annealed) as 

the system learns. 

 

For further introductory information on reinforcement learning, algorithms, theory and 

applications, see "Reinforcement Learning: A Survey" by Kaelbling, Littman and Moore at 

 

http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/kaelbling96a-html/rl-survey.html. 

 

Bone regeneration  and modular robotics 

The generation of adaptive structures could take inspiration from bone generation.  One could 

imagine a colony of modular robot units that perpetually attach and detach to form a particular 

structure whose shape and/or properties adapt to the environment by adjusting the ratio of 

between formation and resorption. 

 

2.3 LOCOMOTION CONTROL  

In this chapter, we discuss the balance between adaptability and stability is maintained on an 

organism level of biological hierarchy of complexity as in animal locomotion.  

 

We present both neural and biomechanical aspects, and describe how these can lead to 

engineering principles for the design and the control of articulated robots, e.g. rovers to be 

used in planetary exploration missions.  Finally we present a particular preliminary study 

which explores the feasibility of combining CPG-and-reflex based control with novel types of 

muscle-like actuators such as Ionic Polymer Metal Composites (IPMC) in an undulatory 

worm robot. 
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2.3.1 Problem statement 

The control of locomotion represents an interesting framework to study the balance between 

adaptability and stability in invertebrate and vertebrate animals.  During locomotion a good 

balance between the two has indeed to be maintained at multiple time scales:  In the order of 

seconds, the animal has to produce a stable gait, i.e. a coordinated cyclic movement of all 

limbs, and maintain its posture while adapting to particularities of the terrain (e.g. with 

specific feet placement, dealing with obstacles, etc.).  In the order of minutes and hours, the 

animal has to produce stable locomotion while changing gaits, speed and direction, and 

adapting to changes in body properties (fatigue and load).  And in the order of weeks and 

months, the animal has to adapt to changes in body properties such as growth, injuries, and 

aging. 

 

Neural control of locomotion 

Many animals walk, flight and swim in a stereotyped way, adopting rhythmic patterns of 

movement, called locomotion patterns (or gaits).  In a large variety of animals (from 

invertebrates to vertebrates (Orlovsky, 1999)) the neural control of these stereotyped 

movements is hierarchically organized, and has three components: (1) central pattern 

generators, (2) sensory feedback (reflexes), and (3) descending control signals from higher 

brain regions (e.g. the motor cortex in vertebrates).  The Central Pattern Generator (CPG) is a 

key functional unit that contains all the mechanisms needed to generate the rhythmic pattern 

of movements.  In vertebrates, it is located in the spinal cord and requires only very simple 

input signals to initiate and modulate complex and coordinated oscillatory patterns.  The CPG 

essentially provides the feed-forward signals needed for locomotion even in the absence of 

sensory feedback and high-level control.  

 

In terms of the stability/adaptability dichotomy, CPGs represent the tendency to adopt a stable 

stereotyped behavior, while their modulation by reflexes, sensory feedback and motor cortex 

represent the thrust toward adaptability.  The overall resulting sensorimotor system is a 

complex adaptive system with strong bidirectional interactions between its components (CPG, 

cerebral cortex, sensors, and the musculoskeletal system) (Cohen, 1999). CPGs have the 
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advantage of generating rhythmic movements that are stable, stereotyped, and especially 

useful for controlling rapid responses (such as flight or run) or involuntary movements (for 

example, breathing).  From a control point of view, they have the nice property of reducing 

the dimensionality of the control problem, by requiring only low dimensional input signals to 

modulate multidimensional output signals.  On the other hand, sensory feedback provides the 

capability to adapt the locomotion pattern to the environment (for instance, to walk on uneven 

terrain with holes, gaps and small obstacles) or fast responses to new situations (reflexes).  

 

The extent and importance of sensory feedback modulation vary from animal to animal and at 

an extreme have led neurobiologists to formulate totally reflexive paradigms for locomotion 

control.  Two examples of reflexive-based locomotion control are the stick insect (Cruse, 

1998) and the nematode Caernorhabditis elegans (Niebur, 1993).  

 

Role of the biomechanics 

Another important aspect of the stability/adaptability dichotomy in locomotion is connected to 

the musculoskeletal system.  Locomotion is the result of an intricate coupling between the 

neural dynamics and the body dynamics, and many fundamental aspects of locomotion 

control including gait transition, control of speed and direction, cannot be fully understood by 

investigating the locomotor circuit in isolation from the body it controls.  A body has indeed 

its own dynamics and intrinsic frequencies with complex non-linear properties, to which the 

neural signals must be adapted for efficient locomotion control.  As observed by roboticist 

Marc Raibert, the central nervous system does not control the body, it can only make 

suggestions (Raibert 1993).   

 

The body is a redundant system with many muscles per joint, and several muscles acting on 

more than one joint.  Muscles serve as actuators, brakes, stiffness regulators, and stores of 

elastic energy.  During locomotion, the frequencies, amplitudes, and phases of the signals sent 

to the multiples muscles must be well orchestrated.  In most vertebrates, complex 

coordination is required not only between different joints and limbs, but also between 
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antagonist muscles which combine periods of co-activation for modulating the stiffness of the 

joint, and periods of alternation for actuating the joint.  

 

In legged locomotion, the dynamics of a leg can be approximated by a pendulum model 

during walking, and a spring-mass model during running.  These models allow one to relate 

several features, such as resonance frequencies, to the length and stiffness of the legs, and are 

able to describe the mechanics of legged locomotion surprisingly well in many animals 

(Blickhan 1993).  The laws of mechanics are also useful to characterize the stability of gaits in 

legged animals.  Gaits can either be statically stable, when the center of mass is maintained at 

all times above the polygon formed by the contact points of the limbs with the ground, or 

dynamically stable, when this rule is not maintained at all times and stability is achieved as a 

limit cycle which balances the moments, the gravitational forces, and the inertial forces over 

time.  A large variety of gaits can be distinguished depending on the phase relation between 

limbs, such as the walk, the trot, the pace, and the gallop. 

 

In terms of different balances between stability and adaptability, two extreme examples can be 

found among tetrapods (four-legged animals).  The terrestrial turtle is an example of hyper-

stability. Its morphology is such that it has a low center of mass over a large support polygon.  

The risks of falling over are almost zero, although ending up upside-down is fatal since a 

turtle on its back cannot return itself.  Locomotion is quasi-static and can only be little 

modulated.  The opposite case is the hare. Its locomotion is very adaptable, both in terms of 

velocity, changes of trajectory, and efficiency in complex terrain.  The polygon of support is 

very reduced.  The stability is dynamic, and is based on sophisticated mechanical principles 

such as self-stability.  It appears that biomechanical parameters (such as the kinematics of the 

center of mass, the angle of attack of the limbs, and the -stiffness in the joints) make the 

hare’s body self-stable.  Perturbations are quickly dampened out without the need of neural 

control.  The hare’s biomechanics are therefore more sophisticated and more finely tuned than 

that of the turtle.  The mechanical construction is more complex, but is also more adaptable 

and flexible, since it allows to rapidly and efficiently react to perturbations. 
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The importance of the mechanical properties of the body is furthermore illustrated by the 

work on designing passive walkers.  Passive walkers are legged machines (some with knees 

and arms) which transform potential energy from gravity into kinetic energy when walking 

down a gentle slope.  When correctly designed, these machines do not require any actuation 

or control for generating a walking gait, which in some cases, can be strikingly human-like 

(McGeer 1990, Collins 2001). 

 

2.3.2 Principles and requirements 

Let us consider as an example the exploration of a planetary surface. The main working 

requirements that a robot has to face with are:  

o stability – the robot should be able to transverse uneven 
terrains and overcome large obstacles preserving its 
static/dynamic stability;  

o robustness – the robot should operate in the harsh space 
environment;  

o maneuverability/dexterity – the robot should maneuver 
efficiently, and manipulate dexterously (e.g. rock samples); 

o energy efficiency – the robot should use as little energy as 
possible. 

 

The requirements of stability and robustness have often led designers to prefer wheeled or 

caterpillar-tracked structures over more maneuverable legged robots, which have the potential 

of reaching areas inaccessible to wheeled structures.  Moreover, the importance of stability 

and adaptability has led many robotic engineers to conceive for planetary exploration wheeled 

structure with adaptable/reconfigurable chassis (for instance, Mars rovers developed at JPL 

(Jet Propulsion Laboratory)).  

 

In terms of control, legged robots require more sophisticated control algorithms than wheeled 

robots due to the additional degrees of freedom of articulated structures.  Traditional control 

approaches in legged robot locomotion fall into two main categories: (1) approaches relying 

on the play back of pre-recorded trajectories and (2) heuristic control approaches.  While a 
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whole range of different techniques have been used, two main techniques respectively emerge 

in each of these categories: Zero Moment Point (ZMP) control [Vukobratovic 1990] and the 

Virtual Model (VM) control [Pratt et al 1997].  ZMP control is a trajectory tracking method, 

which relies on deriving and solving the dynamic equations of motion and using the solution 

to determine how desired joint angle trajectories affect the zero moment point, also known as 

the center of pressure.  The goal is to ensure stability by keeping the ZMP inside the support 

polygons of the support feet over time.  The desired trajectories can be derived by trial and 

error, or measured from human recordings.  This type of control mechanisms or variants 

thereof has been used in many biped robots including the Honda robots [Hirai 1998], and the 

WL and Wabian robots developed at Waseda University [Yamaguchi & Takanishi 1997, 

Yamaguchi et al 1999].  Such trajectory tracking methods have four primary drawbacks.  

First, they are computationally intensive.  Second, solving the dynamic equations requires a 

perfect knowledge of the characteristics of the robot and the environment.  Third, trajectory-

tracking methods require deriving the desired trajectories of the joint angles, which can be a 

long trial and error process.  Finally, trajectory controlled robots are not robust to disturbances 

or changes in the environment, and require additional control mechanisms for dealing with 

them.  

 

Among the approaches that use heuristic control algorithms, VM control [Pratt et al 1997] 

might be one that has had most success.  The central principle in VM control is to use virtual 

elements (e.g. springs and dampers) placed at strategic locations on the robot to control the 

pitch, height and speed of the robot.  The virtual forces applied by the elements are then 

mapped to physical torques at each of the robots joints (typically by computing the transpose 

of the jacobian relating the two attachment frames of the virtual element).  This allows fast 

and relatively simple online control.  To design a controller, one needs to define the virtual 

elements (e.g. a few springs to maintain an upright posture, and one to pull the robot forward), 

and a finite state machine for cycling through the various stages of the gait.  This method has 

been successfully used with the MIT Spring Turkey and Spring Flamingo robots [Pratt & 

Pratt 1998].  Compared to trajectory tracking methods, VM control has the advantage that it is 

less sensitive to unexpected external forces due to unknown terrain, since these can to some 
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extent be compensated with the virtual elements.  The drawbacks of VM control are that (1) 

one still needs a perfect characterization of the robot’s kinematics in order to compute the 

torques corresponding to the virtual elements, and (2) controlling the gait with a finite state 

machine is a rather rigid way of generating a cycle, which can not easily deal with problems 

such as contacts with obstacles that require fast and smooth modulations of the limb 

trajectories. 

 

In this case study, we recommend to explore a new approach to locomotion control that takes 

inspiration from vertebrate locomotion control in order to develop CPG-and-reflex based 

control algorithms [Taga 1998, Kimura et al 1999, Ijspeert 2001, Arena 2002].  As discussed 

above, locomotion in many animals is controlled by the interaction of three components: (1) 

central pattern generators, (2) sensory feedback, and (3) descending supraspinal control.  

Control is organized such that the CPG generates the basic rhythmic patterns necessary for 

locomotion, and that higher control centers and sensory feedback modulate the CPG’s activity 

for dealing with the environment and the behavioral requirements.  The purpose of using 

CPG-and-reflex based control algorithms for legged robots is to obtain stable locomotion as 

the result from the interaction between the controller, the body, and the environment (such as 

to take the embodiment of the controller into account, as discussed in [Pfeifer and Scheier 

1999]).  From a dynamical systems point of view, locomotion becomes the limit cycle 

behavior of the controller-body-environment system.  Small perturbations to the system are 

quickly forgotten and will not destroy the cyclic movements as long they remain within the 

basin of attraction of this limit cycle.  Whenever strong external perturbations arise, actions of 

reflexes and corrections from higher control centers (e.g. a corrective step due to a side-push) 

are then meant to bring back the state of the system into the basin of attraction. 

 

2.4 LOCOMOTION CONTROL - FEASIBILITY OF ENGINEERING SOLUTIONS 

In order to create robots that can satisfactorily solve the balance of adaptability and stability 

and that meet the challenges of next generation space rovers, we propose to design robots that 

take inspiration from biology in terms of both control and structure.  In particular, we propose 
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to explore the feasibility of combining CPG-and-reflex based control with novel types of 

muscle-like actuators such as Ionic Polymer Metal Composites (IPMC). 

 

To illustrate such an approach, we shall describe a first feasibility study of undulatory 

locomotion in a worm-like robot.  Undulatory locomotion has several advantages satisfying 

several of the requirements analyzed above: stability (intrinsically satisfied), manoeuvrability 

on uneven terrain, efficiency, redundancy, and compactness.  In fact, worms and snakes are 

ubiquitous on the Earth: they are able to move on uneven terrain in hostile environments, to 

overcome obstacles and to reach impervious places.  In order to reach adaptability and 

stability, innovative techniques regarding both the control strategy and its integration in new 

smart materials must be faced.  Therefore, in this work we propose a case study in which a 

high adaptive locomotion structure joint with a stereotyped central pattern generator is used.  

We take into account a worm-like robot as an example of trade-off between stability and 

adaptability: adaptivity is provided by undulatory locomotion, which is controlled by a CPG; 

moveover, for the considerations discussed above, the mechanical structure conjugates 

stability and adaptability issues.  Some preliminary notes on undulatory locomotion are first 

discussed in Paragraph 2.4.1, while the idea underlying CNN-based CPG is introduced in 

Paragraph 2.4.2.  In order to evaluate the performance of the robotic structure on Mars surface 

a mathematical model is introduced in Paragraph 2.4.3, the model is validated by using 

experimental data in Paragraph 2.4.4, the behavior of the model with respect to different 

gravitational fields is then studied in Paragraph 2.4.5, finally the suitability of the approach is 

discussed in Paragraph 2.4.6. 

 

2.4.1 Notes On Undulatory Locomotion 

Undulatory locomotion is defined as the process of generating net displacements of a robotic 

structure via a coupling of internal deformations to a continuous interaction between the robot 

and its environment (Ostrowski, 1998).  This kind of locomotion is used by very different 

animal species (worms, snakes, fishes) in a huge variety of environments, because of the high 

adaptability to terrains, often inaccessible by other kinds of motion.  This feature makes 

undulatory motion appealing also in robotics.  Several kinds of undulatory locomotion are 
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adopted in nature: for example, snakes use bending waves associated with the asymmetric 

friction of their scales to crawl on the plane (in this case the bending wave propagates from 

the head to the tail), whereas inchworms move in and out of the plane (in this case the 

bending wave travels from the tail to the head) (Alexander, 2003).  Other worms (nematodes 

like the C. Elegans (Niebur, 1991)) have locomotion patterns resembling the typical motion of 

a snake, although the mechanisms used to generate the thrust in snakes and nematodes are 

very different.  In undulatory locomotion a symmetric structure is actuated by periodic 

muscular pulses. Motion in one direction is made possible by one or more symmetry-breaking 

mechanisms (Mahadevan, 2004).  Typically, these mechanisms are unidirectional waves and 

the inequality of static or dynamic friction. 

 

Design case study 

We take into account a worm model in which the symmetry-breaking mechanism is the 

inequality of dynamic friction.  We develop the equations of motion of this model and 

investigate the suitability of the structure for planetary exploration. 

 

In order to develop the model, we take as reference biological case the Lumbricus terrestris 

for which a huge set of experimental data has been collected (Quillin, 1998; Quillin, 2000).  

Moreover, we take as reference robotic structure a worm-like robot based on Ionic Polymer 

Metal Composites (IPMC) (Arena, 2002).  

 

The actuation mechanism of the IPMC worm is based on a muscular wave propagating from 

the tail to the head of the body. There are several advantages of using IPMC: 

o IPMC (Bar-Cohen, 2001; Bar-Cohen, 2000; Shahinpoor, 
2005) are materials suitable for sensing and actuation 
integration.  They are able to behave both as sensors and as 
actuators with good performance in terms of stress, strain, 
response time, reliability and life time.  These polymers bend 
under the effect of a low electric field acting as motion 
actuators; moreover, when bent, a voltage is produced across 
the thickness of the strip between the two conducting 
electrodes attached; thus they act also as sensors; 



Doc. No. 03-602-H8 
Rev. 0 - June 2005 
 

28 

o IPMC are able to work under severe environmental 
conditions.  They have been demonstrated able to work at 
low temperature (-80° ÷ -140°) and low pressure (in the order 
of few Torrs); 

o IPMC provide very low weight, low energy needs and 
efficiency arising from sensor/actuator integration. 

 

The reference IPMC worm-like prototype is discussed in detail in (Arena, 2002).  The 

structure of this robot is made of an IPMC strip, functionally divided in four identical 

segments.  The whole strip length is L=0.1m, the total weight (including wiring contacts) is 

1·10-3kg.  The worm is actuated by using a CNN-based CPG (Arena, 2002; Arena, 2004).  

The CPG generates a pattern of four signals actuating the four IPMC strips, so that an 

activation wave propagates from the tail of the robot to the head, realizing locomotion.  A 

schematic view of the IPMC worm is shown in Figure 2a while a schematic representation of 

the locomotion mechanism for a three-segment structure is shown in Figure 2b. 

 

2.4.2 Cnn-Based Central Pattern Generators 

In this Section the idea underlying CNNs for locomotion control is described.  The key point 

is to use dynamical systems with simple nonlinearity (as CNNs are) and local connections to 

build an artificial CPG.  The theoretical aspects underlying the CNN approach for 

implementing artificial CPGs were dealt with in more details in (Arena, 2002).  The CPG of 

the artificial locomotion system is implemented by a network of coupled nonlinear oscillators, 

where each oscillator plays the role of a motor-neuron for each actuator of the robot.  In fact, 

the periodic behavior of the nonlinear oscillator provides the rhythmic movements needed for 

a proper locomotion, for instance, of a segment of a worm-like robot.  Focusing on this 

example, in our approach a robot with n actuating segments requires a CPG with n six motor-

neurons (one for each segment).  Connections between the motor-neurons determine the phase 

lags between the corresponding segment and thus the locomotion pattern of the robot.  For 

instance, to implement undulatory locomotion, a constant phase lag (equal to 2π/n) between 

motor-neurons controlling the adjacent segments is required.  
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Each nonlinear oscillator is a second-order CNN circuit with the following dimensionless 

equations: 
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with j={1,2} is the nonlinear output function; h=1..n indicates the segment number; x1 and x2 

are the state variables of the motor-neuron; and Isyn;h is the synaptic input given by the 

connections with the other motor-neurons. 

 

The parameters for which a stable limit cycle is obtained are given in Table 1.  The 

movements of the segment associated with the motor-neuron are controlled by one of the state 

variables x1 and x2. 

 

The motor-neurons are connected by choosing synapses between them in a way that 

intrinsically fixes the locomotion pattern.  Like in the biological case, these connections can 

be either excitatory or inhibitory; their choice can be accomplished by following the 

guidelines discussed in (Arena, 2002).  As an example an excitatory synapse (from neuron k 

to neuron h) can be set by choosing either Isyn;h=y1;k (not-delayed) or Isyn;h=y2;k (delayed) in 

Equation (1).  Another approach to fix the connections between motor-neurons in CNN-based 

CPGs is based on reaction-diffusion (RD) equations (Arena, 1999).  Neurons can be 

connected in a ring-like structure to generate an autowave propagating in the ring. In this case, 

the equations of the motor-neuron can be rewritten as follows: 
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where D1 and D2 represent the diffusion coefficients. Since equations (2) give rise to an 

autowave propagating in the ring, they are suitable to control undulatory locomotion, where a 

muscular wave propagates from the tail to the head of the worm-like robot.  In fact, the 

autowave generated by the RD-CNN CPG directly elicit a “muscular” wave in the actuators of 

the structure. 

 

2.4.3 Mathematical Model Of Lumbricus Terrestris/Ipmc Worm 

Physically-based models are usually taken into account to model non rigid materials.  These 

models can be continuous or discrete.  Continuous methods are based on finite element 

analysis. Discrete methods consider the non rigid body as a set of points of mass connected by 

springs. 

 

As concerns undulatory locomotion, Keller and Falkovitz (1983) proposed a continuous 

analytical model for the crawling of worms, taking into account friction and gravity; Dario et 

al. (2004) developed a simple continuous analytical model, based on the experimental data 

reported by Quillin (1998, 1999, 2000). An example of discrete models is the model of C. 

elegans introduced in (Niebur, 1991), which concerns locomotion undulatory on the plane. 

 

In order to develop a discrete model of earthworm locomotion, a physically force-based 

model has been adopted. 

 

Structure 

Since the motion of the worm develops on the x-y plane, the body of the worm is a two-

dimensional layer of points of mass, divided in N rectangular segments.  The vertices of each 

segment are the points of mass, they are connected each other by springs and dampers (Figure 

3). 
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Equations of motion 

In this Section the equations of motion of the structure are briefly derived (Pavone, Thesis at 

University of Catania).  The motion direction is the x axis.  Each point of mass P at time t is 

subjected to elastic (longitudinal and lateral) forces, damping and frictional forces. 

 

The elastic force between two points of mass Pj  and Pk is given by the Hook’s law: 
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where k0 is the (longitudinal or lateral) spring stiffness, Ljk is the distance between two points 

Pj  and Pk, while Ljk
0 is the spring equilibrium length. 

 

The damping between the two points Pj  and Pk is given by the following expression: 
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The frictional force for the point of mass Pj is: 
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where 0≥jxP&  is the component along the motion direction of the velocity of point Pj. 

 

Each given point Pj at time t is therefore subjected to this total force: 
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where j=1,2,…, 2N+2, nr is the set of neighboring points of mass and kk is the appropriate 

elastic stiffness (longitudinal or lateral). 

 

For each point of mass the Newton’s second law can be applied to obtain the equations of 

motion.  The whole dynamic motion equations are given by 2N+2 second-order nonlinear 

differential equations as follows: 
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Actuation 

The worm is actuated by acting on the equilibrium length of both longitudinal and lateral 

springs and letting the equilibrium length be a function of space and time, i.e. L0=L0(x,t). Let 

us consider the longitudinal spring of the j-th segment, in this case x is the coordinate of the 

point Aj and a muscular excitation wave is applied as follows: 

 

 ),(),( 00 txLtxL jlongjlong ψ+=  (9) 

 

where 0
longL  is a constant and ),( tx jψ  is a wave given by: 
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 )22sin(),(
T
txAtx π

λ
πψ +=  (10) 

 

where λ is the wave number, T the wave period and A the amplitude of the activation wave. 

 

As concerns lateral springs, they are actuated so that the area of each body segment is 

constant: 
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Parameters 

The parameters of the model have been chosen taking into account experimental data on the 

Lumbricus terrestris.  Moreover, several parameters have been chosen taking into account the 

characteristics of the robot and physically plausible values of them. 

 

Structural parameters. The number of segments in the Lumbricus terrestris is N≈150. 

However, since a small number of segments is often used in robotic realizations, N=4 has 

been considered. 

 

The mass of a Lumbricus terrestris varies in the range 0.01÷8·10-3kg (Quillin, 1998).  The 

IPMC worm weights about 1·10-3kg.  So, it has been assumed a total mass m=1·10-3kg, which 

leads to a mass for each point equal to: 

 

 kg
N
mmp
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The ontogenetic scaling for the length of the Lumbricus terrestris reported in (Quillin, 1998) 

is given by: 

 

 34.0102mL =  (12) 

 

where the mass is expressed in grams.  In our case, equation (12) gives mL 310102 −⋅= .  

 

Therefore, each segment length is given by mNLLlong
30 1020/ −⋅== .  Analogously, the 

radius scales as 34.05mr = , an thus it has been chosen mLlat
30 105 −⋅= . 

 

As concerns spring stiffness and damping coefficient, the following physically coherent 

values have been chosen k=0.5N/m and D=0.2Ns/m. 

 

Table 2 summarizes the structural parameters. 

 

Environment parameters. For the acceleration due to gravity it has been assumed g=9.81m/s2. 

A key point of the model is that forward and backward frictional coefficients are not equal.  

The same symmetry-breaking mechanism is for instance adopted by snakes.  Frictional 

coefficients have been chosen as follows: µforward=0.2 and µbackward=5µforward.  The coefficient 

µforward is very close to those of snake scales as reported in (Dowling, 1997) (µforward=0.3).  

The results obtained with our model are quite independent of the ratio µbackward/µforward. 

 

Table 3 summarizes the structural parameters. 

 

Actuation parameters. The actuation parameters, i.e. λ, T and A in equation (10), have been 

chosen taking into account the following considerations.  Since the undulatory locomotion of 

Lumbricus terrestris is characterized by a wave along the body length, it has been chosen 

λ=L.  The other two parameters have been chosen to match experimental data. Moreover, as 

concerns the parameter A, there is no direct correspondence with the biological case.  It has 
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been chosen T=1s and 
20

0
longL

A = . 

The model has been integrated by using the Euler method with a fixed step size ∆t=10-4s.  

However, the results have been compared with those obtained with a method for moderately 

stiff problems (the Bogacki and Shampine method), which validates the approach. 

 

Table 4 summarizes the actuation parameters. 

 

2.4.4 Validation of the model 

The model has been validated by comparing the velocity obtained in simulation with the 

velocity experimentally measured in Lumbricus terrestris (Quillin, 1999).  Then, it has been 

valuated how the velocity scales with the mass either in the model or in experimental data. 

 

The average speed of the model has been evaluated by taking into account a simulation of 30s 

corresponding to 30 actuation periods.  An average speed of v=4.6·10-3m/s comparable with 

the experimental data (v=3.8·10-3m/s (Quillin, 1999)) has been obtained. 

 

The scaling law reported in (Quillin, 1999) gives the following expression for the velocity: 

 

 33.08.3 mv =  (13) 

 

with the mass expressed in grams and the velocity in mm/s.  Equation (13) has been compared 

with simulation results obtained with the model introduced above.  The results are shown in 

Figure 4 (a) and (b) is a further confirm of the good matching between simulated behavior and 

experimental data: the normalized value of the speed with respect to the body length weakly 

depends on the mass and has values in the range 0.04±0.02s-1  (the experimental value 

reported in (Quillin, 1999) is 0.04±0.01s-1). 
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2.4.5 Study of the velocity with respect to the gravitational field 

Once demonstrated the validity of the model, the behavior of a worm-like structure on 

different gravitational fields has been inferred in order to investigate the suitability of these 

structures for planetary exploration.  It should be preliminarily noticed that the effect of the 

gravity is twofold and thus difficult to predict: on one hand, the frictional forces associated 

with the forward direction decrease, thus favoring an increase of the motion speed; on the 

other hand, the frictional forces associated with the backward direction decrease, thus 

weakening the anchoring mechanism of the worm. 

 

The behavior of the model has been evaluated by carrying out simulations of the average 

speed at different values of g.  The results are shown in Figure 5, where the average speed 

versus log g is reported.  It is interesting to note that the curve shows a peak (according to the 

need of a trade-off between opposite effects of the gravitational field): surprisingly this peak 

is located near the values corresponding to the gravitational field of Mars (gMars≈g/3). 

 

The average speed at values corresponding to gravitational fields of Earth and Moon (it has 

been assumed gmoon≈g/3) are also shown.  Moreover, as it can be noticed the performance at g 

(Earth) are close to the peak, an opposite result would be counterintuitive. 

 

2.4.6 Use of IPMC actuators under mars conditions 

Besides the frictional forces examined in Section VI the use of IPMC leads to another positive 

effect.  In fact, a greater bending results from a reduced gravitational field.  To quantify this 

effect, an approximate model of the deformation of the IPMC actuators is introduced. 

 

The IPMC actuator has been modelled as a two-link system with the points A and C 

constrained to the ground as shown in Figure 6.  The forces to be considered are the 

gravitational force acting on the center of the structure and the deflecting force exerted by the 

IPMC and applied to the points A and C, orthogonally to the link itself.  A further assumption 

is that the this force decreases linearly with the deformation. 
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With these assumptions, the following relationship for the parameter A can be derived: 

 

 )(0 gAA χ⋅=  (14) 

 

where A0 refers to the value of the parameter A in equation (10) on Earth and 
Earthg
gcg =)(χ  

with c=-0.077 and d=1.077. 

 

By simulating the model and taking into account the effect of the gravity both on frictional 

forces and on the amplitude of the activation wave as in equation (14), it has been found that 

the velocity on Mars would be vMars≈1.2·vEarth. 

 

2.4.7 Conclusion  

Adaptability and stability are important issues in locomotion, where, on one hand, static and 

dynamic stability and fast generation of stereotyped locomotion patterns should be assured, 

and on the other hand flexible and adaptive mechanical and control architectures are desirable.  

In this report an original strategy to artificially obtain adaptability is outlined.  It derives from 

using the CNN paradigm for motion control and active polymers. 

 

To fulfill these requirements, a design case study taking into account undulatory locomotion 

realized by a wormlike structure has been developed that is controlled by a CNN-based CPG.  

Its performance have been investigated under different conditions (gravity, friction, ...) 

through detailed mathematical models.  The use of innovative smart materials based on IPMC 

has been successfully proposed in order to conceive an efficient locomotion system based on 

bio-inspired principles where the CNN motion control has been adopted. 

 

This investigation highlighted the advantages of using such a structure under Mars conditions 

(gravity, friction, environmental conditions) and the benefits arising from a reduced 

gravitational field.  The results obtained showed that under Martian gravitational field 

undulatory locomotion is still efficient.  
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2.5 IMMUNE SYSTEM  

In this chapter, we discuss the balance between adaptability and stability is maintained on an 

sub-organism level of biological hierarchy of complexity as in immune system.  

 

2.5.1 Problem statement 

The immune system is a remarkable, and complex, natural defense mechanism, which 

responds to foreign invaders called pathogens.  Organisms typically have two lines of 

immunity, innate (inherited at birth) and adaptive (also known as acquired) which develops 

over the lifetime of the organism.  However this is not the case for all organisms, such as the 

shark, which has a very powerful innate immune system and no acquired immune system.  

The innate immune system has first contact with any pathogenic substance and in a large 

amount of cases, this is all that is needed to remove the pathogenic material from the 

organism.  However, there are many cases where the innate immune system is insufficient and 

cannot remove the infection.  If this is the case, then the pathogen is passed over to the 

adaptive immune system.  The immune system demonstrates constantly the notions of 

stability and adaptability.  With regards to adaptability, the function of the immune system 

will change in response to the environment, but will return to a stead-state after such events 

(stability).  These properties have been exploited by the area of Artificial Immune Systems 

(AIS), where immunological properties are captured in computational solutions.  Applications 

range from hardware fault tolerance (Canham and Tyrrell, 2002), email classification (Secker, 

Freitas and Timmis, 2003) to network security (Forrest, Hofmeyr and Somayaji, 1997).  

 

The adaptive immune system primarily consists of B- and T-lymphocytes (cells).  Through 

receptors on the cell, they are capable of binding with pathogenic material (antigens).  

Binding will occur between the receptors (paratopes) and antigen receptors (epitopes) if the 

affinity between the two is above a certain threshold.  If a T-cell successfully binds an antigen 

this will cause the T-cell to stimulate B-cells through the emission of lymphockines.  

Additionally, B-cells can also bind with antigens, and therefore a notion of antigenic affinity 
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is created.  The B-cells receive stimulation from this interaction with the antigen.  Through 

the combination of these two interactions (antigens and T-cells) a B-cell then becomes 

stimulated and reaches a threshold at which it transforms into a blast cell.  These blast cells 

then produce large amounts of clones (in proportion to antigenic affinity: the higher the 

affinity, the larger the number of clones produced) and also a large number of free antibodies, 

which undergo somatic hypermutation to increase the diversity of the immune response.  This 

whole process is known as affinity maturation and is part of the clonal selection theory 

(Burnet 1959), which is the term used to identify the process described above.  These 

antibodies (with the assistance of killer T-cells) will remove the antigen from the system.  The 

immune system maintains an immune memory of cells, so that when exposed to the same (or 

slightly different) antigen, a quicker secondary response can be elicited which results in 

quicker removal of the infection.  

 

The immune system remembers encounters with antigenic material (Tizzard 1988).  There are 

a number of theories on how the immune system remembers encounters with antigenic 

material, with the most favored view being that of clonal selection and memory cells (Burnet 

1959).  However, a theory first proposed in (Jerne 1974) suggested an Idiotypic network and 

the immune network theory.  Although not widely accepted, this theory is interesting 

especially for computer scientists and is the model that will be discussed in more detail.  The 

Idiotypic network was devised to explain the stimulation of B-cells in the absence of antigens.  

This is achieved by stimulation and suppression between cells via a network communicating 

via idiotypes on paratopes.  The network acts as a self-organising and self-regulatory 

mechanism that captures antigenic information.  Notable work in (Farmer, Packard et al. 

1986) further explored the immune network theory and created a simple model of the 

Idiotypic network, which was further extended by (Perelson 1989).  It can be noted that such a 

self-regulated system is akin to a homeostatic system, i.e. is capable of maintaining its own 

internal steady state. 
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Immune Responses 

A primary response (Tizard, 1988a) is provoked when the immune system encounters an 

antigen for the first time.  A number of antibodies will be produced by the immune system in 

response to the infection, which will help to eliminate the antigen from the body.  However, 

after a period of days the levels of antibody begin to degrade, until the time when the antigen 

is encountered again.  This secondary immune response is said to be specific to the antigen 

that first initiated the immune response and causes a very rapid growth in the quantity of B-

cells and antibodies.  This second, faster response is attributed to memory cells remaining in 

the immune system, so that when the antigen, or similar antigen, is encountered, a new 

immunity does not need to be developed.  This is the notion of adaptability within the immune 

system.  Figure 7 illustrates this process. 

 

With this in mind, the immune system can be seen as a dynamic system, with many emergent 

properties, such as the protection of our bodies, the maintenance of the host, stable (steady) 

state operation and so on.  The immune system is well renowned for protecting the body from 

infections, as outlined above.  However, the immune system has an equally important role: 

one of maintenance.  This maintenance involves (1) making cells grow and replicate; (2) 

making cells die; (3) making cells move; (3) influencing cell differentiation and (5) modifying 

tissue support and supply systems (e.g. building connective tissue, regulating blood vessel 

growth and supply).  These processes may result from direct activation by various immune 

system cytokines.  What is also interesting, is that these functions are present in 

embryological development of the body, but continue in a limited fashion controlled by the 

immune system.  These activities are initiated through the turning on and off of genes (via the 

cytokines).  It is common to distinguish between two principal types of genes: housekeeping 

genes and tissue-specific genes.  Housekeeping genes are active in all cells at all times as the 

products of housekeeping genes are needed for the ongoing metabolism that all cells require.  

Tissue-specific genes are only expressed in certain cell types, when they are needed to carry 

out the specialised functions of the cell: hormone genes in endocrine cells, reproductive genes 

in germ cells etc.  However, there is a third type, maintenance genes.  These genes are 

different to housekeeping genes in that they are needed in times of crisis, as well as in an on-
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going fashion.  In order to perform maintenance effectively, the immune system has a 

program of three parts:  

o recognition: identifying when things are right and wrong;  

o cognition: interpreting the signs, evaluating the results and 
making decisions;   

o action: doing the job.  

 

Immune Memory  

It is possible to identify two main philosophical avenues that try to explain how immune 

memory is acquired and maintained (Tew & Mandel, 1979), (Tew et al, 1980), (Ada & 

Nossal, 1987) and (Matzinger, 1994): 1) clonal expansion and selection, and 2) immune 

network.  Throughout the lifetime of an individual, it is expected to encounter a given antigen 

repeatedly.  The initial exposure to an antigen that stimulates an adaptive immune response is 

handled by a spectrum of small clones of B-cells, each producing antibodies of different 

affinity.  The effectiveness of the immune response to secondary encounters is considerably 

enhanced by storing some high affinity antibody producing cells from the first infection, 

named memory cells, so as to form a large initial clone for subsequent encounters.  Thus 

memory, in the context of secondary immune responses, is a clonal property (Coutinho,1989).  

Another theory is the theory first proposed by Jerne (Jerne, 1974) and reviewed in (Perelson, 

1989) called the Immune Network Theory.  This theory postulates that B-cells co-stimulate 

each other via portions of their receptor molecules (idiotopes) in such a way as to mimic 

antigens.  An idiotope is made up of amino acids within the variable region of an antibody or 

T-cell.  A network of B-cells is thus formed and highly stimulated B-cells survive and less 

stimulated B-cells are removed from the system.  Both theories allow for the explanation of a 

meta-dynamical system that is capable of stability, adaptability and reconfigurability.  
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Interactions Between Immune, Neural and Endocrine Immune, neural and endocrine 

cells express receptors for each other 

This allows interaction and communication between cells and molecules in each direction.  It 

appears that products from immune and neural systems can exist in lymphoid, endocrine and 

neural tissue at the same time.  This indicates that there is a bi-directional link between the 

nervous system and immune system.  Therefore, it would seem that both endocrine and neural 

systems can affect the immune system.  There is evidence to suggest that by stimulating areas 

of the brain it is possible to affect certain immune responses, and also that stress (which is 

regulated by the endocrine system) can suppress immune responses: this is also reciprocal in 

that immune cells can affect endocrine and neural systems.  The action of various endocrine 

products on the neural system is accepted to be an important stimulus of a wide variety of 

behaviors.  These range from behaviors such as flight and sexual activity to sleeping and 

eating. 

 

The primary function of the immune system is to defend the body against foreign invaders 

and malfunctioning cells.  There are a wide variety of components that are used to achieve 

this, ranging from the bone marrow to lymph nodes.  The immune system displays a number 

of interactions with other biological systems including the following: immune cell populations 

have receptor profiles for modulators such as neurotransmitters and endocrine hormones; and 

immune products also exist in neuroendocrine tissues. 

  

The nervous system's functions are the reception of stimuli, with the transmission of nerve 

impulses and activation of muscle (or effector) mechanisms.  The nervous system has a 

number of interactions, which can be summarised as follows.  Neural cells express receptors 

for cytokines, hormones and neuro-transmitters.  The brain can stimulate defense mechanisms 

against infection, thus engaging the immune system.  The hypothalamus within the brain, 

controls the pituitary and other endocrine glands and it is known that neural products coexist 

in immune and endocrine tissues. 
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Finally, the endocrine system's function is to secrete hormones into the blood and other body 

fluids, with the aim being to regulate metabolism, growth etc.  There are a large number of 

components that make up the system including glands such as the thyroid, pineal and the 

thymus.  These glands are closely related to three fundamental activities which are of interest: 

growth, release of hormones to the brain, and immune system development.  There are a 

number of interactions that the endocrine system is involved with: endocrine cells express 

receptors for cytokines, hormones, and neuro-transmitters; hormones provide feedback to the 

brain that affect neural processing; hormones including the reproductive hormones also affect 

the development of the nervous system.  Again, endocrine products also exist in both immune 

and nervous tissue. 

 

In terms of adaptability the immune system must constantly keep abreast not only of 

infectious pathogens, but also internal stressor signals associated with tissue stress and the 

like.  In response to these signals, the immune system produces a diverse range of antibodies 

(through mutation) as to endow the immune system with the ability to adapt to the situation. 

Of course, this is not a static situation, and is dynamic and noisy.  The challenging nature of 

how and where the immune system operates means that a careful balance needs to be stuck 

between the adaptive nature of the immune system, but also maintaining a stable state.  The 

interactions between immune cells gives rise to immune homeostasis, (thus a notion of 

stability) but the interactions between the three system immune, neural and endocrine also 

give riser to homeostatic at the host level.   

 

2.5.2 Principles and requirements 

Several general principles can be extracted from the immune system and applied to creating a 

system capable of stable, yet adaptive, behavior (Bersini, 2002): 

o Principle 1: The control of any process is distributed around 
many operators in a network structure.  This allows for the 
development of a self-organising system that can display 
emerging properties; 
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o Principle 2: The controller should maintain the viability of 
the process being controlled.  This is keeping the system 
within certain limits and preventing the system from being 
driven in one particular way; 

o Principle 3: While there may be perturbations that can affect 
the process, the controller learns to maintain the viability of 
the process through adaptation.  This learning and adaptation 
requires two kinds of plasticity: a parametric plasticity, which 
keeps a constant population of operators in the process, but 
modifies parameters associated with them; and a structural 
plasticity which is based on the recruitment mechanism 
which can modify the current population of operators; 

o Principle 4: The learning and adaptation are achieved by 
using a reinforcement mechanism between operators.  
Operators interact to support common operations or controls; 

o Principle 5: The dynamics and metadynamics of the system 
can be affected by the sensitivity of the population; 

o Principle 6: The system retains a population-based memory, 
which can maintain a stable level in a changing environment. 

 

2.6 IMMUNE STSTEM - FEASIBILITY OF ENGINEERING TECHNIQUES 

In an attempt to create a common basis for AIS, work in (de Castro and Timmis, 2002) 

proposed the idea of a framework for AIS.  The authors argued the case for proposing such as 

framework from the standpoint that in the case of other biologically inspired approaches, such 

as artificial neural networks (ANN) and evolutionary algorithms (EAs) such a basic idea 

exists and helps considerably with the understanding and construction of such systems.  For 

example, (de Castro and Timmis, 2002) consider a set of artificial neurons, which can be 

arranged together so as to form an artificial neural network.  In order to acquire knowledge, 

these neural networks undergo an adaptive process, known as learning or training, which 

alters (some of) the parameters within the network.  Therefore, the authors argued that in a 

simplified form, a framework to design an ANN is composed of a set of artificial neurons, a 

pattern of interconnection for these neurons, and a learning algorithm.  Similarly, the authors 

argued that in evolutionary algorithms, there is a set of “artificial chromosomes” representing 
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a population of individuals that iteratively suffer a process of reproduction, genetic variation, 

and selection.  As a result of this process, a population of evolved artificial individuals arises.  

A framework, in this case, would correspond to the genetic representation of the individuals 

of the population, plus the procedures for reproduction, genetic variation, and selection.  

Therefore, the authors adopted the viewpoint that a framework to design a biologically 

inspired algorithm requires, at least, the following basic elements: 

o a representation for the components of the system (known as 
shape space); 

o a set of mechanisms to evaluate the interaction of individuals 
with the environment and each other.  The environment is 
usually simulated by a set of input stimuli, one or more 
fitness function(s), or other mean(s) and; 

o procedures of adaptation that govern the dynamics of the 
system, i.e., how its behavior varies over time.  Adopting this 
approach, (de Castro and Timmis, 2002) proposed such a 
framework for AIS. The basis of the proposed framework for 
is therefore a representation to create abstract models of 
immune organs, cells, and molecules, a set of functions, 
termed affinity functions, to quantify the interactions of these 
“artificial elements”, and a set of general-purpose algorithms 
to govern the dynamics of the AIS. 

 

The framework can be thought of as a layered approach as shown in Figure 8.  In order to 

build a system, one typically requires an application domain or target function.  From this 

basis, the way in which the components of the system will be represented will be considered.  

For example, the representation of network traffic may well be different that the 

representation of a real time embedded system.  Once the representation has been chosen, one 

or more affinity measures are used to quantify the interactions of the elements of the system.  

There are many possible affinity measures (which are partially dependent upon the 

representation adopted), such as Hamming and Euclidean distances.  The final layer involves 

the use of algorithms, which govern the behavior (dynamics) of the system.  Here, in the 

original framework proposal, algorithms based on the following immune processes were 
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presented: negative and positive selection, clonal selection, bone marrow, and immune 

network algorithms.  

 

When constructing such an AIS, there are many computational and practical issues to 

consider.  The first is computational complexity of the approach.  This relates to the time and 

space required to generate the suitable number of detectors (members of a population) that are 

required for the job.  For example, there are a number of works that outline the unacceptable 

computational complexity of the negative selection approach from AIS, as there is an 

exponential relationship between the size of the data set to be used, and the number of 

detectors that it is possible to generate.  However, other approach within AIS, such as clonal 

selection and immune networks, do not suffer the same problem.  The second aspect to 

consider is the data to be used.  If one abstracts away from the system components and uses 

state machines, then one has to be careful that there is an accurate mapping between the state 

machine and the actual system, and ensure that the state  machine adequately scopes the space 

to be immunised.  Consideration here also has to be given to the way in which data is 

represented.  The shape space paradigm proposes varying ways of data representation and 

interaction.  However, when dealing with discrete values, such as those found in embedded 

systems, the method of defining affinity (i.e. seeing how similar one item is to another) is not 

as clear-cut as it may seem.  This is coupled with the fact that mutation, even what might be 

thought of as a small amount, could have a huge impact on the meaning of the data.  Should a 

binary shape space be employed, the mere flipping of one bit could indicate a huge shift in 

meaning of the state, rather than the small shift that may be desired.  In both of these 

situations, domain knowledge can play a pivotal role in the success or failure of such as 

system. 

 

2.6.1 Adaptation within a System 

Infecting antigens drive the development of antibodies within the immune system.  These 

agents of change can be considered to be external infecting antigens, which are driving the 

immune system to protect the host body from infection, and drive the immune system to adapt 

to changing antigenic infection.  However, when one considers embedded systems, one has to 
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consider whether they really evolve, in the sense previously mentioned.  Embedded systems 

are in their very nature self-contained systems, hence they should not, in principle, be 

considered as evolving systems.  They do however interact with the outside world, which 

could affect the system.  Factors such as electro-magnetic noise, radiation, vibration and 

temperature may affect the normal operation of the system and thus potentially causing faults.  

In addition to the above factors, components might fail, which can affect the operation of the 

system, system consumables may become exhausted, and abnormal human interaction could 

also affect the system in some way.  Any artificial immune system for embedded systems 

should be able to cope with all of these agents.  However, these are not the only agents of 

change, there might also be changes in the physical components of the system e.g. 

replacement of faulty parts, upgrade of components or the addition of new components.  The 

concept of adaptation is therefore important.  

 

Any immunised embedded system will need to be able, firstly, to detect such consequences 

from the agents of change, and secondly, to adapt to them and possibly new ones.  It should 

be noted that the AIS does not have to detect a change in components, but merely the 

consequences of that change.  An analogy can be made with the immune system.  Should a 

host have an organ transplant, the immune system does not know this is a new organ, merely 

that something has changed and it is no longer recognisable as self, i.e. it has detected the 

consequence of the change. In an AIS, this can be viewed at two levels.  At one level, there 

are minor adaptations of a system to the environment, e.g. if a component fails, the system 

should be able to detect the consequences of this failure and reconfigure for continuing to 

provide a degraded service when available redundancies do not permit the continuation of 

delivery of the original service.  At the other level, there are the issues of possible families of 

embedded systems, where a whole host of similar embedded systems are developed over time, 

with similar or different components.  What is desired here, therefore, is a system that can 

have an immune system capable of adapting to new components, new operating conditions 

etc, without the need to retrain it, but use the immune knowledge of existing embedded 

systems.  This then naturally leads to two areas of reconfiguring the AIS.  The first is at 

design time.  A new embedded system  (the first of its kind) can have a set of detectors 
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generated that should be capable of working with that system: in essence this is a static 

generation of detectors, off line, first attempts of this (using a very simple robot system) were 

tried in Canham & Tyrrell 2002.  However, the second area for reconfiguring the system is at 

run-time.  The system should allow new components to be introduced, removed and so on and 

be able to adapt to these changes: having to re-learn a new set of detectors from scratch is not 

practical they need to be evolved from the knowledge the AIS already has and can capture 

from  its new hardware/software or environment.  It may also be possible to introduce new 

detectors with a new component, therefore a new component is already endowed with its own 

immune system, which is then integrated into the systems immune system.     

 

We present a brief review of 2 dynamic AIS applications, one in the context of continual 

learning and classification (in the context of email filtering) and the other in the area of 

context aware systems. 

 

2.6.2 Dynamic Learning 

The Artificial Immune System for Email Classification, AISEC (Secker, Freitas and Timmis, 

2003) seeks to classify unknown e-mail into one of two classes based on previous experience.  

This system captures both the adaptive nature of the immune system (in being able to adapt its 

response to emails entering the system) and achieve a stability of dynamically maintaining a 

set of detectors at a steady level.  It does this by manipulating the populations of two sets of 

artificial immune cells.  Each immune cell captures a number of features and behaviors from 

natural B-cells and T-cells but for simplicity we refer to these as B-cells throughout.  These 

two sets consist of a set of naïve (sometimes called free) B-cells and a set of memory B-cells.  

Once the algorithm has been trained each B-cell represents an example of an uninteresting e-

mail by containing words from that e-mail’s subject and sender fields in its feature vector.  

New e-mails to be classified are considered to be antigens and so to classify an e-mail it is 

first processed into the same format of feature vector as a B-cell and then presented to all B-

cells in the algorithm.  If the affinity between the antigen and any B-cell is higher than a 

threshold, the B-cell is said to recognise the antigen and thus classified as uninteresting.  If 

this antigen is later confirmed by a user to represent an uninteresting e-mail, the B-cell which 
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classified it as such is useful and is rewarded by promotion to a long-lived memory B-cell 

(assuming it was not already).  At this time it is also selected to reproduce by clonal selection.  

This constant reproduction combined with appropriate cell death mechanisms are features that 

afford our algorithm its dynamic nature.  The user feedback will be given asynchronously to 

classification but on a regular basis.  As the algorithm is designed to address concept drift 

over long periods, reasonable pauses in this feedback should not cause an undue drop in 

classification accuracy. 

 

Representation 

A B-cell receptor is represented as a two-part vector.  One part of the vector holds words 

contained in the subject field of an e-mail, the second holds words contained in the sender 

(and return address) fields.  The actual words are stored in the feature vector because once set 

this vector will not require updating throughout the life of the cell.  This can be contrasted to 

the common practice of using a vector containing binary values as the receptor, each position 

in which represents the presence or absence of a word known to the algorithm.  As words are 

continually being added and removed from our algorithm each cell’s vector would have to be 

updated as appropriate when this action occurs.  The two sub-vectors are unordered and of 

variable length.  Each B-cell will also contain a stimulation counter used for aging the cell. 

 

Affinity Measure 

The affinity between two cells is a measure of the proportion of one cell’s feature vector also 

present in the other.  It is used throughout the algorithm and is guaranteed to return a value 

between 0 and 1.  The matching between words in a feature vector is case insensitive but 

otherwise requires an exact character-wise match.  Given bc1 and bc2 are the cells we wish to 

determine the affinity between, 

 

Algorithm 

The AISEC algorithm works over two distinct stages: a training phase followed by a running 

phase.  This running phase is further divided into two tasks, that of classifying new data and 
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intercepting user feedback to drive evolution.  During the training stage the goal is to populate 

the gene libraries, produce an initial set of memory cells from training examples, and produce 

naïve B-cells based on mutated training examples.  As the B-cells in the AISEC algorithm 

represent only one class the training set, contains only e-mails the user has explicitly selected 

as uninteresting.  Now the algorithm has been trained it is available to begin the classification 

of unknown e-mail and population manipulation processes based on user feedback.  During 

this running phase the algorithm will wait for either a new e-mail to enter the system and so 

be classified or an action from the user indicating feedback.  Upon receipt of either of these 

the necessary procedure outlined below will become invoked.  To classify an e-mail, an 

antigen is created in the same form as a B-cell, taking its feature vector elements from the 

information in the e-mail and an assignment to a class is made.  To purge the population of 

cells which may match interesting e-mails, the AISEC algorithm uses a two signal approach.  

The system assumes that signal one has occurred, that is the antigen generated from the 

classified e-mail has already stimulated a B-cell to have been classified.  Signal two comes 

from the user in the form of interpreting the user’s reaction to this e-mail.  It is during this 

stage that useful cells are stimulated and unstimulated cells are removed from the algorithm. 

 

Results 

Table 5 summarises the results over a continuous test set.  Precision is the percentage of 

messages classified as uninteresting that really are uninteresting, and recall is the percentage 

of uninteresting messages classified as uninteresting.  AISEC shows a better balance between 

these two measures.  When compared with a naïve Bayesian classifier, it achieves a higher 

precision at the expense of recall.  This demonstrates the naïve Bayesian classifier blocks 

fewer uninteresting messages, but the ones it does clock are more likely to be uninteresting 

and is due to a Bayesian classifier’s bias towards assigning the majority class to an example.  

Even though, overall, AISEC yielded the slightly higher accuracy we do not claim it classifies 

with higher accuracy in general.  Instead we believe it is reasonable to conclude that the 

algorithm performs with accuracy comparable to that of the naïve Bayesian algorithm but 

with somewhat different dynamics. 
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2.6.3 Context Aware AIS 

A Context Aware AIS is being designed to assist the user through the provision of a user 

friendly context-aware system that provides an assessment derived from their current context. 

The system should be implemented on a resource constrained device and must be effective 

even in the absence of connectivity.  In practice, context-aware software running on mobile 

devices needs to work in a range of networking environments with the real possibility that it 

must spend a proportion of time working with no connectivity.  There are some benefits to 

autonomy and keeping more information locally on the user’s device, particularly if privacy 

of sensitive contextual data is an issue.  The system proposed in (Mohr, Ryan and Timmis, 

2004) capitalize in the adaptation and stability properties of clonal selection and the 

maintenance of memory cells via a simple interacting network.  The immune metaphors 

employed allow for a system that can adapt the contents of the memory structure to an ever 

changing environment despite noisy data.  In addition, the system has the property of stability, 

in that common occurring patterns will be retained over a long period of time, and 

perturbations in the input space will not adversely effect the maintenance of memory.  In the 

context of the AIS framework. 

 

Representation 

The system’s inputs consist of the user’s context and possible options (e.g. different activities 

such as “lunch” or “meeting”).  The user’s context is represented by an attribute vector,  

a1,a2, ..., an , which contains attributes along with their attribute identifier — note that 

attributes can appear in an arbitrary order.  Possible options are also represented by attribute 

vectors, one for each option (options may comprise of an arbitrary number of attributes).  

Each of these vectors constitute a detector. 

 

Affinity Measures 

Affinity is the mechanism by which the distance between two elements is calculated.  We use 

the affinity measure to determine how similar two detectors are, if they are close enough to be 

neighbors, and how much one can stimulate the other.  Measuring the distance between GPS 

co-ordinates is fairly straight-forward as standard Euclidian distance can be used, but 
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measuring the difference between non-numeric attributes is more difficult, e.g. the difference 

between two mobile phone cell IDs 

 

Algorithm 

The user’s behavior is learned from the continuous input of local context.  Each attribute in 

the context attribute vector is presented to the system.  First a check is performed to see if the 

dimension exists to which the attribute belongs, if it does then the attribute stimulates all 

existing detectors within this dimension — stimulation depends on the distance to all 

detectors within this dimension, which is calculated using the appropriate affinity function.  If 

the distance to all detectors is greater than a threshold, it is converted into an and added to the 

dimension and a further check is made to evaluate if that detector should become a neighbor 

of other detectors.  After all the attributes have been considered, cross-dimensional-links 

between them are created or, if they already exist, are stimulated (in proportion to the affinity 

value of the link).  Both levels decrease due to decay functions. 

 

Results 

Figure 9 shows the output after the algorithm iterated through 200000 points.  Detectors are 

represented by small circles and their resource level is visualized by the darkness of the circle.  

These points where collected over a period of four months for the same journey from a one 

point to another.  The map shows a high activity at both points, and a low to medium activity 

in between — a standard averaging technique showed a very similar result.  The algorithm 

reduced the points to about 150, and due to the use of detectors the information about the lost 

points is retained by the stimulation levels of the detector.  Furthermore, noisy data which was 

mostly caused by occasional inaccuracies in the GPS measurements is eliminated by the 

decay function.  

 

2.7 ROBOT SWARMS 

In this chapter, we discuss the balance between adaptability and stability is maintained on an 

super-organism level of biological hierarchy of complexity as in robot swarms. 
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2.7.1 Problem statement 

We need to trust robots, remotely and in places difficult of access, to do their jobs properly, 

quickly, creatively, autonomously and reliably.  A swarm of small relatively simple cheap 

robots (distributed system)  is more reliable and damage-tolerant than a single expensive and 

complex robot. Some current advantages of robots in a distributed system are: 

o they can remain more or less static; instead of moving, the 
robots can communicate within the system, thus saving 
energy and simplifying the design; 

o they are simultaneously compact and distributed; 

o they can harvest energy and material for themselves and for 
the entire swarm;  

o they are self-repairing, adaptively homeostatic/homeoresic as 
a group; 

o the group can be immortal with regular replacement of 
individual robots. 

  

In addition it would be advantageous if: 

o they could be informed and operate, both globally and 
locally; 

o they could have different working modes in different 
environments/under different conditions; 

o they could save energy if only a few robots were needed for a 
particular task and the rest could “sleep”; 

o they could work under harsh conditions due to their 
adaptability as individuals and as a group. 

 

Nature’s prototype for such robots is a colony of social insects (e.g., ants or bees): it is self-

organized, self-dependent, self-adapted and self-regulating.  To understand the idea of “self-”, 

we need to know how “self-” works.  There are two main concepts (Johnson, 2001; 

Bonabeau, Thiraulaz, 2000). 
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Our proposal is within the framework of the most pressing problems of adaptive intelligence 

and artificial life (Boden, 1996).  Biological systems are massively parallel and distributed, 

they use disposable components, they are robust to perturbations in their environment, they 

learn innovative solutions to problems, and their global structure and behavior are not 

predictable from simple inspection.  The favorite prototype for this kind of system is ants.  

Colonies of social insect are are not only well adapted (Wilson, 1971; Zakharov, 1980; 

Deneubourg et al., 1978, Couzin,2003), but show their great abilities in adaptability and 

optimization. 

 

To develop control mechanism for adaptable robot team behaviour we need to quantify group 

cohesion so that we can track its development, adaptation and performance of its main 

function.  To investigate and model adaptability and stability we need a method of its 

detection and “a ruler” to measure it.  Adaptability is such type of system quality for which 

there is no scale for measurement. To improve this situation we propose as an universal “a 

ruler” index of nominal entropy (INE), measuring diversity of any suitable parameter in a 

system.  

 

2.7.2 Index of Nominal Entropy 

To measure the balance between adaptability and stability, an index of Nominal Entropy can 

be defined as the relation between group entropy to the maximum possible entropy of the 

group (all agents are equal).  Modelling will then be based on an estimation of chaos and 

order relations in any parameter of individual and group behaviour, that is relevant to system 

adaptation to environment.  

 

Entropy can be a measure of several quantities: 

o uncertainty; 

o uniformity; 

o scatter of a distribution;  
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o quantity of information (in texts) or of order and disorder – 
C. Shannon (1949).It was suggested for description of 
structural information changing in a system in a process of 
communication. 

                          i

n

i
i PPH lg

1
∑
=

−=                                           (15) 

The main quality of this interpretation is that H is maximum 
when all probabilities are equal to each other. Hma-H=I – 
surplus (abundant) information in a system; 

o diversity.  In this case Hmax= lgn – is potential diversity, H is 
current diversity; 

o predictability – risk in decision making process. In this case  
entropy is the mean value expectance (first momentum) of 

iPlog . The unpredictability of event will be 1/logPi ; 

o the interpretation of H as mean value expectance (first 
momentum) of disorder in a system; 

 Disorder = unpredictability; Structure = predictability 

nH log0 ≤≤  and depends on the number of elements in a 
system. We do not need this for monitoring system 
development when n is changing constantly, or for comparing 
different systems. 

 

To enable us to deal with different n we will use nominative (normal) entropy:  

 

 
maxH

Hh =  (16) 

 

For any of probability distribution h [0;1] and is the measure of order in a system.  

 

All possible states in a system can be described as structural (rules) or chaotic (free will, 

creative solutions, which ruin structures in a system, increase unpredictability of its 

behaviour, etc.)  The number of all possible states in a system is Hmax=logn or hmax = 1. In 
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this case h is the relative measure of disorder in a system (chaos) and 1-h is the relative 

measure of order in a system.   

 

This method works well if we want to see system dynamics as it shown on the example of 

estimation of nominal entropy (group coherence) in ant hierarchy (Figure 10).  We tried this 

method for investigation of ant management adaptability and found that there are adaptable 

and non-adaptable, but very adaptive.  We chose the ant rank in the hierarchy as a parameter 

to estimate their collaboration (management).  

 

We found that the most efficient way to keep group coherence is a Triple Elementary Unit.  It 

allows large numbers of ants to join the same team without loss the group cohesion and 

automatic change (increase or decrease) in the number of ants performing a particular task.  

The number of hierarchical levels is 5 (the highest number to which ants can count) after 

which group loses integration. (Bogatyreva, Shillerov, 1998). 

 

For the formation of a command unit, leaders and subordinates have quantifiable differences 

in their behavior (Figure 11 a):  

o leaders do not look for contacts; they pay little attention to 
subordinates and contact them only when they need to; 

o subordinates actively look for contacts with leaders and with 
each other. 

 

If each ant/robot is given a rank according to the percentage of contacts it rejects, it is possible 

to draw diagrams of their interactions (Figure 11 b).  These concepts also apply to humans in 

management systems (Bogatyreva & Shillerov, 1998). 

 

The Group Nominal Entropy cohesion index is a working, empirically tested cohesion index 

and can be used as a basis for our model of adaptable distributed swarm robot behaviour. 

 

So, for robotic swarm, designed for other planets exploration we definitely would like: 
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o Self-organisation but under our control;  

o Adaptability but not beyond predictability. 

 

To achieve this, we need Biomimetic approach that gives us a hope for predictable 

adaptability because, comparing with physical (non-living) systems changes in life are never 

random (system would not take off in bizarre new direction) and they are open for 

environmental impacts only at some sensitive moments of their development (semi-open 

systems). 

 

2.8 CONCLUSIONS  

In Paragraph 2.3 we discussed how the balance between adaptability and stability is solved in 

animal locomotion, and have presented a particular preliminary study which explored the 

feasibility of combining CPG-and-reflex based control with novel types of muscle-like 

actuators such as Ionic Polymer Metal Composites (IPMC) in an undulatory worm robot. 

 

We recommend following up on this with a concrete project aiming at developing and 

constructing a variety of robots for planetary exploration based on similar principles.  Such a 

project would be carried out along four main axes: 

o further simulation studies.  Realistic dynamic simulations 
have a key role to play in the design of both control 
algorithms and robot structures.  We suggest to extend the 
simulation studies presented above … extensive simulation 
studies with respect to different parameters of the model; 

o extensive tests with the current worm robot. Study of the 
friction; 

o design and realization of new prototypes, and application to 
modular robotics. application of the synergetic IPMC/CNN-
based approach to other types of bio-inspired robots, Use of 
materials that serve both as actuators and as sensors.  That 
replicate the self-stabilizing properties of the musculoskeletal 
systems of animals.  Extension of the approach to robots that 
reconfigure themselves, e.g. that are made of multiple units 
which can dynamically attach and detach;  
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o design of adaptive CPG-based control. Several important 
points remain to be investigated in relation to the 
controllability of the CPG-based mechanisms. In particular 
the controllers should be able to smoothly adjust the speed 
and direction of locomotion, and, if needed, the type of gait. 

  

In Paragraph 2.4 we discussed artificial immune systems have much to offer dynamic real-

time environments, particularly when homeostasis-type properties are required – it seems to 

us that this applies to all space missions.  Note that in traditional mission equipment the 

expected outcome of component failure is system failure!  That is there is often never the idea 

that component failure can be used in a dynamic way which might also act as its own 

recommendation organizer and alter the system, again dynamically (possibly using its 

memory of previous similar events), to prevent (i) the need for system shut-down and worse 

(ii) complete system failure.   

 

State-of-the-art technology should provide unparalleled insight into the health of systems by 

sensing the spectrum of conditions including: electrical, mechanical, temperature, stress etc.  

These data would feed into our AIS to perform system checking, long-term failure prediction 

and immediate system recovery (if the prediction is good even before the failure has 

occurred!) 

 

We have identified a number of properties of the immune system that we wish to incorporate 

into a system but also issues to solve: 

o Embodiment.  Ideally this should be in an actual physical 
device.  Within the general context of AIS, this is the essence 
of the process and it is likely that any system produced will 
be part of the embedded system being considered.  There are 
many issues regarding appropriate sensors, inputs, outputs, 
actuators? etc to be decided; 



Doc. No. 03-602-H8 
Rev. 0 - June 2005 
 

59 

o Dynamic system and environment.  Within any set of 
processes that require any type of monitoring, there will be 
many inherently dynamic components.  Such system would 
normally be required to be capable of continual operation and 
may change the notion of what are appropriate (correct?) 
conditions over time (for example during peak periods of 
operation [whatever that might be] certain processes may be 
“switched in”, causing related increases in power 
consumption as requirements change, these are “switched 
out” and power consumption reduced); 

o Learning and adaptation.  The system will have to continually 
adapt as requirements on the processes change dependant in 
some respects on an unpredictable environment Certainly 
akin to adaptable immune system characteristics and 
memory; 

o Communication.  There are large amounts of communication 
going on in the immune system, both in the immune system 
(cytokines etc) and between systems (immune, neural and 
endocrine).  This is where it becomes possible to maybe 
captialise on the interactions between innate and adaptive 
immunity.  Considering a distributed set of sensors, danger 
may not be appropriately identified by a single device; 
multiple sensors may cooperate in diagnosing the condition 
of the system.  It would seem appropriate that this might be 
self organized and distributed with sensors “presenting” their 
data to the components in the monitoring system?; 

o Timescales.  Within the context of such systems we certainly 
will require different timescales in the processing, 
presentation, learning and adaptation of the information – 
generally electronic items change “quickly”, whereas 
environmental aspects, temperature, speed etc might change 
at a slower rate?. 

 

Bringing all of these ideas together into a single project, would give the opportunity to test 

some innovative, potentially ground breaking, principles and making a real leap towards 

future embedded technology. 

 

In Paragraph 2.5 we discussed robot swarms.  A specific of a distributed system is that its 

parts work more or less independent comparing with integrated system where parts and 
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different functions are fixed together and with each other.  In both cases environment brings 

unpredictability in system behaviour, but in the case of distributed system there is a place for 

a chance even within a system itself – input of each part into different functions can be 

different.  So, this model is suitable for integrated systems as well (with fixed parts and their 

functions) but the possibility for adaptation will be less.  

 

According to the conditions the meaning of different parts or events behaviour can be crucial 

for a system – a single agent/event can save/ruin the system.  To develop a method for a 

description of a goal (program) directed behaviour affected by unpredictable situations is a 

challenge. 
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3 CONCLUSIONS 

The work performed in the framework of the Bionics and Space System Design has lead to 

the identification of four case studies which have been analyzed and described in the previous 

chapters.  Based on the different and complementary expertise of the Biomimicry Expert 

Group, D’Appolonia has assigned each of the case studies selected by ESA to a different 

working team.  In order to facilitate the management activities, a responsible has then been 

selected within each working group.  The work has lead to a better understanding of the 

biological principle, together with a first attempt of an engineering solution.  

 

As described in the previous sections, the case study on the balance between adaptability and 

stability has concentrated on three aspects of such topic: locomotion control, artificial immune 

systems and robot swarms taking into account all possible levels of hierarchy in biological 

systems: sub-organisms (immune systems), organism (locomotion) and super organisms 

(swarm). 
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TABLE 1  
 PARAMETER VALUES OF SYSTEM 

 
 

µ s i1 i2 

0.5 1 -0.3 0.3 

 

 
 
 

TABLE 2  
STRUCTURAL PARAMETERS. 

 
 

Number of segments N N=4 

Total mass m  m=0.001 Kg 

Equilibrium length of longitudinal spring 0
longL  mLlong 025.00 =  

Equilibrium length of lateral spring 0
latL  mLlat

30 105 −⋅=  

Worm length L mLNL long 1.00 =⋅=  

Stiffness klong klong =0.5 N/m 

Stiffness klat klat =0.5 N/m 

Damping coefficient D D=0.2 Ns/m 

 

 

TABLE 3 
ENVIRONMENT PARAMETERS 

 
 

Gravity g 9.81 m/s2 

Forward friction coefficient µforward 0.2 

Backward friction coefficient µbackward 5 µforward =1 
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TABLE 4  

ACTUATION PARAMETERS. 

Wavelength λ λ=L=0.1m 

Period of the actuation wave T T=1s  

Amplitude of the actuation wave A 

20

0
longL

A =  

 

 

 

TABLE 5  
PREDICTIVE ACCURACY FOR CONTINUOUS LEARNING TASK 

 

Algorithm Classification Accuracy Recall Precision 

Bayesian 88.05% 67.76% 93.93% 

AISEC 89.09% ±0.97 81.13 ±4.71 82.20% ±2.63 
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FIGURE 1 
 

 EVOLUTION OF THE BONE MASS  
(SOURCE: THE ASSOCIATION OF THE 

BRITISH PHARMACEUTICAL INDUSTRY) 
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FIGURE 2 
 

 STRUCTURE OF THE IPMC WORM AND 
SCHEAMATIC REPRESANTATION OF THE 

LOCOMOTION MECHANISM 
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FIGURE 3 
 

 STRUCTURE OF THE  WORM MODEL  
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(a) 

Comparison between model and theoretical scaling predicted by Equation (13) 
 

 
(b) 

The average velocity normalized with respect to the body length  
shows a weak dependence on the mass. 

FIGURE 4 
 

 AVERAGE VELOCITY VS. MASS  
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FIGURE 5 
 

 VELOCITY VS. GRAVITY ACCELERATION  
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FIGURE 6 
 

 SCHEMATIC REPRESANTATION OF THE 
IPMC ACTUATOR  
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 LEARNING IN THE IMMUNE SYSTEM 
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FIGURE 8 
 

 A FRAMEWORK FOR AIS 
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FIGURE 9 
 

 IMMUNE NETWORK FOR TRACKING  
GPS DATA  
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FIGURE 10 
 

 ESTIMATION OF ADAPTABILITY, 
INSTABILITY AND NON-ADAPTABILITY, 
USING THE NOMINAL ENTROPY INDEX 

 
 
 

PREPARED FOR 
 

ESA, ESTEC 
Noordwijk, The Netherlands 



Doc. No. 03-602-H8 
Rev. 0 - June 2005 
 

 

 

 
(a) 

 

 
(b) 

FIGURE 11 
 

FORMATION OF A COMMAND UNIT  
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