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Abstract

Jumping spiders are capable of estimating the distance to their
prey relying only on the information from one of their main eyes.
Recently it has been suggested that jumping spiders perform this es-
timation based on image defocus cues. In oder to gain insight into the
mechanisms involved in this blur-to-distance mapping as performed
by the spider and to judge whether inspirations can be drawn from
spider vision for Depth-from-Defocus computer vision algorithms, we
model the relevant spider eye with the 3D software Blender and ren-
der scenes how the spider would see them. We test a simple and
well known Depth-from-Defocus algorithm on this dataset and show
why it is not capable of estimating distances correctly. We conclude
that our model is too abstract to allow inferences to be drawn about
the spider’s Depth-from-Defocus mechanism. Further we propose an-
other straightforward way to quantify defocus and suggest additional
aspects to be included in the model.

1 Introduction

Computer Vision (CV) algorithms that deduce distances from two or more
defocussed images of a scene, so called Depth-from-Defocus (DFD) algo-
rithms, have first been introduced in the late 1980s and the beginning of the
1990s (e.g [1, 2]) and have been build upon subsequently to increase perfor-
mance and robustness (e.g. [3]).

Recently, Nagata et al. [4] presented a study which provides strong evidence
that jumping spiders also judge the distance to their prey based on defocus
cues. In the first part of this study, all but one of the spider’s front facing



anterior median (AM) eyes were occluded. The spider was then presented
a fruit fly at different distances and jumping accuracy during hunting was
accessed. It was found that there is no significant difference in performance
to an unblinded spider, indicating that the spider relies on monocular cues
from the AM eyes for distance estimation. What is special about the AM
eye is that the photoreceptor cells are distributed over four layers, of which
the two bottommost layers, Layer 1 (L1) and Layer 2 (L2) yield the input for
the DFD estimation: images projected onto the retina are blurry on L2 and
sharp on L1 (Figure . Using the achromatic aberrations of the eye’s lens
in the second part of their study (more details in Section , Nagata et al
show that the amount of blur on these layers indeed influences the jumping
distance.

The question now arises if both CV-DFD algorithms and the spider DFD
mechanism are based on the same high level principles and if not, if CV-DFD
algorithms can be improved by learning from the spider’s DFD mechanism.
Particularly interesting is that the spider achieves an apparently very accu-
rate depth estimation with very simple components: A single lens and very
few photoreceptors (e.g. an AM eye of the spider species Metaphidippus ae-
neolus only has about 1200 photoreceptors in total [5]).

A DFD sensor build of such basic components would be of great interest
for use in space: If only basic components are needed the sensor is likely
to be low in cost. Low cost equipment is highly suitable for simple space-
crafts like cubesats, and an optical distance sensor would be advantageous
for formation flying and other types of swarm behaviour. A low cost opti-
cal distance sensor would also be of use in debris removal, during docking
and landing and as a general fall-back or assisting option for other distance
sensing equipment such as laser detection and ranging systems (LADAR),
sound navigation and ranging systems (SONAR) and stereo vision systems.
Furthermore a system consisting essentially of only lenses and sensors and no
mechanical parts would be less fault-prone and lower in power consumption
than above mentioned methods.

In this work we take the first steps in investigating if spider vision has the
potential to advance such a vision sensor. To this end, we create a model of
the anterior median (AM) eye of spider species Metaphiddipus aeneolus to
see what kind of images are created on the spider retina. Simply put, we
want to show “what the spider sees”. We then test a well known but basic
DFD-algorithm [2] on these images to see if the spider’s depth assessment
performance can be explained by the principles of this algorithm.

This paper is structured as follows: In the next Section[I.1]we describe the
morphology of the AM eye of M. aeneolus as found by Land [5] and present
the study above mentioned by Nagata et al. in more detail. In Section [2] we



specify the abstractions made and the modeling choices for our model of the
spider eye in the 3D graphics software Blender [6]. Section 4] describes the
DFD algorithm used and Section [5| delineates the datasets constructed and
the experiments performed, as well as an investigation on why the algorithm
fails to perform on our spider datasets. The paper closes with a discussion on
further elements to be included in the model and a simple possible alternative
to the algorithm used.

1.1 The anterior median spider eye

The photoreceptors of the retina of the AM eyes of the jumping spider are
distributed over four layers (see Figure . According to an analysis by Land
from 1969 [5] the two topmost layers always receive defocussed images, as
the corresponding conjugate object planes lie behind, and not in front of the
spider’s head. Recently, the two bottommost layers have been found to be
essential for the judgement of distances: Nagata et al. found that these lay-
ers contain mostly green light sensitive photo receptors and have shown in
an experiment that a jumping spider performs accurate jumps when viewing
targets in green, but not in red light.

Furthermore, they showed that the spiders consistently jumped to short in
red light, thus underestimating the distance to their prey. Nagata et al.
found that due to achromatic aberrations of the spider eye’s lens an object
viewed in red light results in the same amount of blur on the second retina
layer (L2) as the same object at a closer distance when viewed in green light
(see Figure . Thus the underestimation of the distance to the prey in red
light is strong evidence that the spider judges the distance on defocus cues.

Morphology The anterior median spider eye resembles a long tube (Fig-
ure [1)), with the very curved cornea on one end and a boomerang shaped four
layer retina on the other end (Figure . The four retina layers extend over a
range of ca 50um with the distances between layers and layer thicknesses as
indicated in Figure [3] On the retina, the receptors are arranged in a hexag-
onal lattice, with denser spacing closer to the optical axis and a more coarse
spacing towards the periphery. The spacing in L2 is overall more coarse than
in L1, the minimum receptor spacing found in L1 is 1.7um.

2 Modeling the Spider Eye

We model the AM eye of M. aeneolus with the help of the 3D graphics
software Blender [6]. To achieve physically accurate results of how light



Figure 1: Example shapes of jumping spider eyes. The anterior median
eyes (red arrows) resemble a long tube with a very curved cornea in the
front. http://tolweb.org/accessory/Jumping_Spider_Vision7acc_id=
1946, retrieved (12/15/2014)

Figure 2: Objects at distances d in red light and d’ in green light result in
the same amount of blur on Layer 2. (Figure taken from [4].)
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Figure 3: Arrangement of photoreceptor layers of M. aeneolus’s retina. Light
from the lens enters the figure from the top. The bar on the right indicates
the object distances that are conjugate to horizontal planes on the retina.
The red line highlights the location of the focal plane. The legend on the
left indicates the location of the image planes used in our dataset. (Figure
slightly modified from [5] to improve clarity).

is refracted through lens and posterior chamber we choose LuzRenderf], a
physically based rendering engine for the ray tracing part in place of Blender’s
build-in Cycles engine. Cycles does not model glass well and is thus less
suitable for an optical model, while LuxRender traces light according to
mathematical models based on physical phenomena and is thus more suitable.
In oder to facilitate the handling of the model, all used values are scaled by
a factor of 10000.

Modeling lens and posterior chamber In our model the eye is rep-
resented by a thick lens (ry = 217um, ro = —525um, d = 236um) with
refractive index n = 1.41]?], enclosed by a black tube E]

The posterior chamber of the eye is modeled by setting the refractive index
of the back of the lens to that of spider ringer, i.e., n = 1.335|ﬂ Aperture
and specific shape of the lens (see Figure @ are achieved by creating a black

thttp:/ /www.luxrender.net, retrieved 06 January 2015
?LuxRender glass2 volume with corresponding refractive index
3LuxRender matte material

4LuxRender glass2 volume with corresponding refractive index
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Figure 4: Boomerang shaped receptor grids of Layer 1 (left) and Layer 2
(middle). The rightmost subfigure shows the receptors for Layer 3 and Layer
4 superimposed. The crosses indicate the location where the layers would
stack onto each other. For both Layer 1 and Layer 2 receptors are spaced
more densely along the optical axis and more coarsely in the periphery. The
minimal receptor spacing in Layer 1 is 1.7um. (Figure taken from [5]).

torug’] with diameter d = 200um at narrowest point. The resulting model
is shown in Figure o} All the measurement values mentioned above are the
same as provided in [5] and summarised in Table [1]

Modeling receptor layers / sensor spacing For simplicity, we do not
model the receptor layers as volumes (Figure , but simply as 2-dimensional
sensor planes. A sensor plane is realized in Blender by creating a plane of
translucent material (to act as a “film”) and placing an orthogonal scene
camera behind it to record the image on the film. We record images at
locations of the sensor plane in z-axis corresponding to: The top of L2, the
focal plane (which coincides with the bottom of L2), the top of L1, the
middle of L1 and the bottom of LL1. The corresponding back focal distances
(BFD) are 450pum, 459um, 464um, 474pm and 485um, respectively. In our
setup, we choose a quadratic film size and base the number of receptors (=

5LuxRender matte material
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Figure 5: Blender model of the AM eye of M. aeneolus. The lens is a LuxRen-
der glass2 volume with refractive index n = 1.41, the posterior chamber is a
LuxRender glass2 volume with refractive index n = 1.335. The sensor is of
LuxRender translucent material. All other materials are of type LuxRender
matte and of black color to absorb light.

Eye Parameters

™ -T2 d Nens  Mpostr chamber f

217pum 525pum  236pm  1.41 1.355 204 pm

Table 1: Parameters of the AM eye of M. aeneolus.

pixels) on the closest spacing in L1, resulting in a 117pz x 177px film of size
200pum x 200um to approximate the receptors of a layer. We use this film to
record images for L1 as well as for L2. Even though the structure of the actual
receptor layers is boomerang shaped and only measures a few micrometers at
its most narrow point, we assume that the spider can emulate a larger retina
by moving the retina in x-y direction, assumingly “stitching” the partial
images together to form a larger image. This behaviour might also result in
higher visual accuracy, emulating a more dense receptor spacing. We thus
appropriately assume to model the retina as a square. To account for the
possible higher accuracy, we also create a parallel dataset with 370px x 370px
occupying the 200um x 200um sized film.
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Figure 6: Comparison of AM eye lens shape of M. aeneolus in the Blender
model (left) with the lens shape as reported by Land (right, image taken
from [5])

3 Dataset

We generate the spider dataset by rendering four different images (“objects”)
as viewed through the spider eye, two artificial and two “natural” ones (see
Figure [7)). The artificial ones are a checkerboard texture, where the size
of one square corresponds to the size of a fruit fly (approx. 5 mm) and
a black circle in front of a neutral background. Here, the diameter of the
circle also corresponded to 5mm. The artificial textures where chosen like
this to a) be able to visually judge the defocus around edges and b) get an
impression how the size of prey on the sensor changes for different distances
from spider to prey. These textures however have a low frequency content
and lack detail. The DFD algorithm is reported to not perform well with low-
frequency content images [2]. To account for this we include two additional
natural images. It should be noted that even though these images display
a jumping spider and a fruit fly, these are not to scale, but much larger
than their real counterparts. Considering the possibility that the effective
resolution of the spider eye is higher due to eye movement, we also create a
set of higher resolution (370pz x 370px) renderings for the natural images.
We render images for each object placed at distances D = {1.5,3 and 6cm}
from the lens. These distances approximately correspond to the conjugate
planes (in object space) of the Bottom of L1, the middle of L1 and the top
of L1, respectively and are chosen so to ensure that “good” images , i.e.



Figure 7: Images wused to generate the spider dataset. These
are the “objects” that are placed in front of the lens to be
viewed through the lens. (Spider image from http://commons.

wikimedia.org/wiki/File:Female_Jumping_Spider_-_Phidippus_
regius_-_Florida.jpg, retrieved 04/01/2014; fruit fly image
from http://www.carolina.com/drosophila-fruit-fly-genetics/
drosophila-living-ebony-chromosome-3-mutant/172500.pr, retrieved
14/01/2014.

images with least amount of blur, are part of the dataset. Examples from
the datasets are show in Figure [§

4 Depth from Defocus Algorithm

In the following we will present the reasoning underlying DFD algorithms
and describe a basic algorithm as proposed by Subbarao in 1988 [2]. Even
though the algorithm has been improved upon in many ways since it was first
proposed (e.g. [3]), most improvements address the image overlap problem
- the problem that when segmenting an image into patches to estimate the
distance of each patch, each patch is influenced by objects in neighboring
patches due to the spread of the defocus. In our setup however, the objects
we consider are planes perpendicular to the optical axis so that the distances
are constant over the whole image. Accordingly these improvements are not
expected to increase the performance in our scenario, so that we only use the
original algorithm.

4.1 Subbarao’s DFD algorithm

If an object is not in focus, the amount of blur in the image can provide
information about the distance of the object. Given that we know the cam-
era’s parameters (focal length f, aperture A and the lens to sensor distance
v) we can calculate the distance by basic geometry and Gauss’ lens formula.
Gauss equation assumes a thin lens and relates the object distance and the
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Figure 8: Examples for one natural and one artificial texture dataset. Shown
are images at the sensor planes corresponding to Top of L2, bottom of L2,
top of L1, middle of L.1 and bottom of L1 (top to bottom) for object distances
corresponding to 6¢cm, 3cm and 1.5¢m, (left to right). The red squares indi-
cate the images that should be least blurry according to Gauss’ lens equation

(Eq. .

focal length of the lens to the distance of the focussed image:

1 1 1

=4z 1
where D is the distance of the object to the lens.
The diameter d of the blur circle is related to the other camera parameters

d=Av(=—=—- ), (2)

and the actual observed blur circle radius o then depends on the camera
constant p (which depends in parts on the pixel resolution and in part on
other camera properties)

p
o= §d‘ (3)

If the diameter of the blur circle is known Eq. can easily be solved for
object distance D. Accordingly, the basis of most DFD algorithms including
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Subbaraos’s algorithm, is the estimation of blur from two or more defocussed
images.

The basic premise of the algorithm is that an out of focus image can be
created from a sharp image by convolving the sharp image with a point
spread function (PSF) that corresponds to the blur. For simplicity the PSF
is often assumed to be a two dimensional Gaussian

1 _ 24y

e 202 (4)

h(z,y) =

2mo?

with spread parameter . A blurred image g(x,y) can thus be obtained from
a sharp image f(z,y) by convolving the sharp image with the PSF

g(x,y) = h(z,y) * f(z,9) . (5)

Convolution in the spatial domain corresponds to multiplication in the fre-
quency domain. Thus, when considering the blurry images in the frequency
domain we can eliminate the need for a sharp image:

Gr(w,v) = Hi(w,v)F(w, V)
Gi(w,v) Hi(w,v)

T Hy(w,v)

Go(w, V)

&

Using the frequency space representation of Eq. this leads to

P — e (52 + 070007 oB) ) (©

Considering the power density spectra P(w,v) of the transform and rear-
ranging allows to extract the relative defocus
-2 P (w,v)

2_gl= l . 7
T2 e OgPQ(W,V) 0

In order to obtain a more robust estimation, the relative defocus is averaged
over a region in frequency space

1 —2 Py (w,v)
- l
TN Ew:zy: P12 pplw, ) ®)
where P;(w,v) # Py(w,v) and N the number of frequency samples.

It is then possible to solve for the blur of one of the images, e.g. o, by
solving the following quadratic equation:

(o® = 1)o3 + 200y + 7 = C (9)

11
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Using the obtained o5 in Eq. [3| and Eq. [2| allows to solve for the distance D.

5 Experiments

5.1 Pre-experiment on kixor dataset

To test the functionality of the algorithm we first tested it on a small dataset(]
of defocussed images obtained with an off the shelf camera. The dataset does
not contain the exact distances of the objects pictured, nor does it include the
exact lens to sensor distances but instead it reports the distance the camera
focusses on. Using Gauss’ lens formula, and by visually determining which
part of the image is sharp, both u and D can be approximated. Testing the
algorithm on this dataset yields results in the correct order of magnitude if
the blur in the images is not too high. The exact results also depend on the
frequencies used to calculate C. Examples are shown in Figure [9}

5.2 Experiments on spider dataset

Testing the algorithm on the spider data did not give consistent results. For
most object- and sensor distances, the estimated distance was neither in the
right order of magnitude, nor did it reflect the ordering of distances (giving
higher estimates to objects further away and lower estimates to objects that
were closer).

Figure [10] shows the estimates given by the algorithm for different object
distances and for the different spider datasets.

In the following we analyse why the algorithm performs poorly on the
spider datasets.

5.2.1 Misleading frequency content

As described in Section [4.1| the estimation of the blur of the images is based
on the “difference” of the two images in the frequency domain. Accordingly,
if there is not enough or misleading frequency information in the image, the
algorithm is not expected to work. To address this we test the algorithm

Shttp://www.kixor.net/school/2008spring/comp776/project/results/, re-
trieved 16/12/2014
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Figure 9: Image patches extracted from kizor dataset. Shown are three
examples of defocussed image pairs and the estimated as well as the actual
distances of the objects.
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Figure 10: Depth estimates for the low resolution (117px x 117px) spider
dataset. Results are shown for a subset of pairings from image planes in L2
and L1. The highlighted subfigure is the pairing that is assumed in spiders.
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Figure 11: Depth estimates for the high resolution (370px x 370px) spider
dataset. Results are shown for a subset of pairings from image planes in L2
and L1. The highlighted subfigure is the pairing that is assumed in spiders.
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Object distance: 6cm, BFD=449um

spp = 1000 spp = 10000

Figure 12: Amount of noise for different rendering times. Left: 1000 samples
per pixel, right: 10000 samples per pixel. Images are taken from the high
resolution dataset 370px x 370px)

on a dataset with low frequency and normal frequency content (checkers,
circle and "natural image” dataset). The performance on the natural image
dataset is qualitatively the same as on the artificial datasets, indicating that
the low frequency content of the image is not the reason for the failure.

Also, the receptor grid is quite coarse (117px x 117px) so that fine details
which could provide valuable blurred edges (and with that more frequency
information) might not be captured. However, the algorithm’s performance
does not increase on the high resolution natural images dataset (370px X

370px) (Figure [11)).

Image noise levels The test datasets contain some noise due to the ren-
dering process. During rendering, light paths are traced from Blender’s light
source to the viewed object, through the lens, and onto the film. Each found
path is called “a sample”. The process of rendering is computationally costly
and thus the numbers of samples per pixel (spp) is limited to 1000 in our
original dataset. As shown in the left of Figure the resulting image is
slightly noisy. The noise is the same for different object distances, and thus
the frequencies corresponding to the noise are the same for both images,
which in turn can influence the blur estimate.

We test the algorithm on datasets with lower amounts of noise: on low pass
filtered versions of the original dataset and a dataset with spp = 10000. (Fig-
ure |12 right). The results of the algorithm remain qualitatively the same as
shown in Figures and [I1] Accordingly, neither the rendering noise nor

15



the resolution of the images are the reason for the poor performance of the
algorithm.

5.2.2 Focal lengths

The focal length for M. aeneolus as measured by Land is 512um, while the
calculated focal length for a thin lens in air and water amounts to 504um.
Using the above (Section [2)) lens parameters (refractive indices, radii of cur-
vature and thickness of the lens) allows to calculate the back focal length of
the lens (BFL), that is the distance between the back of the lens and the
focal point, which amounts to 459um. However, these calculations do not
take spherical aberrations into account. Due to spherical aberrations an im-
age formed by a very curved lens may still be blurry, even though according
to Gauss’ lens formula it should be in focus. The sensor distance for “best”
focus is then the distance at which the “circle of confusion” is smallest.
When setting up the sublayers for L1 and L2 relative to BF'L = 459um, the
expected trajectory from defocussed to focussed and back to defocused could
not be observed in our renderings (Figure .

Taking into account that Land’s description of the eye may not be com-

plete and to investigate a case that is closer to the considerations presented
by Nagata [4] (more clearly focussed and defocussed images) we create an
additional set of test images with sensor layer distances relative to the “best”
focus, namely the BFL400-dataset. We determined the best focus with the
help of the autofocus function of the commercial optical software Zemaal|
Unlike in the ideal lens calculations Zemax’s autofocus function calculates
the back focal length based on the smallest circle of confusion, resulting in a
BFL of 400um.
For the layers placed relative to this value, a different blur profile can be ob-
served (Figure . However, testing the algorithm on this dataset results in
qualitatively the same performance as the mentioned experiments. This in-
dicates that the poor performance of the algorithm is not due to an incorrect
value for the focal length.

5.2.3 Reverse calculations: Which values of ¢ and C would we
expect?

In order to further investigate why the algorithm performs poorly on the spi-
der dataset, we calculate the values for C' and o which the algorithm would
expect in order to yield the correct results. Figure [14] shows a comparison of
the calculated values for C' and the values for C' obtained by using the images
from the spider dataset in Eq[§ f = 459um and D € {1.5cm, 3cm, 6cm}. It

Thttps://www.zemax.com
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Figure 13: Layers placed such that the bottom of L2 coincides with BF D =
400pum. Red arrows indicate at which back focal distance (BFD) the image
should be sharpest assuming a thin lens and a focal length of f = 400um
(calculated with Gauss’ lens formula).

can be seen that obtained results do not agree nor follow the general trend
of the calculated results.

To gain insight why the C-values do not yield sensible results even for the
“oood-natured” high-frequency content and low-noise images, we generate
artificial blurry images and compare them with the rendered spider dataset
images (Figure. The images are generated by simply convolving the initial
sharp image with a Gaussian filter with o corresponding to an object distance
of D = 6¢m and sensor plane distances of v € {434pum, 444pm, 459um, 464um, 474pm}
as described in Eq[5} The size of the blur circle is computed in microns and
then translated into pixels by setting camera parameter k = 210107 > . Here the
last three sensor distances correspond to the bottom of L2, top of L1 and
middle of LL1. The first two sensor distances are included to further illustrate
the difference between the blur profiles for the rendered and convolved im-
ages.

Comparing the rendered with the convolved images shows two important

17
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Figure 14: Comparing calculated values of C with the values for C obtained
by using Eq [§] with the spider datasets. The titles of the subfigures indicate
the receptor layers that “recorded” the images used for obtaining C. Here,
we fix the top of L2 as one of the images.
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differences: Firstly, the rendered images are much more distorted due to the
very curved lens. This also results in a blur amount that varies over image
location: the image is sharper in the center and more blurry towards the
periphery. Secondly, the rendered images appear much more blurred than
the convolved images. Also, the rendered image is at its best at sensor planes
closer to the lens and gets worse on sensor planes that are further away, while
the convolved image is best at BF' L = 464um and worse at distances closer
to and further away from the lens.

A conclusion that can be drawn from this is that the thick lens of the spider
eye has too many aberrations for the image forming process to be sensibly
approximated by convolution with a Gaussian PSF, and that the spider must
thus be using a different mechanism.

6 Discussion and Conclusion

Algorithm As shown in the previous section, Subbarao’s simple DFD al-
gorithm fails to provide sensible distance estimates on the spider dataset.
The reason for this is that the algorithm assumes an ideal thin lens, while
the lens of the spider eye is a thick lens with a large amount of uncorrected
aberrations. Thus the PSF is not Gaussian and thus the basic premise that
a defocussed image can be modeled as the corresponding sharp image con-
volved with a Gaussian filter is not fulfilled.

In principle, it would be possible to adjust the algorithm to other PSFs at
the cost of losing the simple closed form solution [2]. However, due to the
aberrations of the lens, the PSFs differ for different sensor and object dis-
tances, which would result in many complications of the algorithm.
Alternatively, one could also think of a more straightforward spatial domain
algorithm: Given that the spider has already identified the prey in its field
of view, comparing the numbers of active receptors between the layers and
the difference in light intensity for adjacent receptors might already suffice
as a decent distance estimate.

With this method in mind it might also be sensible to look into neuronal
inspired algorithms; e.g. how DFD-functionality might be achieved with a
spiking neural network.

Eye model and dataset Apart from possible adjustments to Subbarao’s
algorithm, there are points for discussion on what the spider actually sees and
how a distance measurement may be generated from this. For one, the im-
ages as projected onto the retina layers are much more blurry than expected.
Particularly, when considering Figure |§it is hard to determine which of the
images is the least blurry image for a particular object distance. Even for the
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distance of object: 6.0 cm

original

BFD: 434um

bottom L2

Top L1

middle L1

Figure 15: Comparing rendered images (right) with images generated by
convolving the original image with Gaussian spread function (left). Spread

is parametrized by o; values for d are obtained by Equation . K is 210107 5:;
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case of the shifted receptor layers (bottom of L2 at BFD = 400um) which
is not biologically accurate but results in a blur profile that is closer to the
expected one (see Figure [13| for shifted receptor layer images and left of Fig-
ur for expected profile), it is still hard to judge where exactly the image
is sharpest. If the best image is not clearly distinguishable, and projected
images are very similar over a range of sensor distances, information is lost
and thus accurate determination of the object’s distance will be no longer
possible.

Before concluding that the spider accomplishes the impossible task of esti-
mating distances from images that do contain sufficient information, it makes
sense to consider what the spider actually sees. It is important to point out
that the images generated with our Blender model reflect the light which
would fall onto un-occluded planes behind the lens. However, the receptors
in spider eyes are not 2D planes, but volumes. Accordingly, the thickness of
the receptor layers may play a further role. It seems likely that photons can
react with the receptive segments of the photoreceptor over its whole length
(i.e reactive segment is a long as the layer is thick), so that the “image” as
received by the receptors may be rather an integration of all image planes
than the single images used in our dataset. Additionally, in order to reach
e.g the “bottom of LL1” a photon must first pass all of L2 and the top parts of
the receptive segments of LL1 without being absorbed. So in order to model
accurately how much light each receptor receives, it would be necessary to
have an idea on how likely photons are to be absorbed on different locations
of the retina.

In this volume-scenario either the information on where exactly on the layer
the image is sharpest or how the defocus varies over the length of the layer
is lost, unless there are some unknown intracellular mechanisms preserving it.

Future work From the performance of the algorithm and above consider-
ations we can conclude that the model as based on Land’s findings [5] is too
abstract to be able to make conclusions about the spider’s DFD mechanism.
The present understanding of the components of the jumping spider eye is
still incomplete, but further insights may be gained by including more of the
known details in the model.

A possible next step would be to model the receptor spacing (Figure |4) more
accurately. The particular spacing and layout of the receptors may in part
compensate for aberrations. An additional step may be to include more de-
tails on the vertical arrangement of the receptors and to move from a static
model to a model which accounts for retina movements: According to Blest et
al. [7] the receptor ends of both L2 and L1 form a stair-like structure, which
might provide depth information when the eye performs scanning movements.
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Also, in reality L1 and L2 are not parallel to each other but oriented in a
angle. This arrangement could also provide additional depth information
when comparing inputs to the layers. These findings point to very different
mechanisms for determining distances than the ones used in CV DFD algo-
rithms.

Based on measurements in jumping spider species Plezippus Blest also sug-
gest that the interface between the posterior chamber of the eye and the
receptors acts as a second lens. This would change the optical system and
thus the way light falls onto the receptors, potentially resulting in better
distinguishable depth-profiles.

Conclusions We present images created by a model of the AM eye of
spider species M. aeneolus and analyse why Subbarao’s DFD algorithm fails
to estimate distance accurately on these images. We conclude that the model
as based on considerations and measurements by Land [5]is too abstact to
allow inferences to be drawn about the spider’s DFD mechanism. We propose
another straightforward way to quantify defocus and suggest further aspects
to be included into the model.
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