
Page 1

APIES: Exploring the Asteroid Belt 
with Satellite Swarms
P. D’Arrigo & S. Santandrea

P. D’Arrigo – ENS (UK), EADS Astrium
S. Santandrea – ESA/ESTEC 



Page 2 22/02/2006

What is APIES?

• APIES: Asteroid Population 
Investigation & Exploration 
Swarm

• Concept:
– Flotilla of 19 microspacecraft

performing multiple flybys of 
asteroids (BEE = BElt Explorer)

– Conventional carrier spacecraft 
also acting as communication 
centre for the swarm (HIVE = 
Hub & Interplanetary VEhicle)

– Aim to visit at least 100 asteroids 
during 6 years of operation (one 
every 2-3 weeks!)
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The Asteroid Main Belt: Still Unexplored

• The asteroid main-belt 
(MB) is one of the least 
known parts of the solar 
system

• >65,000 catalogued MB 
asteroids and millions of 
smaller ones, but only 2-3 
have been studied in 
detail by a spacecraft

• MB asteroids can give us 
invaluable information on 
the origin & evolution of 
the Solar System

The asteroid main belt (green)
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APIES: the Key Questions

• What are asteroids made of?
• How is composition linked to spectral 

properties?
• What is their internal structure?
• How do asteroids form and evolve?
• What is their link to planets and 

comets in the Solar System?
• What is their link to meteorites?
• What can asteroids tell us 

about planet formation and 
evolution of life on Earth?

Asteroids are a unique source 
of information about the early

Solar System
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APIES Science Goals

• Characterize asteroid population:
– Measure mass & density
– Surface physical properties (Vis & IR)

• Analyse a statistically significant sample:
– Several samples from major spectral classes
– Include a few rare spectral types
– ~100 objects in total
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Global Imaging
Volume

APIES Payload

• Simple payload focussed on key objectives:
– Imager for surface properties & volume
– IR spectrometer for mineralogy
– Radio science for mass & density

• Payload performance:
– 100 m/pix (global imaging) + 10 m/pix close-up
– 1.0-2.0 µm IR spectrum, 6 nm resolution
– 20% density measurement accuracy

Topography

IR Spectrum

Cratering

Total payload
mass: 2.5 kg
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Orbit Selection

• Orbit at 2.6 AU chosen 
for its mixed population, 
high spatial density of 
asteroids and relative 
accessibility

• Flyby velocity limited to 
5.0 km/s (>90% objects)

Numbered Asteroids (H<14.1 & H<12.6)

0

500

1000

1500

2000

1.5 2 2.5 3 3.5 4 4.5
r (AU) in plane

Sp
at

ia
l d

en
si

ty
 (p

er
 c

ub
ic

 A
U

)

D = 5 km
D = 10 km

Peak at 2.8 
AU

Chosen orbit has
a well mixed
population

r =2.6 AU Normalized to 100 flybys

0

1

2

3

4

5

0.05 1.05 2.05 3.05 4.05 5.05 6.05 7.05

Relative velocity (km/s)

Nu
m

be
rs 5 km/s



Page 8 22/02/2006

Orbit & Mission Design

• Mission Constraints:
– Soyuz-Fregat single launch
– 12 Years mission duration
– ⇒ 1400 kg launch mass with Mars 

gravity assist, 850 kg total for Swarm 
with SEP on HIVE S/C

– ⇒ ~3 years to reach orbit + ~3 years 
for deployment needed

• Propulsion capability on each 
BEE S/C calculated against 
probability of 100 intercepts:
– Statistical analysis over 6 years 
– 2 km/s for >90% confidence

APIES Orbit
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Mission Timeline

 1  2  3  4  5  6  7  8  9  10  11  12 
                        
               Nominal Operation 
        Asteroid Flybys 
      BEE Deployment          
      Separation               
 SEP Thrusting                   

Transfer                   
 

Time (years)

Mars
Flyby

MB Orbit 2.6 AU:
Swarm deploys after 
reaching main belt

Nominal
Formation

3-4 years to achieve 
deployment, but science 
operations start earlier

5-6 years nominal 
operation in the MB

12 Years Total
Mission Duration



Page 10 22/02/2006

Swarm Formation Design

Key Drivers:
• Large cross-section to asteroid flux ⇒ formation 

plane close to normal to flux direction
• Low deployment ∆V, low station-keeping ∆V
• Compact formation to ease communications
APIES Solution:
• Swarm nominal formation in a single plane at 60º

to the ecliptic and containing HIVE velocity vector
• BEEs distributed in concentric circular rings around 

the HIVE, each at the centre of a circular “intercept 
zone”, where asteroid flybys occur

• BEE leave nominal formation to achieve intercepts
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HIVEVHIVE

Swarm Plane

Ecliptic

Sun

BEEBEE “Orbit”

VBEE

60º

HIVE Orbit

Intercept
Zone

Baseline Swarm Formation

• BEEs are in concentric 
circular “orbits” around 
the HIVE in one plane 
at 60º to the ecliptic
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HIVEVHIVE

Asteroid crosses
swarm plane

(Vrel ~2.2 km/s)

Ecliptic

Sun

BEE

60º

HIVE Orbit

Intercept
Zone

BEE leaves nominal formation
to intercept asteroid

Vrel

Asteroid Intercept
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System Optimization:
BEE Propulsion Technology & Swarm Size
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Design Solutions:
Asteroid Flybys

• Large swarm (19 BEEs) + Frequent flybys 
demand innovative solutions

• For each flyby:
– Autonomous visual navigation to target on BEE using 

science payload (imaging camera)
– Radio tracking of BEE from HIVE before & after flyby
– Closed-loop tracking of asteroid during closest approach 

using BEE AOCS (steering microsat to point the imager)
– Autonomous flyby operations on BEE (no intervention 

from the ground is possible)
– Store of flyby data on the BEE and download to HIVE 

after completion of flyby operations for relaying back to 
Earth
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BEE Spacecraft Summary

• Simple BEE design
• Fixed antenna, solar array
• BEE size: 0.6 m cube
• BEE mass: ~45 kg
• ~20 kg for propulsion and 

25 kg remain for payload 
and all other subsystems 

• Arcjet propulsion system 
as best performing for 
~2000 m/s ∆V

Medium-Gain Antenna

Arcjet Thruster

Imager

Fixed
Solar
Array
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BEE Mass Budget Summary

• BEE wet mass: 
43.4 kg with margin 
38.0 kg w/o margin

• Allowable mass: 
44.7 kg, assuming 
19-BEE swarm and 
850 kg swarm mass

• ⇒ 6.7 kg margin 
available (17.6%)

• 11 kg propellant, 
corresponding to 
2000 m/s ∆V on 
each BEE

BEE Mass Budget Summary Arcjet BEE
Payload 2.50 kg
Structure 3.30 kg
Propulsion 7.30 kg
Thermal 0.32 kg
Harness 0.50 kg
Power 4.07 kg
Communications 5.28 kg
AOCS + Electronics 6.28 kg
System Mass Margin 2.96 kg
Total s/c Dry Mass 32.51 kg
Propellants 10.88 kg
Total Mass @ Launch 43.39 kg

A low thrust (15mN), low power (100W) Arcjet system is 
the critical technology to develop to achieve this mass
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HIVE Spacecraft Summary

• 2.0 m HGA
• 2 x 12 m2 deployable solar arrays
• Hexagonal monocoque structure: ~3.5 m long
• BEEs accommodated on 4 out of 6 sides
• Total HIVE mass: 550 kg
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APIES Cost Approach

Ambitious mission at low cost:
• Target cost-effective launcher (Soyuz-Fregat)
• Simple science payload (only what is essential)
• Dual use of science payload (imager/star tracker, 

radio science/communications)
• Highly autonomous operation (navigation, control 

& science measurements)
• Advanced technology when delivering key mass 

savings (propulsion, communications)
• Minimize communications with Earth (high data 

downlink rate through HIVE)
• Swarm mission: zero redundancy on each 

spacecraft + mass production
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Conclusions

• APIES represents a novel approach to mission 
design and mission architecture, enabling new 
science and exploration beyond the means of 
conventional spacecraft designs

• Science goal is an integral part of mission 
optimization, affecting swarm, spacecraft and 
technology solutions

• The resulting mission has proven to be feasible 
with a realistic level of technology development

• APIES could study over 100 asteroids >5km in 6 
years (one every 3 weeks) + probably image many 
more smaller objects!

• Similar concepts can be applied to other missions 
(e.g. Jupiter system exploration)
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