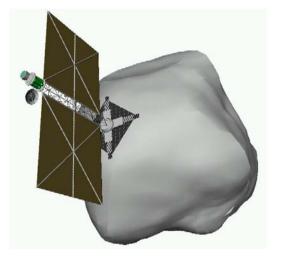


Advanced Solar & Nuclear Electric Propulsion Systems for Asteroid Deflection

> Dr. Roger Walker, Dr. Dario Izzo, Cristina de Negueruela


ESA Advanced Concepts Team, ESTEC, Noordwijk, The Netherlands

Overview

eesa

- Introduction
- Electric Propulsion Deflection
 - EP Asteroid Deflection Formula
 - Mission Model Development
 - Asteroid Deflection Scenario Definition
 - System Trade-offs & Optimisation Analysis
 - Minimum Required Warning Times
 - NEP/SEP System Preliminary Design Concepts
- Kinetic Energy Impactor Deflection Using EP
 - KE Impact Impulsive Asteroid Deflection Formula
 - Low-Thrust Trajectory Optimisation
 - Performance Trade-off vs. EP Deflection
- Conclusions

Introduction

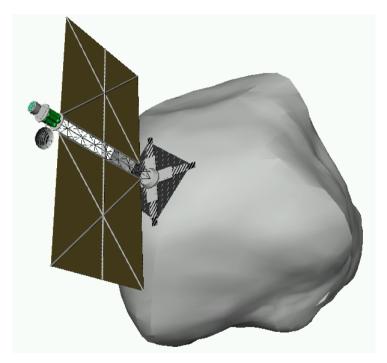
eesa

- Near Earth Asteroids (NEAs) pose an impact hazard to Earth
- Low probability, high consequences, similar to other natural hazards
- Space technology is reaching a sufficient level for a deflection capability within the next decades
- Time to start considering the options
- NEA deflection options
 - High-energy impulsive: K.E. impactors (chemical or electric), nuclear stand-off blasts
 - Low-energy long-duration: surface ablation via laser or solar concentrator, mass drivers, surface-attached propulsive devices
- Most attainable in the nearer term: kinetic energy interceptors and surface attached propulsive devices

Advanced Solar & Nuclear Electric Propulsion Systems for Asteroid Deflection

3

Introduction


- Electric propulsion deflection
 - Rendezvous, land and push technique
 - Challenges: landing/attachment/attitude control of irregular aggregated rotator
 - Benefits: inherent controllability, flexibility, universal, no fragmentation
- Kinetic energy impactor deflection with EP
 - EP used to put impactor spacecraft on high eccentricity heliocentric intercepting trajectory -> very high impact velocity, momentum transfer & impulsive delta-V
 - Challenges: guidance navigation & control to hit target centre of mass at hypervelocity, uncertainties in momentum transfer due to asteroid internal structure
 - Benefits: potential for high deflection performance, efficient use of propulsive energy, no complex close proximity operations or surface interactions
- Both methods require high mission delta-V, moderate thrust (N-level), multi-ton spacecraft
 - High-power & specific impulse electric propulsion systems are the enabler
 - Nuclear fission reactors or Large lightweight solar arrays for power

Electric Propulsion Deflection

Advanced Solar & Nuclear Electric Propulsion Systems for Asteroid Deflection

5

6

Asteroid Deflection Formula

- Introduced in paper AAS 05-141 "On The Deflection Of Potentially Hazardous Objects " by D. Izzo
- Proven to accurately predict the miss distance induced by the longduration low-thrust EP deflection method

$$d_{\min} = \frac{3a\gamma V_{Earth}}{\mu} \int_{0}^{t_{p}} (t_{s} - t) \vec{v} \cdot \vec{A} dt$$

- d_{\min} minimal distance between the asteroid and the Earth
- *a* semi-major axis of the asteroid's orbit
- γ non dimensional parameter, depends on encounter geometry
- V_{Earth} Earth velocity at encounter
- μ gravitational parameter of the Sun
- t_s time before impact the strategy is started
- t time counted from ts
- \vec{v} asteroid velocity along its unperturbed orbit
- $\vec{A}(t)$ deflection strategy applied to the asteroid

7

Mission Drivers

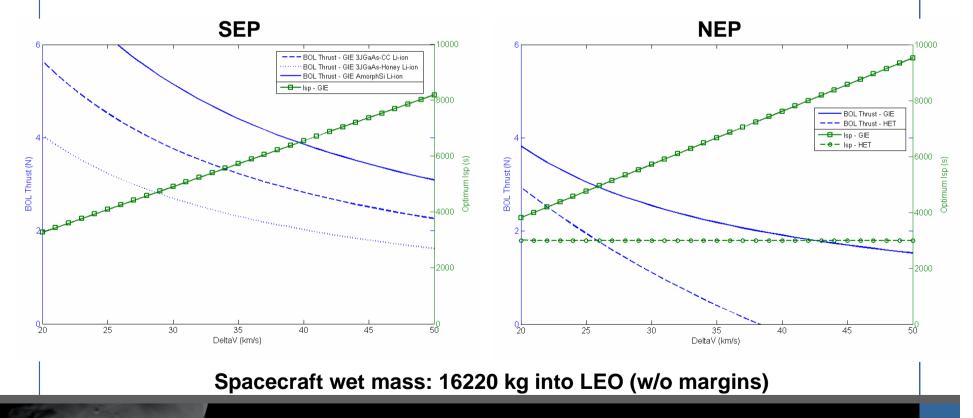
• Mission phases

	Total response time					
Launc	Earth spiral out	NEA rendez- vous	NEA spin axis change	NEA push	NEA coast	Earth miss
	Inject Orbit, T/M _{s/c} , Isp	NEA orbit, T/M _{s/c} , Isp	state,	Rem- aining ΔV _{s/c} , T _{s/c} , Isp	NEA orbit, NEA mass, T _{s/c} , t _{push} , Req. miss distance	
					Trade-off between spacecraft thrust, ∆V, Isp	

Mission Model Development EP Deflection Toolbox developed by ESA ACT $t_{spin} = \frac{\theta_{spin} I_{ast} \omega_{ast}}{r_{ast} T_{sc}}$ • $s = \frac{3a}{\sqrt{\mu R_{r}}} \int_{0}^{tp} (t_{s} - t) \vec{A} \cdot \vec{v} dt$ M_{launch} % margins Asteroid d. M. $\% m_{p/l}$, $m_{s/s}$ spin state, orbit α_{pow} , α_{thr} , α_{ppu} Objective η_{thr} , η_{PPU} function **NEA Deflection** Spin axis, Push Variables (min) Model ΔV.t Coast t Response **EP** Spacecraft S/c BOL S/c ΔV , Isp TIme **Design Model P**, **T** Spiral-out & RV **EP** Mission ΔV, t **Design Model** $P_{BOL} = \frac{M_{p+p}}{(\alpha_{thr}\eta_{nnu} + \alpha_{nnu})N_{T,ner} + \alpha_{nnu}}$ Launch orbit Target orbit $M_{p+p} = (M_{wet} - M_f)(1 - m_{s/s} - m_{p/l})$ $M_{spiral} = M_{wet} \left(1 - \exp\left(\frac{\sqrt{\mu_E}}{g_o I_{sp}} \left(\frac{1}{\sqrt{a_2}} - \frac{1}{\sqrt{a_1}}\right)\right) \right)$ $-m_{\rm tan}M_f$ $M_{f} = M_{wet} \left(1 - e^{-\Delta V / g_{o} I_{sp}} \right)$ $t_{spiral} = \frac{M_{spiral} g_o I_{sp}}{T}$ $T_{BOL} = \frac{2\eta_{thr}}{g_o I_{sp}} \eta_{ppu} P_{BOL}$ M_{RV} , t_{RV} computed by DITAN low-thrust software

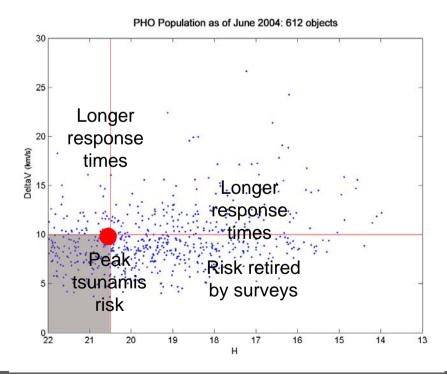
Mission Constraints & Options

Mass budget							
Launch mass	ch mass 20,900 kg		Proton K into LEO				
Margins	3% launcher		20% system				
Mass fractions	Payload 10%	(dry)	Structure 25% (dry)	Та	nks 15% (fuel)		
Propulsion subsystem							
(1) Gridded Ion Engines	Isp 3000-100	00s	19-62 kW/N	7 kg/kW			
(2) Hall Effect Thrusters	Isp 1500-300	0s	12-24 kW/N	6 kg/kW			
Power subsystem							
Solar electric							
(1) 3J GaAs, honeycomb array		33% efficiency		27 kg/kW			
(2) 3J GaAs C-C array	33% efficiency		14 kg/kW				
(3) Amorph Si Thin Film array, Cbooms		12% efficiency		4 kg/kW			
Secondary Power :	Li-ion Batteries (1hr, full thrust)		8.5 kg/kW				
Nuclear Electric							
Specific mass as a function of power 40-			cg/kW for Power >80 kW				


9

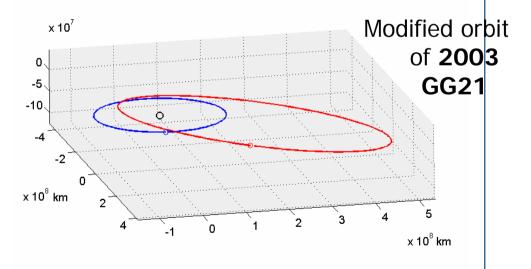
System Trade-off Analysis

- Maximise thrust for the given launch mass & ΔV range
 - Selected Gridded Ion Engines for SEP and NEP propulsion systems
 - Selected Amorphous Si Thin Film solar arrays for SEP power system



Asteroid Deflection Scenario

- Capability requirements ullet
 - Object size: Deflection of objects < 200-300m diameter
 - Accessibility: rendezvous Delta-V <10km/s (impulsive)
 - Deflection miss distance: 10,000km minimum ٠


11

Asteroid Deflection Scenario

2.143
0.709
0.623
3.66
10.12
95
13.2
3.14
1.45
0

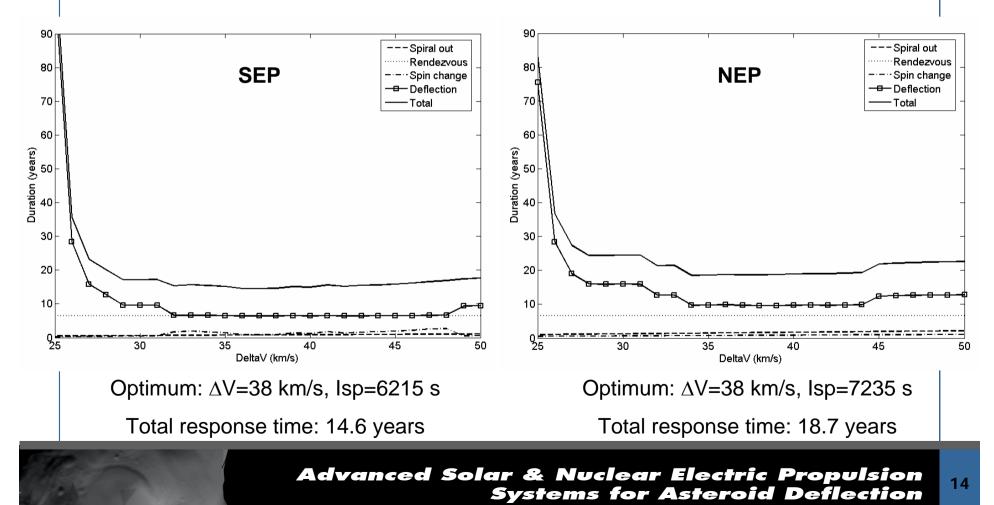
Diameter (m)	200
Density (g/cm ³)	2.4
Mass (Mt)	10
Rotation period (hrs)	9
Rotation pole to orbit plane (°)	40

Asteroid Deflection Scenario

Asteroid attitude control

- De-spin for 3-axis control infeasible due to high NEA moment of inertia
- Use Spin axis control strategy (continuous thrust applied at rotation pole)
- Time to re-orient spin axis prior to push: $t_{spin} = \frac{\theta_{spin} I_{ast} \omega_{ast}}{r_{ast} T_{sc}}$

$$s = \frac{3a}{\sqrt{\mu R_{Earth}}} \int_{0}^{t_a} (t_s - t) \vec{A} \cdot \vec{v} dt$$

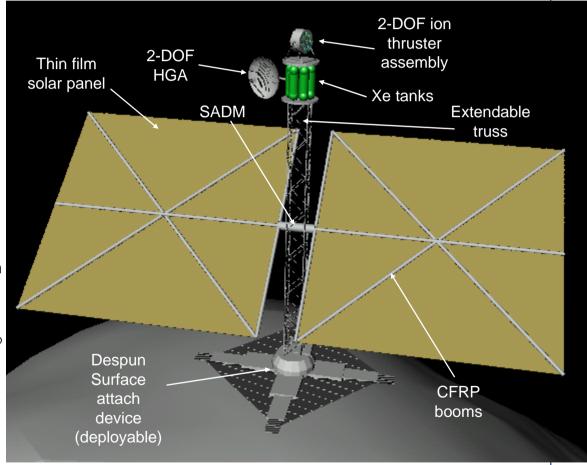

Local maxima at perihelion when acceleration & velocity vectors aligned

Deflection strategies

- Inertially-fixed thrust vector (spin axis in-plane)
- Naturally-precessing thrust vector (spin axis in-plane)
- Simultaneous 'torque and push' (spin axis out-of-plane)
- Inertially-fixed strategy with thrust aligned with perihelion velocity

System Optimisation

• Total response time vs spacecraft ΔV

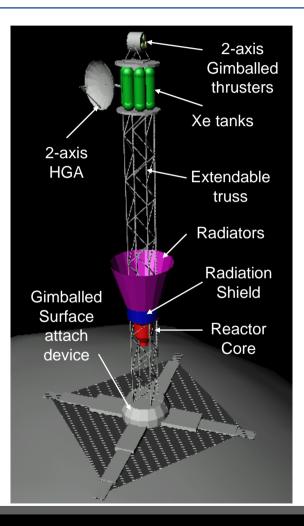

Preliminary SEP Spacecraft Design

• Mass

- 16220kg wet, 7522kg fuel, 8696kg dry
- 2112kg power, 2060kg propulsion

• Dimensions

- 35m deployed length
- Power s/s
 - Power 165kW (1AU), 295kW perihelion, 19kW aphelion
 - 1400 m² solar array area
- Propulsion s/s
 - 4N thrust (1AU), Isp 6215s, 8x40kW ion thrusters, 6 Xe tanks
- Comms
 - X/Ka dual band, 2.5m HGA >100kbps @ 2AU range (Ka)
- ACS
 - 2-DOF gimballed main thrusters, reaction wheels for fine pointing



Preliminary NEP Spacecraft Design

- Mass
 - 16220kg wet, 6723kg fuel, 9495kg dry
 - 4125kg power, 663kg propulsion
- Dimensions
 - 35 m deployed length
- Power s/s
 - Power 95kW (constant), 65m² radiator area
- Propulsion s/s
 - 2N thrust (constant), Isp 7235s, 3x40kW ion thrusters, 6 Xe tanks holding 900L each
- Comms & ACS
 - As SEP
- Payload
 - Imagers, radar tomographer, IR spectrometers
- Surface attach device
 - 1m Helical screw into regolith, Long multi-jointed legs, flexible webbing

Advanced Solar & Nuclear Electric Propulsion Systems for Asteroid Deflection

16

Study Conclusions

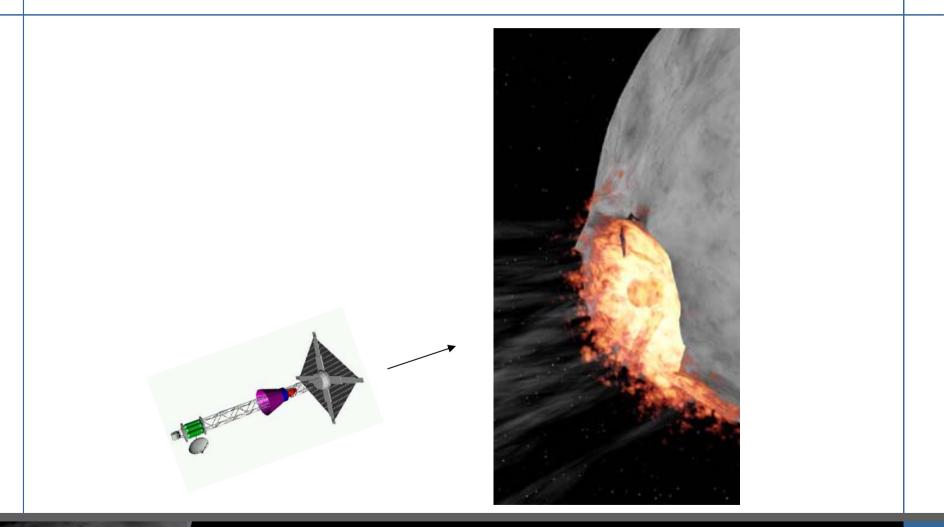
• Maximum deflection capability for EP deflection assessed

- 15-20 ton spacecraft launched into LEO
- 100 kW-class power levels, N-level thrust
- 10 megaton asteroid (approx. 200 m size), 10,000 km miss distance
- 10-20 years response time depending on asteroid orbit & rotation
- Effective considering typical warning times of 10-50 years

• Comparison between SEP and NEP

- Shorter response times for SEP due to low asteroid perihelion
- Expected to be much closer for perihelion close to Earth

• Technology needs


- Large gridded ion thrusters & PPUs, 40-50 kW, 6000-7500 s specific impulse
- Large 2-DOF gimballed ion thruster assembly
- Large deployable amorphous silicon thin film arrays with high packing density
- Nuclear reactor system, 100 kWe
- Lightweight, long extendible truss structures
- Large deployable articulated surface attachment devices with central helical screw

18

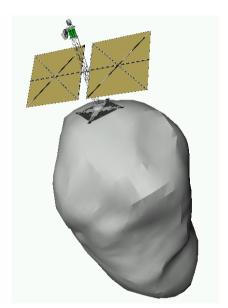
Kinetic Energy Impact Deflection Using EP

Asteroid Deflection Formula

- Impactor vehicle on an interplanetary intercept trajectory
- Assuming a perfectly inelastic impact: $m\vec{v}_{s\setminus c} + M\vec{v} = (m+M)(\vec{v} + \Delta \vec{V})$
- And introducing the impact efficiency η (depends on surface/internal properties of the asteroid) (we assume a very conservative η =1, i.e. no ejecta)

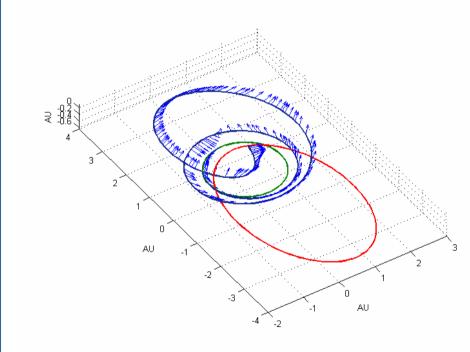
$$d_{\min} = \eta \gamma \frac{3aV_{Earth}}{\mu} \frac{mt_s}{m+M} \vec{v} \cdot \vec{U}$$

- d_{\min} minimal distance between the asteroid and the Earth
- *a* semi-major axis of the asteroid's orbit
- γ non dimensional parameter, depends on encounter geometry
- V_{Earth} Earth velocity at encounter
- μ gravitational parameter of the Sun
- t_s time before impact the strategy is started


- η impact efficiency
- \vec{v} asteroid velocity along its unperturbed orbit
- \vec{U} relative velocity vector
- *m* impactor mass
- M asteroid mass

Trade-off Analysis vs EP Deflection

- Based on previous ACT internal study on "Concepts for Near-Earth Asteroid deflection using spacecraft with advanced nuclear and solar electric propulsion systems" published in JBIS 2005
- Asteroid
 - 2003 GG21
 - Mass 10^{10 kg}
 - Diameter 200 m
 - Density 2.4 g/cm3
- Spacecraft
 - Nuclear Electric propulsion spacecraft, T=2N, I_{sp}=6700s
 - Wet mass 18000 kg
 - C3=0 reached after spiral out phase (2000kg of fuel used)
- Deflection Strategies
 - Kinetic impactor with EP
 - EP rendezvous land and push



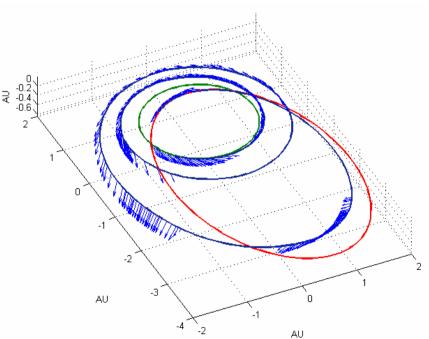
• For each strategy: optimisation of the heliocentric trajectory and assessment of the overall deflection capabilities

Kinetic Impactor with EP Results

• Objective function to maximise: $\vec{v} \cdot \vec{U} = v_{ast}^2 - \vec{v}_{ast} \cdot \vec{v}_{s \setminus c}$

eesa

Kinetic Impactor Scenario		
Departure Epoch (Modified Julian Date)	6202	MJD
Interception Epoch	7993	MJD
Avoided Impact Epoch	9210	MJD
Heliocentric phase Duration	4.9	years
Final Mass	11852	kg
Final $ec{ u}\cdotec{U}$	1630	km²∖s²
Final \vec{v} (heliocentric)	[5, 42, 1.5]	km\s
$ec{U}$ (heliocentric)	[47, 30.7, -2.1]	km\s
Obtained miss-distance	43851	km
Minimal Earth-Sun distance	.22	AU


• Possible improvement maximising $mt_s \vec{v} \cdot \vec{U}$

EP Deflection Results

- Objective function to maximise: $\int_{0}^{t_{p}} (t_{s} t)\vec{v} \cdot \frac{\vec{T}(t)}{M} dt$ (related to final mass at rendezvous) $\int_{0}^{t_{p}} (t_{s} t)\vec{v} \cdot \frac{\vec{T}(t)}{M} dt$
- Heliocentric transfer optimised respect to mass and final relative velocity 0 to achieve capture

Long Duration Thrust Scenario					
Departure Epoch	5937	MJD			
Rendezvous Epoch	8035	MJD			
Avoided Impact Epoch	9210	MJD			
Heliocentric Phase Duration	5.7	years			
Final Mass	(12985)	kg			
Obtained miss-distance	3297	km			

23

Study Conclusions

- Assuming an advanced spacecraft design, an optimisation of the heliocentric trajectories has been performed for both a kinetic impactor and a "rendezvous and push" missions, both powered by EP
- The resulting miss-distance has been evaluated via the derived asteroid deflection formulas
- Same spacecraft achieves much larger deflection of the asteroid when using its high specific impulse engines to accelerate toward a maximum momentum exchange impact, rather than rendezvousing with the asteroid and pushing <u>for the chosen test case</u>
- Many more test cases need to be run for the wide variety of PHO orbits

