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Overview

• Introduction
• Electric Propulsion Deflection

• EP Asteroid Deflection Formula
• Mission Model Development
• Asteroid Deflection Scenario Definition
• System Trade-offs & Optimisation Analysis
• Minimum Required Warning Times
• NEP/SEP System Preliminary Design Concepts

• Kinetic Energy Impactor Deflection Using EP
• KE Impact Impulsive Asteroid Deflection Formula
• Low-Thrust Trajectory Optimisation
• Performance Trade-off vs. EP Deflection

• Conclusions
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Introduction

• Near Earth Asteroids (NEAs) pose an impact 
hazard to Earth

• Low probability, high consequences, similar to 
other natural hazards

• Space technology is reaching a sufficient level for 
a deflection capability within the next decades

• Time to start considering the options
• NEA deflection options

• High-energy impulsive: K.E. impactors (chemical or electric), 
nuclear stand-off blasts

• Low-energy long-duration: surface ablation via laser or solar 
concentrator, mass drivers, surface-attached propulsive devices

• Most attainable in the nearer term: kinetic 
energy interceptors and surface attached 
propulsive devices
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Introduction
• Electric propulsion deflection

• Rendezvous, land and push technique
• Challenges: landing/attachment/attitude control of irregular 

aggregated rotator
• Benefits: inherent controllability, flexibility, universal, no fragmentation

• Kinetic energy impactor deflection with EP
• EP used to put impactor spacecraft on high eccentricity heliocentric 

intercepting trajectory -> very high impact velocity, momentum 
transfer & impulsive delta-V

• Challenges: guidance navigation & control to hit target centre of mass 
at hypervelocity,  uncertainties in momentum transfer due to asteroid 
internal structure

• Benefits: potential for high deflection performance, efficient use of 
propulsive energy, no complex close proximity operations or surface 
interactions

• Both methods require high mission delta-V, 
moderate thrust (N-level), multi-ton spacecraft

• High-power & specific impulse electric propulsion systems are the 
enabler

• Nuclear fission reactors or Large lightweight solar arrays for power
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Electric Propulsion Deflection
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Asteroid Deflection Formula 

• Introduced in paper AAS 05-141 “On The Deflection Of Potentially 
Hazardous Objects ” by D. Izzo

• Proven to accurately predict the miss distance induced by the long-
duration low-thrust EP deflection method
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Mission Drivers

• Mission phases
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Mission Model Development
• EP Deflection Toolbox developed by ESA ACT
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Design Model
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Mission Constraints & Options

40-50 kg/kW for Power >80 kWSpecific mass as a function of power

Nuclear Electric
8.5 kg/kWLi-ion Batteries (1hr, full thrust)Secondary Power :

4 kg/kW12% efficiency(3) Amorph Si Thin Film array, Cbooms

14 kg/kW33% efficiency(2) 3J GaAs C-C array

27 kg/kW33% efficiency(1) 3J GaAs, honeycomb array

Solar electric

Power subsystem

6 kg/kW12-24 kW/NIsp 1500-3000s(2) Hall Effect Thrusters

7 kg/kW19-62 kW/NIsp 3000-10000s(1) Gridded Ion Engines

Propulsion subsystem

Tanks 15% (fuel)Structure 25% (dry)Payload 10% (dry)Mass fractions

20% system3% launcherMargins

Proton K into LEO20,900 kgLaunch mass

Mass budget
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System Trade-off Analysis

• Maximise thrust for the given launch mass & ∆V range
• Selected Gridded Ion Engines for SEP and NEP propulsion systems
• Selected Amorphous Si Thin Film solar arrays for SEP power system

Spacecraft wet mass: 16220 kg into LEO (w/o margins)

SEP NEP
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Asteroid Deflection Scenario

• Capability requirements
• Object size: Deflection of objects < 200-300m diameter
• Accessibility: rendezvous Delta-V <10km/s (impulsive)
• Deflection miss distance: 10,000km minimum
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Asteroid Deflection Scenario
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Asteroid Deflection Scenario

• Asteroid attitude control
• De-spin for 3-axis control infeasible due to high NEA moment of inertia
• Use Spin axis control strategy (continuous thrust applied at rotation pole)

• Time to re-orient spin axis prior to push:

• Miss distance

• Local maxima at perihelion when acceleration & velocity vectors aligned

• Deflection strategies
• Inertially-fixed thrust vector (spin axis in-plane)
• Naturally-precessing thrust vector (spin axis in-plane)
• Simultaneous ‘torque and push’ (spin axis out-of-plane)

• Inertially-fixed strategy with thrust aligned with perihelion 
velocity
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System Optimisation

• Total response time vs spacecraft ∆V

SEP NEP

Optimum: ∆V=38 km/s, Isp=7235 s

Total response time: 18.7 years

Optimum: ∆V=38 km/s, Isp=6215 s

Total response time: 14.6 years
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Preliminary SEP Spacecraft Design

• Mass
• 16220kg wet, 7522kg fuel, 8696kg dry 
• 2112kg power, 2060kg propulsion

• Dimensions
• 35m deployed length

• Power s/s
• Power 165kW (1AU), 295kW perihelion, 

19kW aphelion
• 1400 m2 solar array area

• Propulsion s/s
• 4N thrust (1AU), Isp 6215s, 8x40kW ion 

thrusters, 6 Xe tanks

• Comms
• X/Ka dual band, 2.5m HGA >100kbps @ 

2AU range (Ka)

• ACS
• 2-DOF gimballed main thrusters, 

reaction wheels for fine pointing

2-DOF 
HGA

Xe tanks 

2-DOF ion 
thruster 

assembly 

Extendable 
truss

Thin film 
solar panel

Despun
Surface 
attach 
device  

(deployable)

CFRP 
booms

SADM
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Preliminary NEP Spacecraft Design

2-axis 
HGA

Xe tanks 

2-axis 
Gimballed 
thrusters 

Extendable 
truss

Radiators

Radiation 
Shield

Reactor 
Core

Gimballed 
Surface 
attach 
device 

• Mass
• 16220kg wet, 6723kg fuel, 9495kg dry
• 4125kg power, 663kg propulsion

• Dimensions
• 35 m deployed length

• Power s/s
• Power 95kW (constant), 65m2 radiator area

• Propulsion s/s
• 2N thrust (constant), Isp 7235s, 3x40kW ion thrusters, 6 

Xe tanks holding 900L each

• Comms & ACS
• As SEP

• Payload
• Imagers, radar tomographer, IR spectrometers

• Surface attach device
• 1m Helical screw into regolith, Long multi-jointed legs, 

flexible webbing
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Study Conclusions

• Maximum deflection capability for EP deflection assessed
• 15-20 ton spacecraft launched into LEO
• 100 kW-class power levels, N-level thrust
• 10 megaton asteroid (approx. 200 m size), 10,000 km miss distance
• 10-20 years response time depending on asteroid orbit & rotation
• Effective considering typical warning times of 10-50 years

• Comparison between SEP and NEP
• Shorter response times for SEP due to low asteroid perihelion
• Expected to be much closer for perihelion close to Earth

• Technology needs
• Large gridded ion thrusters & PPUs, 40-50 kW, 6000-7500 s specific impulse
• Large 2-DOF gimballed ion thruster assembly
• Large deployable amorphous silicon thin film arrays with high packing density
• Nuclear reactor system, 100 kWe
• Lightweight, long extendible truss structures
• Large deployable articulated surface attachment devices with central helical screw
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Kinetic Energy Impact Deflection Using EP
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Asteroid Deflection Formula

• Impactor vehicle on an interplanetary intercept trajectory

• Assuming a perfectly inelastic impact:

• And introducing the impact efficiency η (depends on surface/internal 
properties of the asteroid) – (we assume a very conservative η =1, i.e. no ejecta)
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Trade-off Analysis vs EP Deflection

• Based on previous ACT internal study on “Concepts for Near-Earth Asteroid 
deflection using spacecraft with advanced nuclear and solar electric 
propulsion systems” published in JBIS 2005

• Asteroid
• 2003 GG21
• Mass 1010 kg

• Diameter 200 m
• Density 2.4 g/cm3

• Spacecraft
• Nuclear Electric propulsion spacecraft, T=2N, Isp=6700s
• Wet mass 18000 kg
• C3=0 reached after spiral out phase (2000kg of fuel used)

• Deflection Strategies
• Kinetic impactor with EP
• EP rendezvous land and push

• For each strategy: optimisation of the heliocentric trajectory and 
assessment of the overall deflection capabilities
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Kinetic Impactor with EP Results

• Objective function to maximise:

Kinetic Impactor Scenario   
 
Departure Epoch (Modified 
Julian Date) 

 
6202 

 
MJD 

Interception Epoch 7993 MJD 
Avoided Impact Epoch  9210 MJD 
Heliocentric phase Duration 4.9 years 
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Final Uv

rr
⋅  1630 km2\s2 

Final vr  (heliocentric) [5, 42, 1.5] km\s 

U
r
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Obtained miss-distance  43851 km 
Minimal Earth-Sun distance  .22 AU 
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EP Deflection Results

• Objective function to maximise:
(related to final mass at rendezvous)

• Heliocentric transfer optimised respect to mass and final relative
velocity 0 to achieve capture

Long Duration Thrust Scenario    
 
Departure Epoch 

 
5937 

 
MJD 

Rendezvous Epoch 8035 MJD 
Avoided Impact Epoch 9210 MJD 
Heliocentric Phase Duration 5.7 years 
Final Mass 12985 kg 
Obtained miss-distance 3297 km 
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Study Conclusions

• Assuming an advanced spacecraft design, an optimisation of the 
heliocentric trajectories has been performed for both a kinetic impactor and 
a “rendezvous and push” missions, both powered by EP

• The resulting miss-distance has been evaluated via the derived asteroid 
deflection formulas

• Same spacecraft achieves much larger deflection of the asteroid when using 
its high specific impulse engines to accelerate toward a maximum
momentum exchange impact, rather than rendezvousing with the asteroid 
and pushing for the chosen test case

• Many more test cases need to be run for the wide variety of PHO orbits


