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Accurately predicting eclipse events around irregular small bodies is crucial for spacecraft navigation, orbit
determination, and spacecraft systems management. This paper introduces a novel approach leveraging neural
implicit representations to model eclipse conditions efficiently and reliably. We propose neural network
architectures that capture the complex silhouettes of asteroids and comets with high precision. Tested
on four well-characterized bodies - Bennu, Itokawa, 67P/Churyumov-Gerasimenko, and Eros - our method
achieves accuracy comparable to traditional ray-tracing techniques while offering orders of magnitude faster
performance. Additionally, we develop an indirect learning framework that trains these models directly
from sparse trajectory data using Neural Ordinary Differential Equations, removing the requirement to have
prior knowledge of an accurate shape model. This approach allows for the continuous refinement of eclipse
predictions, progressively reducing errors and improving accuracy as new trajectory data is incorporated.

1. Introduction

Small celestial bodies, including asteroids and comets, play a critical
role in space exploration. They provide insights into the early Solar
System, offer potential resources for future missions, and pose impact
threats to Earth [1,2]. As remnants of Solar System formation, they
preserve primordial materials that inform our understanding of early
chemical and physical conditions. Additionally, they present unique
opportunities for scientific exploration, such as sample-return missions
and spacecraft technology testing [3-6]. As their exploration becomes
more advanced, understanding the dynamics of spacecraft as they orbit
or interact with these bodies is critical, particularly given their irregular
shapes, weak gravity, and complex physical properties [7].

Precise eclipse condition estimation is vital in small-body explo-
ration, impacting solar radiation pressure calculations, communication,
and spacecraft thermal and power management [8-10]. For objects
with high area-to-mass ratios orbiting weak-gravity bodies, solar ra-
diation pressure is a dominant perturbation, making accurate eclipse
computation essential for predicting spacecraft motion [11-13].

Eclipse computation involves determining whether an orbiting ob-
ject’s position lies within a celestial body’s shadow [14]. Shadow
modeling depends on the body’s shape and size; simple bodies allow for
approximations using cylindrical cones, while irregular bodies require

high-fidelity 3D models [15]. For example, the NASA OSIRIS-REx mis-
sion employed a detailed 3D model of asteroid 101955 Bennu to simu-
late the precise shadow region and the motion of ejected particles [13,
16].

Traditional eclipse modeling methods, such as the Moller-Trumbore
intersection algorithm [17], use ray-tracing techniques to determine
shadow regions. While highly accurate, these methods are compu-
tationally expensive and non-differentiable, limiting their utility in
reliably estimating eclipse entrance and exit conditions [18]. Recent
advances in neural image processing introduce differentiable and com-
putationally efficient alternatives using implicit neural representations,
particularly Neural Radiance Fields (NeRFs). These models capture
complex 3D scenes with photometric consistency [19]. Periodic ac-
tivation functions, as explored by Sitzmann et al. [20], enhance the
ability to model high-frequency details, making them well-suited for
accurately describing shadows cast by irregular celestial bodies [18,
21].

In this paper, we construct a database of irregular silhouettes for
four small celestial bodies using their shape models. The dataset is
split into training and validation sets to train neural networks, termed
EclipseNETs, for reconstructing small-body silhouettes from different
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Fig. 1. Schematic illustration of the shadow cast by an irregular body, and its eclipse function Fj.

directions. We first compare periodic activation functions with ReLU-
based architectures confirming their superior ability in capturing com-
plex shapes. Then, we integrate these models into orbital propaga-
tors to assess their accuracy and computational efficiency relative to
traditional methods. The results demonstrate that EclipseNETs can
efficiently and accurately perform eclipse condition computation. Due
to the differentiable nature of EclipseNETs, this approach further facil-
itates the use of Taylor propagators [18], enhancing the reliability and
accuracy of eclipse event detection during orbital propagation.

In the second part of the paper, we introduce a training technique
based on Neural Ordinary Differential Equations (NeuralODEs) [22,23],
which enables the direct learning of silhouettes from trajectory data.
This approach eliminates the need for precise prior knowledge of the
irregular shapes of small bodies, which are often not accurately known
before in situ exploration. By incorporating EclipseNET, the resulting
spacecraft dynamics can be formulated as a NeuralODE, allowing direct
optimization of the network parameters from trajectory data. This
enables learning and/or refinement of the eclipse model by minimizing
trajectory prediction errors, presenting a novel strategy to improve
irregular eclipse descriptions through NeuralODEs.

The paper is structured as follows: Section 2 discusses methods and
related work, focusing on eclipse function definitions, the irregular
bodies studied, and the spacecraft dynamics. Section 3 details the train-
ing process of EclipseNETs, comparing SIREN-based and ReLU-based
architectures. We also discuss EclipseNET integration in a Taylor-based
orbital propagator, benchmarking it against traditional ray-intersection
methods. Section 4 introduces an algorithm for direct silhouette learn-
ing from trajectory data via NeuralODEs. Finally, Section 5 summarizes
our findings.

2. Methods
2.1. Eclipse function
An eclipse function, Fyz(x, y,$), is introduced to implicitly represent

the eclipsed region created by an irregular body B when illuminated
by a point source at infinity in the direction § (in the body frame). This
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function is defined in a reference frame lying in a plane orthogonal to

S.
Mathematically, the eclipse function is given by:

d(x,y,0€) (outside the eclipse region)

F §) =
B(%,7:8) { —d(x,y,0€2) (inside the eclipse region)

where d(x,y,09;) represents the signed distance function from the
point (x,y) to the boundary 0£2; of the eclipse region. This function
is closely related to the signed distance function, commonly used in
computer graphics [24], but here it describes two-dimensional shapes
parametrized by the projection direction §. The gradient of the eclipse
function in the direction perpendicular to the eclipse boundary satisfies:

Vy,Fp-n=1,

where ii is the unit normal (either outward or inward) to d€;. Fig. 1
provides a visual representation of the eclipse function and its relevant
geometric properties. While Fig. 2 B) illustrates examples of the eclipse
function for a specific direction across different bodies.

2.2. Irregular bodies

Our focus is on four different small bodies: 101955 Bennu,
67P/Churyumov - Gerasimenko, 433 Eros, and 25143 Itokawa. In
all cases, high-fidelity polyhedral models reconstructed from various
instruments on board spacecraft that visited these celestial bodies are
utilized. For Eros and Itokawa, models produced by Robert Gaskell [25,
26] are used; for Bennu, the model provided by the OSIRIS-REx
team [27] is employed; and for Churyumov-Gerasimenko, the model
available from the European Space Agency [28] is used.

To model the gravitational field of these bodies, the surface meshes
are transformed into mascon models following the same procedure
outlined in [29]. This is achieved by first generating a constrained
Delaunay tetrahedralization [30] of the polyhedral mesh and then
assigning a mass at the centroid of each resulting tetrahedron. Fig. 2
A) presents a 3D visualization of these models. The final representation
of each asteroid consists of a triangular mesh that defines the surface
geometry and a mascon model that describes the mass distribution,
which is assumed to be uniform in all cases.
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Fig. 2. (A) 3D models of Bennu, Churyumov-Gerasimenko, Eros, and Itokawa. (B) Contour plot of the eclipse function for a fixed viewpoint. (C) Sampled points of the eclipse
function used to build the training set. (D) Eclipse predictions for a Sun direction not included in the training set. The red curve represents an EclipseNet with 2369 parameters,
while the blue curve corresponds to 50,561 parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The resolution of these models, along with physical properties such
as the rotation period and mass of each body, affects the dynamics
of an orbiting spacecraft. The number of mesh points and mascons
determines the fidelity of both the shape and gravitational field rep-
resentation, while the rotation rate () influences orbital stability and
eclipse conditions. A characteristic length scale (L) is used to normalize
positional coordinates. Table 1 summarizes these key parameters for
each of the four celestial bodies considered in this study.

The 3D triangular mesh models are used to determine the ground
truth eclipse conditions by applying the Moller-Trumbore intersection
algorithm [17], which checks whether a ray from the light source
intersects the body’s surface, providing a ground truth for eclipse
detection. Meanwhile, the mascon model is incorporated into trajectory
simulations to account for the irregular gravitational field of each
asteroid or comet. By combining these high-resolution shape models
with a mascon distribution, we ensure an accurate and high-fidelity
representation of the dynamical environment surrounding these small
celestial bodies.

2.3. Spacecraft dynamics

The spacecraft dynamics, taken from [18], is described in a body-
centered reference frame by formulating the following set of differential
equations:

=v
N

I m; 1)

—3(r—rj)—2a)xv—a)><(a)xr)—;1v(r)§(t),
j=0 |"_rj

[}

where r, v denote the position and velocity vectors, respectively, of the
spacecraft in the body-centered reference frame, m; and r; represent
the mass and position, respectively, of each mascon that characterizes

the asteroid’s irregular gravitational field, and w is the angular velocity
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Table 1
Key parameters of the 3D models used for small-body analysis.
N mesh N mascons w [hr] L [km] mass [kg]
Bennu 7,374 75,150 4.296 0.5634 7.329 x 100
Itokawa 3000 100,363 12.132 0.5607 3.51x% 100
67P 9,149 57,259 12.4043 5.0025 9.982 x 1012
Eros 7,374 97,824 5.270 32.6622 6.687 x 101

of the asteroid’s rotation. The term 5 corresponds to the acceleration
magnitude due to solar radiation pressure, which is modeled to be
10~3 m/s? for all simulations, while the term v(r) represents the eclipse
factor, which is considered as zero (v = 0) when the spacecraft is in
eclipse and one (v 1) otherwise. Traditional implementations use
ray-tracing algorithms to determine the eclipse factor and to discon-
tinuously change the dynamics. In this case, however, the aim is to
substitute these algorithms with neural models. Hence, as detailed in
Section 3, a small neural network, called EclipseNET, will be used to
represent the eclipse factor. Then, @ X v, represents the Coriolis force,
resulting from the rotational motion of the asteroid, and ® X (@ X r)
corresponds to the centrifugal force experienced due to the asteroid’s
rotation. Finally, the unit vector, §(r), describes the direction of the
Sun. The Sun direction is modeled as §(r) = R(#)8(0), where R(?) is
the rotation matrix that evolves over time as the asteroid rotates at
an angular velocity ®, causing a time-dependent change in the Sun’s
direction relative to the spacecraft. Using this model, we consider the
Sun’s direction as a simple rotation of the initial direction §(0) by
an angle wr. All these effects combine to determine the spacecraft’s
trajectory relative to the rotating asteroid reference frame.

3. Learning small body silhouettes with EclipseNET

To model the complex eclipse conditions caused by irregular small
bodies, we introduce EclipseNET, a neural network architecture
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designed to implicitly represent the geometry of eclipses. Given the
recent success of SIREN networks [20] in neural implicit representa-
tions of complex shapes, we compare EclipseNETs trained with ReLU
and with periodic activation functions.

We write the EclipseNET as:

€g =N9(r,§) (2)

where r is the positional vector of the spacecraft, and § is the Sun
direction. To facilitate the training, the state is projected onto the plane
perpendicular to the Sun direction, and the two direction components
of the projected spacecraft position are normalized and used as inputs,
while the Sun direction is encoded using the sine and cosine of azimuth
and elevation angles, making the total size of the network inputs six-
dimensional. The output, ey, is a scalar value representing the eclipse
function: negative when the spacecraft is in eclipse, positive when it is
outside of eclipse, and zero at the asteroid silhouette.

To train EclipseNET, we create a dataset that contains ground
truth values for the eclipse function found using the shape models of
the small bodies. We consider an isotropic range of Sun directions,
which is generated using the Fibonacci sphere. This results in 500
Sun directions for training and 200 for validation. For each direction,
we uniformly sample 1000 points (x, y) in the range [—1,1] and 3000
points around the eclipse boundary and an additional 3000 points
concentrated around the eclipse boundary 0£2;. The latter are sampled
uniformly within a circle of radius 0.01 (in non-dimensional units)
centered on the boundary. An example of the result of this sampling
procedure for the four small bodies in a random direction is shown in
Fig. 2 C). This data yields a total of 22 million training points and 9
million validation points for each of the four small bodies studied.

We investigate the performance of two neural network architectures
for training EclipseNETs: a sinusoidal representation network (SIREN)
and a conventional ReLU-activated multilayer perceptron (MLP), each
comprising 2369 trainable parameters. Rather than seeking an optimal
network configuration for modeling the eclipse function, our objective
is to assess whether highly compact neural architectures can leverage
the expressive power of SIREN. The latter is a class of networks previ-
ously demonstrated to be effective for implicit neural representations
in related tasks, such as encoding fine-grained geometric structures.
As shown in Table 2, the SIREN-based architecture consistently out-
performs its ReLU-based counterpart in both training and validation
regimes at this parameter scale. Specifically, the SIREN model yields
a lower mean squared error (MSE), indicating enhanced fidelity in
capturing the intricate features of the eclipse silhouette boundary. To
support this, Fig. 3 presents the MSE loss as a function of training
epochs for both the SIREN and ReLU networks, for the 67P case. The
figure includes two unseen views during training of the asteroid from
the first and last epochs, along with their corresponding silhouette
approximations, generated using the ReLU network (top, in orange)
and the SIREN network (bottom, in blue). As observed, the SIREN
network not only achieves lower loss levels than the ReLU network but
also converges more quickly. This results in a more accurate silhouette
reconstruction, particularly at the initial epoch, where the difference is
noticeable. By the final epoch, the ReLU network reduces the gap to
some extent but still struggles with sharp and irregular features in the
shape.

While inspecting these losses and visually observing the accuracy of
the silhouette reconstruction provides a good indication of the accuracy
of the EclipseNET, it is however equally important to quantify what the
resulting error in the state of a spacecraft orbiting these small bodies
is, should the EclipseNET be used to identify eclipse regions. Formally,
this means that when integrating Eq. (1), the eclipse factor is directly
determined using the EclipseNET as an event function in the integrator.
In this way, when the EclipseNET is zero, then the spacecraft is crossing
the asteroid silhouette, which causes the eclipse factor to change value
(from zero to one or vice-versa) if the spacecraft is behind the small
body with respect to the Sun.
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Table 2

Feed forward neural networks with ReLU activation function and SIREN network
models mean squared error loss (MSE) on the training and validation datasets for all
four small bodies.

Ly sp ReLU Lysp SIREN Dataset
N Bennu 3.5295x 1073 1.9906 x 10> D, vin Bennu
Itokawa 8.0184 x 107 47082 % 1073 Dyrain,1okawa
op 7.9564 x 1073 4.6469 x 1073 Dyyainerr
ros 9.3738 x 105 42137 x 107 Dy 1o
Niom 3.6508 x 103 21773 x 1075 Doutid_bemma
Nitokatwa 8.4136 x 107 4.9863 x 107 D giid.ttokawa
N 8.1466 x 105 4.9408 x 10-5 Dyutiacrr
9.8826 x 1075 4.5850 x 1073 D,

Eros valid,Eros

In the first three columns of Fig. 4, we present three projections
of three-dimensional orbits around the four tested small bodies, high-
lighting the entry and exit points of eclipses along the trajectory. For
these experiments, the SIREN networks were used as EclipseNETs.
As shown in the rightmost column, using these models to approx-
imate the asteroid silhouette yields eclipse prediction errors within
centimeters for all tested small bodies, even after multiple orbits.
This accuracy is benchmarked against the eclipses computed using a
ray-tracing method based on the Moller-Trumbore triangle intersec-
tion algorithm [17]. The computational efficiency of EclipseNET is
remarkable, with inference speeds more than two orders of magnitude
faster than the ray-tracing approach, demonstrating its potential to re-
place computationally expensive traditional algorithms in space-flight
simulations.

While these results are promising, there will always be a slight
discrepancy between the actual eclipse boundary and its representation
by EclipseNET. This mismatch is expected to grow over time, par-
ticularly when the spacecraft traverses more complex eclipse regions
or encounters irregular bodies with intricate geometries. Additionally,
the irregular shape of small bodies is often not accurately known
beforehand, and precise information about the body’s shape may only
become available as the spacecraft closely approaches the asteroid or
comet.

Hence, there might be the need for continuous refinement and
adaptability of the model’s accuracy, as trajectory data become avail-
able. To address this, the next section introduces online training meth-
ods based on NeuralODEs [22]. These techniques allow the model
to dynamically adjust in real-time, based on the evolving spacecraft
trajectory, ensuring that the model becomes increasingly precise as it
learns from positional data during the mission. Building upon this, the
following section introduces how NeuralODEs can be employed to learn
the silhouette of an irregular small body directly from trajectory data.

4. Learning the silhouette from trajectories via neuralodes

As discussed in the previous section, the shape of an irregular
small body is often incompletely known or lacks sufficient resolution
prior to a spacecraft visit. Even when a preliminary shape model is
available, EclipseNET’s implicit representation may contain inaccura-
cies that could lead to growing errors over time. Consequently, further
model refinement is often necessary to ensure an acceptable error in
predicting the satellite’s position and velocity.

To address this challenge, we propose a method to dynamically
learn and update the neural representation of the small body’s silhou-
ette directly from sparse trajectory data. This approach leverages Neu-
ralODEs [22,31], specifically ODEs with neural event functions [23],
to iteratively refine the eclipse function. This enables real-time and
continuous adaptation of the model as new observational data becomes
available.

As clarified in Section 2.3, the spacecraft dynamics changes accord-
ing to a termination criterion triggered by an eclipse function, which in
our case is modeled as a neural network (EclipseNET). Our objective is
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Fig. 3. Training loss vs the number of epochs, together with some views of the approximated silhouette for both networks at the first and last epochs, for both SIREN and ReLU

networks, for the case of 67P/Churyumov-Gerasimenko.

to refine the EclipseNET used as a neural event function to reduce the
observed errors in the spacecraft’s states. To achieve this, we first define
the augmented system dynamics, where the first-order ODE governing
the satellite’s motion in the small-body environment is extended with
an equation for the event manifold time derivative:

X
)

where the state is composed of the position and velocity of the space-
craft, x = [r,v] and the variable ¢4 has been introduced to track the
time derivative of the EclipseNET. The term g, represents the total time
derivative of the EclipseNET, which is a function of: x(¢) and §(¢). Hence,
using the chain rule, we can write:

= fo(t,x)
= gp(t,x),

3

g9 = Vieg - 8(t) + Ve - fo.

Under our assumptions, the derivative of the Sun direction can be
found as: § = R(1)8(0). Hence, the first equation mirrors Eq. (1), while
the EclipseNET, ¢y, acts as the event trigger function, to change the
value of v(r). The learnable parameters of the EclipseNET, § € R",
control the discontinuous transitions in the dynamics, with the sub-
script indicating this dependency. The outcome of this formulation is a
NeuralODE wherein the neural network functions as a (differentiable)
event manifold. It is important to emphasize that the event triggering
in our framework is not influenced directly by the magnitude of the
solar radiation pressure (SRP) along the trajectory. Instead, it is driven
by a binary visibility signal, such as that provided by a Sun sensor,
that indicates whether the Sun is in view or occluded. Consequently,
the accuracy and reliability of the proposed method are unaffected by
the inherently weak SRP signal, as the detection mechanism depends
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solely on discrete visibility states rather than on continuous dynamical
forcing.

Then, the loss function is defined as the mean squared error (MSE)
between the modeled states x4 (computed integrating the dynamics
with the neural event function) and the observed ones x:

T

L= lxo %% 4
Jj=0

where j indexes the time instances ¢; at which observations are avail-

able. The observed states may originate from actual trajectory mea-

surements or high-fidelity simulations, such as those employing the

Moller-Trumbore intersection algorithm.

The parameters of EclipseNET are updated by computing the gradi-
ent of the loss with respect to 6:

n
oL ox;
VoLl = Z Tx,-@%e"' 5)
i=1
The first term follows directly from Eq. (4):
L~
o~ 2 zl(x,. 0= Xi))- (6)
=
6e9

The second term can be derived symbolically by first computing

>

X;
while the third term is obtained by integrating Eq. (3) along with its
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Fig. 4. Left three columns: three different projections of the three-dimensional orbits obtained using EclipseNET as an event; right column: positional coordinate errors between the
trajectory computed with EclipseNET as an event and the one obtained using the Moller-Trumbore algorithm.
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Fig. 5. Left: orbit around 67P/ Churyumov-Gerasimenko, with eclipse regions highlighted in dark yellow along the trajectory; right: error in the three positional components

before (in red) and after (in green) the NeuralODE refinement. Eclipses are here displayed in gray. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

variational equations with respect to the parameters:

x = fo(t,x)

€9 = gy(t,x)
<1<6x> _ 5 i 0%
dr \ 06, & ox; 06,
i("eri) zaﬁ‘i
dt \ 06, & ox; 06
Vk=1,...

"o,

ofig
90,

dgg

>

7

,m. This results in a system of (n+ 1)+ (n+1)m equations to be

integrated: we use the open-source heyoka software to both construct
the variational equations and integrate them via Taylor method [32].
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In the right panel of Fig. 5, we show the errors in the x, y, and z
positional components both before (in red) and after (in green) the Neu-
ralODE refinement. The dashed black line in the same plot represents
the norm of the error difference for both cases. The loss was computed
using a single observation at the final time step of the simulation
(7,55 = 9.425). The target state used for comparison was obtained using
the Moller-Trumbore intersection algorithm: we depict the full orbit
with the eclipses highlighted in dark yellow on the left side of Fig.
5. While it would in principle be feasible to learn the eclipse function
from a large dataset of arbitrary eclipse detections using the NeuralODE
framework, this is not the objective of the present study. Rather, we
aim to demonstrate that the body silhouette as represented by an
EclipseNET can be effectively improved by leveraging specific orbital
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regimes and trajectories, and hence using only limited, sparse data.
This scenario is particularly relevant in operational contexts where the
spacecraft is already in orbit around the asteroid, and eclipse events
may be infrequent or irregular. Our results underscore EclipseNET’s
ability to adapt and generalize under data-scarce conditions, making
it well-suited for in-situ refinement during mission operations.

The initial EclipseNET model was taken from the first epoch of the
ReLU network discussed in Section 3 and shown in Fig. 3. Subsequently,
the NeuralODE approach was used to minimize the error between
the state predicted by the Moller-Trumbore algorithm and the state
obtained using EclipseNET. This process resulted in a reduction of the
error norm by nearly a factor of 7. As additional observations from
diverse geometries are gathered, the representation of the small body’s
irregular silhouette progressively refines, enhancing the accuracy of
trajectory predictions over time.

5. Conclusions

This work introduces a novel framework for modeling eclipse con-
ditions around irregular small celestial bodies using neural implicit
representations, with a focus on direct refinement from trajectory
data using the recently popularized NeuralODEs framework. We first
presented EclipseNET, a small neural network architecture designed
to represent the complex and non-convex silhouettes of irregular bod-
ies such as asteroids and comets. Extensive validation on four well-
characterized targets (Bennu, Itokawa, 67P/Churyumov-Gerasimenko,
and Eros) demonstrated that EclipseNET achieves higher accuracy and
significantly greater computational efficiency than conventional ray-
tracing techniques. Architecturally, SIREN-based models consistently
outperformed ReLU-based networks, particularly in capturing the fine-
grained features of eclipse boundaries. We then integrated EclipseNET
within Taylor-based orbital propagators to enable precise and efficient
eclipse event detection during trajectory simulation. Benchmarking
against the Moller-Trumbore ray-tracing algorithm across multiple
orbital scenarios showed that EclipseNET yields centimeter-level po-
sitional accuracy while achieving inference speeds exceeding tradi-
tional methods by over two orders of magnitude. To address the
challenge of incomplete or uncertain shape models, we developed an
online learning strategy based on NeuralODEs, which enables in-situ
refinement of EclipseNET directly from trajectory data. This approach
allows the eclipse model to improve incrementally as new observa-
tions are acquired, effectively compensating for deficiencies in a priori
shape knowledge. Overall, our method provides a differentiable, data-
efficient, and highly adaptive approach to eclipse prediction, support-
ing real-time, autonomous spacecraft operations in complex gravita-
tional environments. Its compatibility with gradient-based optimiza-
tion frameworks further facilitates integration into modern guidance,
navigation, and control pipelines.
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