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 A B S T R A C T

Accurately predicting eclipse events around irregular small bodies is crucial for spacecraft navigation, orbit 
determination, and spacecraft systems management. This paper introduces a novel approach leveraging neural 
implicit representations to model eclipse conditions efficiently and reliably. We propose neural network 
architectures that capture the complex silhouettes of asteroids and comets with high precision. Tested 
on four well-characterized bodies - Bennu, Itokawa, 67P/Churyumov-Gerasimenko, and Eros - our method 
achieves accuracy comparable to traditional ray-tracing techniques while offering orders of magnitude faster 
performance. Additionally, we develop an indirect learning framework that trains these models directly 
from sparse trajectory data using Neural Ordinary Differential Equations, removing the requirement to have 
prior knowledge of an accurate shape model. This approach allows for the continuous refinement of eclipse 
predictions, progressively reducing errors and improving accuracy as new trajectory data is incorporated.
1. Introduction

Small celestial bodies, including asteroids and comets, play a critical 
role in space exploration. They provide insights into the early Solar 
System, offer potential resources for future missions, and pose impact 
threats to Earth [1,2]. As remnants of Solar System formation, they 
preserve primordial materials that inform our understanding of early 
chemical and physical conditions. Additionally, they present unique 
opportunities for scientific exploration, such as sample-return missions 
and spacecraft technology testing [3–6]. As their exploration becomes 
more advanced, understanding the dynamics of spacecraft as they orbit 
or interact with these bodies is critical, particularly given their irregular 
shapes, weak gravity, and complex physical properties [7].

Precise eclipse condition estimation is vital in small-body explo-
ration, impacting solar radiation pressure calculations, communication, 
and spacecraft thermal and power management [8–10]. For objects 
with high area-to-mass ratios orbiting weak-gravity bodies, solar ra-
diation pressure is a dominant perturbation, making accurate eclipse 
computation essential for predicting spacecraft motion [11–13].

Eclipse computation involves determining whether an orbiting ob-
ject’s position lies within a celestial body’s shadow [14]. Shadow 
modeling depends on the body’s shape and size; simple bodies allow for 
approximations using cylindrical cones, while irregular bodies require 

∗ Corresponding author at: Surrey Space Centre, University of Surrey, Stag Hill, University Campus, GU2 7XH, Guildford, United Kingdom.
E-mail address: giacomo.acciarini@gmail.com (G. Acciarini).

high-fidelity 3D models [15]. For example, the NASA OSIRIS-REx mis-
sion employed a detailed 3D model of asteroid 101955 Bennu to simu-
late the precise shadow region and the motion of ejected particles [13,
16].

Traditional eclipse modeling methods, such as the Möller–Trumbore 
intersection algorithm [17], use ray-tracing techniques to determine 
shadow regions. While highly accurate, these methods are compu-
tationally expensive and non-differentiable, limiting their utility in 
reliably estimating eclipse entrance and exit conditions [18]. Recent 
advances in neural image processing introduce differentiable and com-
putationally efficient alternatives using implicit neural representations, 
particularly Neural Radiance Fields (NeRFs). These models capture 
complex 3D scenes with photometric consistency [19]. Periodic ac-
tivation functions, as explored by Sitzmann et al. [20], enhance the 
ability to model high-frequency details, making them well-suited for 
accurately describing shadows cast by irregular celestial bodies [18,
21].

In this paper, we construct a database of irregular silhouettes for 
four small celestial bodies using their shape models. The dataset is 
split into training and validation sets to train neural networks, termed 
EclipseNETs, for reconstructing small-body silhouettes from different 
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Fig. 1. Schematic illustration of the shadow cast by an irregular body, and its eclipse function 𝐹.
directions. We first compare periodic activation functions with ReLU-
based architectures confirming their superior ability in capturing com-
plex shapes. Then, we integrate these models into orbital propaga-
tors to assess their accuracy and computational efficiency relative to 
traditional methods. The results demonstrate that EclipseNETs can 
efficiently and accurately perform eclipse condition computation. Due 
to the differentiable nature of EclipseNETs, this approach further facil-
itates the use of Taylor propagators [18], enhancing the reliability and 
accuracy of eclipse event detection during orbital propagation.

In the second part of the paper, we introduce a training technique 
based on Neural Ordinary Differential Equations (NeuralODEs) [22,23], 
which enables the direct learning of silhouettes from trajectory data. 
This approach eliminates the need for precise prior knowledge of the 
irregular shapes of small bodies, which are often not accurately known 
before in situ exploration. By incorporating EclipseNET, the resulting 
spacecraft dynamics can be formulated as a NeuralODE, allowing direct 
optimization of the network parameters from trajectory data. This 
enables learning and/or refinement of the eclipse model by minimizing 
trajectory prediction errors, presenting a novel strategy to improve 
irregular eclipse descriptions through NeuralODEs.

The paper is structured as follows: Section 2 discusses methods and 
related work, focusing on eclipse function definitions, the irregular 
bodies studied, and the spacecraft dynamics. Section 3 details the train-
ing process of EclipseNETs, comparing SIREN-based and ReLU-based 
architectures. We also discuss EclipseNET integration in a Taylor-based 
orbital propagator, benchmarking it against traditional ray-intersection 
methods. Section 4 introduces an algorithm for direct silhouette learn-
ing from trajectory data via NeuralODEs. Finally, Section 5 summarizes 
our findings.

2. Methods

2.1. Eclipse function

An eclipse function, 𝐹(𝑥, 𝑦, 𝐬̂), is introduced to implicitly represent 
the eclipsed region created by an irregular body  when illuminated 
by a point source at infinity in the direction ̂𝐬 (in the body frame). This 
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function is defined in a reference frame lying in a plane orthogonal to 
𝐬̂.

Mathematically, the eclipse function is given by:

𝐹(𝑥, 𝑦, 𝐬̂) =
{

𝑑(𝑥, 𝑦, 𝜕𝛺𝐬̂) (outside the eclipse region)
−𝑑(𝑥, 𝑦, 𝜕𝛺𝐬̂) (inside the eclipse region)

where 𝑑(𝑥, 𝑦, 𝜕𝛺𝐬̂) represents the signed distance function from the 
point (𝑥, 𝑦) to the boundary 𝜕𝛺𝐬̂ of the eclipse region. This function 
is closely related to the signed distance function, commonly used in 
computer graphics [24], but here it describes two-dimensional shapes 
parametrized by the projection direction 𝐬̂. The gradient of the eclipse 
function in the direction perpendicular to the eclipse boundary satisfies:
∇𝑥,𝑦𝐹 ⋅ 𝐧̂ = 1,

where 𝐧̂ is the unit normal (either outward or inward) to 𝜕𝛺𝐬̂. Fig.  1 
provides a visual representation of the eclipse function and its relevant 
geometric properties. While Fig.  2 B) illustrates examples of the eclipse 
function for a specific direction across different bodies.

2.2. Irregular bodies

Our focus is on four different small bodies: 101955 Bennu,
67P/Churyumov - Gerasimenko, 433 Eros, and 25143 Itokawa. In 
all cases, high-fidelity polyhedral models reconstructed from various 
instruments on board spacecraft that visited these celestial bodies are 
utilized. For Eros and Itokawa, models produced by Robert Gaskell [25,
26] are used; for Bennu, the model provided by the OSIRIS-REx 
team [27] is employed; and for Churyumov–Gerasimenko, the model 
available from the European Space Agency [28] is used.

To model the gravitational field of these bodies, the surface meshes 
are transformed into mascon models following the same procedure 
outlined in [29]. This is achieved by first generating a constrained 
Delaunay tetrahedralization [30] of the polyhedral mesh and then 
assigning a mass at the centroid of each resulting tetrahedron. Fig.  2 
A) presents a 3D visualization of these models. The final representation 
of each asteroid consists of a triangular mesh that defines the surface 
geometry and a mascon model that describes the mass distribution, 
which is assumed to be uniform in all cases.
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Fig. 2. (A) 3D models of Bennu, Churyumov-Gerasimenko, Eros, and Itokawa. (B) Contour plot of the eclipse function for a fixed viewpoint. (C) Sampled points of the eclipse 
function used to build the training set. (D) Eclipse predictions for a Sun direction not included in the training set. The red curve represents an EclipseNet with 2369 parameters, 
while the blue curve corresponds to 50,561 parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The resolution of these models, along with physical properties such 
as the rotation period and mass of each body, affects the dynamics 
of an orbiting spacecraft. The number of mesh points and mascons 
determines the fidelity of both the shape and gravitational field rep-
resentation, while the rotation rate (𝜔) influences orbital stability and 
eclipse conditions. A characteristic length scale (𝐿) is used to normalize 
positional coordinates. Table  1 summarizes these key parameters for 
each of the four celestial bodies considered in this study.

The 3D triangular mesh models are used to determine the ground 
truth eclipse conditions by applying the Möller–Trumbore intersection 
algorithm [17], which checks whether a ray from the light source 
intersects the body’s surface, providing a ground truth for eclipse 
detection. Meanwhile, the mascon model is incorporated into trajectory 
simulations to account for the irregular gravitational field of each 
asteroid or comet. By combining these high-resolution shape models 
with a mascon distribution, we ensure an accurate and high-fidelity 
representation of the dynamical environment surrounding these small 
celestial bodies.

2.3. Spacecraft dynamics

The spacecraft dynamics, taken from [18], is described in a body-
centered reference frame by formulating the following set of differential 
equations: 
⎧

⎪

⎨

⎪

⎩

𝑟̇𝑟𝑟 = 𝑣𝑣𝑣

𝑣̇𝑣𝑣 = −𝐺
𝑁
∑

𝑗=0

𝑚𝑗

|𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑗 |
3
(𝑟𝑟𝑟 − 𝑟𝑟𝑟𝑗 ) − 2𝝎 × 𝑣𝑣𝑣 − 𝝎 × (𝝎 × 𝑟𝑟𝑟) − 𝜂𝜈(𝑟𝑟𝑟)𝐬̂(𝑡),

(1)

where 𝑟𝑟𝑟, 𝑣𝑣𝑣 denote the position and velocity vectors, respectively, of the 
spacecraft in the body-centered reference frame, 𝑚𝑗 and 𝑟𝑟𝑟𝑗 represent 
the mass and position, respectively, of each mascon that characterizes 
the asteroid’s irregular gravitational field, and 𝝎 is the angular velocity 
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Table 1
Key parameters of the 3D models used for small-body analysis.
 N mesh N mascons 𝜔 [hr] L [km] mass [kg]  
 Bennu 7,374 75,150 4.296 0.5634 7.329 × 1010 
 Itokawa 3000 100,363 12.132 0.5607 3.51 × 1010  
 67P 9,149 57,259 12.4043 5.0025 9.982 × 1012 
 Eros 7,374 97,824 5.270 32.6622 6.687 × 1015 

of the asteroid’s rotation. The term 𝜂 corresponds to the acceleration 
magnitude due to solar radiation pressure, which is modeled to be 
10−3 m/s2 for all simulations, while the term 𝜈(𝐫) represents the eclipse 
factor, which is considered as zero (𝜈 = 0) when the spacecraft is in 
eclipse and one (𝜈 = 1) otherwise. Traditional implementations use 
ray-tracing algorithms to determine the eclipse factor and to discon-
tinuously change the dynamics. In this case, however, the aim is to 
substitute these algorithms with neural models. Hence, as detailed in 
Section 3, a small neural network, called EclipseNET, will be used to 
represent the eclipse factor. Then, 𝝎 × 𝐯, represents the Coriolis force, 
resulting from the rotational motion of the asteroid, and 𝝎 × (𝝎 × 𝐫)
corresponds to the centrifugal force experienced due to the asteroid’s 
rotation. Finally, the unit vector, 𝐬̂(𝑡), describes the direction of the 
Sun. The Sun direction is modeled as 𝐬̂(𝑡) = 𝐑(𝑡)𝐬̂(0), where 𝐑(𝑡) is 
the rotation matrix that evolves over time as the asteroid rotates at 
an angular velocity 𝝎, causing a time-dependent change in the Sun’s 
direction relative to the spacecraft. Using this model, we consider the 
Sun’s direction as a simple rotation of the initial direction 𝐬̂(0) by 
an angle 𝜔𝑡. All these effects combine to determine the spacecraft’s 
trajectory relative to the rotating asteroid reference frame.

3. Learning small body silhouettes with EclipseNET

To model the complex eclipse conditions caused by irregular small 
bodies, we introduce EclipseNET, a neural network architecture



G. Acciarini et al. Acta Astronautica 236 (2025) 514–521 
designed to implicitly represent the geometry of eclipses. Given the 
recent success of SIREN networks [20] in neural implicit representa-
tions of complex shapes, we compare EclipseNETs trained with ReLU 
and with periodic activation functions.

We write the EclipseNET as: 
𝑒𝜃𝜃𝜃 = 𝜃𝜃𝜃(𝑟𝑟𝑟, 𝐬̂) (2)

where 𝑟𝑟𝑟 is the positional vector of the spacecraft, and 𝐬̂ is the Sun 
direction. To facilitate the training, the state is projected onto the plane 
perpendicular to the Sun direction, and the two direction components 
of the projected spacecraft position are normalized and used as inputs, 
while the Sun direction is encoded using the sine and cosine of azimuth 
and elevation angles, making the total size of the network inputs six-
dimensional. The output, 𝑒𝜃𝜃𝜃 , is a scalar value representing the eclipse 
function: negative when the spacecraft is in eclipse, positive when it is 
outside of eclipse, and zero at the asteroid silhouette.

To train EclipseNET, we create a dataset that contains ground 
truth values for the eclipse function found using the shape models of 
the small bodies. We consider an isotropic range of Sun directions, 
which is generated using the Fibonacci sphere. This results in 500 
Sun directions for training and 200 for validation. For each direction, 
we uniformly sample 1000 points (𝑥, 𝑦) in the range [−1, 1] and 3000 
points around the eclipse boundary and an additional 3000 points 
concentrated around the eclipse boundary 𝜕𝛺𝐬̂. The latter are sampled 
uniformly within a circle of radius 0.01 (in non-dimensional units) 
centered on the boundary. An example of the result of this sampling 
procedure for the four small bodies in a random direction is shown in 
Fig.  2 C). This data yields a total of 22 million training points and 9 
million validation points for each of the four small bodies studied.

We investigate the performance of two neural network architectures 
for training EclipseNETs: a sinusoidal representation network (SIREN) 
and a conventional ReLU-activated multilayer perceptron (MLP), each 
comprising 2369 trainable parameters. Rather than seeking an optimal 
network configuration for modeling the eclipse function, our objective 
is to assess whether highly compact neural architectures can leverage 
the expressive power of SIREN. The latter is a class of networks previ-
ously demonstrated to be effective for implicit neural representations 
in related tasks, such as encoding fine-grained geometric structures. 
As shown in Table  2, the SIREN-based architecture consistently out-
performs its ReLU-based counterpart in both training and validation 
regimes at this parameter scale. Specifically, the SIREN model yields 
a lower mean squared error (MSE), indicating enhanced fidelity in 
capturing the intricate features of the eclipse silhouette boundary. To 
support this, Fig.  3 presents the MSE loss as a function of training 
epochs for both the SIREN and ReLU networks, for the 67P case. The 
figure includes two unseen views during training of the asteroid from 
the first and last epochs, along with their corresponding silhouette 
approximations, generated using the ReLU network (top, in orange) 
and the SIREN network (bottom, in blue). As observed, the SIREN 
network not only achieves lower loss levels than the ReLU network but 
also converges more quickly. This results in a more accurate silhouette 
reconstruction, particularly at the initial epoch, where the difference is 
noticeable. By the final epoch, the ReLU network reduces the gap to 
some extent but still struggles with sharp and irregular features in the 
shape.

While inspecting these losses and visually observing the accuracy of 
the silhouette reconstruction provides a good indication of the accuracy 
of the EclipseNET, it is however equally important to quantify what the 
resulting error in the state of a spacecraft orbiting these small bodies 
is, should the EclipseNET be used to identify eclipse regions. Formally, 
this means that when integrating Eq. (1), the eclipse factor is directly 
determined using the EclipseNET as an event function in the integrator. 
In this way, when the EclipseNET is zero, then the spacecraft is crossing 
the asteroid silhouette, which causes the eclipse factor to change value 
(from zero to one or vice-versa) if the spacecraft is behind the small 
body with respect to the Sun.
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Table 2
Feed forward neural networks with ReLU activation function and SIREN network 
models mean squared error loss (MSE) on the training and validation datasets for all 
four small bodies.
 𝑀𝑆𝐸 ReLU 𝑀𝑆𝐸 SIREN Dataset  
 𝐵𝑒𝑛𝑛𝑢 3.5295 × 10−5 1.9906 × 10−5 𝑡𝑟𝑎𝑖𝑛,𝐵𝑒𝑛𝑛𝑢  
 𝐼𝑡𝑜𝑘𝑎𝑤𝑎 8.0184 × 10−5 4.7082 × 10−5 𝑡𝑟𝑎𝑖𝑛,𝐼𝑡𝑜𝑘𝑎𝑤𝑎  
 67𝑃 7.9564 × 10−5 4.6469 × 10−5 𝑡𝑟𝑎𝑖𝑛,67𝑃  
 𝐸𝑟𝑜𝑠 9.3738 × 10−5 4.2137 × 10−5 𝑡𝑟𝑎𝑖𝑛,𝐸𝑟𝑜𝑠  
 𝐵𝑒𝑛𝑛𝑢 3.6508 × 10−5 2.1773 × 10−5 𝑣𝑎𝑙𝑖𝑑,𝐵𝑒𝑛𝑛𝑢  
 𝐼𝑡𝑜𝑘𝑎𝑤𝑎 8.4136 × 10−5 4.9863 × 10−5 𝑣𝑎𝑙𝑖𝑑,𝐼𝑡𝑜𝑘𝑎𝑤𝑎 
 67𝑃 8.1466 × 10−5 4.9408 × 10−5 𝑣𝑎𝑙𝑖𝑑,67𝑃  
 𝐸𝑟𝑜𝑠 9.8826 × 10−5 4.5850 × 10−5 𝑣𝑎𝑙𝑖𝑑,𝐸𝑟𝑜𝑠  

In the first three columns of Fig.  4, we present three projections 
of three-dimensional orbits around the four tested small bodies, high-
lighting the entry and exit points of eclipses along the trajectory. For 
these experiments, the SIREN networks were used as EclipseNETs. 
As shown in the rightmost column, using these models to approx-
imate the asteroid silhouette yields eclipse prediction errors within 
centimeters for all tested small bodies, even after multiple orbits. 
This accuracy is benchmarked against the eclipses computed using a 
ray-tracing method based on the Möller–Trumbore triangle intersec-
tion algorithm [17]. The computational efficiency of EclipseNET is 
remarkable, with inference speeds more than two orders of magnitude 
faster than the ray-tracing approach, demonstrating its potential to re-
place computationally expensive traditional algorithms in space-flight 
simulations.

While these results are promising, there will always be a slight 
discrepancy between the actual eclipse boundary and its representation 
by EclipseNET. This mismatch is expected to grow over time, par-
ticularly when the spacecraft traverses more complex eclipse regions 
or encounters irregular bodies with intricate geometries. Additionally, 
the irregular shape of small bodies is often not accurately known 
beforehand, and precise information about the body’s shape may only 
become available as the spacecraft closely approaches the asteroid or 
comet.

Hence, there might be the need for continuous refinement and 
adaptability of the model’s accuracy, as trajectory data become avail-
able. To address this, the next section introduces online training meth-
ods based on NeuralODEs [22]. These techniques allow the model 
to dynamically adjust in real-time, based on the evolving spacecraft 
trajectory, ensuring that the model becomes increasingly precise as it 
learns from positional data during the mission. Building upon this, the 
following section introduces how NeuralODEs can be employed to learn 
the silhouette of an irregular small body directly from trajectory data.

4. Learning the silhouette from trajectories via neuralodes

As discussed in the previous section, the shape of an irregular 
small body is often incompletely known or lacks sufficient resolution 
prior to a spacecraft visit. Even when a preliminary shape model is 
available, EclipseNET’s implicit representation may contain inaccura-
cies that could lead to growing errors over time. Consequently, further 
model refinement is often necessary to ensure an acceptable error in 
predicting the satellite’s position and velocity.

To address this challenge, we propose a method to dynamically 
learn and update the neural representation of the small body’s silhou-
ette directly from sparse trajectory data. This approach leverages Neu-
ralODEs [22,31], specifically ODEs with neural event functions [23], 
to iteratively refine the eclipse function. This enables real-time and 
continuous adaptation of the model as new observational data becomes 
available.

As clarified in Section 2.3, the spacecraft dynamics changes accord-
ing to a termination criterion triggered by an eclipse function, which in 
our case is modeled as a neural network (EclipseNET). Our objective is 
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Fig. 3. Training loss vs the number of epochs, together with some views of the approximated silhouette for both networks at the first and last epochs, for both SIREN and ReLU 
networks, for the case of 67P/Churyumov–Gerasimenko.
to refine the EclipseNET used as a neural event function to reduce the 
observed errors in the spacecraft’s states. To achieve this, we first define 
the augmented system dynamics, where the first-order ODE governing 
the satellite’s motion in the small-body environment is extended with 
an equation for the event manifold time derivative: 
{

𝑥̇𝑥𝑥 = 𝑓𝑓𝑓𝜃𝜃𝜃(𝑡,𝑥𝑥𝑥)
𝜀̇𝜃𝜃𝜃 = 𝑔𝜃𝜃𝜃(𝑡,𝑥𝑥𝑥),

(3)

where the state is composed of the position and velocity of the space-
craft, 𝑥𝑥𝑥 = [𝑟𝑟𝑟,𝑣𝑣𝑣] and the variable 𝜀𝜃𝜃𝜃 has been introduced to track the 
time derivative of the EclipseNET. The term 𝑔𝜃𝜃𝜃 represents the total time 
derivative of the EclipseNET, which is a function of: 𝑥𝑥𝑥(𝑡) and ̂𝐬(𝑡). Hence, 
using the chain rule, we can write:
𝑔𝜃𝜃𝜃 = ∇𝐬̂𝑒𝜃𝜃𝜃 ⋅ ̇̂𝐬(𝑡) + ∇𝑥𝑥𝑥𝑒𝜃𝜃𝜃 ⋅ 𝑓𝑓𝑓𝜃𝜃𝜃 .

Under our assumptions, the derivative of the Sun direction can be 
found as: ̇̂𝐬 = 𝐑̇(𝑡)𝐬̂(0). Hence, the first equation mirrors Eq. (1), while 
the EclipseNET, 𝑒𝜃𝜃𝜃 , acts as the event trigger function, to change the 
value of 𝜈(𝑟𝑟𝑟). The learnable parameters of the EclipseNET, 𝜃𝜃𝜃 ∈ R𝑚, 
control the discontinuous transitions in the dynamics, with the sub-
script indicating this dependency. The outcome of this formulation is a 
NeuralODE wherein the neural network functions as a (differentiable) 
event manifold. It is important to emphasize that the event triggering 
in our framework is not influenced directly by the magnitude of the 
solar radiation pressure (SRP) along the trajectory. Instead, it is driven 
by a binary visibility signal, such as that provided by a Sun sensor, 
that indicates whether the Sun is in view or occluded. Consequently, 
the accuracy and reliability of the proposed method are unaffected by 
the inherently weak SRP signal, as the detection mechanism depends 
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solely on discrete visibility states rather than on continuous dynamical 
forcing.

Then, the loss function is defined as the mean squared error (MSE) 
between the modeled states 𝑥𝑥𝑥𝜃𝜃𝜃 (computed integrating the dynamics 
with the neural event function) and the observed ones 𝑥𝑥𝑥: 

 =
𝑇
∑

𝑗=0
‖𝑥𝑥𝑥𝑗,𝜃𝜃𝜃 − 𝑥𝑥𝑥𝑗‖

2, (4)

where 𝑗 indexes the time instances 𝑡𝑗 at which observations are avail-
able. The observed states may originate from actual trajectory mea-
surements or high-fidelity simulations, such as those employing the 
Möller-Trumbore intersection algorithm.

The parameters of EclipseNET are updated by computing the gradi-
ent of the loss with respect to 𝜃𝜃𝜃: 

∇𝜃𝜃𝜃 =
𝑛
∑

𝑖=1

𝜕
𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑒𝜃𝜃𝜃

∇𝜃𝜃𝜃𝑒𝜃𝜃𝜃 . (5)

The first term follows directly from Eq. (4): 

𝜕
𝜕𝑥𝑖

= 2
𝑇
∑

𝑗=1
(𝑥𝑖𝑗,𝜃𝜃𝜃 − 𝑥𝑖𝑗 ). (6)

The second term can be derived symbolically by first computing 𝜕𝑒𝜃𝜃𝜃
𝜕𝑥𝑖

, 
while the third term is obtained by integrating Eq. (3) along with its 
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Fig. 4. Left three columns: three different projections of the three-dimensional orbits obtained using EclipseNET as an event; right column: positional coordinate errors between the 
trajectory computed with EclipseNET as an event and the one obtained using the Möller-Trumbore algorithm.
Fig. 5. Left : orbit around 67P/ Churyumov-Gerasimenko, with eclipse regions highlighted in dark yellow along the trajectory; right : error in the three positional components 
before (in red) and after (in green) the NeuralODE refinement. Eclipses are here displayed in gray. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
variational equations with respect to the parameters: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̇𝑥𝑥 = 𝑓𝑓𝑓𝜃𝜃𝜃(𝑡,𝑥𝑥𝑥)
𝜀̇𝜃𝜃𝜃 = 𝑔𝜃𝜃𝜃(𝑡,𝑥𝑥𝑥)
𝑑
𝑑𝑡

(

𝜕𝑥𝑖
𝜕𝜃𝑘

)

=
𝑛
∑

𝑗=1

𝜕𝑓𝑖,𝜃𝜃𝜃
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝜃𝑘

+
𝜕𝑓𝑖,𝜃𝜃𝜃
𝜕𝜃𝑘

𝑑
𝑑𝑡

(

𝜕𝑒𝜃𝜃𝜃
𝜕𝜃𝑘

)

=
𝑛
∑

𝑗=1

𝜕𝑔𝜃𝜃𝜃
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝜃𝑘

+
𝜕𝑔𝜃𝜃𝜃
𝜕𝜃𝑘

,

(7)

∀𝑘 = 1,… , 𝑚. This results in a system of (𝑛+1)+(𝑛+1)𝑚 equations to be 
integrated: we use the open-source heyoka software to both construct 
the variational equations and integrate them via Taylor method [32].
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In the right panel of Fig.  5, we show the errors in the 𝑥, 𝑦, and 𝑧
positional components both before (in red) and after (in green) the Neu-
ralODE refinement. The dashed black line in the same plot represents 
the norm of the error difference for both cases. The loss was computed 
using a single observation at the final time step of the simulation 
(𝑡𝑜𝑏𝑠 = 9.425). The target state used for comparison was obtained using 
the Möller-Trumbore intersection algorithm: we depict the full orbit 
with the eclipses highlighted in dark yellow on the left side of Fig. 
5. While it would in principle be feasible to learn the eclipse function 
from a large dataset of arbitrary eclipse detections using the NeuralODE 
framework, this is not the objective of the present study. Rather, we 
aim to demonstrate that the body silhouette as represented by an 
EclipseNET can be effectively improved by leveraging specific orbital 
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regimes and trajectories, and hence using only limited, sparse data. 
This scenario is particularly relevant in operational contexts where the 
spacecraft is already in orbit around the asteroid, and eclipse events 
may be infrequent or irregular. Our results underscore EclipseNET’s 
ability to adapt and generalize under data-scarce conditions, making 
it well-suited for in-situ refinement during mission operations.

The initial EclipseNET model was taken from the first epoch of the 
ReLU network discussed in Section 3 and shown in Fig.  3. Subsequently, 
the NeuralODE approach was used to minimize the error between 
the state predicted by the Möller-Trumbore algorithm and the state 
obtained using EclipseNET. This process resulted in a reduction of the 
error norm by nearly a factor of 7. As additional observations from 
diverse geometries are gathered, the representation of the small body’s 
irregular silhouette progressively refines, enhancing the accuracy of 
trajectory predictions over time.

5. Conclusions

This work introduces a novel framework for modeling eclipse con-
ditions around irregular small celestial bodies using neural implicit 
representations, with a focus on direct refinement from trajectory 
data using the recently popularized NeuralODEs framework. We first 
presented EclipseNET, a small neural network architecture designed 
to represent the complex and non-convex silhouettes of irregular bod-
ies such as asteroids and comets. Extensive validation on four well-
characterized targets (Bennu, Itokawa, 67P/Churyumov-Gerasimenko, 
and Eros) demonstrated that EclipseNET achieves higher accuracy and 
significantly greater computational efficiency than conventional ray-
tracing techniques. Architecturally, SIREN-based models consistently 
outperformed ReLU-based networks, particularly in capturing the fine-
grained features of eclipse boundaries. We then integrated EclipseNET 
within Taylor-based orbital propagators to enable precise and efficient 
eclipse event detection during trajectory simulation. Benchmarking 
against the Möller–Trumbore ray-tracing algorithm across multiple 
orbital scenarios showed that EclipseNET yields centimeter-level po-
sitional accuracy while achieving inference speeds exceeding tradi-
tional methods by over two orders of magnitude. To address the 
challenge of incomplete or uncertain shape models, we developed an 
online learning strategy based on NeuralODEs, which enables in-situ 
refinement of EclipseNET directly from trajectory data. This approach 
allows the eclipse model to improve incrementally as new observa-
tions are acquired, effectively compensating for deficiencies in a priori 
shape knowledge. Overall, our method provides a differentiable, data-
efficient, and highly adaptive approach to eclipse prediction, support-
ing real-time, autonomous spacecraft operations in complex gravita-
tional environments. Its compatibility with gradient-based optimiza-
tion frameworks further facilitates integration into modern guidance, 
navigation, and control pipelines.
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