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Abstract

We describe, in the framework of global optimi-
sation, four trajectory optimisation problems, rep-
resentative of three different important typologies
often encountered in space mission design. Af-
ter giving a brief description of the astrodynam-
ical details necessary to implement the problems
we solve them by applying Differential Evolution
and Multiple Particle Swarm Optimisation keep-
ing the number of objective function evaluations
to a minimal amount to ensure low computational
times. We show how these techniques may be use-
fully exploited to perform fast optimisations getting
first estimates of relevant mission design param-
eters thus helping to take early decisions on the
overall spacecraft design.

1 Introduction

Finding the best way to transfer a spacecraft be-
tween planets or orbits is a complex problem. The
traditional methodologies used to design the space-
craft trajectories have evolved, in the last years,
by taking advantage of a number of emerging new
techniques that promise to radically simplify the
task of finding optimal solutions [2]. The principal
theoretical step that has to be taken in order to un-
derstand many of the new approaches is that of con-
sidering the trajectory design problem as a global
optimisation problem. While this does not change
the issue in its nature, it allows to account for the
complex topology of the search spaces commonly
encountered. Known issues limiting the efficiency
of the various methods are the number of local min-
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ima, their clustering around small portions of the
search space and the small basin of attraction of the
real global optimum typical of these kinds of prob-
lems [5]. Several studies have focused on the use of
different numerical techniques to search efficiently
the solution space and several algorithms have been
tested and proved to be suitable in connection
with trajectory design problems. The European
Space Agency, and in particular its Advanced Con-
cepts Team is carrying on a project aimed at cod-
ing and testing several different global optimisa-
tion strategies for a number of mission design prob-
lems that are of interest to the aerospace commu-
nity. Genetic, evolutionary, ant search, simulated
annealing, particle swarm, branch and bound al-
gorithms have all been coded and tested in dif-
ferent problems, from the multiple gravity assist
to the more complex problem of low-thrust trajec-
tories, deep-space manoeuvres and weak stability
boundary transfers. During this project, brought
forward in collaboration with European Universi-
ties thanks to the Ariadna scheme [Ariadna is an
ESA initiative created to stimulate research on en-
abling space research areas and on the development
of new design methods. Subjects include theoret-
ical physics, power systems, propulsion, trajectory
design and optimisation, informatics and applied
mathematics, biomimetics, and other subjects in
which both space systems engineering competence
and specific theoretical knowledge are required],
several theoretical advances have been achieved.
Most noteworthy, the Multiple Gravity Assist prob-
lem, with powered swing-by, has been shown to be
characterised by a search space that may be op-
portunely pruned in polynomial time allowing for
the branches to be searched by heuristic techniques
with a drastic increase in reliability [3]. This allows
to design an algorithm that solves the MGA prob-



lem, locating the global optimal solution in wide
launch windows in a handful of seconds. The search
space may thus be explored with an unprecedented
accuracy and efficiency for this particular kind of
problem. Unfortunately, whenever low-thrust arcs
are considered, or deep space manouvres are in-
cluded, the pruning technique developed is not ap-
plicable and we are still left with an NP-hard (non
polynomial complexity) problem.

In this paper we apply two global optimisation
techniques, resulted to be the best in the compari-
son performed during the Ariadna study [5], to four
different trajectory design problems. representa-
tive of the following typologies: multiple gravity as-
sist without deep space manouvres, multiple grav-
ity assist with deep space manouvres, low-thrust
arcs transfer via exponential sinusoids representa-
tion [6, 1]. The focus is here in trying to obtain
fast preliminary results on complex problems that
would otherwise require greater computational ef-
forts to be solved.

Note that the problems here faced have been
chosen for their interest in connection with the
testing of global optimisation techniques rather
than for their interest as trajectories. As a con-
sequence they should be regarded as benchmark
problems to test global optimisation techniques
and have a mere academic interest. The prob-
lems have been coded in MATLAB and C++
and have been made available on-line in form of
black box functions that can be downloaded from
the ACT web pages [www.esa.int/gsp/ACT/ mis-
sion analysis/BlackBoxProblems.htm].

2 The generic global optimisation problem

The generic global optimisation problem we con-
sider is:

find: x ∈ I

to maximise: J(x)
subject to: g(x) < 0

(1)

where I is an hyperrectangle in R
N . Once we

manage to write our trajectory optimisation in this
rather generic form (this also constitutes the sub-
ject of a lively and interesting research field) we
may solve the problem applying a global optimisia-
tion technique to it. In particular we here consider
standard implementations of Differential Evolution

(DE) [7] and of Multiple Particle Swarm Optimisa-
tion (MPSO) [4]. These have already been proven
to be quite efficient in connection to a number of
trajectory optimisation problems [5]. To read a de-
tailed description of the implementation of these al-
gorithms used in this paper the reader may see [3].
The upper and lower limits on the state variables
have been dealt with by replacing each component
out of the bounds with a random number within
the bounds. The inequality constraints have been
implemented as linear penalty functions.

We will use throughout the paper a naming con-
vention for transfers that use capital letters for
the planets, and small letters for the manouvres
(d=deep space manouvre, exp=exponential sinu-
soid arc). An EVVEJdS, for example, would be
an Earth-Venus-Venus-Earth-Jupiter - deep space
manouvre - Saturn transfer.

3 The EdVdM trajectory problem

Let us consider here an Earth-Venus-Mars trans-
fer with deep space manouvres. To properly tran-
scribe this problem in the form of Eq.(1) we must
find a set of state variables x that are unambigu-
osly related to each possible trajectory that can be
flown. Starting from the Earth, we let the starting
date tE , the outgoing planetocentric velocity ve-
locity V∞ and its direction to be free parameters.
We need to choose two variables to describe the di-
rection of the V∞ vector. We choose u, v ∈ [0, 1],
related to V∞ by the following equations:

θ = 2πu
cosϕ = 2v − 1

V∞ = V∞[cos θ sin ϕî + sin θ cosϕĵ + cosϕk̂]

This description is particularly useful in connection
with the implementation of the global optimisers as
it allows to select a uniformly distributed direction
by randomly selecting u, v in their range. This will
ensure that the populations initialized at random
by the global optimisation algorithms will be uni-
formly distributed in the physical space. If one con-
sidered ϕ and θ as state parameters, an out of the
ecliptic departure would be statistically unfavored
when randomly selecting ϕ ∈ [0, 2π] and θ ∈ [0, π].
Once these four parameters are selected one may
evaluate the trajectory leg that departs from the
Earth. Next we must chose another parameter that



determines when the deep space manouvre will be
applied. We chose DSM1 = ∆M/2π ∈ [0, N1],
the normalized mean anomaly difference between
the Earth departure and the deep space manou-
vre along the first trajectory leg. By letting N1

to be larger than one we may thus easily account
for multiple revolutions. The next state variable is
T2V expressing the time (in days) from the deep
space manouvre to the Venus encounter. Now we
need to describe the geometry of the Venus plane-
tocentric hyperbola. We need two more variables,
namely HV = 1/rp ∈ [0, 1/rpmin

] and ζ ∈ [0, 2π].
These describe the rotation of the relative velocity
via the relations:

δ = arcsin 1/e(HV )

Vout = Vin[cos(δ)b̂1 + sin ζ sin δb̂2 + cos ζ sin δb̂3]

where e(HV ) is the functional relationship between
the eccentricity of the planetocentric hyperbola and
the variable HV given by e = 1 + V 2

in/HV µV . The

projection frame b̂i is defined by b̂1 = Vin/Vin,

b̂2 = b̂1 ∧ rV /rV and b3 = b̂2 ∧ b̂1 as to ensure
that no singularities are possible. As we are now
able to determine the heliocentric outbound tra-
jectory from Venus, we only need two more vari-
ables to complete our description: DSM2 ∈ [0, N2]
and T2M . Our state vector will than be x =
[tE , V∞, u, v, DSM1, T2V , HV , ζ, DSM2, T2M ].

As a numerical example let us consider the follow-
ing:

find: x ∈ I

to minimse: V∞ + ∆V1 + ∆V2 + ∆Varr

subject to: rp > rpmin

(2)

where I = [0, 2000]× [0, 7]× [0, 1]× [0, 1]× [0, 2]×
[0, 400]× [0, 1/8000]× [0, 2π]× [0, 2]× [0, 500], ∆V1,2

represent the magnitude of the necessary deep
space manouvres, V∞ is the hyperbolic escape ve-
locity, ∆Varr is the arrival relative velocity. All
in all we have a global optimisation problem of
dimension D = 10 with Nc = 1 non linear con-
straints. DE and MPSO were applied for 50 times,
allowing for a maximum of 30000 function evalua-
tions in each run. The results, in terms of best and
worse solution returned, together with the mean
and the standard deviation σ of all the runs, are
shown in Table 1. A visualization of the best tra-

Table 1: Results of 50 test on the EdVdM. 30000
function evaluations have been allowed, units are
in km/s

Algorithm best worse mean σ
DE 8.154 10.13 9.000 0.431
MPSO 8.684 11.44 10.19 0.696
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Figure 1: Best soultion found for the EdVdM prob-
lem.

jectory found is given in Figure 1. For this opti-
mal solution Vinf = 3.11 km/s, ∆V1 = 0 km/s,
∆V2 = 2.92 km/s and ∆Varr = 2.12 km/s.

4 The EdEdMdM trajectory problem

We here add some complexity to the previous
problem and we consider an Earth-Earth-Mars-
Mars transfer with deep space manouvres. In
this case three deep space manouvres and two fly-
bys have to be considered: using similar sym-
bols as in the previous section, the state vector
becomes x = [tE , V∞, u, v, DSM1, T2V , HV , ζE ,
DSM2, T2M , HM , ζM , DSM3, T2arr]. The problem
dimension is D = 14 with Nc = 2. In particular we
consider the following:

find: x ∈ I

to minimse: ∆V1 + ∆V2 + ∆V3 + ∆Varr

subject to: rp > rpmin

(3)



Table 2: Results of 50 test on the EdEdMdM. 20000
function evaluations have been allowed, units are in
km/s

Algorithm best worse mean σ
DE 3.571 5.482 4.953 0.479
MPSO 4.94 8.042 6.169 0.713

where I = [0, 2000]× [0, 1]× [0, 1]× [0, 1]× [0, 2]×
[0, 500] × [0, 1/7000] × [0, 2π] × [0, 2] × [0, 600] ×
[0, 1/6800]×[0, 2π]×[0, 2]×[0, 600] and ∆V1,2,3 rep-
resent the magnitude of the necessary deep space
manouvres. Note that the starting C3 is forced
to be less than one. DE and MPSO are again ap-
plied for 50 times, allowing for a maximum of 20000
function evaluations for each run. The results, in
terms of best and worse solution returned, together
with the mean and the standard deviation σ of all
the runs, are shown in Table 2. A visualization of
the best trajectory found is given in Figure 2. For
this particular solution the optimiser essentially re-
turns an Earth-Mars-Mars transfer with Vinf = 1
km/s, ∆V1 = 2.38 km/s, ∆V2 = 0.697 km/s and
∆Varr = 0.48 km/s. It is particularly interesting to
note how, from the numerical output of the global
optimisation, we are able to determine that the first
Earth-Earth transfer does not help in this case. It
is as if the optimiser is able to realize that the fly-
by sequence proposed is not optimal and eliminates
the first redundant fly-by. This, unfortunately, is a
rather special case and in general terms the prob-
lem of the selection of the best strategy remains
still unsolved.

5 The EexpM trajectory problem

Let us consider an Earth-Mars transfer with low-
thrust propulsion. It is possible to transcribe this
problem in the form of Eq.(1), and to keep the
problem dimension to D = 3, at the cost of us-
ing a simplified representation of the trajectory
in terms of exponential sinusoids [1]: a trajectory
shape first proposed by Petropoulos [6]. With ref-
erence to the quoted works we consider the state
vector x = [tE , T2M , k2] containing the departure
date, the time of flight to Mars and one shape pa-
rameter.
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Figure 2: Best soultion found for the EdEdMdM
problem.

Table 3: Results of 50 test on the EexpM problem.
3000 function evaluations have been allowed, units
are in km/s
Algorithm best worse mean σ
DE 7.315 7.369 7.332 0.0129
MPSO 7.336 7.723 7.452 0.114

The optimisation problem considered is:

find: x ∈ I

to minimse: ∆Vdep + ∆Vlt + ∆Varr
(4)

where I = [2000, 5000] × [200, 2000] × [0.01, 1],
∆Vdep, ∆Varr represent the boundary condition vi-
olations typical of the exponential sinusoids and
∆Vlt is the low-thrust contribution. Each algo-
rithm was run for 50 times allowing for a maximum
of 3000 function evaluations. The results, in terms
of best and worse solution returned, together with
the mean and the standard deviation σ of all the
runs, are shown in Table 3. A visualization of the
best trajectory found is given in Figure 3. For this
optimal solution ∆V1 = 1.936 km/s, ∆V2 = 0.944
km/s, ∆Vlt = 4.438 km/s. The maximum accelera-
tion required was amax = 1.343e− 4 m/s2 confirm-
ing a known difficulty of the exponential sinusoids
to meet possible constraints on the thrust level.
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Figure 3: Best soultion found for the EexpM prob-
lem.

6 The EVEVEJSA trajectory problem

This problem was inspired by the 1st ACT Global
Trajectory Optimisation competition. This was a
competition organized by ESA’s Advanced Con-
cepts Team to find the best trajectory that would
impact the asteroid 2004 TW229 maximising the
subsequent asteroid semi-major axis change [2]. We
considered only ballistic trajectories with powered
swing-bys. We took a 1500 kg spacecraft and an
Isp = 2500 s (while these data make no sense for a
chemical propelled spacecraft they where used in
the competition where a low-thrust transfer was
considered). We used the same launch window and
constraints given by the competition problem and
we did not implement any constraint on the var-
ious ∆V given at the planets. We also selected
a fixed fly-by sequence, Earth-Venus-Earth-Venus-
Earth-Jupiter-Saturn-Asteroid, inverting the orbit
angular momentum at Saturn.
Using standard astrodynamical routines (mainly a
good Lambert’s solver is required) it is possible to
code this problem in the form of Eq.(1). This re-
sults in:

find: x ∈ I

to maximise: mfU · vast

subject to: rp > rpmin

(5)

where x contains the departure date from the Earth

Table 4: Results of 50 test on the EVEVEJSA.
60000 function evaluations have been allowed, units
are in kg km2/s2 106

Algorithm best worse mean σ
DE 1.656 0.526 1.140 0.220
MPSO 1.006 0.027 0.271 0.255

and the various time-of flights to the following en-
counter. The mass of the spacecraft at impact is
mf , the relative impact velocity U and the aster-
oid heliocentric velocity vast. The vector rp con-
tains the peri-apses of the various planetocentric
hyperbolas that have to be larger than the values
contained in rpmin

(the values used are those given
in the problem description of the 1st ACT Global
Trajectory Optimisation competition). We there-
fore have a global optimisation problem of dimen-
sion D = 8 with Nc = 6 constraints. As this is a
multiple gravity assist problem, it is possible to use
the pruning technique described in [3] to obtain a
problem that can be solved in polynomial time. As
we wanted to treat the problem as a blackbox, we
here did not here exploit that result.
Each algorithm was run for 50 times allowing for
a maximum of 60000 function evaluations. The re-
sults, in terms of best and worse solution retuned,
together with the mean and the standard deviation
σ of all the runs, are shown in Table 4. A visualiza-
tion of the best trajectory found is given in Figure
4.

7 Discussion

In general terms the advantage of the use of global
optimisation algorithms in relation with trajec-
tory problems stems entirely on the computational
speed, on the simple implementation and on the
possibility of getting a large number of different
trajectories the designer can later choose from tak-
ing into account many different criteria. On the
other hand whenever the problems gets very com-
plicated, often the global optimum is missed.

As a matter of fact for the EVEVEJSA prob-
lem none of the two algorithms was able to lo-
cate, with the given settings, the best solution
known so far to this particular problem that is J =
1.844E6 as reported in [www.esa.int/gsp/ACT/
mission analysis/EVEVEJSA.htm]. This could be
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Figure 4: Best soultion found with the DE imple-
mentation for the EVEVEJSA problem.

due to the limited number of function evaluations
allowed together with the small population size
used. While increasing these number would prob-
ably improve the efficiency of the solvers, it would
also increase the computational time considerably.
We must also note that while the parameters of
the DE optimiser have been selected after a num-
ber of test campaigns, a minor effort was put in
the selection of the parameters for the MPSO and
that the numbers here reported should not lead
to the definite conclusion that DE is outperform-
ing MPSO. In a private communication, Manfred
Stickel of the Max Planck institute told us he could
solve this problem overnight with his implementa-
tion of Particle Swarm Optimisation. We end by
observing that in a much longer run (four hours
of computation) our distributed multistart version
of Differential Evolution found the optimal result
of J = 1.844E6. The same can be located with a
much faster algorithm by using the pruning tech-
nique mentioned [3] that introduces a good deal of
problem knowledge. For the EdVdM problem the
algorithms both performed quite well, with DE be-
ing again consistently able to locate the global op-
timum. The problem becomes considerably more
complex when we add more trajectory legs and al-
ready in the EdEdMdM case MPSO is not able to
return a good solution, while DE worked better,
but found only three trajectories with an objec-
tive function less than 4 km/s out of 50 runs. The

EexpM low-thrust problem is solved quite easily by
both the techniques used, it has to be noted though,
that the simplification introduced by the use of ex-
ponential sinusoids is quite significant. While the
results may still be used a first guesses and then fed
into an optimal control problem solver, it has to be
proven that this starting guess would be within the
basin of attraction of the real global optimum.

8 Conclusions

Global optimisation algorthms, and in particular
the implementations considered of Differential Evo-
lution and multiple Particle Swarm optimisation,
may be used to obtain preliminary results when
applied to a number of interesting trajectory opti-
misation problems. Their application without the
use of ad hoc developed space pruning techniques
is much less effective when the problem complexity
increases and they start to suffer of the non polyno-
mial complexity of the optimisation task. In these
cases a much longer computational time is required
and their use in place of other techniques is there-
fore questionable.
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