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Recent developments in low-thrust trajectory optimization methods have shown that

second-order gradient techniques can be e�cient. Robust second-order methods allow one

to solve complex dynamical problems, accounting for perturbations, and path constraints,

with high �delity. Convergence of the method, however, requires a very good initial guess,

or a lot of user experience. Based on a quadratic expansion of the Lagrangian for the

optimal control problem, the proposed method uses well known homotopy and continuation

techniques to simplify the need of a very good initial guess for the optimization problem.

The continuation variable is assigned to a physical parameter to solve complex dynamical

problems. The new algorithm demonstrate an increased robustness.

Nomenclature

λ Co-State vector
ν Lagrange vector
ψ Terminal constraints
δu Control update
∆s arc length, step change
f Dynamics
H Homotopy map
K Sensitivity matrix
Q Sensitivity matrix
R Ricatti matrix
T Sensitivity matrix
u Control
V Sensitivity matrix
x State
τ Homotopy variable
H Hamiltonian
nk Dimension of the constraint vector
np Dimension of the parameter vector
nu Dimension of the control vector
nx Dimension of the state vector
s arc length or curvilinear abscissa

I. Introduction

Trajectory optimization and optimal control theory applied to low-thrust space trajectory problems have
always nurtured many di�erent algorithms depending on the characteristics of the dynamics. Betts[1] presents
an overview of most of the methods which have been applied to space trajectory optimization, both direct
and indirect methods. Direct methods[2, 1] can be characterized as non-linear programming methods, where
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the state and the control are discretized in the time and considered as the decision variables. This is achieved
at the cost of reaching only mid-�delity dynamical satisfaction but a high radius of convergence. Indirect
methods[3], on the other hand, transform the optimal control problem into a boundary value problem where
the dynamics are integrated precisely, but they usually su�er from a small radius of convergence.

Second order methods have been used for space trajectory optimization. Although, more di�cult to
implement, they are generally more robust, with a disposition to take the advantages of both direct and
indirect methods. As de�ned in most recent work [4, 5], they both satisfy the dynamics with high �delity
and provide good convergence properties, even though they su�er from slow convergence[6].

Many di�erent second order algorithms have appeared over recent years, and are mainly based on di�er-
ential dynamic programming[7] (DDP). For instance, Colombo [8] used the DDP algorithm and applied it
to the design of trajectories to asteroids, simplifying the control with a quadratic cost to prevent any bang-
bang structure and to improve the convergence. Lantoine [9] proposed a simpli�cation of the dynamical
model, allowing the use of an analytical propagation, improving the speed and convergence of the algorithm.
Whi�en[4, 10] proposed an improvement of the DDP algorithm with static parameters and provided a generic
tool for high-�delity trajectory optimization. The tool itself has been used in the design of currently �ying
missions.[11].

In Ref.[12], the author proposed a di�erent formulation of the second order algorithm based on Refs. [6,
13], and applies it to the di�cult multi-phase problem of a spacecraft going from a planet-centered motion to
another planet-centered motion (escape and capture spirals with interplanetary phase) without formulating
speci�c intermediate conditions and constraints. This is done without using patching trajectory segment
methods, thus transitioning between di�erent dynamical regimes with high �delity. The algorithm thus
proves to be robust and able to cope with complex dynamics.

More generally, second order methods solve dynamical problems with control and state constraints. Thus
we should expect a greater ability to exploit dynamical interactions, such as swing-bys in space trajectory
problems for instance. However, convergence still requires a good initial guess, or a lot of user experience,
for hard dynamical problems. Some work has thus been done on providing good initial guesses for complex
problems for use in second-order methods[14]. The paper presents an approach that uses the primer vector
as a baseline to provide the optimal control.

This study is about proposing an approach that would be able to solve trajectory problems in complex
dynamical environments (e.g. three body problems, interplanetary transfers with swing-bys, without the
explicit formulation of the intermediate constraints), and with poor initial guess requirements. The prin-
cipal attempt of this study is to use continuation and homotopy methods[15, 16] with the second order
algorithm[12] to solve optimal control problems and reduce the need of good initial guesses.

II. Homotopy Method

II.A. Homotopy Approach

For the sake of completeness, basics of homotopy methods are recalled, and a more comprehensive review
can be found in Ref. [15]. Many codes are available (HOMPACK[16], PITCON[17], ALCON).

Homotopy methods usually apply to the root �nding problem. In optimal control, such root �nding
problem appears when formulating a two point boundary value problem, using for instance an indirect
method approach. The desired root �nding problem F(x) = 0 is transformed into another, simpler, root
�nding problem G(x) = 0 for which a solution is known. The transformation is parameterized with a
homotopy parameter, denoted here as τ , and a homotopy map H(x, τ) is constructed. For instance, the
following convex homotopy map H(x, τ) : Rnx × R→ Rnk can be posed[15]

H(x0, τ = 0) = G(x0) (1)

H(x∗, τ = 1) = F(x∗) (2)

H(x, τ) = (1− τ)G(x) + τF(x) (3)

where x0, and x∗, are respectively the solutions of the simpli�ed problem G and the nominal problem F.
Note then, that (x0, τ = 0), and (x∗, τ = 1) are both solutions of the homotopy function H, and belong
to the curve, or manifold, H−1(0). This curve can then be followed from x0 to �nd the desired solution
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x∗. The homotopy parameter τ is varied and for each iterate τi, an instance of the problem, H(x, τi) = 0,
is solved using the former iterate problem solution as initial guess. As a result, the user provides only an
initial guess to the simple problem G, which is eventually modi�ed by the homotopy method to match the
original complex problem F. The variations in the homotopy parameter can follow a speci�c homotopy path
to obtain global convergence.

II.B. Homotopy Continuation Methods
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Figure 1. Illustration of the path following method

When the homotopy parameter τ is varied discretely and increasingly, with a constant step, the method
is called continuation, while homotopy refers to the case when τ is updated according to the curvature of
the path H−1(0). Then, path tracking techniques allow the following of a solution path {x, τ}i, going from
x0 to x∗. Homotopy methods rely on the path-following techniques used. We can mention for instance:
di�erential continuation and simplicial homotopy methods.

Di�erential continuation methods use information on the Jacobian of the homotopy map with respect
to the homotopy parameter for the prediction step (δx, δτ), and they are based on the Newton's method
(Predictor-corrector) which provides correction steps dC to get back on the curve, as illustrated on Fig. 1.
One major assumption is that the zero path is described by a di�erential curve, thus providing some regularity
properties on the curve to track. The advantage of this method is usually quick convergence owing to the
good step updates.

Simplicial methods use an approximation of the zero path as a piecewise-linear curve. A simplex is con-
structed to �nd the root of each iterate problem. This method is more robust than di�erential continuation,
but it is also slower. No particular conditions are required on the regularity of the zero path.

The current study focuses on the di�erential continuation approach.

II.C. Di�erential Homotopy Continuation Method

II.C.1. Path Tracking

Because the zero curve is not necessarily monotonous, or can have turning points (as pictured in Fig. 1),
it is actually convenient to work with the arc length s instead of τ directly. We thus write H(x(s), τ(s))
for curve tracking, di�erentiate with respect to the arc length s, and get the tangent vector that gives the
direction to follow.
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The curve (x(s), τ(s)) ⊂ H−1(0) is the solution of the equivalent initial value problem[18]:

dH

ds
= T

(
dH

dx
(x(s))

)
(4)

x(0) ∈ H−1(0) (5)

where T (A) would denote the tangent vector to an mapping A. This is illustrated on Fig. 1. Basically,
any ordinary di�erential equation solver can tackle the problem of Eq. (4). More conveniently however, the
tangent vector is given by

dH

ds
=

dH

d[x, τ ]

d[x, τ ]

ds
= 0 (6)

which yields [
dx
ds
dτ
ds

]
∈ ker

(
dH

d[x, τ ]

)
(7)

and the tangent can be chosen such that, ∥∥∥∥∥
[
dx
ds
dτ
ds

]∥∥∥∥∥ = 1 (8)

with the derivatives dH
d[x,τ ] obtained analytically or numerically. The tangent vector and the update on τ

are then computed for a given step increase ∆s. In that way, the homotopy parameter does not necessarily
increase to ensure a better curve tracking.

Because the step length ∆s cannot be computed e�ciently, the next initial guess point is unlikely to stay
on the tracked curve, and thus correction steps may be required to go back on the curve.

II.C.2. Necessary Conditions

There are necessary conditions for a homotopy path to exist:

1. the Jacobian matrix Hx(x, τ) has rank n, where n is the dimension of x, on the manifold H−1(0). This
condition ensures that the path does not cross itself.

2. H(x, τ = 0) has a unique solution.

3. H is bounded, or smooth.

Often, homotopy continuation methods are termed probability-one homotopy methods because if a zero-
path exists (almost always) then following the path always leads to a solution of the problem.

For this study, we assume that all these conditions are satis�ed. They can be ensured easily in part
considering the space trajectory problem dynamics, constraints and objective function are continuous, and
by formulating consistent boundary constraints.

II.D. Continuation with Respect to Physical Parameters

Continuation and homotopy are often used when a solution to a problem is known, and the search for an
initial guess of a more complex problem is tedious. In this case, the initial conditions or problem parameters
are changed. For instance, in the case of low-thrust trajectory problems, the homotopy parameter can be
the thrust amplitude[19], a gravitational parameter[20, 21], dates[22], etc... A similar approach applied to
space trajectory problem can be found in Ref. [23]. Often the homotopy consists of changing a �nite set
of variables. In Ref. [22] however, the authors use directly a solution trajectory as initial guess, instead
of the usual costate vector. This approach seems particularly well suited for discrete time methods (direct
methods, collocation, multiple shooting, ...). Furthermore, a continuation scheme is proposed for both the
terminal constraints and the objective value function.

When the homotopy variable is a dynamical parameter the method can basically allow a di�erent ex-
ploration of interesting domains of the solution space, provide more controllability, and eventually return

4 of 13

American Institute of Aeronautics and Astronautics



a-priori non-trivial solutions. For instance, in a interplanetary space trajectory problem an advantage of
continuation with respect to the gravitational parameter is the a priori weak initial guess requirement[23],
and the conservation of the angular range[20]. Solutions to the zero-gravity case are readily found. The
conservation of angular range �xes the problem geometry, which is particularly suitable for space interplan-
etary trajectory problems where phasing is an issue (e.g. for rendezvous, swingbys and �ybys). However,
a deformation of the dynamical problem can bring other theoretical issues that prevent easily �nding any
solutions.

It is known that second order gradient methods can solve di�cult optimal control problems (in the sense
of complex dynamics)[12, 4]. Combining both approaches, the gradient method with a physical parameter
homotopy technique, one may be able to actually �nd interesting solutions, such as optimal swing-by ma-
neuvers, low-energy transfers, ... The purpose of the present study is thus to propose a method that would
simplify the initial guess need for di�cult optimal control problems.

III. Modi�ed Gradient Method with Homotopy Continuation

III.A. Problem Description

Consider a general continuous space trajectory problem. The dynamics are denoted:

dx

dt
= f(x,u, p; t) (9)

with state x and, control u such that
‖u‖ ≤ 1 (10)

and a parameter p.
A set of initial conditions is given by:

φ(x(t0), p) = 0 (11)

And terminal constraints of the form:
ψ(x(tf )) = 0 (12)

The optimization is about the minimization of an objective function written in Mayer form:

min
u
J(u, p) (13)

The objective function is minimized with respect to the control u. The parameter p is present to introduce
a path following method and will play the role of the homotopy parameter. Consequently, p does not need to
minimize J if the homotopy map describes only the constraint satisfaction and not the �rst order optimality
conditions.

III.B. Sensitivity Equations and Control Update

The following developments can be found in the work of the author, and Refs.[12, 5]. They are brie�y recalled
here for completeness. For this problem, consider the extended value function:

V (u,ν, τ) = J(u, τ) + ηTφ(x(t0), τ) + νTφ(x(tf )) +ψ(x(tf ))TCpψ(x(tf )) (14)

where ν is the Lagrange vector for the constraints, and Cp is a regularization matrix.
The Hamiltonian is simply:

H(x,λ,u, τ ; t) = λT f(x,u, τ ; t) (15)

as the objective does not include Lagrangian terms (integral terms).
The following transformations are used

δλ = Rδx+ Kdν (16)

dψ = KT δx+ Qdν (17)
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with R(t) ∈Mnx,nx(R), K(t) ∈Mnx,nk(R), and Q(t) ∈Mnk,nk(R).
A feedback update of the control is constructed with the form

δu = α+ βδx + ωdν (18)

with:

α = −H−1uuHu (19)

β = −H−1uu
(
Hxu + RT fu

)
(20)

ω = −H−1uuKT fu (21)

with α(t) ∈ Rnu , β(t) ∈ Mnu,nx(R), and ω(t) ∈ Mnu,nk(R), and R, K, Q are provided by the set of
di�erential equations:

dλ

dt

T

= −Hx +HuH
−1
uu (Hux +HuλA) (22)

And:

−dR
dt

= Hxx + RT fx + fxR + βT (Hux + fuR) (23)

−dK
dt

= KT fx + ωT (Hux + fuR) (24)

−dQ
dt

= KT fuω (25)

The matrix Q allows to compute an update of the Lagrange multiplier ν. The quantities Huu, Hu, Hux,
Huλ depend on λ and the derivatives of f .

These ODEs must be integrated backward, using the terminal conditions:

λ(tf ) =
∂J

dxf
+ νT

∂ψ

∂xf
+

∂ψ

∂xf

T

Cpψ (26)

And:

R(tf ) = Jxx + νTψxx + ψTCpψxx + ψTxCpψx (27)

K(tf ) = ψx (28)

Q(tf ) = 0 (29)

Once the ODE of the sensitivity matrices are integrated, an update on the control can be computed
with Eq. (18). Then, the state dynamical equations are integrated forward with the updated control. If the
second order developments are valid, this update leads to an improvement of the extended value function, a
subsequent reduction of the objective function and eventually a better satisfaction of the constraints.

III.C. Gradient Method with Homotopy Parameter

Based on the gradient method, a homotopy parameter is included to account for the deformation of the
problem. It is assumed that the algorithm works in steps such that the prediction and the correction back
to the curve are done concurrently. With su�ciently small updates, the gradient algorithm is expected to
follow the zero curve closely.

The method is based on the predictor-corrector technique of the di�erential homotopy continuation
method. However, the second order algorithm does not involve any root �nding problem in its current form,
because the optimality conditions are not expressed as constraints. The optimality of the solution is not
tackled by the homotopy method itself. Fortunately, the second order method, once provided a feasible
solution can e�ciently and rapidly reach the optimality conditions. Concentrating only on state constraints
satisfaction still provides a valid root �nding problem, suitable for the homotopy procedure.

Considering the problem variables {u, τ} and its size, it would be inconvenient to compute any Jacobian
to follow the zero-curve. Indeed, as a consequence of the Maximum Principle and Eqs. (16), (17), the
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maximizing control u(t) can be traded with the costate vector λ0 = λ(t0). The working variables can thus
be reduced to {λ0, τ} only. This results in a Jacobian of smaller dimension. This trade discards the second
order part, but it can be taken care of with the correction step.

The parameter τ must evolve within [0, 1], the initial value being 0. Based on the previous developments,
a gradient-based homotopy method can be developed, noting,

ψ̃ = H(xf , τ) (30)

Many di�erent homotopy maps are possible, and the di�culty of homotopy continuation methods is often
to �nd a map that is both simple to deform and provides the desired exploration of the search space.

The new constraint vector ψ̃ de�nes the terminal state constraints for the modi�ed gradient method.
But to apply the homotopy technique, the mapping used is actually applied to both the terminal state
constraints and the terminal transversality conditions, even though the latter are implicitly satis�ed by the
gradient method (see Eq. (26)). This is necessary to compute a Jacobian that would be of full rank to
construct a zero continuation path. Indeed, because of the tangent vector, the dimension of the null space
is necessarily one. By the theorem of dimension, the dimension of the constraint space must be of the
dimension of the decision vector space. This is the case for optimal control problems when considering the
transversality conditions.

The update of the homotopy parameter τ thus follows an update of the curvilinear abscissa s, as Eq. (7).
The update is computed using the sensitivities

dψ

dλ0
= Q0

(
KT

0 K0

)−1
KT

0 (31)

dλf
dλ0

= Kf

(
KT

0 K0

)−1
KT

0 (32)

The derivative with respect to the homotopy variable may be more complicated to compute if the dynamics
depends on τ . In this case, consider the additional ODEs,

−dV
dt

= KT
(
fuH

−1
uu (Hpu + Tfu)T + fp

)
(33)

−dT
dt

= Hpx + TT fx + Kfu (Hux + fuR) + fpR (34)

with V(tf ) = 0 and T(tf ) = 0. This yields to the sensitivity ∇τψ = V(t0). Considering the dimension
and the sensibility of the problem, this derivative can also be computed by �nite di�erences to avoid the
sometimes expensive integration of V and T.

A SVD can thus be used to compute the null space of ∇x,τH. The tangent direction T (H) of the path
with respect to s is a base of this null space[24].

T (H(x, τ(s))) =

[
dx
ds
dτ
ds

]
(35)

The orientation of the tangent vector is determined by considering the previous iterative tangent vector.
The two should point in the same average direction, and thus the angle between the two should be smaller
than π/2.

And, the update of the homotopy parameter τ is,

dτ = min

{
dτ

ds
∆s, 1− τ i

}
(36)

τ i+1 = τ i + dτ (37)

where ∆s is a �xed step. Small ∆s ensures accurate curve tracking, but many iterations.

The iterative process is twofold: �rst, the method provides an update of the homotopy parameter and
the control to move forward on the curve, then, the gradient method provides correction steps to get back
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on the curve. Thus, once a solution to the problem with the initial value of the homotopy parameter is
found, the algorithm performs a curve tracking of the path (u(t, τ), τ) by continuously modifying τ . Only
the projection of the tangent vector to τ is used for the prediction step.

The algorithm can indeed be quite slow, requiring many iterations. However, since H = 0 is solved
with an iterative gradient-type algorithm, which enjoys good contracting properties, the correction steps are
rather fast.

III.D. Algorithm

We describe the basic steps of the algorithm.

Step 0. Initialization

Using a nominal control u(t), compute the state trajectory x(t). Put τ = 0.

Step 1. Computation of the sensitivity matrices

Backward Integration of Eqs. (23, 24, 25).

Step 2. Computation of the updates

With sensitivity matrices R,K,Q, compute the control update δu using Eqs. (19, 20, 21). From the
sensitivity matrix Q, compute the update on the Lagrange multipliers for the constraints.

Step 3. Evaluate the values of the new constraints.

Integrate the dynamical equations with control u+δu and for the current value of τ . Then, evaluate the
constraints ψ(x; tf ).

Step 4. Computation of the tangent vector T (H(z, τ)).
If ‖ψ‖ ≤ ε, compute the tangent vector T (H(z, τ)) as follows:

• Compute the sensitivity of the constraints ψ with respect to the initial costate vector λ0 as with
Eq. (31).

• Using a SVD, compute the tangent vector in the s direction to the curve of H.

• For a �xed step ∆s, compute the change in τ for the next iteration using Eq. (36).

Otherwise, go to step 2.

Step 5. Test of termination

If τ = 1, stop. Otherwise go to step 1.

Steps 2 and 3 provide a correction of the control in a direction to the curve. If the change in τ is small
enough from one iteration to the next, steps 2 and 3 perform an exact correction back onto the curve of H.
Step 4 must be seen as an estimation step where an new initial guess control is set up for the next iteration.

IV. Applications

IV.A. Orbit Transfer Problem

To illustrate the homotopy method in the gradient based algorithm, a simple academic orbit transfer problem
is considered. The dynamics are given by

ṙ = vr (38)

v̇r =
v2θ
r
− µsun

r2
+A sin(u) (39)

v̇θ = −vrvθ
r

+A cos(u) (40)
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where r is the position radius, vr and vθ are respectively the radial and ortho-radial velocities. A is the
thrust amplitude that evolves with the spacecraft mass, so time t assuming a full thrust at all time (the mass
equation can thus be removed from the dynamical system). u is the steering control.

The problem is thus to �nd the steering control u that drives the spacecraft to satisfy the following
terminal constraints at terminal time tf ,

ψ(x; tf ) =

 vr(tf )

vθ(tf )− µsun√
r

λr(tf )− λvτ (tf )

2r
√
r

+ 1

 (41)

writing the costate vector λ = [λr, λvτ , λvr ]
T . With the objective of maximizing the �nal radius r(tf ),

these constraints place the spacecraft on the highest circular orbit for the given time of �ight. The initial
conditions are a position on a circular orbit.

The homotopy parameter is the gravitational parameter τ ≡ µsun in normalized units (µsun = 1). Note
then, that as the gravitational parameter changes, both the initial conditions and the terminal constraints
change with respect to τ . The homotopy map used is

H(x, τ) = ψ(x)− (1− τ)e (42)

e = ψ(x0) (43)

This homotopy map allows to set any initial guess as initial solution of the homotopy problem. The initial
guess control, for τ = 0, is piecewise linear with a discontinuity near half time.

Figure 2 shows the plots of the di�erent solutions when continuing τ . The case for τ = 0 is very signi�cant
because it does not include any central force �eld. One should wonder though if the dynamical model is
appropriate and a Cartesian model may be better. The �nal solution, for τ = 1 is a feasible solution
of the problem in the sense that is satis�es the constraints. However, as the optimality conditions have
been neglected during the path following, this solution may not be optimal and further re�nement may be
necessary. Although, this solution is a very good initial guess to the optimal control problem.
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Figure 2. Iterative solutions of the gradient homotopy method for the simple orbital transfer example

Figure 3 pictures the iterations of the di�erent solutions when continuing τ . It can be notice that as
µ becomes larger, the continuation step increase and the resolution becomes easier. Still, the number of
iterations take to solve the problem with homotopy is larger than for the case without homotopy, but in
the former case the user does not have to provide a good initial guess, which is of signi�cant importance for
more di�cult dynamical problems.
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Figure 3. Iterations of the gradient homotopy method for the simple orbital transfer example

IV.B. Restricted Three Body Problem, Transfer to a DRO

The low-thrust circular restricted three-body problem (CRTBP) is studied. The spacecraft departs from an
initial Moon orbit and the target is a distant retrograde orbit (DRO). DROs are speci�c periodic solutions of
the CRTBP[25], and they are known for their long-term stability and the low fuel requirement for transferring
to them. Their existence is only due to the third body, and they have been widely studied in the scope of
planar CRTBPs[26, 25, 27]. In particular, Hénon points out that DRO can exist at very large distance from
the second (smaller) body as long as the Hill's problem appropriately approximates the physical problem.
They are well suited for the de�nition of science orbits in very chaotic environments. For instance, few
studies have been done for Jupiter mission around Europa[28, 29].

Let's consider the Earth-Moon system, with gravity ratio µ = 0.01215. A circular orbit is assumed and
the Earth-Moon distance is approximately to 384400km. Note in this con�guration that xearth = [µ, 0, 0]
and xmoon = [µ−1, 0, 0]. The homotopy problem considers a variation of the thrust amplitude. The rationale
is that with high thrust the dynamical problem becomes more controllable, the control structure is simpler
and thus convergence is easier. The dynamics are described by

ẍ− 2ẏ = Tx +
∂Ω

∂x
(44)

ÿ + 2ẋ = Ty +
∂Ω

∂y
(45)

z̈ = Tz +
∂Ω

∂z
(46)

with the auxiliary function

Ω =
x2 + y2

2
+

1− µ
rearth

+
µ

rmoon
(47)

and where [Tx, Ty, Tz] de�nes the thrust vector. The thrust vector is bounded,

|T | ≤ Tmax (48)

The following homotopy on the thrust maximum amplitude is considered

Tmax = τT fmax + (1− τ)T 0
max (49)

The solution for τ = 1 is the solution of the original problem (T 0
max = 10T fmax). The terminal constraints
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are given by a initial point of the target DRO. Thus,

ψ(x; tf ) =



x(tf )− x0DRO
y(tf )

z(tf )

ẋ(tf )

ẏ(tf )− ẏ0DRO
ż(tf )


(50)

Eventually, the time of �ight is �xed and the minimum mass solution is sought.
The spacecraft engine has a speci�c impulse of 2500 s and a nominal thrust amplitude of T fmax = 0.3

N . With the homotopy continuation, the thrust amplitude will vary up to double this nominal value. The
spacecraft initial mass is 800 kg. The transfer time from a 20000 km circular orbit around the Moon to the
100000 km DRO around the Moon is �xed to be 30 days. The entry points of DRO (e.g. vertical velocity) for
di�erent distances are summarized up in table 1. The DRO considered lies in the XY-plane of the CRTBP.

Table 1. DRO initial point for di�erent value of µ

µ x0DRO ẏ0DRO
0.01215 10000 km −723.63 m/s

0.01215 50000 km −483.69 m/s

0.01215 100000 km −651.57 m/s

Continuation methods have been used for the CRTBP problem for �nding the DRO itself, and examples
can be found in Ref. [30]. Although, for �nding the optimal solution, the usual approaches consider the
continuation from the impulsive solution to the low-thrust solution. Other continuation schemes could have
been tried, for instance it would be interesting to vary the gravity ratio µ thus transitioning between a
two-body problem solution to a three body problem solution. This will be the subject of future work.

Figure 4 depicts the initial and �nal optimal trajectory, for τ = 1, bearing in mind that the initial solution
does not need to be optimal, only feasibly. It was indeed di�cult to get a saturating control for the initial
guess with high-thrust.

The �nal mass is 776kg. On Fig. 4 what should be observed is that both the initial and �nal trajectory
are in the plane. It also appears that the main features of the solution remain during the continuation.
Indeed, this is quite fortunate as a lower thrust would have make this solution trajectory infeasible.

V. Conclusions

A second order gradient method has been extended with a homotopy technique to solve space trajectory
optimal control problem. The homotopy technique reduces the need of good initial guess for the optimization
procedure. This approach also shows that it is easier to �nd solutions that better exploit the complex
dynamics of the problem. The overall algorithm proves to be robust but of slow convergence. The method
is demonstrated on examples with varying gravity physical parameters.

An attempt is also made for the automatic �nding of swing-bys. The approach for swing-by design
remains to be made consistent and tested on a wider range of mission pro�les. The lack of theory on local
optimality of this di�cult optimal control problem prevents any direct conclusions.
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