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Abstract

The aim of this paper is to explore the capabilities of a solar electric propelled spacecraft on a mission

towards circumsolar space. Using an indirect approach, the paper investigates minimum time of transfer

(direct) trajectories from an initial heliocentric parking orbit to a desired final heliocentric target orbit,

with a low perihelion radius and a high orbital inclination. The simulation results are then collected into

graphs and tables for a trade-off analysis of the main mission parameters.
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Nomenclature

A = matrix ∈ R7×3, see Eq. (A.2)

a = semimajor axis [ AU]

âT = propulsive acceleration unit vector

d = vector ∈ R7×1, see Eq. (A.3)

e = orbital eccentricity

f, g, h, k = modified equinoctial elements

H = Hamiltonian function

i = orbital inclination [ deg]

Id = thruster operation point

J = performance index

L = true longitude [ deg]

m = spacecraft mass [ kg]

mp = propellant mass [ kg]

P = input power to Power Processing Unit [ W]

PL = payload power [ W]

P⊕ = solar array initial output power [ W]

p = semilatus rectum [ AU]

r = Sun-spacecraft distance [ AU]

ra = target orbit’s aphelion radius [ AU]

rp = target orbit’s perihelion radius [ AU]

T = propulsive thrust [ N]

t = time [ days]

x = state vector

β = propellant mass flow rate [ mg/s]
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δ = ecliptic declination [ deg]

ηP = duty cycle

λ = adjoint vector

λ = adjoint variable

µ� = Sun’s gravitational parameter [ km3/s2]

ν = true anomaly [ deg]

ω = argument of perihelion [ deg]

Ω = right ascension of the ascending node [ deg]

Subscripts

0 = initial, parking orbit

1 = final, target orbit

Superscripts

· = time derivative

1 Introduction

The circumsolar space, with particular reference to the region around the Sun’s poles, is still,

to a large extent, an unexplored part of our Solar System. Despite a continuous progress of

remote sensing capabilities, an deep knowledge of the inner heliosphere can be obtained only

through accurate in-situ measurements [1]. In fact an in-depth analysis of the solar wind or
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a thorough measurement of the solar magnetic field, and of its interaction with the external

corona, requires the use (in situ) of a scientific probe. Even more interesting is the possibility

to observe the Sun at high inclinations above the Ecliptic plane.

The interest of the scientific community for exploring the circumsolar space has been revived

after the remarkable results of the Ulysses mission, including the observation of an unexplained

constant decrease of the solar wind since the beginning of space based recordings, and further

confirmed by the launch of the European probe Solar Orbiter [2], which is scheduled for the

beginning of 2017. Its operating orbit is characterized by a perihelion distance of about 0.28 AU

and an inclination greater than 25 deg with respect to the solar equatorial plane. Such a probe

is expected to provide detailed information both of the inner heliosphere and of the solar polar

regions. A closer view of the Sun will be given by the American Solar Probe Plus [3], whose

launch will take place on 2018. The Solar Probe Plus should be the first spacecraft capable of

traveling within the solar atmosphere (the solar corona) and reaching a distance of 5.9 million

kilometers (that is, 8.5 solar radii) from the photosphere, the region from which the photons

originate.

The difficulty of reaching the circumsolar space with a scientific probe comes from the high ∆V

necessary for those mission types. In fact, the desired scientific measurements typically require

the achievement of a heliocentric orbit with a low perihelion and a high inclination with respect

to the Ecliptic plane. For example, a circular orbit with a radius of 0.28 AU and an inclination

of 28 deg with respect to the Ecliptic plane would require a minimum ∆V ' 29 km/s using a

two impulse maneuver. Such a value could be reduced, the perihelion distance and inclination

being the same, using an elliptic orbit. In fact, with an aphelion radius of 0.8 AU the ∆V

decreases to about 17.2 km/s. The Ulysses mission, one of the very first missions dedicated

to watch the Sun closely, acquired an orbit inclination of 80 deg while retaining a perihelion

radius larger than 1 AU. The spacecraft left the Earth with a staggering speed of 11.3 km/s,

making it, at that time, the fastest interplanetary spacecraft ever launched. Such a high speed
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was the price to be paid to reach Jupiter and pump up there the inclination for free, which

also forced the orbit aphelion to be at roughly 5 AU.

The remarkably high values of ∆V that characterize space missions (also referred to as “high

energy” missions) toward the circumsolar space, usually require a high hyperbolic excess ve-

locity at launch and multiple gravity assist maneuvers to reduce the propellant consumption

within acceptable limits. For example, the Solar Probe Plus [3] mission plans seven flybys with

Venus, while the Solar Orbiter [2] mission schedules two flybys with Earth in addition to several

Venus gravity assists.

Clearly, the presence of multiple flybys makes the transfer trajectory design more difficult and

introduces constraints on the launch windows. On the other side, a direct transfer, which could

offer a higher flexibility on launch windows, would be impossible for a (chemical) high thrust

propulsion system, due to an excessively high value of ∆V . Not surprisingly, missions toward

the heliosphere have been studied using innovative propulsion systems like solar sails [4,5,6].

Indeed solar sails are particulary suitable for transfers in the inner solar system as the propulsive

force they generate is proportional to the local solar flux, which in turns varies with the inverse

square distance from the Sun. Note that, in a solar-powered spacecraft in which the electric

power is supplied by solar arrays, the maximum input power (and then the propulsive thrust)

is an involved function of the distance from the Sun [7,8], but also depends on the flight time

due to the solar cells degradation [9,10].

However, despite the recent successes of the Japanese IKAROS mission [11], which first used a

solar sail for an interplanetary mission, this kind of propulsion system does not yet offer a sat-

isfactory technology readiness level [12,13]. A possible alternative, which currently guarantees

a greater confidence level, is given by solar electric propulsion (SEP) technology [14,15]. As

is well known [16], the high specific impulse provided by SEP systems allows for a significant

reduction of the propellant necessary to complete the transfer. Current space missions designed
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to reach the inner part of the solar system with SEP technology, use SEP propulsion in com-

bination with multiple gravity assists to maximize the payload mass delivered into the final

operational orbit. Examples are the initial design of the Solar Orbiter mission [17] or the design

of the BepiColombo mission [18,19]. Furthermore, future concepts envisage the use of these

propulsion systems in conjunction with a solar sail, thus constituting a hybrid solution [20,21]

that seeks to overcome the intrinsic limitations of the each system alone.

In any case, an assessment of the performance of a pure SEP system for a direct transfer is

useful to evaluate the possible improvements provided by a hybrid solution, or by the inclusion

of gravity assist maneuvers. This paper addresses a preliminary performance investigation for

a spacecraft equipped with a SEP propulsion system, whose aim is to reach the circumsolar

space. The study takes into account the actual performance of a SEP system of last generation.

Minimum time trajectories necessary to obtain a direct transfer toward a target orbit with

prescribed characteristics are found using an indirect approach based on optimal control theory.

The rationale is that a minimum time trajectory provides an upper limit on the propellant

mass along a possible optimal time vs. mass trade-off curve for a direct transfer. In other words

any other optimal direct transfer solution that aims at minimizing the mass of propellant will

have a longer transfer time.

2 Problem Description and Simulations Results

Assume that the spacecraft, with an initial in-flight mass m0, is equipped with a solar electric

propulsion system, whose performance model is based on that of NASA’s Evolutionary Xenon

Thruster (NEXT) [22,23]. The problem is to find the minimum time, direct trajectory (that

is, without gravity assist maneuvers) that transfers the spacecraft from an Earth’s heliocentric

orbit to a Keplerian target orbit, under the assumption that perihelion radius rp, aphelion

radius ra and orbital inclination i1, are all given. The problem is solved by means of an indirect
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approach using the classical calculus of variations [24,25]. The corresponding mathematical

model, which is summarized in Appendix A together with the adopted nomenclature, is derived

from that presented in Ref. [26]. Note that, in all of the simulations, the initial ν0 and final ν1

spacecraft true anomaly, the final spacecraft mass m1, the target orbit’s argument of perihelion

ω1 and the right ascension of the ascending node Ω1, are all left free. Their optimal values are

therefore obtained as outputs of the optimization process.

For a given target orbit characteristics, that is, for a given set of values (rp, ra, i1), the minimum

flight time t1 is a function of both the initial spacecraft mass m0 and the initial solar array

output power P⊕ (see Appendix A for a definition of P⊕). Equivalently, in mathematical terms,

the flight time may be expressed as t1 = t1 (rp, ra, i1, m0, P⊕).

For example, assume that m0 = 1000 kg, P⊕ = 10 kW, and that the target orbit characteristics

are rp = 0.3 AU, ra = 0.8 AU and i1 = 24 deg. These data are consistent with the Solar Orbiter

(SOLO) working orbit [2]. The optimization process provides a minimum flight time t1 =

952.9 days, whereas the propellant consumption is mp , m0 −m1 ' 436.3 kg (the propellant

mass fraction is mp/m0 = 43.6%). The corresponding transfer trajectory is shown in Fig. 1,

where the asterisk denotes the perihelion of the parking and target orbit, whereas the circle

refers to the starting (or arrival) point.

The transfer starts when the spacecraft initial true anomaly is ν0 ' 136 deg, as is shown in

Fig.1(a), and it ends when the spacecraft completes approximately four revolutions around the

Sun. Note that the departure orbit coincides, by construction, with the Earth’s heliocentric

orbit (see Eq. (A.10)), and therefore an optimal launch window opens (yearly) on May 20.

Figure 2 shows the variation, with the orbital inclination i, of the perihelion [p/(1 + e)] and

aphelion [p/(1 − e)] radius of the osculating orbit along the optimal trajectory. In particular,

the figure shows that the orbital inclination varies with continuity during whole transfer but

experience a steep variation when the spacecraft at the nodes. Unlike a locally optimal steering
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(a) Three-dimensional view.
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(b) Ecliptic projection.

Figure 1. Optimal transfer trajectory when m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU,
ra = 0.8 AU, and i1 = 24 deg.

laws [27,28], a variation of all the orbital elements to optimize the performance index (in this

case the flight time) is typical of truly optimal control laws. Such a behavior is consistent with

what was observed by Dachwald [5] in a similar mission scenario in which a near-term solar

sail [29] reaches an heliocentric orbit with a low perihelion radius and a high inclination.

Figure 3 shows the time variation of the Sun-spacecraft distance r and the spacecraft (ecliptic)

declination δ during the optimal transfer. Note that δ is the angle between the Sun-spacecraft
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Figure 2. Orbital inclination over perihelion and aphelion radius of the spacecraft
osculating orbit (with m0 = 1000 kg and P⊕ = 10 kW).
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line and the Ecliptic plane. Note that the local minima of r are all located in the neighboring

of the Ecliptic plane (δ = 0).
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Figure 3. Sun-spacecraft distance r and ecliptic declination δ vs. time (with
m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU, and ra = 0.8 AU).

2.1 Sensitivity analysis

A sensitivity analysis of mission performance, obtained by varying the initial spacecraft mass

in the range m0 ∈ [550, 1350] kg and the initial solar array output power in the interval P⊕ ∈

[5.5, 10] kW, is now presented. Note that a variation of P⊕ with respect to the reference value

(of 10 kilowatts) may reasonably be used to model a (partial) failure of the solar electric power

system. The simulation results are summarized in Tables 1 and 2, whereas the corresponding

trajectories are shown in Figures 4 and 5. When the initial electric power P⊕ is kept fixed,
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and initial mass m0 is varied within the selected range, the propellant mass fraction displays

a small fluctuation around a mean value of about 43.21%, see the third column of Table 1.

This corresponds roughly to a linear variation of the propellant mass mp versus the spacecraft

initial mass, in the selected range. A similar conclusion holds true for the minimum flight time

t1 versus m0, which may be approximated as

t1 ' 0.9479 m0 (1)

where t1 is expressed in days and m0 in kilograms.

Note that the propellant throughput capability of a NEXT propulsion system [30] is about

450 kg (qualification-level), which corresponds to 22000 hours of operation at maximum thrust

(operation point Id = 1, see Fig. A.1). Therefore, according to Table 1, only the mission scenario

in which m0 ≤ 1050 kg is consistent with the actual characteristics of a single propulsive unit.

However, laboratory tests [31,32] indicate that the NEXT thruster could (potentially) provide

a propellant throughput greater than 750 kg, and this enhanced capability would make other

mission scenarios possible.

For a given initial spacecraft mass m0, the propellant mass fraction mp/m0 is strongly affected

by the value of P⊕, see the third column of Table 2. This behavior is closely related to the

propulsion system mathematical model described in Appendix A. In fact, as the simulations

show, the optimal thrusting strategy consists of selecting (at any time) the maximum propulsive

thrust. If the available power is always greater than 7.22 kW, then the thruster operation point

is Id = 1 along the whole transfer trajectory. This explains why a initial power P⊕ ≥ 9.5 kW

gives the same mission performance, see the last two rows in Table 2. However, when the

available power becomes less than 7.22 kW, because either the spacecraft is too far from the

Sun or the value of P⊕ is insufficient, the optimization process selects an operation point

different from Id = 1. This situation is illustrated in Figure 6, where the time history of the
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(f) m0 = 1200 kg.

Figure 4. Ecliptic projection of the optimal transfer trajectory as a function of the
initial mass m0 (with P⊕ = 10 kW, rp = 0.3 AU, ra = 0.8 AU, and i1 = 24 deg).
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m0 [ kg] t1 [ days] mp/m0 mp [ kg]

550 509.7 0.4243 233.3

600 550.2 0.4198 251.9

650 601.7 0.4239 275.5

700 658.6 0.4308 301.5

750 712.8 0.4351 326.3

800 749.9 0.4292 343.4

850 793.2 0.4273 363.2

900 843.4 0.4291 386.1

950 902.9 0.4351 413.4

1000 952.9 0.4363 436.2

1050 998.1 0.4352 457.0

1100 1031.2 0.4292 472.1

1150 1080.7 0.4303 494.8

1200 1135.6 0.4333 519.9

1250 1187.0 0.4348 543.5

1300 1240.1 0.4368 567.7

1350 1307.4 0.4434 598.6

1400 1319.2 0.4314 604

1450 1371.7 0.4331 628.1

1500 1432.8 0.4373 656

1600 1511.1 0.4324 691.8

1700 1612.4 0.4342 738.3

1800 1720 0.4375 787.5

Table 1
Mission performance as a function of the initial spacecraft mass m0 (with P⊕ =
10 kW, rp = 0.3 AU, ra = 0.8 AU, and i1 = 24 deg).

thruster operation point Id is shown as a function of P⊕.

The flight time and the propellant mass fraction depend on the target orbit characteristics.

For example Tables 3 and 4 show the mission performance as a function of i1 ∈ [0, 50] deg and

ra ∈ [0.3, 1] AU, respectively. Note that the case of i1 = 0 corresponds to a two-dimensional

transfer towards an elliptic target orbit with perihelion radius rp = 0.3 AU and aphelion radius

ra = 0.8 AU. The case of ra = 0.3 AU, instead, corresponds to an optimal transfer towards a

circular heliocentric orbit with inclination i1 = 24 deg, see Fig. 7.
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P⊕ [ kW] t1 [ days] mp/m0

5.5 1278.6 0.5125

6 1134.7 0.4895

6.5 1044.6 0.4713

7 1004.6 0.46

7.5 1003 0.4592

8 987.2 0.4520

8.5 964.8 0.4418

9 959.7 0.4394

9.5 952.9 0.4363

10 952.9 0.4363

Table 2
Mission performance as a function of the initial solar array initial output power
P⊕ (with m0 = 1000 kg, rp = 0.3 AU, ra = 0.8 AU, and i1 = 24 deg).

i1 [ deg] t1 [ days] mp/m0

0 673.4 0.3083

5 693.6 0.3176

10 732.9 0.3355

15 788.3 0.3609

20 873.9 0.4001

25 965.8 0.4422

30 1052.8 0.4820

35 1128.4 0.5166

40 1251.2 0.5578

50 1583.5 0.6367

Table 3
Mission performance as a function of i1 (with m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU,
and ra = 0.8 AU).

3 Conclusions

The design of high-energy space physics missions offer the intriguing opportunity to explore

the capabilities of both advanced electric propulsion concepts and optimization algorithms.

This paper thoroughly investigates minimum time optimal transfer scenarios for a mission to
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(d) P⊕ = 9kW.

Figure 5. Ecliptic projection of the optimal transfer trajectory as a function of the
initial solar array output power P⊕ (with m0 = 1000 kg, rp = 0.3 AU, ra = 0.8 AU, and
i1 = 24 deg).

the circumsolar space, in which a solar electric propelled spacecraft enters an elliptical highly

inclined orbit around the Sun with a perihelion radius of 0.3 AU (about 65 solar radii).

Using an indirect approach, a number of time-optimal (direct) transfer trajectories have been

simulated, and the resulting data have been collected in graphs and tables for a trade-off

analysis of the main mission parameters. Taking into account the actual performance of an

advanced electric propulsion system (the NASA Evolutionary Xenon Thruster), the simula-
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Figure 6. Thruster operation point Id vs. time as a function of the initial solar
array output power P⊕ (with m0 = 1000 kg, rp = 0.3 AU, ra = 0.8 AU, and i1 = 24 deg).

tions show that a spacecraft with an initial mass of 1000 kg reaches a target orbit of inclination

24 deg and aphelion radius 0.8 AU in about 2.6 years. In this mission scenario, the final space-

craft’s mass is slightly greater than the 56% of the initial in-flight mass. This rather small value

could be increased, at the expense of an increased flight time, by including, in the performance

index, a term depending on the final spacecraft’s mass. On the other hands, a transfer trajec-

tory that minimizes only the propellant consumption, should be time-constrained. Therefore,

the results of the minimum-time problem ensure that the time-constraint in a fuel-optimal

problem is feasible. The use of optimal control theory has provided an optimal switching law

for the operation point of the engine showing substantially different behaviors depending on
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ra [ AU] t1 [ days] mp/m0

0.3 1240 0.5679

0.4 1151.5 0.5272

0.5 1078.6 0.4938

0.6 1018.8 0.4665

0.7 969.7 0.444

0.8 952.9 0.4363

0.9 914.5 0.4187

1 893.5 0.4091

Table 4
Mission performance as a function of ra (with m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU,
and i1 = 24 deg).
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Figure 7. Ecliptic projection of the optimal transfer trajectory when m0 = 1000 kg,
P⊕ = 10 kW, rp ≡ ra = 0.3 AU, and i1 = 24 deg.

the available power. This situation can correspond to an intentionally undersized power system

or to a partial failure.

A natural extension of the analysis discussed in this paper, is to include one or more gravity-
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assist maneuvers, whose aim is tho reduce the propellant consumption, as in the case of the

ESA’s Solar Orbiter mission study. However, a multiple gravity assist trajectory places ad-

ditional constraints related to the planetary ephemerides, whereas a direct transfer offers a

greater flexibility.

A Mathematical Model

The equations of motion [33,26] of a solar electric propelled spacecraft, in a heliocentric inertial

reference frame, may be expressed in terms of Modified Equinoctial Orbital Elements [34,35]

(MEOE) p, f , g, h, k, and L as:

ẋ = ηP (T/m) A âT + d (A.1)

where x , [p, f, g, h, k, L,m]T is the state vector, m is the spacecraft mass, T ≥ 0 is the

propulsive thrust modulus, âT is the thrust unit vector, and ηP = 0.92 is the duty cycle.

The latter, according to Rayman and Williams [8], is the fraction of time during deterministic
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thrust periods in which T 6= 0. In Eq. (A.1), A ∈ R7×3 is a matrix in the form:

A ,

√
p

µ�



0

[
2 p

1 + f cos L + g sin L

]
0

[sin L]

[
(2 + f cos L + g sin L) cos L + f

1 + f cos L + g sin L

] [
−g (h sin L− k cos L)

1 + f cos L + g sin L

]

[− cos L]

[
(2 + f cos L + g sin L) sin L + g

1 + f cos L + g sin L

] [
f (h sin L− k cos L)

1 + f cos L + g sin L

]

0 0

[
(1 + h2 + k2) cos L

2 (1 + f cos L + g sin L)

]

0 0

[
(1 + h2 + k2) sin L

2 (1 + f cos L + g sin L)

]

0 0

[
h sin L− k cos L

1 + f cos L + g sin L

]

0 0 0



(A.2)

where µ� = 132 712 439 935.5 km3/s2 is the Sun’s gravitational parameter, and the vector

d ∈ R7×1 is defined as

d ,

0, 0, 0, 0, 0,
√

µ� p

(
1 + f cos L + g sin L

p

)2

,−ηP β

T

(A.3)

where β ≥ 0 is the propellant mass flow rate. Note that p is the semilatus rectum of the

spacecraft osculating orbit, whereas the transformations from MEOE to the classical orbital
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elements are

a =
p

1− f 2 − g2
(A.4)

e =
√

f 2 + g2 (A.5)

i = 2 arctan
√

h2 + k2 (A.6)

sin ω = g h− f k , cos ω = f h + g k (A.7)

sin Ω = k , cos Ω = h (A.8)

ν = L− Ω− ω (A.9)

where a is the semimajor axis, e is the eccentricity, i the orbital inclination, ω is the argument

of perihelion, Ω is the longitude of the ascending node, and ν is the true anomaly.

In a solar electric propelled spacecraft, the thrust level and the propellant mass flow rate are

closely related to the input power P to the Power Processing Unit (PPU). In particular, an

electric thruster has a finite number of operation points [22,23], each one characterized by a

corresponding set of values of T , β, and P . If the propulsion system performance coincides with

that of a NEXT ion thruster, a set of 40 operation points (or Id) is available [23], see Fig. A.1. In

the simulations, a fictitious operation point (that is Id = 41, where T = 0 and β = 0) has been

added to the actual NEXT thrust table, to model the presence of possible coasting phases in

the spacecraft optimal trajectory. Therefore, within this simplified model, the operation point

Id ∈ N+ (with Id ≤ 41), represents the only control parameter that describes the thruster

performance in terms of T and β.

For example, when the first operation point Id = 1 is selected, the propulsion system sup-

plies the maximum thrust (about 0.236 N) at the maximum propellant mass flow rate (about

5.76 mg/s), see Fig. A.1. Note that the condition Id = 1 can be selected only if the PPU input
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Figure A.1. Propulsion system operation points in terms of thrust T , propellant
mass flow rate β, and PPU input power P (data adapted from Ref. [23]).

power is (at least) 7.22 kW. In fact, assuming a photovoltaic power generation system with

degradation effects [8,36], the set of all admissible operation points is strictly related to the

available input power. The latter is defined as the difference of the solar array output power

and the power allocated to operate the spacecraft systems PL , 400 W. Therefore, when an

initial output power P⊕ is given, the set of admissible operation points depends both on the

spacecraft-Sun distance and the time [8]. The mathematical model and the flow diagram of

the electric power calculation are discussed in Ref. [26]. In this paper P⊕ is chosen to coincide

with the solar array output power at the beginning of the mission at a reference Sun-spacecraft

distance equal to 1 AU.
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A.1 Trajectory optimization

Assume that the initial (corresponding to t0 , 0) spacecraft osculating orbit coincides with

the Earth’s (Keplerian) heliocentric orbit, viz.

p(t0) = 9.9878× 10−1 AU , f(t0) = −3.5778× 10−3 , g(t0) = 1.5344× 10−2

h(t0) = −1.5181× 10−5 , k(t0) = 2.1250× 10−5 (A.10)

This scenario is representative of a spacecraft injection on a parabolic Earth escape trajectory,

with zero hyperbolic excess energy with respect to the planet.

The optimization problem consists of finding the minimum time trajectory that transfers the

spacecraft from the initial orbit to a final (prescribed) target orbit. This amounts to maximizing

the objective function J , −t1, where t1 is the total flight time. Using an indirect approach [25],

the optimal thrust direction âT is obtained through Pontryagin’s maximum principle [37,38]

as

âT =
AT λ

‖AT λ‖
(A.11)

where λ ∈ R7×1 is the adjoint vector

λ , [λp, λf , λg, λh, λk, λL, λm]T (A.12)

whose time derivative is given by the Euler-Lagrange equations λ̇ = −∂H/∂x where H ,

[ηP (T/m) A âT · λ + d · λ] is the Hamiltonian function. According to Ref. [26], the optimal

thrust level T (and so the propellant mass flow rate β) is obtained, using a numerical ap-

proach [39], by maximizing the Hamiltonian H with respect to Id. Note that the maximization

process of H should take into account the constraint condition on the actual value of the

available power for the propulsion system.
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The spacecraft motion is described by the seven equations of motion (A.1) and the seven Euler-

Lagrange equations. This differential system must be completed with 14 suitable boundary

conditions, the first five of these are shown in Eq. (A.10). Because the initial spacecraft angular

position is left free, the initial true longitude L(t0) is an output of the optimization process. The

sixth boundary condition refers to the initial (given) spacecraft mass m0 , m(t0), whereas the

remaining eight conditions (along with the minimum flight time t1) are obtained by enforcing

the transversality condition [24], following the procedure described in Refs. [40,41]. Note that,

when the inclination i1, the perihelion radius rp, and the aphelion radius ra of the heliocentric

target orbit are all fixed, Eqs. (A.5) and (A.6) provide the following three constraints on the

final value (subscript 1) of MEOE:

i1 = 2 arctan
√

h2
1 + k2

1 ,
ra − rp

ra + rp

=
√

f 2
1 + g2

1 , p1 =
2 rp ra

rp + ra

(A.13)

A set of heliocentric canonical units [42], in which the spacecraft initial in-flight mass m0

coincides with the mass unit, has been used in the integration of the differential equations to

reduce their numerical sensitivity. The equations of motion and the Euler-Lagrange equations

have been integrated in double precision using a variable order Adams-Bashforth-Moulton

solver scheme [43,44] with absolute and relative errors of 10−12. Finally, the boundary-value

problem associated to the variational problem has been solved through a hybrid numerical

technique that combines genetic algorithms (to obtain a first estimate of adjoint variables),

with gradient-based and direct methods to refine the solution.
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