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Weierstrass elliptic and related functions have been recently shown to enable analytical
explicit solutions to classical problems in astrodynamics. These include the constant radial
acceleration problem, the Stark problem and the two-fixed center (or Euler’s) problem.
In this paper we review the basic technique that allows for these results and we discuss
the limits and merits of the approach. Applications to interplanetary trajectory design
are then discussed including low-thrust planetary fly-bys and the motion of an artificial
satellite under the influence of an oblate primary including J> and J; harmonics.

Nomenclature

Generic function, polynomial

Generic 3rd or 4th order polynomial

Complex variables

Imaginary part of a complex number

Real part of a complex number

Weierstrass elliptic function

Inverse of the Weierstrass elliptic function
Weierstrass Zeta function

Weierstrass Sigma function

92,03 Lattice invariants

w1, Wa, W3 Half-periods of the Weierstrass elliptic and related functions
e1,€s, €3 Lattice roots

€1,€a,¢3(,¢€4) Roots of the third (or fourth) order polynomial
Sundmann transformed pseudo-time (or anomaly)
Pseudo-time of root passage

Constants

Specific energy

Kinetic energy

Potential

angular momentum

semi-major axis

eccentricity

orbital parameter

flight path angle

asymptote deflection angle

gravitational parameter

spacecraft acceleration
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v radius and velocity magnitudes
& parabolic coordinates
0 true anomaly

Special notation

r,v vectors

I derivative

f time derivative

Subscripts

m referred to a polynomial root (root passage, pericenter)
K Keplerian

0 At infinity

I. Introduction

Weierstrass elliptic and related functions appear in the solution of many problems in physics. In general
relativity, for example, they are an established tool to tackle complex issues.' ™ In astrodynamics, only
recently, they have been used to find explicit solutions to three fundamental problems: the constant radial
acceleration problem,® the Stark problem® and the two fixed center problem,” also known as Euler’s three
body problem. The constant radial acceleration problem consists in describing the motion of a point mass
particle subject to a central gravity field and to an additional constant radial acceleration. The Stark
problem consists in describing the motion of a point mass particle subject to a central gravity field and to
an additional acceleration constant in the inertial reference frame. The Euler’s three body problem consists
in describing the motion of a point mass particle subject to the gravity field of two masses fixed in the
inertial frame. In all cases, the resulting dynamical system is integrable in the Liouville sense and in all cases
the resulting dynamics, extensively studied both from a theoretical and an applicative perspective, admits
an explicit analytical solution via the use of Weierstrass functions and the introduction of anomalies (or
pseudo-times) introduced via Sundmann transformations. The actual solution in the real time is recovered
by solving a transcendental function of such anomalies or pseudo-times (analogues to Kepler’s equation). It
is interesting to both note and further study the close analogy to the solution to Kepler’s problem. Indeed
the procedures and expressions are, at least formally, analogues of the Keplerian ones: the main difference
being in their use of Weierstrass elliptic and related functions rather than of circular functions.

In this paper we review the generic solution procedure that allowed to obtain these results and we
discuss the computer implementation of the new resulting procedures. We start with a basic introduction
to Weierstrass elliptic and related functions and their relation to applications in astrodynamics. We then
discuss the computer implementation of these functions showing how their evaluation cost is, essentially,
comparable to that of circular functions when we restrict the evaluation to the real axis and assume the
lattice properties as known. In the following section the constant radial acceleration problem is considered
and a procedure to solve the initial value problem is detailed where evaluations of the Weierstrass functions
are kept in the real domain in most of the cases. Then, the case of a radially powered planetary fly-by is
studied in detail and an expression returning the asymptote deflection angle is developed. In the following
section we turn our attention to the 2D Stark problem, first deriving the full solution, and then studying a
second case of powered fly-by, here called the Stark fly-by. We find analytical expression that allow to design
such a fly-by with ease thus allowing to study the exploitation of Oberth effect in a low-thrust trajectory. In
the final section, we briefly show how the problem of artificial satellite motion under a gravity field including
the Jy and J3 perturbations also has an analytical, explicit solution in terms of the Weierstrass functions.

II. Weierstrass elliptic and related functions

Weierstrass elliptic and related functions are a group of special functions that were studied and introduced
by Karl Weierstrass at the end of the 19th century as an improvement over the Jacobian elliptic functions
sn, cn and dn. Today it is accepted® that they constitute a superior tool to construct a generic theory of
elliptic functions and that they are often advantageous to solve integrals in the form:

/f(;m/]%) da
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Figure 1. The two possible lattices in C having real invariants g» and g3

where f is a function of x and of the square root of a third or fourth order polynomial P not resolved into
factors (Byrd® pag. 1889) (if the polynomial is resolved into known fixed factors, the Jacobian approach
often offers a valid alternative). We report briefly the definition of these functions and a few theorems
that establish their fundamental relation to fundamentals problems in astrodynamics. We follow and use
the conventions and developments discussed extensively in the on-line version of the NIST Handbook of
Mathematical Functions.'®

II.A. Definition

Consider any pair of complex numbers wy,ws € C such that $(ws/wq) > 0. This last request makes sure
that one can rotate counterclockwise w; until an overlap to ws spanning less than 180 degrees. The set of
points 2nwi + 2mws with n, m € Z define a lattice IL in the complex plane. The quantities 2w; and 2ws3 are
called lattice generators and are not unique. If, for example, wy + wo + w3 = 0, then 2ws, 2ws and 2ws, 2w
are also generator of the same lattice L. Weierstrass defined the following function:

=5+ ¥ (e m)

wel\{0}

where the series is uniformly and absolutely convergent, and thus the exact order of its terms is irrelevant.
When not needed, the underlying lattice L is omitted from the notation. From the above definition it follows
that p(z + 2w;) = p(2), hence p is a doubly periodic function in C, that is p is an elliptic function. In a
similar way, Weierstrass introduced two more functions, o(z|LL) and {(z|L), quasi-periodic, thus not elliptic,
and having the following differential relations to g:

p(z) = '(2)
((2) =0'(2)/a(2)

The following quantities are the so-called lattice invariants:

92 - 60 ZIUEL\{O} U)_4

gs = 140 ZwE]L\{O} w6
they are constants defined as a sum over all the lattice points except the origin and are thus determined
solely by the lattice itself. Each couple of lattice generators (for example wy, w3) thus determine univocally
the lattice invariants. Conversely, given a couple of complex numbers, there is only one lattice I having
them as invariants. The polynomial g(w) = 4w® — gow — g3, factorized as g(w) = (w — ey )(w — ez)(w — e3),
defines the lattice roots e;. Given any pair of generators wy,ws and we = —w; — ws, the lattice roots can
be ordered and identified through the relation:

p(wi) = e
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Figure 2. Plot of the Weierstrass functions p(z), ((z) and o(z) for g3 = 0 (lemniscatic case), g» = [0.1,0.2,0.5,0.8] and a
real x.

which we will assume valid in all of the following developments. In most of the applications that we are
interested in, the lattice invariants are real numbers. From the lattice invariants definition it is immediate
to see that when a lattice is symmetric with respect to the real axis then necessarily g2, g3 € R. It is possible
to show that this is also a sufficient condition so that only two types of lattices will be possible resulting
in real lattice invariants and are visualized in Figure 1. The following relations derive from the identity
w3 — gow — g3 = (w — e1)(w — e3)(w — e3) and link the lattice roots to its invariants :

e1+e+e3=0
g2 = —4(e1e2 + e1e3 + eze3)

g3 = 4ejeze3

The discriminant A = g3 — 273 determines whether the roots will be all real and distinct (A > 0) or one
real and two complex conjugates (A < 0), as well as the lattice type (see Figure 1). Note that under the
selected convention w; is always real and ws is either a pure imaginary number (A > 0, the lattice roots
are all real) or a complex quantity with positive imaginary part (A < 0, only one lattice root is real). The
fundamental result revealing the importance of lattice invariants is the differential identity:

"% =4p° — 920 — g3
which also implies the important integral definition for p,

z= / (453 —ggs—gg)_%ds
o(z)

II.B. Relevance to Astrodynamics

The importance of Weierstrass elliptic and related functions to astrodynamics can be best appreciated
considering the following integral definition of a function 7:
¢ 1
() — T = =% ds 1
(@) = 7m e, Vst +4a183 + 6a252 + dazs + ay (1)

which appears in many fundamentals problems of astrodynamics as the relation between a pseudo-time 7
(or an anomaly) and a state variable x. A generic procedure to solve the above integral and find z(7) rather
than 7(x) is well described in the classic book from Whittaker and Watson!'! (see §20.6), and results, when
ao and a1 are not both null and the polynomial f = ags* +4a; s>+ 6a25? +4azs +as has no repeated factors,
in the use of the following inversion formula:

A
p(T - TmagZagf)’) - B

(2)

(1) = Tm +
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Function type | evaluations | ns / evaluation
real sin double | 20000000 62
real p double | 10000000 178
real ' double 5000000 215
real double | 10000000 166
real o double | 10000000 175
complex sin double | 10000000 175
complex p double 2000000 532
complex ' double 2000000 787
complex p~! || double | 1000000 1643
complex ¢ double 2000000 531
complex o double 2000000 659

Table 1. Performances of Weierstrass elliptic and related functions as implemented in the project w_elliptic. Results
for the standard sin function (std::sin) are also shown for comparison.. The table has been obtained running the project
test suite compiled using gcc using the -ffast-math flag on a Intel(R) Core(TM) i7-3610QM CPU.

where x,, is a root of f, A =1/4f"(xg), B =1/24f"(x¢) and the two lattice invariants are:

go = agay — 4ajaz + 3a§ 3)

g3 = G204 + 2a1a9a3 — ag — aoag — a%a4

The quantity 7,,, is what we call “time of root passage” since x(7,,) = T, and can be computed writing
Eq.(2) at 7 = 0 and finding p from it:
A
Tm) =B+ — 4
plrm) = B+ —— @
where xq is the initial value z(0). The inversion of the Weierstrass function will return two valid values for
T,n, Which reflect the original ambiguity in the integral sign. Such an ambiguity is solved forcing the initial

condition. The derivative of Eq.(2) with respect to 7 is:

2

z(T) — T,
(1) = 77( ( )A ) o' (T —Tm) (5)
which, for 7 = 0, holds:
Ax!
/ _ 0
p (Tm) - (CUO _ mm)2

which can be used to univocally determine 7, from the initial condition zj. It is noteworthy that any root
Zm of the polynomial f(s) can be used with the above formulae be it a real, pure imaginary or complex
root. Choosing a real root, when possible, has two main advantages: it allows to define the origin of the 7
pseudo-time variable so that 7,,, = 0, and it keeps all the computations in the real domain (i.e. no complex
quantities involved) resulting in a significant increase in the efficiency of evaluating the expressions on a
computer as shown in the next section.

II.C. Notes on the computer implementation

The computer implementation of Weierstrass elliptic and related functions received little or no attention
from the computer science community in the last decades. As a consequence, not many languages nor tools
are offering the possibility to compute these functions and it is very difficult to assess their use in terms of
computational efficiency, for example with respect to the much more studied and popular Jacobi’s elliptic
functions. An attempt was recently made, limited to the Stark problem, by Hatten and Russel'? who, not
having access to efficient implementations of the Weierstrass functions nor of the expressions using them,
were forced to conclude that Weierstrass functions carry a computational penalty with respect to other
methods. Such a conclusion was also later used to justify the methodology adopted by Beth et al. in their
study on planetary exospheres.!®14 In reality, while it is true that the construction of the lattice from
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the invariants g, g3 is a necessary step whose cost must be paid, once this step is performed the actual
evaluation of the Weierstrass elliptic and related function is extremely fast as shown in Table 1 where their
speed is compared to the computational speed of the simplest trigonometric function (std::sin). In order
to build such a table we programmed a C++ (and python) open source project called w_elliptic (https:
//github.com/bluescarni/w_elliptic) that implements efficient versions of these functions distinguishing
with respect to the argument type being a complex or a real (double) number. It is not in the scope of this
paper to discuss the implementation details of w_elliptic, which is still undergoing further optimization and
improvements and is the subject of a dedicated paper under preparation.'® It is, though, very clear that
these functions can be computed extremely efficiently, especially in the real domain. We will see in the rest
of this paper how indeed most of the expressions involved in the solution of fundamental astrodynamical
problems can be written as to keep the argument of the Weierstrass functions in the real domain. Any use
of explicit solutions in terms of Weierstrass functions using their complex implementation is bound to be
much slower as shown in the Table.

III. Solution to the constant radial acceleration initial value problem

Previous work® reported the fundamental theoretical developments that lead to solve explicitly the radial
acceleration problem. We here use those developments to establish a procedure to find the spacecraft position
and velocity r,v at any time t.

Define the motion invariants, i.e. the angular momentum and the specific energy:

h=7r20=ryx v (6)
2
v

5:30—%—ar0 (7)

Note that a > 0 corresponds to an outward pointing acceleration. Compute the two invariants of the
Weierstrass elliptic and related functions in the constant radial acceleration case:

g2 = 3 —ap (8)

_atp2 | 2Ep _ AE®
gs =G (h* + 3£ — 5752)

Define the following third order polynomial and its derivatives:
f(r) = 2ar3 + 2612 4 2ur — h?
f'(r) = 6ar? + 4Er + 2u
(r) = 12ar 4+ 4€

Compute the three roots €1, €2, €3 of f. Compute the radius of pericenter passage r,, as the real root closest
to 79 and such that r,, < ry. Using the energy conservation equation define the velocity of pericenter passage

v =2(E+ =+ ary,). Compute the constants B = = f"(rm), A= 1f(ry) and the quantity ¢ defined as

(&) =(B— ), €)= mehz. Note that ¢ will be a real number if A < 0.

Tm
Introducing the radial anomaly 7(t) (via a Sundmann transformation 4 = r), the final explicit solution

is given by:

r(1) =rm+ W(T;tB
sin 0(7) = (1) sin(vy,7) — y(7) cos(vm,T) (9)
cos O(7) = y(7) sin(vy,7) + 2(7) cos(v,T)

where we defined z(7) + iy(7) = ZEE;B exp 27¢(£). We also have:

. — _ (T(T)fnn)z /
7(7) Ar(r) ¥ (7)
. N (10)
0(7) = =ty

The relation between the time and the radial anomaly is described via the radial Kepler’s equation which
admits the following equivalent forms:
4BA

t(r) = Pt — —
(T) =rmT Y

[Br+((r) + ;p(i/)(T)B (11)
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2BA
g3 +8B3

where p(wy) = B. Note that in case the motion is bounded, necessarily p(7) > B,VT € R, hence wy, will be
a complex quantity, while in case of unbounded motion wy will necessarily be a real quantity and thus the
second expression, as the first one, would also involves only real quantities while is not undefined at 7 = 0.
Note that both radial and true anomaly 7, 6 are zero at a pericenter passage, i.e. t =0 —>7 =0, 0 =0,
r =7, . The radial anomaly at the initial conditions is found computing the expression:

p(10) = B — - (13)

'm —To

(1) = rpmT — [2BT + ¢(T — wi) + (7 + wi)] (12)

while the true anomaly at the initial conditions is found computing the expression:

sin 0y = x(719) sin(vy, 1) — y(70) c08(Vm 7o)

. (14)
cos by = y(70) sin(vim70) + x(70) cos(vmT0)

The explicit Cartesian coordinates of the satellite can be finally obtained, trivially, using the following
expression:
r(t) (t) cosO(t)i,, + r(t)sinb(t)i,,,

v(t) = (#(t) cos O(t) — % sin4(t))ir,, + (#(t)sin6(t) + % cos6(t))ip,,

which involves the solution to the Kepler’s radial equation in order to get ¢ from the radial anomaly 7.

(15)

IV. Radial fly-by

Planetary fly-bys are often modelled as Keplerian hyperbolas. In the preliminary mission design phases
it is common to consider the effect of a fly-by as that of an instantaneous rotation of the relative velocity
vector by the angle §x function of the closest passage distance r,, and of the hyperbolic trajectory plane
orientation. The outgoing relative velocity vector is then summed to the planet velocity vector to obtain
the new spacecraft state in the interplanetary medium. The spacecraft is generally considered to be not
thrusting during this phase. Here we study a simple powered fly-by manoeuvre where the spacecraft, along
its planetocentric hyperbola, turns on its propulsion system when its distance r from the planet is in the
interval [r,,7;] to produce a constant acceleration of magnitude «. Since the resulting trajectory is perfectly
symetric, also the effect of such a fly-by can be considered as a rotation of the relative velocity vector by an
angle §. Using the analytical explicit solution in terms of the Weierstrass elliptic and related functions allow
to derive simple equations to find § as a function of r,,, Voo, ri, 7 and «. In Figure 3 the basic geometry of a
radial fly-by is shown. Note that the trajectory is not an hyperbola and is obtained by patching hyperbolic
arcs (outside [r;, r,]) with the constant radial acceleration solution (in [r;,7,]).

IV.A. The unpowered flyby case a =0

First, as a benchmark, consider the case of a purely ballistic fly-by modelled as a Keplerian hyperbola.
Assume as incoming conditions v, and write the specific energy at the incoming conditions at infinite:

2

v

Ep = -2
K=
and at the closest distance:
2 2p 2
m — . + e
Tm

where the subscript K indicates that we are in the purely Keplerian case. We compute the angular momentum
as hg = rmUm:
hx = Tm(2:u + Ugon)

and the relative velocity rotation half angle as:

sindg = % (16)
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Figure 3. The radial fly-by geometry. In the range r € [r;,7,], the spacecraft maintains an additional radial acceleration
« and is thus not flying along a hyperbola

where, accounting that a(1 — e?) = %2, we have:

so that from r,,,vs We can compute dx.

IV.B. The powered flyby case

We now study how the relative velocity rotation angle dx is modified when we assume a constant acceleration
« acting on the spacecraft at r € [r;,r,] while keeping 7, unchanged. From Figure 3 it can be seen how
25 = 2(61 + 02 + d3) is the sum of three contributions. The first and the last one, indicated with 26; and
245 are due to the hyperbolic motion outside the [r;, 7,] interval and can be computed using the Keplerian
solution. The second contribution, indicated with 2d5 is due to the radial accelerated motion and must thus
be computed using Weierstrass functions. Let us preliminary determine the various motion invariants for
the different arcs. Starting with the out-most hyperbolic arcs we have the specific energy:

2
Voo
2

v =2 (SKG + M)
To

hence the specific energy along the following propelled arc will be:

€k, =

and by its conversation:

E=Ek, —ar,

and by its conversation:

v? =2 <EKO + rﬁ +a(r, — TO))

K2

hence the energy along the inner hyperbolic arc will be:

Ek, =€k, +a(r;—r1,)
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and the velocity in the point of closest passage:
2 _ H
v, =2 Ex, + — +alri—r1,)
T'm

which allow to compute the angular momentum for all the arcs as hA(Voo, T, T, 7o) = T'mUm

IV.B.1. Computing 61 and 3

To compute §; and d3 we develop a generic expression for the angle § between the velocities acquired along
a Keplerian arc at two positions 71 and 73. Along a Keplerian hyperbola we have (see Battin!® §(3.6)):

h . N
“Eyv = —sinfgi. + (e + cos Ok )i,
W

where 0 is the true anomaly in the Keplerian motion, i.e counted with respect to ie. We will drop the
subscript K for the true anomaly in the following expressions to avoid cluttering our notation. We thus
have:

B(vl “vg) = %vlvg cosd = sin by sinfy + (e + cos b1)(e + cos Os)

where the orbit polar r = p/(1 4 ecos ) can be used to compute:
cosf = é(% —1) sinf = _é 2 — (g —1)2

where the sign minus is chosen on the sine as the hyperbolic arc considered is incoming. Applying the above
formulae to compute §; and J3 we get: We finally have the the final expression for d:

P 1 P ? 1 1(p
“VsoUp COS 01 = — (e2—-1)(e2—=|—-1 +le—=]le+-——-1
1 e To e e\ 7,
vamcoség = <6+1 <p — 1>) (e+1)
2 € \Ti

Note that in inverting the above expressions using arccos we have d1,d3 € [0, 7] which is correct whenever
no passage through the pericenter happens.

and for d3:

IV.B.2. Computing 0o

While r; < r < r, the propulsion system of the spacecraft turns on putting the spacecraft on a radially
accelerated trajectory having £, h as motion invariants. We then may also compute r, and the lattice
invariants go and g3 and hence all the relevant Weierstrass elliptic and related functions. We may then
compute:

02 = (Yo — 0o) — (i — 6;)

where the true anomalies § < 0 are now referred to the non Keplerian arc and are computed by Eq.(14),
while v € [—m, 0] is the flight path angle which can also be computed along the Keplerian arcs. We use:

2
tan'y:fi 627(£71)
D r

The final effect of a radial fly-by will then be to rotate the relative velocity vector by an angle 2§ =
2(01 + 2 + d3) by providing a cumulative AVj, = 2« - tof where tof = ¢(7,) — t(7;) is the duration of the first
propelled arc as computed applying Eq.(11) in correspondence of the two radial anomalies at r; and r,.
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Figure 4. Effect of a radial flyby at the Moon for r, = 40Ry;, 7, = 1.1R) and ma = [8,7,6,5,4,3,2] [N] with m = 2000
[kg]. The net AV gained by the manoeuvre (left) is plotted aside the AV}; necessary to perform the manoeuvre (right).

IV.B.3. A numerical example

Consider a Moon fly-by, where the spacecraft approaches the sphere of influence with a relative velocity
Voo = 1000 [m/s] and performs a fly-by with closest approach distance r,,, = 1.1Ry, where Ry; = 4905 [km]
is the Moon radius. Under these conditions the effect of an unpowered fly-by, as computed from Eq.(16),
is that of rotating the relative velocity vector by an angle 265 = 1.209 [rad.]. We study the possibility to
increase such an angle (the new value indicated by 26) by performing a powered fly-by during which the
spacecraft maintains a constant outward acceleration of magnitude o when its distance from the atracting
body is r € [r;,7,]. We consider to start the propelled phase at r, = 40Rj; and consider r; € [1.1,40]Ryy.
We compare the AVj; used by the low-thrust propulsion system to the instantaneous AV that would be
needed at the end of the outgoing asymptote to change the relative velocity direction by the same amount:
AV = 200 8in (6 — dg ). The angle § as well as the AV}, are computed using the formulae developed above.
The use of the newly developed formulae enables to make this study very efficiently avoiding numerical
propagation altogether. In Figure 4 we plot the results in the selected case. We show the net gain of AV
computed as the difference between AVg and AV} as well as the value of AVj;. Note the area where a
AV amplification effect is present. This is related to the decrease in spacecraft velocity which allows for the
planet gravity to bend the asymptotes with greater efficiency. The analytical formulae derived express the
deflection angle § and the velocity increment AV} as an explicit function of r;,7,, &, vs. They are suitable
to be used in a larger interplanetary trajectory optimization scheme, as well as in the preliminary assessment
of some planetary encounter.

V. Solution to the 2D Stark initial value problem

Previous work® reported the explicit solution to the Stark problem in the full three dimensional case.
That solution can be simplified if one restricts the problem to be purely two-dimensional. We present the
derivation of the Stark problem solution in terms of Weierstrass functions specific for this simpler case. Note
that an explicit solution using Jacobian elliptic functions is known for the 2D Stark case.!” The reader is
encouraged to compare the Weierstrass form of such a solution derived here to the solutions needed to cover
all possible cases using Jacobi elliptic integrals. As recognized by Byrd,? the Weierstrass approach has a
clear advantage when the polynomial roots and their order are unknown, which is the case here as initial
conditions will determine such roots hierarchy.

Consider the planar motion of a spacecraft subject to an inertially fixed acceleration of magnitude a > 0
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directed along the z axis. The system specific energy, that is conserved, can be written as:
2
v K
E—_ B _ 17
5~ o (17)

In a similar way as done in the full three dimensional case, we introduce the coordinates £ € [—o0, 0],

1 € [—00, 0] via the following transformations:

2_ .2 . . .
v=551 i =€
y=4£&n y=n&+&n
Note that with respect to the classical parabolic coordinates we do not restrict the domain of either n or &
to the real axis. As a consequence, the transformation here used is not unique when reversed:

— f ]
E=+r+z §_i2f+x
n=EVr—a =457

2 2 . . .
where r = /22 + 42 = 5% and 7 = 2 — ¢¢ 4 gy, This is not a problem here, rather an advantage,
as we will only be interested in having unique values for x and y. We may then choose any of the signs above
when, for example, computing the initial conditions &, and 7).
Introduce now two further motion invariants he and h,,:6

(18)

_ ¢! -
he = —aty - EE? + 2r2¢?
hy = a’s- — En? + 2r2p?
linked by the relation h¢ + h,, = 2u. We may then write the fundamental differential equations that allow
to solve the 2-D Stark problem:

g _ 1 2 _
g; = :i:\/ozf 1—256 —L—Zhg = ﬂ:\/fg (19)
D =+/—ant +2En? + 2h, = £/ F,

where the pseudo-time 2rdr = dt is used.

V.A. Roots of f;

It is straight forward to compute the roots of the polynomial f¢ applying the quadratic equation root formula
on the fictitious variable s = £:
—-&=+ \/52 - 20éh§
@

which translates immediately to the four solutions in &:

1,2,3,4 o

S1,2 =

These roots can be, depending from the initial conditions, all complex, all real or two real and two pure
imaginary.

V.B. Roots of f,

Likewise, we compute the roots of the polynomial f, applying the quadratic equation root formula on the

fictitious variable s = n?:
£+ \/E2+ 2ah,
a

which translates immediately to the four solutions in 7:

2
- _i\/E:I:«/E + 2achy, (21)
1,2,3,4 o

51,2 =

Note that lim, 4+ f(7) = —oo and f(n) > 0 since 7y must be real. As a consequence at least one of
the above roots (and hence two) must be real.
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Figure 5. Plot of the Stark 2D solution as obtained from Eq.(23) and Eq.(27) for an unbounded case (above) and a
bounded case (below). Cartesian coordinates are shown together with one of the two possible choices for the parabolic
ones. Initial conditions are ro = [—1.,1e — 3], vo = [le — 3,1.5], « = 0.1 for the unbounded case, and ro = [le — 3,1],
vo = [1,1e — 3], @ = 0.003. Non dimensional units are used so that u = 1.

V.C. Solution for the ¢ coordinate
Consider the first of Eqq.(19). Rewrite it as follow:

¢ ds
m st +2E5% 4 2k,

T —Tme ==

where &, is any one of the four roots in Eq.(20). We recognize the expression has the form Eq.(1) and we
thus introduce the lattice invariants, as defined in Eq.(3):

o = 20he + 5

2 (22)
936=7% (26”7«& - %)
and find the lattice roots as:
£ E V2 E V2
€¢="3, €e=¢ + 7\/ah§, €B¢=5 " 5 ahe
Apply now Eq.(2) to write:
Ag
Pe(T = Tm,e) — Be
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where A§ = 1/4fl(§m) = fm(agrzn + 5)7 BE = 1/24f//(§m) = %(aé-?%% + %5) and pﬁ(Tm’f) = BE + Eoégﬁm’

@’g(Tm,g) = %. We also have:

i = -tk rg (21)

The expressions derived are valid regardless of the choice of the root &,,, but as explained previously, choosing
a real root is desirable. The conditions to have at least one real root for the polynomial f, as easily verified
from Eq.(20), can be written as:

a) €>0,ahs <0

25
b) 5<07ah§<%2 (25)

. - —E++/E2—2ah, . .
in both cases é; = % will result to be the expression for one of the real roots and we thus choose

it in all cases. In essence, h¢ determines whether at least one real root exist. Noting that limg_oc he = —%yQ
we can be certain that high level of thrust put us in this condition. Looking into the opposite direction, we
note how low thrust levels also guarantee that, for £ < 0, a real root exists.

V.D. Solution for the n coordinate
Consider the second of Eq.(19). Rewrite it as follows:

K ds
/) — st +2E5% + 2h,,

T—Tmny ==L

where 7, is any one of the four roots in Eq.(20). We recognize the expression has the form Eq.(1) and we
thus introduce the lattice invariants, as defined in Eq.(3):

— £
g2q = —2ahy + 5

2 26
93 =% (_2ahn - %) (26)
and find the lattice roots as:
E V2 E V2
61’77 = —g, 62717 = g + 7 —O[h»,], 63)7, = E - 7 —Oéhn
Apply now Eq.(2) to write:
A
N(T) = Nm —+ i 27
(1) on (T —Tmn) — By (27)
where A, = 1/4f'(nm) = nm(—an, + €), By = 1/24f" () = 5(—ang, + 5€) and 9y (i) = By + noéﬁv
©n(Tmm) = %' We also have:
. (77(7) - nm)Z ’
(1) =——"2——0y(T — Tmn) (28)
2rA, m o

It is possible to show that €] is always real and we will thus choose it as our 7,

V.E. The time equation

The pseudo time 7 is defined via the differential equation dt = (£2+n?)dr which we may now write explicitly
using Eq.(23) and Eq.(27):

dr (O(T = Time) — Bel*  [p(T = Timy) — Byl (T —Tme) = Be (T — Timy) — By
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Figure 6. The Stark fly-by geometry.

In order to integrate the above equation, we employ two formulae from Tannery & Molk!® [Chapter CXII]
(see also Gradshtein & Ryzhik!® [§5.141]):

/ do 1 [m Z EZ - Z; +2uC (v)] , (29)

du 1
/[p(u)—p(v)]2 __pIQ(,U) [C(u—v)+g(u+v)

+2up (0) + ¢ (v) / M] . (30)

where it is assumed that ©’(v) # 0, that is v is not a root of the Weierstrass polynomial g(s) = 4s® — gas — g3.
We introduce the shorthand notation:

du
Ji (u,v) —/m7 (31)

du
T2 (u,0) = [ ——s 32
(0] /[p(U)@(v)] (32

(with the understanding that we will add a £ or n subscript depending on the subscript of the Weierstrassian
functions appearing in the integrals). We may then derive the following time equation:
tHr) =(&m + )T+
AZ (Fog (T — T, be) + Taé (Timg, be)) +
A727 (T2 (T = T, by) + T2 (T, b))
24¢ (T1.6 (T = Tim g, be) + Tre (Tm g be))
244 (T (T = Tons by) + T1g (T b)) (33)

_|_

_l’_

where we have defined be = p; ' (B¢), b, = 0, ' (By) (note that we can take any of the values returned by
the inverse p as Ji(u,v) = N Eu, —v), Ja(u,v) = Jo(u, —v)).

VI. Stark fly-by

Consider a second case of powered flyby (which we will refer to as to a Stark fly-by) where the spacecraft,
incoming along a purely ballistic trajectory (hyperbola) ignites his propulsion system at ro = [zo, yo] to keep
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a constant acceleration « inertially fixed along the direction i,. The spacecraft propelled arc targets a closest
planetary distance of r,, and the spacecraft cuts off its propulsion system after a time 7. It is known that a
single velocity increment delivered at the pericenter along the direction of the velocity vector is an efficient
way to increase the spacecraft velocity as the final velocity increment obtained at the end of the outbound
hyperbola arc results to be much higher than the one delivered. To leverage this effect, often known as the
Oberth effect, we require the fixed constant acceleration direction to be aligned with the spacecraft velocity
at the closest passage 7,,. Such an alignment will be lost as the constant acceleration direction is kept fixed
while the spacecraft velocity will be bended by the planet gravity. The fly-by trajectory geometry for this
case is shown in Figure 6. The use of this manoeuvre as part of an interplanetary trajectory can be studied
once an efficient and simple procedure to design it is laid down. Assume vs, and 7, as known, and consider
the problem of designing a Stark fly-by such that the velocity at the pericenter is v,,,. Choosing the variable
v, to parametrize the Stark fly-by allows to compute the lattice invariants only once and thus computations
that make use of Weierstrass functions are extremely efficient as discussed in Section §II.C.

Start computing the velocity at the pericenter v,,x along a Keplerian hyperbola defined by the same
entry condition v,, and pericenter distance 7.,:
UmK Ugo H
L _|_ _

2 TT’m

The energy along the propelled arc is obtained from Eq.(17) applied at the y axis crossing (i.e. = 0):

v2 I
E=-21 - — 34
2 Tm (34)
which allows to compute zg from:
2
%O —axg=¢E

Note that z¢ will be negative if v,,, > v, as the spacecraft will need to accelerate, while xy will be positive
if vy, < vk as the spacecraft will need to decelerate. Compute now the motion invariants he and h,, at
2 = 0. In this point { = —n = /7, and the motion invariants h¢ and h, can be written as:
2 .
he = —a™z — Erpy + 212,62,

2
hy = a2 — Erp, + 2r2 02,

Consider now the = 0 point as the pericenter of the propelled arc (in order to maximize the Oberth effect).
2

. 2
From Eq.(18) it is easy to derive 2 = - n? = 2= since & = v,, and 7 = 0 in this case. Hence we get the

T ar,,
following expressions for the motion invariants :

rfn
he=—a7g tu (35)

hy :oz%” + i

We may now compute the lattice invariants gs ¢, g3.¢ from Eq.(22) and g2, g3,, from Eq.(26). The flyby
geometry is, though, still not fully determined as there are infinitely many propelled arcs, parametrized by
the other initial condition g, having the computed motion invariants and satisfying the entry condition
On V. Figure 7 visualized the different arcs parametrized by different 3. The initial value yo can be
selected by forcing at x = 0 the distance from the origin to be equal to the requested r,,. Since at x = 0,
€% = r this requires solving the equation &¢2(7*) = r,,. The value 7* is thus found solving the equation
&(r*) = n(r*) — x = 0. This is done using Eq.(23) and Eq.(27) to compute &(7*) and n(7*) and a simple
Newton iteration to get 7* (as initial guess 7% = 0 reveals to be good in most cases).

VI.A. Pseudo-algorithm to design a Stark fly-by

Assume to know the values p, @, Voo, T'm, V. Compute £ from Eq.(34) and he, hy from Eq.(35). Compute
the lattice invariants from Eq.(22) and Eq.(26). Assume a value for yo. At the start of the propelled arc we

have: )
1 oo
To = g (UT - 5)
ro = /¥ +y3
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Figure 7. Stark fly-bys with motion invariants £ = 5.125 - 10~ 2, he = 0.9975, hy, = 1.0025 and voo = 0.3 (v = 1.45 > vmK)-.
The z( coordinate at the beginning of the manoeuvre (left) is determined, while the yo coordinate is free to vary.

Compute the parabolic coordinates at the starting point from:

0 = +/To T @0 fo = — 25 00) | /agd 4 2663 + 2h
Mo = sign (Yo)vro —zo 1o = *‘Slg;lr(oyO) v/ —ang + 285 + 2hy

where we have used Eq.(19) and we have chosen the signs so that the concavity of the represented shape is
positive. Find 7* using Newton iterations to solve the equation:

§(77) = n(77)

where £ and 7 are given by Eq.(23) and Eq.(27) respectively. Note that 7,, ¢ and 7,, , need to be computed
for each assumed yy — 79,&o. Iterate using a Newton method on the assumed gy so that the following
relation is satisfied:

(') =1
Having determined zq and yq all the remaining relevant quantities can be easily found solving an initial value
problem.

VI.B. A numerical example

A numerical example where the formulas derived above reveal their use is shown. We look into a Jupiter
fly-by, where the spacecraft approaches Jupiter sphere of influence with a relative velocity v = 3000 [m/s]
and performs a Stark fly-by with closest approach distance r,, = 10R;, where R; = 71492 [km] is the
Jupiter radius. The spacecraft, inspired by the Rosetta spacecraft, has a starting mass m = 3000 kg and
a maximum thrust capability of T4, = 10 [N] resulting in the possibility to apply a constant o = 0.003.
We assume a AV, = AT available and we compute the velocity increment vl — v at infinite resulting
from a Stark fly-by. The amplification factor, defined as (vi — vy )/AV;; as well as the net gain defined as
(v — vy ) — AV} is shown in Figure 8 for different AV}, and assumed v, magnitudes.

oo
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Figure 8. The amplification factor during a Stark fly-by at Jupiter at different AV levels (left). The net gain is also
shown (right). A Rosetta type of spacecraft is assumed with m = 3000 kg and 7' = 10 [N] resulting in o = 0.003. Incoming
conditions of vo, = 3000 [m/s] are assumed and a closest passage radius of r,, = 10R.

VII. The Euler’s (two-fixed centers) problem and Vinti’s problem

The same solution method reported above for the constant radial acceleration case and detailed above
for the 2D Stark problem, can be used to solve the two-fixed centers, or Euler, problem.” While the formulae
for the time equation and for the out-of-plane movement turns out to be more complicated, the underlying
“machinery” is still based on the same few relations. In the present contribution we will not go in the details
of those formulae, it is here sufficient to know that those formulae exist expressing the explicit solution
to the Euler problem in its own pseudo-time (as before the solution with respect to time requires solving
numerically a time equation expressed, also, in terms of the Weierstrass functions). We here will only remind
that, following Aksenov et al.,? the solution of the two-fixed centers is linked to Vinti’s problem,?! so that as
we will briefly outline here, having an explicit solution to Euler’s problem entails having an explicit analytical
solution for the motion of an artificial satellite around an oblate primary, including the Jy and J3 terms.

Indicating with pq and po the gravity parameters of the two bodies, we recognize that the system energy
is:

.2

E=T+v=_-H_I
2 1 T9

where, with respect to an inertial system having its origin in the center of mass of the system made by the
two attracting bodies alone, we have

=22+ 32+ (2 —a1)?
re = /22 + 42 + (2 — a2)?

having indicated with a; and as the distances of the two masses from the system origin. We may then expand
the inverse distances appearing in the gravitational potential is series of Legendre polynomials obtaining the

expansions:
‘
E-LTE () R
= im0 () Pe(3)

and thus proving that the gravitational potential of the two-fixed centers problem has the form:
fi1 + pio Ve o, (2
V=—-———1|1 — P, (7> 36
(5 ) o
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where: ) ,
_ H1a7 + p2ay

H1 + p2

Since our reference system has its origin at the center of mass of the two bodies, we have v; = 0 and thus
we can take the sum from ¢ = 2. Lets compare the expression above to the gravitational potential of an

axisymmetric spheroid:
[eS) 4
o p R, z
V=t (12 () 2 ()

Assuming piq, pa, a1 and as as complex numbers of the form:

(1+120) a1 =c(o+1)
(1 —=10) as=c(oc—1)

H1=
Mo =

NSNS

we are guaranteed that the potential V will be real.?0 Writing JoR? = v, and J3R2 = 73 the following
conditions are found:
A(l+0%) = —Jy
20c3(1 +02) = —J3

which allow the first terms of V to be equal to the first terms of Vsp,. The following term will then be
4 = c*(1 4 0?)(1 — 30?) and cannot be made equal to J4R2.

The above developments summarize the original idea from Aksenov et a who, though, did not develop
the explicit solution further stopping at the derivation of the quadratures. The use of the Weierstrassian
formalism here introduced allows to find such expressions (as shown in the classic case”) and thus to have a
fully analytical solution to the problem of an artificial satellite motion around an oblate primary precise up
to the J3 term.

1'20

VIII. Conclusion

Weierstrass elliptic and related functions express via an elegant formalism solutions to fundamental
problems in astrodynamics. These include the constant radial acceleration problem, the Stark problem and
the Euler, two-fixed center problem. In all cases the same solution procedure can be applied, resulting in
explicit solutions with respect to a Sundmann transformed pseudo-time (or anomaly when possible). The
resulting new approach proves to be useful to describe powered fly-bys and the motion of an artificial satellite
subject to the gravitational field of an oblate primary including Jy and J5 harmonics (Vinti’s problem).
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