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Abstract— In its classical definition Lambert’s problem deals
with ballistic arcs, i.e. conic sections. With new propulsion
technologies having reached unprecedented maturity levels it
is now meaningful to consider other types of solutions to the
dynamic of objects in a simple newtonian gravitational field. It is
therefore opportune to reconsider Lambert’s problem taking into
account forced dynamical behaviors. In this work the solution
to Lambert’s problem is given for a particular class of low-
thrust trajectories named exponential sinusoids. The equivalent
to Lambert’s Theorem is derived, the time of flight curves are
parameterized with a suitable variable and some discussion is
made on some possible applications.

I. INTRODUCTION

LOW thrust trajectories are becoming increasingly im-
portant in the design of space missions. The progress

that allowed ion propulsion to become a competitive option
for many space missions may be soon be repeated for many
other advanced propulsion systems that promise, in a future,
to deliver long duration thrust with high specific impulses
and high reliability. Most of the methods used to find the
optimal trajectories to be followed by spacecrafts equipped
with low-thrust capabilities, are based on a transcription of
the optimal problem into a Non Linear Programming (NLP)
problem and then on the solution of the NLP via numerical
techniques. The approach, though successful in the detailed
design of trajectories, fails in providing the designers with a
tool to efficiently explore a large number of options. With
this respect it is clear that the use of analytical methods
such as that suggested by Markopoulos [1] could make a
difference. In his Ph.D. thesis Petropoulos [2] introduced
for the first time a new analytical solution to the problem
of low-thrust trajectories. His solution, based on the use of
an exponential sinusoid, is based on an inverse dynamical
calculation that leads to analytical expressions both for the
thrusting history and for the derivative of the polar anomaly,
whenever tangential thrust is assumed. His discovery added up
to the small list of analytical solutions [3] available for this
increasingly important problem. Moreover, his shape based
method, inspired many other researchers. De Pascale et al. [4]
during their work in the Advanced Concepts Team of the Eu-
ropean Space Agency, tried to solve the problem of constraint
violations at the trajectory boundaries (likely to happen with
the exponential sinusoid) by introducing shapes defined by
a larger number of parameters and by using an equinoctial
element formulation. Their method is able to satisfy the
boundary conditions at the cost of violating the dynamic in
a least square sense. In the same direction is the work by
Patel et al. [5] where an attempt is made to optimise a large
class of shapes given in cartesian coordinates without violating

the dynamic. These last approaches constitute a compromise
that allow a search through reasonably large sections of the
solution space. When the problem gets complicated, though,
also these methods suffer from the “curse of dimentionality”
and may result in a rather slow search. Inspired by the recent
results obtained [6] in the framework of the ESA research
scheme ARIADNA on the case of simple Multiple Gravity
Assist problems with powered swing-bys, the idea was born
that polynomial complexity of the optimisation problem could
be reached also in the low-thrust case, if an equivalent to
the Lambert problem solver could be found. The exponential
sinusoids found by Petropoulos are a perfect candidate to carry
out this task. In a number of works, culminated in the 2004
paper [7], Petropoulos and Longuski seek an application of
their new trajectories to the interplanetary transfer problem.
Their proposed use of exponential sinusoids is tailored at an
algorithmic integration into the pre-existing STOUR software.
Though quite successful from a numerical point of view, their
work did not set up an appropriate theoretical framework for
the generic use of exponential sinusoids. The lack of a generic
discussion on the possibility of using these solutions to go
from a generic point P1 to another point P2 in a given fixed
amount of time was particularly evident. It is well known that,
in the case of ballistic arcs, this problem, named “Lambert’s
problem” admits a number of solutions equal to 1 + 2N ,
N = 1, 2, ... as soon as a “short way” or a “long way” gets
selected [8]. In what follows we will investigate on what we
call the multi-revolution Lambert’s problem for exponential
sinusoids. When referring to the classical Lambert’s problem
we will instead explicitly state that we are considering ballistic
arcs, i.e. conic sections.

II. PETROPOULOS EXPONENTIAL SINUSOIDS

In this section we briefly review the definition of the
exponential sinusoids and we comment upon the use of these
trajectories made in the STOUR-LTGA program [7]. Let us
start from the equation of motion of a point mass in a
Newtonian gravity field under the hypothesis of some added
thrust acting on the particle:

{

r̈ − rθ̇2 + µ/r2 = F sinα

θ̈r + 2θ̇ṙ = F cosα
(1)

The idea of Petropoulos is that of trying to see whether an
exponential sinusoid defined by the equation:

r = k0 exp[k1 sin(k2θ + φ)] (2)

may be solving the equation of motion 1. It turns out that under
the hypothesis of tangential thrust, i.e. α = γ, the thrust history
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Fig. 1. Multirevolution Lambert’s problem: geometry definition

and the polar angle history are uniquely determined for each
exponential sinusoid by some analytical expressions. These
expressions link θ̇2 and a = F/(µ/r2) to the four parameters
[k0, k1, k2, φ] defining each exponential sinusoid. They were
derived by Petropoulos [2] and are reported here for the sake
of completness:
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(4)
where the flight path angle is defined by:

tan γ = k1k2 cos(k2θ + φ) (5)

and s = sin(k2θ + φ). Some analysis reveals that these
expression are meaningful whenever k1k

2

2
> 1 revealing that

the exponential sinusoid shape may be followed by using only
a tangential thrust. In the original use made of these new
trajectories to locate interplanetary transfers, the velocity at
departure is considered to be known which, in turns, allow
reduce the definition of the exponential spiral to one free
parameter which is chosen to be k2. This parameter is then
located, with a somewhat complicated procedure, to target
the following planet. The resulting algorithm is, according to
Petropoulos et Longuski, able to efficiently locate interesting
near-optimal solutions, but it makes use of an enumerative
search to locate the “good” trajectories.

III. ANOTHER POINT OF VIEW

In this section we introduce the multi-revolution Lambert’s
problem for exponential sinusoids. Given r1, r2 (see Figure 1)
and the transfer angle ψ we want to find all the exponential
sinusoids, defined by eq.(2), that link the two positions in a
given transfer time t, allowing for multiple revolutions. We
start by reducing the search space assuming k2 fixed. We
therefore study the problem for all the exponential sinusoids
defined by only the three free parameters k0, k1 and φ. Without
loss of generality we fix our polar coordinate system so that
θ1 = 0. We then write eq.(5) in correspondence to the first
point:

tan γ1 = k1k2 cosφ (6)

It is convenient to use γ1 i.e. the flight path angle at r1, instead
of φ to parameterize the exponential sinusoids. We are only
interested in those trajectories that actually do pass by the
points r1 and r2. We enforce this by writing the relations:

{

r1 = k0 exp[k1 sinφ]
r2 = k0 exp[k1 sin(k2θ̄ + φ)]

where θ̄ = ψ + 2πN and N = 0, 1, 2, ..., accounts for the
possibility of having more than one revolution. By dividing
the two equations and taking the logarithm we may derive
first the expression:

k1

|k1|

√

k2

1
− tan2 γ

k2

2

=
ln r1

r2

+ tan γ1

k2

sin k2θ̄

1 − cos k2θ̄

that tells us what the sign of k1 has to be, and then the
following:

k2

1 =

(

log r1

r2

+ tan γ1

k2

sin k2θ̄

1 − cos k2θ̄
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+
tan2 γ1

k2
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(7)

We also have, trivially:

φ = arccos

(

tan γ1

k1k2

)

(8)

and,

k0 =
r1

exp(k1 sinφ)
(9)

We note that there is no loss of information in considering the
angle φ in the first two quadrants as the consideration of other
possibility would simply return the very same exponential
sinusoid. Given the geometry of the problem, i.e. given r1,
r2 and ψ and given the number of revolutions required, i.e.
given N we are now able to say that ∀k2 there exist a class
Sk2

[r1, r2, ψ,N ] of exponential sinusoids passing through
r1 and r2 and conveniently parameterized by the sole free
parameter γ1. The analogy with the theoretical developments
that are faced when solving Lambert’s problem for ballistic
arcs is worth to be noted. Also in that case (see Battin
[8]) we arrive at showing that there exist a whole family
of ellipses/hyperbolae connecting two given points and we
parameterize them conveniently either via the semi-major axis
or, even better, by some other alternative variable.

IV. INTRODUCING THE DYNAMIC FEASIBILITY

All that we did in the previous section is only geometrical
and there is no information we introduced on the dynamic. We
now ask ourselves which of the exponential sinusoids belong-
ing to Sk2

[r1, r2, ψ,N ] are actually feasible trajectories for
spacecrafts. We call an exponential sinusoid feasible whenever
it is possible to find a tangential thrust history able to induce
that trajectory. Given in these terms the answer is already
contained in Petropoulos Ph.D. dissertation, the condition is
k1k

2

2
< 1. We may rewrite this condition exploiting eq.(7):

(

k2

2
log r1

r2

+ k2
tan γ1

k2

sin k2θ̄

1 − cos k2θ̄

)2

+ k2

2 tan2 γ1 < 1 (10)
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Fig. 2. The exponential sinusoids family S1/4[1, 1.5, π/6, 1]
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Fig. 3. Feasible exponential sinusoids in the classes S1/2[1, 5, π/2, 0] (left)
and S1/4[1, 5, π/2, 1] (right)

Some algebra reveals that this is a quadratic equation in tan γ1,
an equation that allows us to define analytically the interval
of γ1 for which the exponential sinusoids in Sk2

are feasible.
We find:

tan γ1m,M
=
k2

2

[

− log
r1
r2

cot
k2θ̄

2
±
√

∆

]

(11)

where:

∆ =
2(1 − cos k2θ̄)

k4

2

− log2 r1
r2

Trivially if ∆ < 0 no exponential sinusoid belonging to Sk2

is a feasible trajectory.
As an example of feasible exponential sinusoids we

have plotted some examples in Figure 3. In particular we
have considered the family S1/2[1, 5, π/2, 0] and the family
S1/4[1, 5, π/2, 1]. All the trajectories shown may be followed
by a spacecraft with unlimited thrusting capabilities that
thrusts tangentially to the trajectory. The thrust history, as
well as the anomaly history, are uniquely determined for each
chosen trajectory by eq.(3) and eq.(4).
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Fig. 4. Time-of-flight versus the flight-path angle for the class
S1/12[1, 1.5, π/2, N ]

V. TIME OF FLIGHT

If, on one hand, there is a close relation between the
developments presented in the previous section and those
introduced in the classical Lambert’s problem for ballistic arcs,
on the other hand the differences are also noteworthy. When
ellipses are considered to join the starting and ending position,
a pure geometrical approach leads to define a minimum energy
ellipse that introduces a limit on the semi-major axis of the
possible solution. For exponential sinusoids such a limit may
be introduced on γ1 (eq.(11)) only after dynamic is taken
into consideration. In the original problem the time-of-flight
equation could be conveniently expressed analytically as a
function of the parameter chosen to describe the family of
geometrically feasible ellipses. In the case of exponential
sinusoids this is not possible and the time-of-fight has to be
evaluated by integrating by numerical quadrature the expres-
sion given by eq.(3). Fortunately the chosen parametrization
for the exponential sinusoids is a good one and all the time of
flight curves are monotone in γ1, as shown for a particular case
in Figure 4. A very simple numerical method such as Regula
Falsi may therefore be efficiently used to detect the solution
of the Lambert’s problem for a particular class of exponential
sinusoids by finding the intersection, if existing, between the
time-of-flight curve and an horizontal line. We observe that
the asymptotic behavior of these time-of-flight curves is quite
different from the one we know from the case of ballistic
arcs and does not allow to conclude that the problem always
has a solution. Also, their being monotone allow us to skip
the definition of left branch and right branch necessary in the
multi-revolution Lambert’s problem for ballistic arcs.

We may now state, for the exponential sinusoids belonging
to a given class Sk2

, the following equivalent to Lambert’s
Theorem:

t2 − t1 = F

(

tan γ1, r1,
r1
r2
, θ̄

)

and we may add that F is a single-valued monotone function
of γ1. In this sense Lambert’s problem for exponential sinu-
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soids poses less mathematical challenges than its equivalent
for ballistic arcs.

VI. TERMINAL VELOCITY VECTORS

It is well known that in the classic ballistic transfer problem
the terminal velocity vectors are closely related. An elegant
way of expressing such a relation has been found by Thore
Godal [9] who introduced a skew axis system in which the
analytical relationship assumes a noteworthy expression. In
the case of exponential sinusoids it is also possible to derive a
similar relation. Let us write the expression for the flight-path
angle in the final point:

tan γ2 = k1k2 cos
(

k2θ̄ + φ
)

if we now substitute into this expression eq.(6) and eq.(7),
after some manipulations it is possible to show that for each
sinusoid belonging to a given class Sk2

the following relation
is valid:

tan γ2 = − tan γ1 − k2 log
r1
r2

cot
k2θ̄

2

We have established a relation between the terminal velocity
vectors, a relation that may be written in an even more compact
form if we take into account eq.(11):

tan γ2 = tan γ1m
+ tan γ1M

− tan γ1 (12)

This last expression is quite unexpected. It establishes an
elegant link between a pure geometrical relation such as that
between the terminal flight path angles of all the exponential
sinusoids linking two points and two quantities, γ1m

and γ1M

whose definition is intrinsically linked to the dynamic of a
body in a newtonian gravitational field.

VII. A POSSIBLE APPLICATION TO ORBITAL TRANSFERS

Let us consider the design of a multiple gravity assist mis-
sion. The goal is to rendezvous with a given planet maximizing
the final mass of the spacecraft at the rendezvous. If only bal-
listic arcs are allowed to connect the various planets then our
decision vector will be x = {ts,∆ti} i.e. the departure date
ts, the various arc lengths ∆ti. Once these numbers are given,
and whenever multiple revolutions are not accounted for, there
exist only one possible ballistic trajectory as a consequence
of the classical Lambert’s theorem. This trajectory may be
feasible or unfeasible depending on other mission constraints
such as maximum departure velocity (relative to the Earth),
minimum pericentrum for the various planet fly-by and others.
The problem may be complicated by allowing for multiple
revolutions and deep space manoeuvres, but in this simple
form it has been shown to have a polynomial complexity
whenever a particular pruning technique [6] is used.

When exponential sinusoids are substituted to ballistic arcs,
we must face the problem of choosing the shape parameter k2

for each arc. The simplest case of an interplanetary transfer
between two bodies will therefore have a three dimensional
decision vector x = {ts,∆t1, k2}. Let us for example take
the Earth-Mars case and let us use JPL ephemerides DE405 to
evaluate the positions of the planets. Once the decision vector
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Fig. 5. Earth-Mars optimium in the trajectory class of the exponential spirals
N = 0. Units are all non-dimensional

is known we may evaluate the position of the Earth when the
spacecraft is launched and the position of Mars at rendezvous.
We therefore know r1, r2, ψ, k2,∆t1 and we may try to locate
that unique exponential sinusoid in the class Sk2

[r1, r2, ψ,N ]
that has ∆t1 as time of flight and therefore to associate a
“fitness” to the proposed solution. This opens the possibility
of considering a number of global optimisation techniques to
find the best possible low-thrust trajectory in the restricted
class of the exponential sinusoids.

As a preliminary example we here use the Differential Evo-
lution technique (see Storn [10]) to try locating the global
optimum of the following function:

J =

∫ θ̄

0

|a|
θ̇
dθ

in the space of all the possible exponential sinusoids trans-
ferring from Earth to Mars. It is possible to show that this
problem is equivalent to the problem of minimizing the ratio
mp

m0

between the mass of propellent used during the thrust arc
and the remaining spacecraft mass m0. We select the follow-
ing bounds for the decision variables (implemented via step
penalty functions): t0 ∈ [2000, 5000] MJD, ∆t ∈ [200, 2000]
days and k1

2
∈ [.01, 1]. We then search the global optimum in

the case of N = 0, N = 1 and N = 2. Figure 5 visualize the
trajectory found in the case N = 0 and the non dimensional
thrust history in this case. The results are summarized in Table
I. The algorithm was run for many times and returned the

N t0 (MJD) ∆t (Days) k2

0 4115 206 .928
1 2034 532 .523
2 2021 1012 .2361

TABLE I
GLOBAL OPTIMA FOR THE EARTH-MARS CASE WITHOUT C3

CONSTRAINTS

global optimum roughly 60% of the times. The trajectories
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found are optimal in the class of the exponential sinusoids,
it remains to be investigated how rich this class is in terms
of its ability of representing possible real solutions. In this
particular case, as no constrains were put on the departure
and arrival C3, the optimal solution in the wider class of all
the possible solutions to eq.(1) is a ballistic arc, i.e. J=0 and
it is not represented by the exponential spirals.

More general cases may also be optimised, i.e. considering
gravity assists, in which case the decision vector would be
x =

{

ts,∆ti, k
i
2

}

and the optimisation could take into account
pruning techniques such as those introduced by Myatt et al.
[6] to try to efficiently solve the problem.

VIII. CONCLUSIONS

The multi-revolution Lambert’s problem has been intro-
duced for the exponential sinusoids and solved. Given the
radius ratio the transfer angle and the number of revolutions it
has been shown how ∀k2 there exist a family of exponential
sinusoids passing through the desired points and conveniently
parameterized by the flight path angle at the starting point
γ1. The functional relationship between γ1 and the time of
flight is monotone and its domain is defined by the dynamical
feasibility of the resulting trajectories. An example of the
use of these results in the search for optimal interplanetary
trajectories is given and some future work is suggested.
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