
ESA PECS STUDY ARRANGEMENT REPORT  
No ESA PECS Study Arrangement Report will be accepted unless this sheet is inserted at the 

beginning of each volume of the Report. 

ESA Contract  
(Arrangement) No: 

SUBJECT: INSTITUTE:

* ESA CR(  )No: No. of Volumes: 3 

This is Volume No: 1 

INSTITUTE’S REFERENCE: 

ABSTRACT: 

The work described in this report was done under ESA PECS Arrangement.  Responsibility for 
the contents resides in the author or organisation that prepared it. 

Names of authors: 

** NAME OF ESA PECS PROGRAMME 
MANAGER: 

DIV: 

DIRECTORATE: 

** ESA BUDGET HEADING: 

* Sections to be completed by ESA 
** Information to be provided by ESA PECS Programme Manager 

Current GNSS systems rely on global reference frames which are fixed to the Earth (via the 
ground stations) so their precision and stability in time are limited by our knowledge of the Earth 
dynamics. These drawbacks could be avoided by giving to the constellation of satellites the 
possibility of constituting by itself a primary and autonomous positioning system, without any a 
priori realization of a terrestrial reference frame. Our work continues the two Ariadna studies, 
which showed that it is possible to construct such a system, an Autonomous Basis of Coordinates, 
via emission coordinates, and modelled it in the idealized case of Schwarzschild metric. Here we 
implement the idea of the Autonomous Basis of Coordinates in the perturbed space-time of 
Earth, where the motion of satellites, light propagation, and gravitational perturbations (due to 
Earth's multipoles, solid and ocean tides, rotation and celestial bodies) are treated in the 
formalism of general relativity. We also study a possibility to use such a system of satellites as 
probes of gravitational field and refine current knowledge of gravitational parameters. 

4000103741/11/NL/KML
Relativistic GNSS:
Relativistic Global Navigation System

UL FMF,
University of Ljubljana,
Faculty of Mathematics and Physics

ESA-Gomboc-2014-Final Report

Andreja Gomboc, Martin Horvat, Uroš Kostić



The PECS project
Relativistic GNSS

– Final Report –

Andreja Gomboc
Martin Horvat
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Abstract

Current GNSS systems rely on global reference frames which are fixed to the Earth (via
the ground stations) so their precision and stability in time are limited by our knowledge
of the Earth dynamics. These drawbacks could be avoided by giving to the constellation
of satellites the possibility of constituting by itself a primary and autonomous position-
ing system, without any a priori realization of a terrestrial reference frame. Our work
continues the two Ariadna studies, which showed that it is possible to construct such a
system, an Autonomous Basis of Coordinates, via emission coordinates, and modelled
it in the idealized case of Schwarzschild metric. Here we implement the idea of the Au-
tonomous Basis of Coordinates in the perturbed space-time of Earth, where the motion
of satellites, light propagation, and gravitational perturbations (due to Earth’s multi-
poles, solid and ocean tides, rotation and celestial bodies) are treated in the formalism
of general relativity. We also study a possibility to use such a system of satellites as
probes of gravitational field and refine current knowledge of gravitational parameters.
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Chapter 1

Introduction

1.1 Newtonian concept of a Positioning System

Current Global Navigation Satellites Systems (GNSS), such as the Global Positioning
System and the European Galileo system, are based on Newtonian concept of absolute
space and time. The signals from four satellites are needed for a receiver to determine
its position and time via the time difference between the emission and the reception of
the signal:

• First, let us assume that we have three clocks onboard three satellites Sipi � 1, 2, 3q
and that a user-receiver has his own clock. Each satellite sends an electromagnetic
signal, in which the time of emission ti is encoded. The user-receiver, receives the
signal from the satellite, and having his own clock, knows the time of reception
tR of the signal. From this he can deduce his distance with respect to the three
satellites: cptR�tiq, where c is the speed of light/electromagnetic waves in vacuum.
Therefore he knows that he lies on a sphere of radius cptR � tiq centered on the
satellite Si. The three spheres centered on the three satellites intersect usually in
two points, and using the method of trilateration, the position of the receiver can
be determined - it is usually taken that the receiver’s position is the point being the
closest to the surface of the Earth. In mathematical language this means solving
the system of three equations:

px� xiq2 � py � yiq2 � pz � ziq2 � c2ptR � tiq2; i � 1, 2, 3, (1.1)

where the three unknowns x, y, z are the Cartesian coordinates of the receiver in
the Euclidean space, and pxi, yi, ziq are the coordinates of the satellite Si at the
time of emission ti. In general, such system of equations has 0, 1 or 2 solutions.

• However, the receiver’s clock is usually not very accurate and would limit the
precision of the positioning. Therefore, the poorly known time of reception of the
signal is treated as an unknown, and we need to add one more satellite to obtain
a fourth equation. Thus, our problem consists of a system of four equations:

px� xiq2 � py � yiq2 � pz � ziq2 � c2pt� tiq2; i � 1, 2, 3, 4, (1.2)
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for four unknowns: the position of the receiver and the time of reception of the
signal, i.e. the receiver’s position in the space-time pt, x, y, zq.

This concept of absolute space and time would work ideally if all satellites and the
receiver were at rest in an inertial reference frame. It is also a good approximation for
a slowly moving receiver with velocity v ! c, and in a very weak gravitational field
|φ{c2| ! 1, where φ � �GM{r is the gravitational potential of a central mass M (G is
the gravitational constant and r the radial distance to the central mass).

1.2 The concept of a Relativistic Positioning System

However, at the level of precision needed by a GNSS, space and time around Earth can
not be considered as absolute and we have to take into account the effects of inertial
reference frames and curvature of the space-time in the vicinity of Earth. In fact, general
relativistic effects are far from being negligible Ashby (2003), Pascual-Sánchez (2007).
The most important ones are the gravitational frequency shift between clocks and the
Doppler shift of the second order. As it was estimated in Čadež et al. (2010), they
amount for Galileo GNSS to around 12 km error after one day of integration. Since this
is much more than the required precision, it is clear that relativistic effects have to be
included in the description of the GNSS.

There are two ways of including relativity in the description of GNSS: one way
is to keep the Newtonian concept of absolute time and space, and add a number of
relativistic corrections to the level of the accuracy desired. An alternative, and more
consistent, approach is to abandon the concept of absolute space and time and describe
a GNSS directly in general relativity, i.e. to define a Relativistic Positioning Sys-
tem (RPS) with the so-called emission coordinates Coll and Morales (1991); Rovelli
(2002); Blagojević et al. (2002); Coll (2003); Tarantola et al. (2009). Let us have four
particles a � 1, 2, 3, 4. Their worldlines Ca are parametrized by their proper time τa. Let
P be an arbitrary event. The past null cone of P crosses each of the four worldlines Ca in
τPa (see Fig.1.1). Having four particles with four wordlines C1, C2, C3, C4, the past cone
of P crosses them at τP1 , τ

P
2 , τ

P
3 , τ

P
4 . Then pτP1 , τP2 , τP3 , τP4 q are the emission coordinates

of the event P .
These coordinates define the event P . We can see this by looking at it in a different

way. The worldline Ca of the particle a defines a one-parameter family of future null
cones, which can be parametrized by proper time τAa (see Fig.1.2). The intersection of
four future null cones from four worldlines Ca at τa defines an event with coordinates
τ1, τ2, τ3, τ4. Position of event P is therefore defined in this particular coordinate system.

Four particles can be chosen as four satellites broadcasting their proper time. A
user of an RPS (event P ) receives, at a given moment, four signals from four different
satellites and is able to determine the proper time τi of each satellite at the moment
of emission of these signals. These four proper times pτ1, τ2, τ3, τ4q therefore constitute
its emission coordinates. By receiving them at subsequent times, the receiver knows its
trajectory in the emission coordinates.
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Figure 1.1: Ca is the worldline of a particle a parametrized by its proper time τa; its
origin O is in τa � 0. Past null cone of the event P crosses the worldline Ca of the
particle a at its proper time τPa . Figure from Čadež et al. (2010).

Figure 1.2: The worldine Ca defines a one-parameter family of future null cones. These
null cones are hypersurfaces of τa �const. Figure from Čadež et al. (2010).
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Emission coordinates are not ”usual” coordinates with three space and one time
coordinates. This is a complete change of paradigm and leads to amelioration and sim-
plification of GNSS. There are several advantages of an RPS. Firstly, no relativistic
corrections are necessary, as relativity is already included in the definition of the po-
sitioning system. Secondly, the emission coordinates are covariant quantities; they are
independent of the observer (although dependent on the set of satellites chosen and their
trajectories).

1.3 Previous work in the Ariadna studies

To demonstrate feasibility, stability and accuracy of an RPS, ESA Advanced Concepts
Team started a collaboration with the University of Ljubljana. Two ESA Ariadna
projects were carried out in 2010 and 2011 Čadež et al. (2010, 2011); Delva et al. (2011),
in which the authors modelled an RPS in the idealized case of Schwarzschild geometry.

• In the first study Mapping the Spacetime Metric with a Global Navigation Satellite
System Čadež et al. (2010) modeled the satellites’ orbits, emission and reception
of their signal by a receiver. They showed that it is possible to highly accurately
determine the receiver’s position in emission coordinates and transform them to
Schwarzshild coordinates.

• In the second study,Mapping the Spacetime Metric with a Global Navigation Satel-
lite System - extension of study, Čadež et al. (2011) and Delva et al. (2011) studied
the concept of Autonomous Basis of Coordinates (ABC). Namely, in addi-
tion to emitting its proper time, each satellite can also receive other satellites’
signals with their proper times encoded. Thus, the satellite can use its emission
coordinates to determine its own position with respect to other satellites. By using
inter-satellite communication, satellites can therefore determine their orbits and,
as it was shown in this study, their orbital parameters and constants of motion.
Such a system of satellites would be independent from terrestrial reference frames
and would constitute an ABC. Results of this study show that the concept of emis-
sion coordinates and ABC, i.e. relativistic description of a satellite constellation
with inter-satellite links in Schwarzschild geometry, provides numerically accurate,
stable and autonomous system. They found that by communicating their proper
times solely, two satellites can determine their orbits (i.e., their constants of mo-
tion) to a high accuracy. Any additional satellites could serve to increase the
system’s accuracy.

Further advantage of an RPS is thus, that if each satellite broadcasts its own and also
receives proper times of other satellites, the system of satellites is autonomous and
constitutes a primary reference system, with no need to define a terrestrial reference
frame. Therefore tracking of satellites with ground stations is necessary only to link an
RPS to a terrestrial frame, although this link can also be obtained by placing several
receivers at the known terrestrial positions. There is no need to synchronize satellite
clocks to a time-scale realized on the ground.
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The work in the Ariadna studies was performed in Schwarzschild geometry, i.e. tak-
ing into account only the gravitational influence of Earth and describing it as spherically
symmetric. The aim of this PECS project is to model the Galileo GNSS as an RPS with
inter-satellite links defining an ABC, including in the description all relevant gravita-
tional perturbations due to Solar System bodies and Earth’s multipoles and tides, and
to test and discuss the level of accuracy and stability of the system’s reference frame.
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Chapter 2

Activities

Abstract In this ESA PECS project Relativistic Global Navigation System we con-
tinue the work done in the Ariadna studies. We aim to demonstrate that an RPS and
the ABC concept are highly accurate and stable also if the space-time is not purely
spherically symmetric, but contains small gravitational perturbations due to the Earth’s
multipoles, tides and rotation and gravitational influences of the Moon, the Sun, Jupiter
and Venus. We use a framework, which is similar to the one used in Ariadna projects
(i.e. emission coordinates, inter-satellite communication, description of satellites’ orbit
in the ABC, and recovery of their orbits) and add to a Hamiltonian/space-time metric
also gravitational perturbations.

In order to deliver a high accuracy GNSS, several gravitational perturbations need
to be taken into account. Before starting detailed calculations it is useful to get an
estimation of the order of magnitude of various perturbations on a satellite orbit. From
Fig. 2.1, we can see that at Galileo GNSS altitude of about 20.000 km above Earth, the
most important gravitational perturbations are due to Earth’s multipoles, followed by
the gravitational field of the Moon and the Sun. Several orders of magnitude smaller are
perturbations due to Solar radiation pressure and the Earth’s albedo (not considered
in our project) and due to Earth’s tides. About one order of magnitude smaller are
relativistic effects and the gravitational influence of Jupiter and Venus. Relativistic
effects due to Earth’s rotation are about an order of magnitude smaller again. We
therefore consider an RPS of satellites, such as the Galileo system, in a space-time
described by a background Schwarzschild metric and small gravitational perturbations
due to the Earth’s rotation, multipoles and tides, and the gravity of the Moon, the Sun,
Jupiter, and Venus.

We would like to note, that Earth tides were originally not part of this project as it
was proposed and accepted by ESA. But because we subsequently discovered that their
effects are comparable or even larger than effects of some other gravitational perturba-
tions included in the project, we decided that it is necessary to include also perturbations
due to Earth tides in our study.
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Figure 2.1: Order of magnitude of various perturbations of a satellite orbit (Montenbruck
and Gill 2005). Red line indicates position of Galileo satellites.
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Outline of the PECS Relativistic GNSS project and its goals

The main goal of this project is to model a relativistic GNSS in a space-time, which
includes all relevant gravitational perturbations and investigate GNSS’s accuracy and
stability. In brief, we start by modelling an RPS by writing the perturbed space-time
metric and Hamiltonian, corresponding equations of motion, calculating orbits of satel-
lites and time-of-flight of signals between a user-receiver and satellites. Then we model
the ABC, by simulating inter-satellite communication and use the emission/reception
of their proper times to highly accurately determine satellites’ orbital parameters. In
the last stage, we investigate if and to which accuracy such a system of satellites could
be used as a probe of gravitational perturbations and for refinement of gravitational
parameters.

Our work is divided in four Work Packages (WP):

1 Work Package 1: Metric around Earth
We include all relevant gravitational perturbations to the background of the Schwarz-
schild metric in the weak-field limit with the linear perturbation theory. We use
the Regge-Wheeler-Zerilli formalism, i.e., expand perturbations in terms of tensor
spherical harmonics. We find perturbation coefficients and connection between
them and Newtonian multipole coefficients. Resulting explicit expressions for the
perturbed Schwarzschild metric incorporate effects due to Earth’s multipoles, tides,
and rotation; and weak gravitational influences of celestial bodies: the Sun, the
Moon, Jupiter, Venus (could be expanded to other celestial bodies as well).

2 Work Package 2: Dynamics of satellites
We use Hamiltonian formalism and perturbation theory to solve the perturbed
geodesic equations for satellite orbits. We derive expressions for time evolution
of 0th order constants of motion (i.e. quantities which are constants of motion in
unperturbed Schwarzschild metric). We simulate satellite orbits by using analytic
geodesic solutions for the unperturbed Schwarzschild metric, however with slowly
evolving 0th order constants of motion. We investigate the influence of different
gravitational perturbations on the orbital parameters evolution, satellite’s position
and time, and on the user-satellite and inter-satellite light signal propagation.

3 Work Package 3: Determination of orbital parameters
We use perturbed satellite orbits from Work Package 2 and test the accuracy of
positioning by such an RPS in gravitationally perturbed space-time. We simulate
a constellation of GNSS satellites as an RPS with inter-satellite links. Satellite
orbits can be described by their initial values of 0th order constants of motion. In
the following, we assume that their values are known with only limited accuracy
and by using solely inter-satellite links and information on emission coordinates
over several orbital periods we refine them. In this way satellites can themselves
highly accurately determine the initial values of their 0th order constants of motion
and therefore their own orbital parameters, i.e. they constitute an ABC system.
We study possible degeneracies among orbital parameters.

8



4 Work Package 4: Determination of gravitational parameters
In a similar way as in Work Package 3, we simulate a constellation of GNSS
satellites with inter-satellite links and assume that in addition to initial values
of 0th order constants of motion also gravitational perturbation coefficients are
known only with limited accuracy. We investigate if and to which level of accuracy
we can refine their values by using residual errors between orbit prediction and
orbit determination through inter-satellite communication. We discuss prospects
and limitations of using GNSS constellation of satellites to probe the space-time
around Earth.
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2.1 Work Package 1 - Metric around Earth

Abstract of WP1: In WP1 we include gravitational perturbations to the background
of the Schwarzschild metric in the weak-field limit with the linear perturbation theory.
We use the Regge-Wheeler-Zerilli formalism, i.e., expand perturbations in terms of tensor
spherical harmonics, and find connection between our solutions and Newtonian multi-
pole coefficients. Resulting explicit expressions for the perturbed Schwarzschild metric
incorporate effects due to Earth’s multipoles, tides, and rotation, and weak gravitational
influences of celestial bodies: the Sun, the Moon, Jupiter, Venus (could be expanded to
other celestial bodies as well).

2.1.1 Introduction

Perturbations of the Schwarzschild metric have been studied by several authors, most of
them focused on radiative solutions which are useful for studies of gravitational waves
(Nollert 1999; Nagar and Rezzolla 2005; Berti et al. 2009). However, gravitational per-
turbations of the Schwarzschild metric can also be relevant in the weak-field limit. An
example of this is the space-time around Earth, which is populated by artificial satellites,
for which we need to know their orbits with ever increasing accuracy, namely the RPS
system. We will describe the space-time around Earth as a Schwarzschild background
metric with addition of smaller perturbative parts. We fully and explicitly determine
the leading order approximation of the metric perturbations using multipole expansion
in the Regge-Wheeler and Zerilli (RWZ) formalism (Regge and Wheeler 1957; Zerilli
1970), where we use the Newtonian multipoles to approximate the metric elements by
comparing the first order perturbations in this formalism to the solution of the linear
theory and by taking appropriate Newtonian limits (see e.g. Geroch (1970); Hansen
(1974)).

2.1.2 Regge-Wheeler-Zerilli formalism

We describe the spherically symmetric and time independent background with the

Schwarzschild metric g
p0q
µν : we take coordinate variables pct, r, θ, ϕq P R � R� � r0, πs �

r0, 2πs and write the Schwarzschild metric tensor:

rgp0qµν s � diagp�X,X�1, r2, r2 sin2 θq (2.1)

with X � 1 � rs{r, where rs is the Schwarzschild radius: rs � 2GME{c2 (ME is the
Earth’s mass, G gravitational constant and c speed of light in vacuum).

We denote metric perturbations with hµν . Because gravitational perturbations are

several orders of magnitude smaller than Earth’s gravitational GME term (hµν ! g
p0q
µν ),

we use linear perturbation theory and write the perturbed metric as

gµν � gp0qµν � hµν �Oph2q . (2.2)

10



Because we are interested in the space-time outside Earth, the perturbed metric must
satisfy the Einstein equation for vacuum:

Rµν � 1

2
gµνR � 0 (2.3)

where
Rµν � Rp0q

µν � δRµν (2.4)

is the Ricci tensor (symbol p0q denotes unperturbed quantities and δ perturbations). The
Einstein equation becomes:

h α
α ;µν � h α

µ ;να � h α
ν ;µα � h α

µν; α

� gp0qµν ph λ α
α ; λ � h λ α

λ ;α q � hµνR
p0q

� gp0qµν hλσR
p0qλσ � 0

(2.5)

where a semi-colon (;) denotes covariant derivative, calculated with respect to the un-

perturbed metric g
p0q
µν .

To find solutions of these equations for vacuum we use the RWZ formalism (Regge
and Wheeler 1957; Zerilli 1970). In the RWZ formalism, the metric perturbation hµν
is expanded into a series of independent tensor harmonics, a tensor analog to spherical
harmonic functions, labeled by indices n (degree) and m (order). The tensor harmonics
contributions with similar properties, i.e. same parity and indices pn,mq, are joined to-
gether to form independent metric functions, called in Vishveshwara (1970) the normal
modes. The full set of these functions represents a complete functional basis for decom-
position of metric perturbations, and as such, it is appropriate for solving the linearized
Einstein equation.

In general, the metric perturbation hµν can be expanded in a functionally indepen-
dent set of tensor harmonics. By adopting the notation from Nagar and Rezzolla (2005),
the general expansion of the metric perturbation hµν can be written as

hµν �
8̧

n�2

ņ

m��n

�
phnmµν qpeq � phnmµν qpoq

	
, (2.6)

where the expansion terms phnmµν qpeq and phnmµν qpoq are the even-parity and the odd-parity

metric functions (or modes), respectively. The parity inversion operator P̂ : ~r ÞÑ �~r,
written in spherical coordinates as pθ, ϕq ÞÑ pπ�θ, ϕ�πq, applied to the metric functions
yields:

P̂ phnmµν qpeq � p�1qnphnmµν qpeq ,
P̂ phnmµν qpoq � p�1qn�1phnmµν qpoq .

(2.7)
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The gauge transformations in Regge-Wheeler-Zerrilli solutions

We find it most convenient to work in the gauge from Regge and Wheeler (1957), where
a coordinate transformation x1ν � xν � ξν is proposed, which conserves the background
metric and transforms the metric perturbation in such a way that the resulting metric
functions are reduced in complexity. The transformation Regge and Wheeler (1957) also
preserves the degree, the order, and the parity, if defined by the metric perturbation.

General additivity of coordinate transformations Under infinitesimal linear co-
ordinate transformation

xµ Ñ x1
µ � xµ � ξµ (2.8)

the metric tensor changes to
g1µν � gp0qµν � h1µν (2.9)

Under the condition that the line element is invariant to coordinate transformations

gµνdxµdxν � g1µνdx1
µ
dx1

ν
, (2.10)

the new metric perturbation h1µν is written as

h1µν � hµν � Sµνrξs , (2.11)

where Sµν is the symmetrized covariant derivative

Sµνrξs :� ξµ;ν � ξν;µ . (2.12)

The relation (2.11) holds up to the first order in the metric perturbation.
Next, we write the metric perturbation as a sum

hµν �
¸
α

phµνqpαq . (2.13)

where α can be, for example, odd and even parity.
We also write the coordinate shift pξµq as the sum:

ξµ �
¸
α

pξµqpαq (2.14)

Taking into account linearity of Sµν (Sµνr
°
i fis �

°
i Sµνrfis), we can write:

Sµνrξs �
¸
α

Sµνrξpαqs (2.15)

Inserting (2.13) and (2.15) in (2.11) we see that we can write also h1µν as the sum:

h1µν �
¸
α

ph1µνqpαq (2.16)

where
ph1µνqpαq � phµνqpαq � Sµνrξpαqs . (2.17)

We can therefore choose different gauges, pξµqα, for different α (as it most suits us) and
still co-add ph1µνqpαq in h1µν .

12



Regge-Wheeler-Zerilli gauge If we expand metric prturbations as in (2.6) into odd
and even parity metric functions hnmµν qpoq, hnmµν qpeq, these are totally decoupled from each
other (Cruciani, 2005). From Regge and Wheeler (1957) or Vishveshwara (1970) or
Zerilli (1970), the even-parity or electric contributions are written as

phµνqpnm,eq �

����
XH0Y

m
n H1Y

m
n h0BθY m

n h0BϕY m
n

H1Y
m
n X�1H0Y

m
n h1BθY m

n h1BϕY m
n

� � rpK �GB2
θqY m

n �
� � r2GÛY m

n r2rK sin2 θ �GV̂ sY m
n

���� ,

(2.18)
where � indicates symmetric part of the tensor, Y m

n are spherical harmonics (Abramowitz
and Stegun 1964), and Û � Bθϕ � cot θBφ and V̂ � B2

ϕ � sin θ cos θBθ. The odd-parity or
magnetic contributions are:

phµνqpnm,oq �

����
0 0 �h0 csc θBϕY m

n �h0 sin θBθY m
n

0 0 �h1 csc θBϕY m
n �h1 sin θBθY m

n

� � h2 csc θ ÛY m
n �

� � 1
2h2ŴY m

n �h2 sin θ ÛY m
n

���� , (2.19)

with Ŵ � csc θB2
ϕ�cos θBθ� sin θB2

θ . In Eqs. (2.18) and (2.19) indices pnmq on the r.h.s.
are omitted for clarity from Hi, hi, K and G, which are functions of pt, rq, while Y m

n

are functions of pθ, ϕq. Although hi appear in both harmonics they are not the same
functions.

Next, we can introduce shifts of coordinates pξµqpnm,eq, pξµqpnm,oq such that Sµνrξpnm,eqs,
Sµνrξpnm,oqs are tensor harmonics with indices pnmq. Coordinate shifts corresponding to
even-parity tensor harmonics are

ξ0 �M0pT, rqY m
n pθ, ϕq , ξ1 �M1pT, rqY m

n pθ, ϕq ,
ξ2 �M2pT, rqBθY m

n pθ, ϕq , ξ3 �M2pT, rq csc2 θBφY m
n pθ, ϕq , (2.20)

and the ones corresponding to odd-parity tensors harmonics are

ξ0 � ξ1 � 0 ,

ξd � ΛpT, rqεcdY m
n ,d for d � 2, 3 ,

(2.21)

where we omit indices pnmq in ξµ, Mµ, and Λ for clarity.
If the coordinate shift ξµ is given as a sum of shifts associated to different types of

tensor harmonics:

ξµ �
8̧

n�0

ņ

m��n

�
pξµqpnm,oq � pξµqpnm,oq

	
, (2.22)

then the metric perturbation h1µν in (2.11) is in new coordinates written as:

h1µν �
8̧

n�0

ņ

m��n

�
ph1µνqpnm,eq � ph1µνqpnm,oq

	
(2.23)
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where

ph1µνqpnm,eq � phµνqpnm,eq � Sµνrξpnm,eqs (2.24)

ph1µνqpnm,oq � phµνqpnm,oq � Sµνrξpnm,oqs (2.25)

where ph1µνqpnm,eq, ph1µνqpnm,oq are again harmonic tensors with the same indices.
It was shown by Regge and Wheeler (1957) that for each pnm, eq, pnm, oq we can

choose functions Mi (in ξpnm,eq in 2.20) in such a way, that in ph1µνqpnm,eq we have:

h0 � h1 � G � 0 . (2.26)

and choose the function Λ (in ξpnm,oq in 2.21) so that in ph1µνqpnm,oq is

h2 � 0 . (2.27)

This is called the Regge&Wheeler choice of gauge and with using it, we get a simplified
decomposition of metric perturbation h1µν into functionally independent parts. In this
gauge the even parity metric functions are:

phnmµν qpeq �

����
H0X H1 0 0
� H2X

�1 0 0

0 0 r2K 0
0 0 0 r2K sin2 θ

����Y m
n , (2.28)

and for odd parity, the metric functions are

phnmµν qpoq �

����
0 0 �h0 csc θBϕ h0 sin θBθ
0 0 �h1 csc θBϕ h1 sin θBθ
� � 0 0
� � 0 0

����Y m
n . (2.29)

It is shown in Regge and Wheeler (1957) and Zerilli (1970) that in vacuum H0 � H2,
therefore, both functions are marked with H in the following text.

Einstein equations The linearized Einstein equations for perturbations in the Schwarz-
schild background preserve pairs of indices pn,mq as well as the parity, and are homo-
geneous in the case of vacuum. Inserting hµν from (2.6) into (2.5), leads to a set of
homogeneous field equations for functions describing each normal mode independently.
From Zerilli (1970), we rewrite the field equations for the even parity metric functions:

XK,rr � p5X � 2q1
r
K,r �X

1

r
H,r

� 1

r2
pH �Kq � 1

2r2
npn� 1qpH �Kq � 0 (2.30)

K,rT � 1

r
pK �Hq,T � rs

2r2X
K � npn� 1q

2r2
H1 � 0 (2.31)
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1

X
K,TT � 1�X

2r
K,r � 2

r
H1,T �X

1

r
H,r

� 1

r2
pH �Kq � 1

2r2
npn� 1qpK �Hq � 0 (2.32)

pXH1q,r � pH �Kq,T � 0 (2.33)

H1,T �XpH �Kq,r � rs

r2
H � 0 (2.34)

� 1

X
K,TT �XK,rr � p1�Xq1

r
K,r � 1

X
H,TT�

2H1,rT �XH,rr � 1�X

rX
H1,T � 2

r
H,r � 0 , (2.35)

and for the odd parity metric functions:

h0,rr � h1,rT � 2

r
h1,T �

�
2rs

r2
� npn� 1q

r

�
h0

rX
� 0 (2.36)

h1,TT � h0,rT � 2

r
h0,T � pn� 1qpn� 2qXh1

r2
� 0 (2.37)

Xh1,r � 1

X
h0,T � rs

r2
h1 � 0 (2.38)

where a comma (,) denotes derivative.
From various possible choices of coordinate transformations, we found the Regge-

Wheeler gauge the most convenient for the following reasons: (i) the gauge is completely
fixed, (ii) the angular and radial dependence are decoupled in the resulting field equa-
tions, and (iii) the solutions have a Newtonian limit, which is important when comparing
metric tensor elements with their weak-field limits.

2.1.3 Time-independent metric perturbations

We first consider a stationary space-time case: Schwarzschild background with time-
independent perturbations (e.g., non-rotating, slightly non-spherical Earth, presence
of (hypothetical) non-moving celestial objects). We find solutions of the differential
equations from the previous subsection. We treat even and odd parity modes separately.

Even parity contributions

In the case of time-independent perturbations of even parity H1 � 0 (Regge and Wheeler
1957). It follows that the even metric mode (2.28) is diagonal:

phnmµν qpeq � diagpHX,HX�1, r2K, r2K sin2 θqY m
n . (2.39)

Inserting it in (2.5) gives differential equations for functions H and K. With substitution

Spxq � xpx� 1qHpxq (2.40)

these two functions are determined up to a constant prefactor (Zerilli 1970):

xp1� xqS2 � p2x� 1qS1 � wS � 0 , (2.41)
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xpx� 1qpH �Kq1 �H � 0 , (2.42)

2px� 1qH 1 � p2x� 1qK 1 � wpH �Kq � 0 , (2.43)

where we use rescaled radius x � r{rs, constant w � pn � 1qpn � 2q, and derivative
pq1 � d{dx. Because we are interested in solutions outside the Schwarzschild radius
(i.e., x ¡ 1), we can in (2.41) use a substitution x � 1{u and rewrite it on the domain
u P r0, 1s:

pu� 1qu2 :S � up3u� 4q 9S � wS � 0 (2.44)

with 9pq � d{du. Because u � 0 is a regular singular point, we can solve this equation
with the Frobenius method (Arfken 1985) around u � 0 and obtain the solution as the
superposition of two independent terms:

Spuq � Anmu
n�1P p0q

n puq �Bnmu
�n�2Rp0q

n puq , (2.45)

where Anm and Bnm are integration constants. The functions P
p0q
n and R

p0q
n are expressed

by Gaussian hypergeometric functions 2F1 (Abramowitz and Stegun 1964):

P p0q
n puq � 2F1p�1� n, 1� n; 2pn� 1q;uq (2.46)

Rp0q
n puq � 2F1p�2� n,�n;�2n;uq. (2.47)

The first few terms in the Taylor series of P
p0q
n and R

p0q
n around u � 0 are

P p0q
n puq � 1� 1

2
pn� 1qu� pn� 2qnpn� 1q

4p2n� 3q u2

� pn� 3qpn2 � 1qn
24p2n� 3q u3 �Opu4q ,

(2.48)

and

Rp0q
n puq � 1� 2� n

2
u� pn2 � 1qpn� 2q

4p2n� 1q u2

� pn2 � 4qnpn� 1q
24p2n� 1q u3 �Opu4q .

(2.49)

Using the relation (2.40) and the equation (2.45), we can write the solution for H as

Hprq � Anm
P
p0q
n

�
rs
r

�
rnpr � rsq �Bnm

rn�1R
p0q
n

�
rs
r

�
r � rs

. (2.50)

By combining equations (2.42) and (2.43) we can express function K with H:

K � H � H 1

w
� p2x� 1qH
wxpx� 1q . (2.51)
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and note that K is fully determined by H. Inserting in this expression the solution
(2.50) for H, we obtain the solution for K:

Kprq � Anmr
�n�1P p1q

n

�rs

r

	
�Bnmr

nRp1q
n

�rs

r

	
, (2.52)

where the functions P
p1q
n and R

p1q
n are connected to P

p0q
n and R

p0q
n . The first few terms

of their Taylor expansion around u � 0 are

P p1q
n puq � 1� pn� 2qpn� 1q

2pn� 1q u� pn� 3qnpn� 1q
4p2n� 1q u2

� pn� 4qpn� 2qnpn� 1q
24p2n� 1q u3 �Opu4q ,

(2.53)

and

Rp1q
n puq � 1� npn� 3q

2pn� 2qu�
npn� 1qpn� 4q

4p2n� 3q u2

� npn� 1qpn� 3qpn� 5q
24p2n� 3q u3 �Opu4q .

(2.54)

Link to Newtonian coefficients To obtain the complete form of solutions for H and
K, we need to determine the integration constants Anm and Bnm in (2.50) and (2.52).
Let us compare equation (2.50) with its Newtonian counterpart, i.e., the gravitational
potential Φ of a non-rotating Earth expanded into a series of multipole contributions
(Arfken 1985):

Φ � GM

r
�
¸
nm

pM`
nmr

�n�1 �Ma
nmr

nqY m
n , (2.55)

where M`
nm and Ma

nm are time-independent spherical multipole momenta and notation°
nm � °8

n�2

°n
m��n is used (for more on multipoles see Appendix B.0.2). We choose

the sign of (2.55) so that the force is F � ∇Φ. The first term in the sum describes the
gravitational potential of the perturbing sources positioned within the radius r, while the
second term corresponds to those outside r. Comparing (2.50) with (2.55), we notice the
same behaviour for r " rs (i.e., the superposition of r�n�1 and rn functional dependence)
in the perturbative part of (2.55) and it is evident that the coefficients Anm and Bnm are
related to the multipole momenta. The relation between both is found from the weak
field approximation

c2

2
p1� g00q � Φ . (2.56)

By inserting

g00 � g
p0q
00 �

¸
nm

phnm00 qpeq � X

�
�1�

¸
nm

Hnm

�
(2.57)
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into the above relation together with the Newtonian potential (2.55), we find that in
the weak field limit Anm and Bnm are asymptotically related to Newtonian spherical
multipole momenta M`

nm and Ma
nm as

Anm � 2

c2
M`
nm and Bnm � 2

c2
Ma
nm . (2.58)

Note that for finite c, M`
nm and Ma

nm only approximate Anm and Bnm.1

Odd parity contributions

In case of time independent perturbations, the odd metric functions phnmµν qpoq in (2.29)
have h1 � 0 (Regge and Wheeler 1957) and can be written with a single function h0 as

phnmµν qpoq �� h0 csc θ Y m
n ,ϕpδ0,µδ2,ν � δ2,µδ0,νq

� h0 sin θ Y m
n ,θpδ0,µδ3,ν � δ3,µδ0,νq .

(2.59)

The function h0 is determined up to a pre-factor by equation

h20 �
1

X

�
2

x3
� npn� 1q

x2

�
h0 � 0 , (2.60)

We are interested in h0 only at x ¡ 1 and rewrite this equation using the variable u � 1{x
on the domain of interest u P r0, 1s:

p1� uqu2:h0 � 2up1� uq 9h0 � r2u� npn� 1qsh0 � 0 , (2.61)

The point u � 0 is a regular singular point, so it can be solved with Frobenius method
in a similar way as equation (2.44). The solutions for h0 is

h0prq � αnmr
�nP p2q

n

�rs

r

	
� βnmr

n�1Rp2q
n

�rs

r

	
, (2.62)

where functions P
p2q
n and R

p2q
n are:

P p2q
n puq � 2F1p�1� n, 2� n; 2pn� 1q;uq (2.63)

Rp2q
n puq � 2F1p�2� n, 1� n;�2n;uq . (2.64)

Their Taylor series around u � 0 are

P p2q
n puq � 1� pn� 1qpn� 2q

2pn� 1q u� pn� 1qnpn� 2qpn� 3q
4pn� 1qp2n� 3q u2

� pn� 1qnpn� 3qpn� 4q
24p2n� 3q u3 �Opu4q ,

(2.65)

1For axial-symmetric case it was shown in Quevedo (1990); Backdahl and Herberthson (2005) that
the leading order in the expansion of relativistic multipoles is identical to Newtonian multipoles.
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and

Rp2q
n puq � 1� pn� 1qpn� 2q

2n
u� pn2 � 1qpn2 � 4q

4np2n� 1q u2

� pn� 3qpn2 � 4qpn� 1q
24p2n� 1q u3 �Opu4q .

(2.66)

To determine the constants αnm and βnm in (2.62), we note that off-diagonal terms
in the metric tensor are associated with frame-dragging effects. Since we are working
in a weak field limit, we consider only the frame-dragging effect of Earth, and neglect
frame-dragging effects arising from other celestial objects. Consequently, we set βnm � 0,
because the second term in (2.62) is due to objects outside r.

To determine αnm, we notice that for n � 1 and m � 0 the corresponding h0 matches
the weak field and slow rotation approximation of the Kerr metric: if r " rs and Earth’s
angular parameter is a ! 1, then for α10 � ars

a
4π{3 it follows

h0prq � a
rs

r

c
4π

3
, (2.67)

where we keep only the terms linear in a.
For higher multipoles (n ¡ 1), it turns out that their dependence on a is not linear

(Hartle and Sharp 1967). Therefore, the only multipole we include in the odd-parity
metric function is the monopole, i.e., the one belonging to the linear (in a) part of the
Kerr effect.

2.1.4 Time-dependent metric perturbations

Next we consider a slowly rotating Earth and weak gravitational influences of other
nearby moving celestial objects. Therefore, we study time dependent perturbations of
the Schwarzschild metric around the Earth, which is slowly rotating around z axis with
angular velocity ΩC. Due to Earth’s rotation its multipoles vary periodically. Earth’s
tides can introduce additional time dependency in its multipoles (additional variability
with different frequency, phase and varying amplitude, depending on the position of the
Moon and the Sun). In addition, the gravitational influence of other celestial objects
introduces time dependent perturbations to the space-time around the Earth, because
their positions relative to Earth change with time. These perturbations can be expanded
in a series of multipoles and treated with the same procedure as Earth’s multipoles.2 We
consider time dependent metric perturbations for the case of perturbations oscillating
slowly with angular velocities, which are smaller or of the same order of magnitude as
ΩC. Both angular velocities are defined with respect to the Schwarzschild time t.

2We considered also another approach, namely, to include perturbations due to the Moon, the Sun,
Venus, and Jupiter with PPN Lagrangian as described in Einstein et al. (1938). We decided to use
multipole expansion, because this approach is on our opinion more elegant and analogous to our treatment
of Earth’s multipoles.
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Even-parity contributions

Even-parity modes phnmµν qpeq in (2.28) are connected to the Newtonian gravitational po-
tential Φ, which in the case of time dependent multipoles can be written as:

Φ � GM

r

�
¸
nm

pM`
nmpT qr�n�1 �Ma

nmpT qrnqY m
n ,

(2.68)

where T � ct. Alternatively, it can be written in frequency domain as:

Φ �GM
r

�
¸
nm

» 8

�8
dk eikT���M`

nmpkqr�n�1 � �Ma
nmpkqrn

�
Y m
n ,

(2.69)

where k is the wavenumber and �M`
nm, �Ma

nm are the Fourier transforms of time dependent
multipoles: �Mv

nmpkq �
1

2π

» 8

�8
dT e�ikTMv

nmpT q , (2.70)

where v � `,a.
Each time dependent multipole generates a time-dependent even metric perturbation

phnmµν qpeq. Functions H, H1, and K determining the modes can be expressed with their
Fourier transforms:

pHpT, rq, H1pT, rq,KpT, rqq �» 8

�8
dk eikT p rHpk, rq, rH1pk, rq, rKpk, rqq . (2.71)

Using ansatz (2.71) in field equations (2.30) - (2.35) yields only three independent
differential equations (with pq1 � d{dr) (Regge and Wheeler 1957):

ik

� rK 1 �
rK � rH
r

� rs

2r2X
rK�� q

r2
rH1 � 0 (2.72)

pX rH1q1 � ikp rK � rHq � 0 (2.73)

ik rH1 �Xp rK � rHq1 � rs

r
rH � 0 , (2.74)

and an algebraic relation (Zerilli 1970):�
3rs

r
� w

� rH � i
�
2kr � q

rs

2kr2

� rH1

�
�
w � rs

r
� 2

X

�
r2

s

p2rq2 � pkrq2

� rK � 0 ,

(2.75)
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where q � npn � 1q. With variables x � r{rs and κ � krs, we can write this algebraic
relation in a dimensionless form�

3

x
� w

� rH � i
�
2κx� q

2κx2

� rH1

�
�
w � 1

x
� 2x

x� 1

�
1

p2xq2 � pκxq2

� rK � 0 .

(2.76)

Because in our studies κ ! 1, we solve equations (2.72) - (2.75) perturbatively in κ.
We assume that rH, rH1, and rK are smooth functions of κ, and write them as a power
series of κ. We find that an appropriate expansion of these functions for κÑ 0 has the
form

p rH, rH1, rKq � rNpκq 8̧

i�0

κ2ipraiprq, iκrbiprq,rciprqq . (2.77)

Inserting this ansatz in the equations (2.72)-(2.74) and neglecting all higher than
leading terms in the expansion (2.77), gives us two solutions for each function. The
leading orders of rH and rK are given in (2.50) and (2.52), respectively, where instead of
Anm, Bnm from (2.58) we use another set of constants rAnm, rBnm to describe a general
case: rHpk, rq � rAnmpkq P p0q

n

�
rs
r

�
rnpr � rsq �

rBnmpkqrn�1R
p0q
n

�
rs
r

�
r � rs

�Opκ2q . (2.78)

rKpk, rq � rAnmpkqr�n�1P p1q
n

�rs

r

	
� rBnmpkqrnRp1q

n

�rs

r

	
�Opκ2q . (2.79)

From the algebraic relation (2.75) we get the leading orders of rH1:

rH1pk, rq � � iκ
q

�
r

rs


2
�

6rs

r
� wp rH � rKq � 4 rKrs

r � rs

�
�Opκ3q . (2.80)

Using the above solutions for rH and rK, (2.78) - (2.79), we can rewrite this in a more
explicit form:

rH1pk, rq � rAnmpkqr�n�1P
p3q
n

�
rs
r

�
rspr � rsq � rBnmpkqrn�2R

p3q
n

�
rs
r

�
rspr � rsq , (2.81)

where functions P
p3q
n and R

p3q
n are given as a series in u � rs{r for uÑ 0:

P p3q
n puq � 2

n
� n2 � 3n� 1

pn� 1qpn� 2qu�
n3 � 5n2 � 6n� 3

2pn� 2qp2n� 3q u
2

� n3 � 6n2 � 8n� 6

12p2n� 3q u3 �Opu4q ,
(2.82)
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and

Rp3q
n puq � � 2

n� 1
� n2 � n� 1

pn� 1qn u� n3 � 2n2 � n� 1

2pn� 1qp2n� 1q u
2

� n3 � 3n2 � n� 3

12p2n� 1q u3 �Opu4q .
(2.83)

By considering the weak field limit (2.56) we find that

rAnm � 2

c2
�M`
nm and rBnm � 2

c2
�Ma
nm . (2.84)

The metric perturbation expressed with these functions is accurate up to the linear
order in frequency. Since higher order perturbations naturally give rise to contributions
with higher orders of frequencies, our approximation of the perturbation is consistently
linear, i.e., it is linear in frequencies and in the order of perturbation.

Odd-parity contributions

For odd-parity contribution to the metric phnmµν qpoq (2.28) we use the same notation for
solutions h0, h1 as in (2.71):

ph0pT, rq, h1pT, rqq �
» 8

�8
dk eikT ph̃0pk, rq, h̃1pk, rqq . (2.85)

Because we are interested only in persistent phenomena, we limit ourselves to real
wavenumbers, k P R. A more detailed discussion of all possible solutions is given in
e.g. Vishveshwara (1970). Using ansatz (2.85) in field equations (2.36)-(2.38) for odd
metric functions, we obtain only two independent equations

ikh̃0 �XpXh̃1q1 � 0 , (2.86)

k2h̃1 � ikph̃10 � 2
h̃0

r
q � wX

h̃1

r2
� 0 , (2.87)

with pq1 � d{dr. It was shown by Regge and Wheeler (1957) that we can use a substi-
tution for h1:

Q � X
h̃1

r
(2.88)

to eliminate h0 from both equations. Thereby we obtain a wave equation for Q in the
form

d2

dr2
�

Q� k2
effQ � 0 , (2.89)

where r� is modified radius defined as

dr� � X�1dr or r� � r � rs logpr � rsq � const. (2.90)
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and an effective wave number

k2
eff � k2 � npn� 1qX

r2
� 3

rsX

r3
. (2.91)

By knowing Q, we can express h̃1 from (2.88) and write h̃0 using (2.86) as:

h̃0 � � i

k
XprQq1 . (2.92)

From equation (2.89) we find that in the limit r Ñ8 its solution isQprq � sinpkr�φq.
This determines asymptotic behavior of h̃0 and h̃1:

h̃1prq � r sinpkr � φq and h̃0prq � r cospkr � φq . (2.93)

We see that the asymptotic behaviour of solutions h̃0 and h̃1 is not flat, and therefore,
these solutions are not relevant in our case. Because we neglect frame-dragging effects
arising from other objects, as mentioned in 2.1.3, we neglect time dependent odd-parity
contributions all together.

2.1.5 Metric around Earth

Finally, we can write the metric perturbation hµν around Earth, which in (2.6) was
expressed as a series of normal modes phnmµν qpoq and phnmµν qpeq. Based on the positions of
the sources of perturbations, these modes can be grouped into two terms:

hµν � h`µν � haµν . (2.94)

The term h`µν represents Earth’s time dependent (exterior) multipoles (i.e., even-parity

modes given in 2.1.4 with rBnm � 0) and the Earth’s frame-dragging effect via the Kerr
contribution given in 2.1.3. This metric perturbation is asymptotically flat. In non-
relativistic description we could say that the former arise from the shape of the Earth,
which changes with time due to rotation and tidal forces. For the latter, Kerr effect,
there is no non-relativistic counterpart.

The term haµν represents the time dependent (interior) multipoles of other celestial

bodies (i.e. even-parity modes given in 2.1.4 with rAnm � 0). Their frame-dragging effect
is neglected. The elements of this metric perturbation increase with radius, which means
that this perturbation is not asymptotically flat. In non-relativistic description we could
say that this term arises from the perturbative effects of other bodies, i.e. the Moon,
The Sun, Venus, Jupiter etc., whose positions relative to Earth change with time.

To simplify expressions, we introduce the normalized complex multipoles (v � `,a)
defined as:

M
v
nm :� 2

c2
Mv
nm . (2.95)
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Taking into account the results of previous subsections, we can write the metric
perturbations in a compact form. Metric perturbation due to Earth’s multipoles and
rotation can be written as:

rh`µνs �
¸
nm

M
`
nmY

m
n �

diag

�
P
p0q
n

rn�1
,

P
p0q
n

rn�1pr � rsq2 ,
P
p1q
n

rn�1
,
P
p1q
n sin2 θ

rn�1

�

�
¸
nm

M
`
nm,TY

m
n

P
p3q
n

rn�1pr � rsqpδµ,1δν,0 � δν,1δµ,0q

� a
rs

r
sin2 θpδµ,3δν,0 � δν,3δµ,0q ,

(2.96)

where Earth’s multipoles M
`
nm are functions of time and include rotation and tides; and

M
`
nm,T are their time derivatives. Therefore, the first two terms in (2.96) describe the

metric perturbation due to oscillating/rotating? multipoles and tides, while the third
describes the Kerr frame-dragging effect.

Metric perturbations due to other celestial bodies are

rhaµνs �
¸
nm

M
a
nmY

m
n �

diag

�
rnRp0q

n ,
rn�2R

p0q
n

pr � rsq2 , r
n�2Rp1q

n , rn�2Rp1q
n sin2 θ

�

�
¸
nm

M
a
nm,TY

m
n

rn�2Rp3q

r � rs
pδµ,1δν,0 � δν,1δµ,0q .

(2.97)

where M
a
nm are summed multipoles of other bodies.

We note again that multipole coefficients Mnm are expansion coefficients of the New-
tonian potential, which are only the leading order approximations in c Ñ 8 of exact
relativistic coefficients. The first order approximations of the metric perturbations given
by (2.96) and (2.97) are fully determined by multipole momenta M

`
nm, M

a
nm, Kerr pa-

rameter a, and functions P
piq
n and R

piq
n .

Conclusions for WP1: In WP1 we built a scheme for including gravitational per-
turbations to the background of the Schwarzschild metric in the weak-field limit with
the linear perturbation theory. The solutions (beyond the dominant monopole) were
obtained using the RWZ formalism, i.e. the perturbations were expanded in terms of
tensor spherical harmonics or normal modes. We used the c Ñ 8 limit to find connec-
tion between our solutions and Newtonian multipole coefficients. The frame-dragging
effect of the central object is taken into account by the first order term in the expansion
of the Kerr metric for a ! 1.

The result is a perturbed Schwarzschild metric, with perturbations incorporating
effects due to Earth’s multipoles, tides and rotation, and weak gravitational influences
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of other Solar System objects. It is written with explicit expressions (2.96) and (2.97)
for the perturbative metric. The first order approximations of the metric perturbations
given by (2.96) and (2.97) are fully determined by multipole momenta M

`
nm, M

a
nm, Kerr

parameter a, and functions P
piq
n and R

piq
n .
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2.2 Work Package 2 - Dynamics of satellites

Abstract of WP2: In WP2 we calculate satellite dynamics in perturbed space-time.
We use perturbed metric derived in WP1 and perturbative Hamiltonian formalism to
obtain time derivatives of 0th order constants of motion. With the derivatives known, we
are able to determine the time evolution of 0th order constants of motion and because
they are varying slowly, we apply them to analytic solutions for Schwarzschild geodesics
to obtain satellites’ orbits in perturbed space-time. We investigate the influence of
gravitational perturbations on the orbital parameter evolution and on the satellite’s
position and time. We estimate the influence of gravitational perturbations on the user-
satellite and inter-satellite light signal propagation.

We treat satellites as point like test-objects and neglect their effect on the space-time
metric. Their trajectories are described in space-time as a curve xµpτq, where τ is the
proper time. The dynamics is treated in the Lagrangian and Hamiltonian formalism.

The Lagrangian function of the satellite dynamics in a space-time metric can be
written as

Lpxµ, 9xµq � 1

2
gµνpxαq 9xµ 9xν , (2.98)

where 9pq � d
dτ . The equations of motion are then given by the Lagrange equation

d

dτ

� BL
B 9xν



� BL
Bxν � 0 , (2.99)

which can be rewritten in a form of the geodesic equation

d2xµ

dτ2
� Γµαβ

dxα

dτ

dxβ

dτ
� 0 , (2.100)

where Γcab � 1
2g
cdpgda,b � gdb,a � gab,dq are the Christoffel symbols of the second kind.

Note that the metric is approximated as in 2.2: gµν � g
p0q
µν � hµν �Oph2q.

The Hamiltonian formalism offers a more convenient way to write equations of mo-
tion. By introducing the momenta

pν � BL
B 9xν � gνµ 9x

µ , (2.101)

we can define the Hamiltonian

Hpxµ, pµq � pµ 9x
µ � L � 1

2
gµνpxαqpµpν . (2.102)
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Taking into account that gµν is exactly given only up to the linear order in perturbation
hµν , we can express the inverse metric tensor gµν up to the same order as3

gµν � gµν p0q � hµν �Oph2q , (2.103)

where the inverse metric perturbation hµν is

hµν � gµαp0qgνβ
p0q
hαβ (2.104)

and gµν p0q is the inverse unperturbed metric tensor.
Using the expansion of the inverse of the metric (2.103) in the expression of the

Hamiltonian H (2.102), we get

H � 1

2
gµν p0qpµpνloooooomoooooon

Hp0q

� 1

2
hµνpµpνloooomoooon

∆H

(2.105)

with the unperturbed Hamiltonian Hp0q and the perturbative part ∆H, where higher
than linear orders in metric perturbations are omitted.4

The satellite’s trajectory pxνpτq, pνpτqq is then given by the Hamilton equations

9xν � BH
Bpν and 9pν � �BH

Bxν , (2.106)

which is an alternative way of writing the geodesic equation (2.100).

2.2.1 Hamiltonian formalism in the Schwarzschild space-time

The Schwarzschild metric is:

gµν �

����
�p1� 2M

r q 0 0 0
0 1

1�2M{r 0 0

0 0 r2 0
0 0 0 r2 sin2 θ

���� , (2.107)

where M � GME{c2 (ME is the Earth mass). In Schwarzschild coordinates, the La-
grangian and the Hamiltonian are:

L � 1

2

�
�
�

1� 2M

r

	
9t2 � 1

1� 2M
r

9r2 � r2
�
9θ2 � sin2 θ 9φ2

	�
(2.108)

3Let us assume that we have invertible matrix A and its perturbation δA, then if }A�1δA}2   1, the
inverse of A�∆A can be given as a series pA�δAq�1 � p1�A�1δAq�1A�1 �

°8
n�0p�1qnpA�1δAqnA�1,

where we use p1�xq�1 �
°8
n�0p�xq

n for |x|   1. In our case we use only the first two terms in the sum.
4When comparing dynamics obtained by Hamiltonians H and Hp0q, it should be noted that the mo-

menta pµ and p
p0q
µ associated to the two Hamiltonians differ in interpretation; inserting the approximation

of the metric gµν (2.2) into (2.101), it follows that pν � gp0qνµ 9xµloomoon

p
p0q
ν

�hνµ 9xµ .
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Figure 2.2: The orbital plane: n̂ is a unit vector normal to the orbital plane, ι orbital
inclination, Ω the longitude of the ascending node, ω the longitude of the apoapsis, and
λ the true anomaly.

H � 1

2

�
� 1

1� 2M
r

p2
t �

�
1� 2M

r

	
p2
r �

1

r2

�
p2
θ �

1

sin2 θ
p2
φ

	�
, (2.109)

wtih the conjugate momenta:

pt � BL
B 9t � �

�
1� 2M

r



9t � �E � const. (orbital energy) (2.110)

pr � BL
B 9r � 1

1� 2M
r

9r � const. (2.111)

pθ � BL
B 9θ � r2 9θ � const. (2.112)

pφ � BL
B 9φ � r2 sin2 θ 9φ � lz � const. (z-component of the ang. mom.) . (2.113)

Therefore, we have the coordinates qµ and the momenta pµ

pqµ, pµq � pt, r, θ, φ, pt, pr, pθ, pφq . (2.114)

Next, we do a canonical transformation F2 : pqµ, pµq Ñ pQµ, Pµq, such that pQµ, Pµq
are constant for the above Hamiltonian:

P0 � H pHamiltonianq (2.115)

P1 � �pt � E porbital energyq (2.116)

P2 � �
d
p2
θ �

p2
φ

sin2 θ
� l (magnitude of the ang. mom.) (2.117)
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P3 � pφ � lz (z-component of the ang. mom.) (2.118)

Q0 � �τ �
» r
ra

dra
P 2

1 �Xp�2P0 � P 2
2 {r2q � �τa (proper time of the first apo. passage)

(2.119)

Q1 � �t�
» r
ra

P1

X
a
P 2

1 �Xp�2P0 � P 2
2 {r2qdr � �ta (time of the first apo. passage)

(2.120)

Q2 �
» r
rp

P2

r2
a
P 2

1 �Xp�2P0 � P 2
2 {r2qdr �

» θ
π{2

P2b
P 2

2 � P 2
3 { sin2 θ

dθ � ω (long. of the first apo. passage)

(2.121)

Q3 � φ�
» θ
π{2

P3

sin2 θ
b
P 2

2 � P 2
3 { sin2 θ

dθ � Ω (longitude of the ascending node),

(2.122)

where X � 1� 2M{r and ra the radius at the apoapsis.5

The above orbital parameters pQµ, Pµq are used to find the analytical solutions for
the orbits of the form

t � tpλ|Qµ, Pµq r � rpλ|Qµ, Pµq θ � θpλ|Qµ, Pµq φ � φpλ|Qµ, Pµq , (2.123)

where λ is the true anomaly (Kostić 2012; Gomboc 2001). With a known relation
τ � τpλq, it is possible to calculate the coordinates and momenta pqµ, pµq at any given
proper time τ of the satellite. For geometric representation of Q2 and Q3 see Fig. 2.2. For
detailed analysis of the canonical transformation and additional information on pQµ, Pµq,
as well as equation of orbit, see Appendices A, A.1, and A.2, respectively.

2.2.2 Perturbative Hamiltonian

If the metric is perturbed by hµν , we get additional ∆H to the Hamiltonian

∆H � 1

2
hµνpµpν . (2.124)

Consequently, pQµ, Pµq are no longer constants of motion - they are slowly changing
functions of time. Their evolution can be calculated from (Goldstein 1980):

9Qλ � BH
BPλ

����
Qλ,Pλ

� � B∆H

BPλ

����
Qλ,Pλ

� �1

2

Bphµνpµpνq
BPλ (2.125)

9Pλ � � BH
BQλ

����
Qλ,Pλ

� B∆H

BQλ
����
Qλ,Pλ

� 1

2

Bphµνpµpνq
BQλ . (2.126)

5In Keplerian orbits it is customary to take the time of the periapsis passage. However, in Schwarz-
schild case it is better to work with the time of the apopasis passage, since this simplifies some equations.
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Expanding above equations into:

9Qλ � �1

2

�Bhµν
BPλ pµpν � hµν

Bpµ
BPλ pν � hµνpµ

Bpν
BPλ



Qλ,Pλ

(2.127)

9Pλ � 1

2

�Bhµν
BQλ pµpν � hµν

Bpµ
BQλ pν � hµνpµ

Bpν
BQλ



Qλ,Pλ

, (2.128)

and taking into account that perturbative metric depends only on coordinates qµ:

Bhµν
BPλ � Bhµν

Bt
Bt
BPλ �

Bhµν
Br

Br
BPλ �

Bhµν
Bθ

Bθ
BPλ �

Bhµν
Bφ

Bφ
BPλ (2.129)

Bhµν
BQλ � Bhµν

Bt
Bt
BQλ �

Bhµν
Br

Br
BQλ �

Bhµν
Bθ

Bθ
BQλ �

Bhµν
Bφ

Bφ
BQλ , (2.130)

it becomes clear, that we have to calculate all possible derivatives of the form

Bpµ
BQµ ,

Bqµ
BQµ ,

Bpµ
BPµ ,

Bqµ
BPµ (2.131)

to obtain the final expressions for the derivatives (2.127) – (2.128). Detailed derivations
are given in App. A.3

The Eqs. (2.127) and (2.128) can be numerically integrated to obtain the solutions for
Qµpτ |Qµ, Pµq and Pµpτ |Qµ, Pµq, which are then used to replace pQµ, Pµq in the analytical
expressions for unperturbed orbits (2.123). In this way, the perturbed orbit is described
as time-evolving unperturbed orbit:

t � tpτ |Qµpτq, Pµpτqq r � rpτ |Qµpτq, Pµpτqq
θ � θpτ |Qµpτq, Pµpτqq φ � φpτ |Qµpτq, Pµpτqq .

(2.132)

2.2.3 Evolution of Orbits

To obtain satellite orbits, we need to calculate the evolution of orbital parameters (2.115)-
(2.122), i.e. numerically solve equations (2.125) and (2.126). In doing so, we first have
to calculate the metric perturbation hµν .

In case of Kerr contribution metric perturbation is already well known: we use
(2.67) in (2.29). We verified that non-linear terms in Kerr contribution are much smaller
than linear contributions and we may neglect them. Only the rotation of the Earth’s
monopole is large enough for required accuracy (see also Hartle (1967), Hartle and Sharp
(1967)). In fact, the perturbation due to Earth’s rotation is the smallest perturbation,
which we take into account. We have also confirmed that spin-spin and spin-orbit cou-
plings between a satellite and Earth are negligible.

For all other perturbations, we use multipole expansion and the results from subsec-
tion 2.1.4 in the following way.
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Calculation of multipoles: The contributions of the Moon, the Sun, Venus, and
Jupiter to the metric are described by a multipole expansion, where the multipole mo-
menta are calculated from the positions of these objects, as shown in the Appendix B.0.2.
The tidal effects of the Sun and the Moon on the Earth crust and oceans were modelled
with time changing Earth multipoles. The dependence of the small multipole changes on
Sun’s and Moon’s positions is presented in the Appendix B.0.3. In both cases, the po-
sitions were obtained from the ephemerides NASA JPL’s Solar System Dynamics group
(2013).

The positions of celestial bodies were sampled with a time interval of 1 hour, from 1
January 2012 to 31 December 2012, however, since during the numerical integration of
(2.125) and (2.126) a much finer sampling is required, we used interpolation for interme-
diate points. To make sure that even the weakest contributions are not lost in numerical
noise, we used very accurate interpolation and integration scheme and did all the calcu-
lations in 128-bit floating point precision. Furthermore, because the calculations should
also be performed as fast as possible it is best to use a higher order integration method.
To meet both criteria, we used the 8-th order B-splines for interpolation and the 8-th
order Runge-Kutta for integration.6

Results:

We set initial values of a satellite orbit: ta � 7 h, ω � 0�, Ω � 0�, a � 29600 km,
ε � 0.007, ι � 56�. We then calculated the evolution of orbital parameters for each
perturbation individually as well as for the sum of all perturbations. Results are shown
in Figs. 2.3 – 2.11, where we converted the conjugate momenta pE, l, lzq into the more
convenient set of parameters, i.e. major semi-axis a, eccentricity ε, and inclination ι.
The graphs on the left and right side show the evolution for a period of one year and
one week, respectively.

Effects of individual perturbations on orbital parameters The results for each
individual perturbation show similar behavior, i.e. an oscillating and a secular contri-
bution. As expected, the effects due to multipoles and the Moon produce the biggest
changes in parameters, with the amplitudes of the oscillations of ∆ω � 0.15� � 0.35�,
∆Ω � 0.362 � 3.62, ∆ι � 0.72 � 72, ∆a � 400� 3000 m, and ∆ε � 2� 10�5 � 8� 10�5.
When it comes to secular changes, the multipoles induce the biggest changes in all pa-
rameters – except in inclination. After a year, the changes fir Earth multipoles and the
Moon are ∆ω � 2��4�, ∆Ω � 0.5��9.5�, ∆a � 0, ∆ι � 0 (Earth), ∆ι � 0.06� (Moon),
and ∆ε � 2� 10�5 � 8� 10�5.

The smallest changes in parameters come from the Kerr effect, with the amplitudes
of the oscillations of ∆ω � 12 mas, ∆ω � 10�3 mas, ∆a � 0.37m, and ∆ε � 9� 10�10.
The changes in one year are ∆ω � �4.4 mas, and ∆Ω � 2.5 mas. The remaining
parameters have no secular changes.

6We used Intel C++ and Fortran compilers since these offer native support for 128-bit floating point
precision and are thus faster than any other software multiprecision library.
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Figure 2.3: Evolution of orbital parameters due to Earth multipoles. The graphs on the
left show the long-term changes of the orbital parameters in one year, while the graphs
on the left show the short time-scale changes within the first 7 days. The time on x-axis
counts days from 1 January 2012 at 7:00 a.m.

32



-2x10-5

 0

 2x10-5

 4x10-5

 6x10-5

 8x10-5

 0.0001

 0  50  100  150  200  250  300  350

Δ
ε

t[day]

-1x10-5

 0

 1x10-5

 2x10-5

 3x10-5

 4x10-5

 5x10-5

 6x10-5

 7x10-5

 8x10-5

 9x10-5

 0  1  2  3  4  5  6  7

Δ
ε

t[day]

Figure 2.3: Continued.
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Figure 2.4: Evolution of orbital parameters due to Earth solid tides. The graphs on the
left show the long-term changes of the orbital parameters in one year, while the graphs
on the left show the short time-scale changes within the first 7 days. The time on x-axis
counts days from 1 January 2012 at 7:00 a.m.
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Figure 2.4: Continued.
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Figure 2.5: Evolution of orbital parameters due to Earth ocean tides. The graphs on the
left show the long-term changes of the orbital parameters in one year, while the graphs
on the left show the short time-scale changes within the first 7 days. The time on x-axis
counts days from 1 January 2012 at 7:00 a.m.
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Figure 2.5: Continued.
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Figure 2.6: Evolution of orbital parameters due to Moon. The graphs on the left show
the long-term changes of the orbital parameters in one year, while the graphs on the left
show the short time-scale changes within the first 7 days. The time on x-axis counts
days from 1 January 2012 at 7:00 a.m.
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Figure 2.6: Continued.
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Figure 2.7: Evolution of orbital parameters due to Sun. The graphs on the left show
the long-term changes of the orbital parameters in one year, while the graphs on the left
show the short time-scale changes within the first 7 days. The time on x-axis counts
days from 1 January 2012 at 7:00 a.m.
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Figure 2.8: Evolution of orbital parameters due to Jupiter. The graphs on the left show
the long-term changes of the orbital parameters in one year, while the graphs on the left
show the short time-scale changes within the first 7 days. The time on x-axis counts
days from 1 January 2012 at 7:00 a.m.
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Figure 2.9: Evolution of orbital parameters due to Venus. The graphs on the left show
the long-term changes of the orbital parameters in one year, while the graphs on the left
show the short time-scale changes within the first 7 days. The time on x-axis counts
days from 1 January 2012 at 7:00 a.m.
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Figure 2.10: Evolution of orbital parameters due to Kerr. The graphs on the left show
the long-term changes of the orbital parameters in one year, while the graphs on the left
show the short time-scale changes within the first 7 days. The time on x-axis counts
days from 1 January 2012 at 7:00 a.m.
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Figure 2.10: Continued.
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Figure 2.11: Evolution of orbital parameters due to sum of all perturbations (Earth
multipoles, Earth solid tide, ocean tide, the Moon, the Sun, Venus, Jupiter, and Kerr
effect). The graphs on the left show the long-term changes of the orbital parameters in
one year, while the graphs on the left show the short time-scale changes within the first
7 days. The time on x-axis counts days from 1 January 2012 at 7:00 a.m.
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Figure 2.11: Continued.

Effects of all perturbations on orbital parameters As can be seen, there are
two components, a short-term oscillating and a secular term. On average, the major
semi-axis only oscillates and has no secular term, while the angles ω, Ω, and ι also have
a small secular term, so the orbit can still be described as planar, whose orientation
changes slowly with time.

Effects of perturbations on the position and time of the satellite Because all
these changes of the orbital parameters are very small, instead of plotting the perturbed
orbits (2.132), we rather plot in Figs. 2.12 and 2.13 the differences between positions7

and Schwarzschild times (at the same proper times) of the satellite on the perturbed and
unperturbed orbit. We show the differences in position and time for each perturbation,
where all orbital parameters are changed at once as dictated by the solutions to (2.125)
and (2.126).

The largest differences in positions ∆L and times ∆T are � 104 km and � 10�10 �
10�9 s in one year, and come from the multipoles, while the smallest are � 20 cm and
� 10�17 s in one year, and come from the Kerr perturbation.

From these two figures it can be easily estimated which perturbations to include for
a given accuracy of a positioning system – for a system with accuracy better than meter
in one year, all perturbations down to Kerr should be included. Taking into account that
the satellites are at r � 30.000 km and that the effect of Kerr perturbation is 0.5 mm
per day, it would be in principle sufficient to do all the calculations in double precision.
However, it turns out that some precision loss occurs when using the equations from
Kostić (2012) to calculate the derivatives (2.125) - (2.131). Namely, these equations
suffer from cancellation effects in case of quasi-circular orbits (which is the case for
GNSS). Although we managed to get rid of the most crucial ones by replacing the
energy E with E � 1� η, where η ! 1, the remaining ones reduce the precision by 8-10
digits. Consequently, all the calculations have to be done with 128-bit floating point
numbers, to make sure that Kerr effect is not lost in numerical noise.

7We note that we do not measure the difference in position in length along the orbit, but by 3D
distance between both positions: ∆L � |~rperturbed � ~rSchwarzschild|
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Figure 2.12: The differences in the position ∆L of the satellite due to each gravitational
perturbation. The time on x-axis counts days from 1 January 2012 at 7:00 a.m.. The
initial values of parameters are: ta � 7 h, ω � 0�, Ω � 0�, a � 29602 km, ε � 0.007,
ι � 56�.
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Figure 2.13: The differences of the Schwarzschild times ∆T of the satellite due to each
gravitational perturbation. The time on x-axis counts days from 1 January 2012 at 7:00
a.m.. Axes on red and gray plots have the same units. The initial values of parameters
are: ta � 7 h, ω � 0�, Ω � 0�, a � 29602 km, ε � 0.007, ι � 56�.
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Effects of perturbations on a light signal time-of-flight

Using results of Zschocke and Klioner (2011), we estimated the effect of gravitational
perturbations on propagation of light signals (user-satellite and inter-satellite commu-
nication). The largest time delay due to Earth quadrupole perturbation is for satellites
on opposite sides of Earth and amounts to 5.4� 10�14 s. Therefore we find that effects
of gravitational perturbations on signal time-of-flight are negligible in case of Galileo
GNSS.

Conclusions for WP2: We calculated satellites’ orbits in perturbed space-time taking
into account all relevant gravitational perturbations and using Hamiltonian formalism.
We make use of the Schwarzschild geodesic solution and slowly time evolving 0th order
constants of motion. We investigated the influence of each gravitational perturbation on
the orbital parameters evolution and on the satellites position and time. We find that
the influence of gravitational perturbations on the user- satellite and inter-satellite light
signal propagation is negligible.
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2.3 Work Package 3 - Determination of orbital parameters

Abstract of WP3: We use perturbed satellite orbits from Work Package 2 (including
all relevant gravitational perturbations, such as Earth multipoles (up to the 6th), Earth
solid and ocean tides, the Sun, the Moon, Jupiter, Venus, and the Kerr effect.) to
model the relativistic positioning in gravitationally perturbed space-time and test its
accuracy. We simulate a constellation of GNSS satellites as an RPS with inter-satellite
links. Satellite orbits are described by their initial values of 0th order constants of
motion, which are, in the following, assumed to be known with only limited accuracy.
By using only inter-satellite links and information on emission coordinates over several
orbital periods we refine initial values of 0th order constants of motion. In this way
the satellites can themselves highly accurately determine and check internally in the
GNSS system the system’s dynamics, i.e. their own orbital parameters, and thus they
constitute an Autonomous Basis of Coordinates (ABC), which is independent of any
Earth based coordinate system. We study the stability of the solutions and possible
degeneracies among orbital parameters.

2.3.1 Positioning in Perturbed Space-time

We simulate a constellation of four satellites moving along their time-like geodesics. The
initial orbital parameters of the geodesics, i.e. initial values of 0th order constants of
motion, are known and their evolution due to gravitational perturbations is calculated
as shown in subsections 2.2.2 and 2.2.3.

At every time-step of the simulation, each satellite emits a signal and a user on Earth
receives signals from all satellites – the signals are the proper times of satellites at their
emission events and constitute the emission coordinates of the user (see section 1.2).
The emission coordinates determine the user’s position in this particular relativistic
reference frame defined by the four satellites and allow him to calculate his position
and time in the more customary Schwarzschild coordinates. Therefore, to simulate the
relativistic positioning system (RPS), we need two main algorithms: (1) determination
of the emission coordinates, and (2) calculation of the Schwarzschild coordinates.

Determination of the emission coordinates The satellites’ trajectories are para-
metrized by their true anomaly λ. The event Po � pto, xo, yo, zoq marks user’s Schwarz-
schild coordinates at the moment of reception of the signals from four satellites. Each
satellite emitted a signal at event Pi � pti, xi, yi, ziq, corresponding to λi (i � 1, ..., 4).
Emission coordinates of the user at Po are, therefore, the proper times τipλiq of the
satellites at Pi. Taking into account that the events Po and Pi are connected with a
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light-like geodesic,8 we calculate λi at the emission point Pi using the equation

to � tipλi|Qµpτiq, Pµpτiqq �
Tf p~Ripλi|Qµpτiq, Pµpτiqq, ~Roq ,

(2.133)

where ~Ri � pxi, yi, ziq and ~Ro � pxo, yo, zoq are the spatial vectors of the satellites and the
user, respectively. The function Tf calculates the time-of-flight of light signals between
Po and Pi as shown by Čadež and Kostić (2005) and Čadež et al. (2010). The equation
(2.133) is actually a system of four equations for four unknown λi – once the values of
λi are determined numerically, it is straightforward to calculate τi from (A.38) for each
satellite and thus obtain user’s emission coordinates at Po � pτ1, τ2, τ3, τ4q.

Calculation of the Schwarzschild coordinates Here we solve the inverse problem
of calculating Schwarzschild coordinates of the event Po from proper times pτ1, τ2, τ3, τ4q
sent by the four satellites. We do this in the following way: For each satellite, we
numerically solve the equation

τpλi|Qµpτiq, Pµpτiqq � τi , (2.134)

to obtain λi, where τpλ|Qµpτq, Pµpτqq is a known function for proper time on time-
like geodesics (Kostić 2012). The Schwarzschild coordinates of the satellites are then
calculated from λi using (2.132). With the satellites’ coordinates known, we can take
the geometrical approach presented by Čadež et al. (2010) to calculate the Schwarzschild
coordinates of the user. The final step in this method requires us again to solve (2.133),
however, this time it is treated as a system of 4 equations for 4 unknown user coordinates,
i.e., solving it, gives pto, xo, yo, zoq.

Results: The accuracy of these algorithms has been tested for satellites on orbits with
initial parameters given in Table 2.1 and a user at coordinates ro � 6371 km, θo � 43.97�,
φo � 14.5�. The user’s coordinates remain constant during the simulation. The relative
errors, defined as

εt � to � teo
to

, εx,y,z �
~Ro � ~Reo
~Ro

, (2.135)

are of the order 10�32�10�30 for coordinate t, and 10�28�10�26 for x, y, and z;9 here teo
and ~Reo are user time and coordinates as calculated from the emission coordinates. Using
a laptop10 for calculations, the user’s position (with such errors) was determined in 0.04 s,

8The light-like geodesics are calculated in Schwarzschild space-time (see Kostić (2012)) without per-
turbations, because the effects of perturbations on light propagation are negligible as mentioned in
subsection 2.2.3.

9Note that these numbers represent the accuracy of the numerical methods used. In a real system, the
accuracy would be much lower due to numerous effects, e.g. non-gravitational perturbations, atmospheric
effects, clock errors...

10With the following configuration: Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz, 8GB RAM, Intel
C/C++/Fortran compiler 13.0.1.
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Table 2.1: Orbital parameters for 4 satellites: longitude of ascending node (Ω), longitude
of the first apogee passage (ω), inclination (ι), major semi-axis (a), eccentricity (ε), and
time of apogee passage (ta).

# Ω r�s ω r�s ι r�s a rkms ε ta rss
1 0 270 45 30000 0.007 0

2 0 315 45 30000 0.007 0

3 0 275 135 30000 0.007 0

4 0 320 135 30000 0.007 0

where we assumed that (1) in real applications of the positioning the true values of orbital
parameters would be transmitted to the user together with the emission coordinates, so
to account for this in our simulations, we calculated the evolution of parameters from
their initial values before starting the positioning, and (2) the position of the user is
completely unknown, i.e., we do not start from the last known position. If we did, the
times for calculating the position would be even shorter.

2.3.2 Autonomous Basis of Coordinates - ABC

To construct an autonomous coordinate system, we apply the idea of the Autonomous
Basis of Coordinates (ABC) presented in Čadež et al. (2011) (see 2.2.3) to a perturbed
satellite system, i.e. we simulate the motion of a pair of satellites along their perturbed
orbits and their inter-satellite communication.

At each time-step of the simulation, both satellites exchange emission coordinates as
shown in Fig. 2.14, where, for clarity, only communication from satellite 1 to satellite 2
is plotted. These events of emission at proper time τ of the first satellite and reception
at τ of the second satellite are connected with a light-like geodesic, i.e. the difference
between the coordinate times of emission t1pτq and reception t2pτq must be equal to the
time-of-flight of a light signal between the two satellites (cf. (2.133))

Tf � t2pτq � t1pτq . (2.136)

However, this is only true if we know the exact values of the initial orbital parameters
of each satellite, as well as their evolution.

When constructing the relativistic positioning system, it is reasonable to assume
that the initial orbital parameters pQµp0q, Pµp0qq are not known very precisely. In the
following we therefore assume that they are known only with limited accuracy and to
improve their values, we use the following method. We assume that the satellites have
some initial orbital parameters pQµp0q, Pµp0qq, we let them evolve with time according to
gravitational perturbations, and calculate satellite orbits, simulate their communication
and calculate the left hand side of (2.136) for all communication pairs. We then compare
these values to the right hand side values derived for ”true” initial orbital parameters,
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Figure 2.14: A pair of satellites exchanging their proper times. At every time-step k,
the satellite 1 sends the proper time of emission τ rks to the satellite 2, which receives
it at the time of reception τ rks. The emission and reception event pairs are connected
with a light-like geodesic.

and sum the differences between left hand side and right hand side for all communication
events into an action

SpQµp0q, Pµp0qq �
¸
k

pt1pτ rks|Qµpτ rksq, Pµpτ rksqq�

t2pτ rks|Qµpτ rksq, Pµpτ rksqq�
Tf p~R1pτ rks|Qµpτ rksq, Pµpτ rksqq,
~R2pτ rks|Qµpτ rksq, Pµpτ rksqqq

	2
,

(2.137)

which has a minimum value (close to zero) for the true initial values of orbital parameters.
By changing initial values of orbital parameters and finding the minimum of the action
S we can thus find or at least come very close to the true initial values.

For the 2 � 6 orbital parameters that we have (Qµp0q, Pµp0q for both satellites),
this becomes a problem of finding a minimum of a 12D function. Because the orbital
parameters depend on time, their time evolution has to be recalculated (as presented in
Sec. 2.2.2 and Sec. 2.2.3) at every step of the minimization (for each set of initial values
of orbital parameters), which makes the minimization process very slow.

To speed up the process, the minimization was done in two stages. In the first stage,
we use the PRAXIS minimization method (Brent 1973) implemented in the NLOPT
library (Johnson 2013) to determine the parameters within double precision. The result-
ing values are then used as initial values for the second stage, where we use the simplex
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method to “polish” the parameters within 128-bit quad precision.11 In Figs. 2.15 – 2.16
we plot the values of the action and the orbital parameters during the first and the
second stage of the minimization process, respectively.

The number of time-steps along the orbits was sufficiently large (k � 1 . . . 433) to
cover approximately two orbits. The initial values of the orbital parameters used as
starting point in the minimization differ from the true values by an amount which induces
the error of � 2�3 km in the satellites’ positions. At the beginning of the minimization,
the value of the action is S � 1024prg{cq2, at the end of the first stage it is 2�1010prg{cq2,
and at the end of the second stage it drops to 8 � 10�24prg{cq2. The relative errors of
the orbital parameters pQµp0q, Pµp0qq after the minimization are of the order of 10�22.12

By repeating the minimization procedure for all possible pairs of satellites, we can
reconstruct the orbital parameters of every satellite in the system without tracking
the satellites from Earth and thus obtain an autonomous coordinate system.

2.3.3 Degeneracies

We investigated possible degeneracies between orbital parameters by scanning the action
S: We take two satellites on orbits with known initial orbital parameters. Then we
change two of them (one for the first satellite and one for the second) and calculate
corresponding action S (2.137). We repeat this for different values of this pair of orbital
parameters in order to scan the action S in their parameter space in the surroundings of
their true values. In case there is no degeneracy between these two orbital parameters,
we expect to find one well defined minimum of S - a ”well”. In case of a degeneracy, we
will get more than one point in which S reaches minimum, i.e. more pairs of these two
orbital parameters give minimum in S, therefore the problem is degenerate.

We checked whether a certain point is a minimum by calculating the Hessian matrix.
Let f be a function of n variables

fpx1, x2, � � � , xnq, f P R . (2.138)

If all second order partial derivatives of the function f exist, we can define the Hessian
matrix:

Hpfqijp~xq � DiDjfp~xq (2.139)

where ~x � px1, x2, � � � , xnq and Di is the differential operator of variable i. Thus

Hpfq �

�������
B2f
Bx21

B2f
Bx1Bx2

� � � B2f
Bx1Bxn

B2f
Bx2Bx1

B2f
Bx22

� � � B2f
Bx2Bxn

...
...

. . .
...

B2f
BxnBx1

B2f
BxnBx2

� � � B2f
Bx2n

������� . (2.140)

11Quad precision is required if the resulting parameters are used in (2.132), where cancellation effects
become significant in case of quasi-circular orbits.

12Better safe than sorry... so, again, we note that these numbers represent the accuracy of the numerical
methods used. In a real system, the accuracy would be much lower due to numerous effects, e.g. non-
gravitational perturbations, atmospheric effects, clock errors...
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Figure 2.15: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the first stage of the minimization process. The parameters are scaled in
the interval r0, 1s, corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau �
t10 km, 2.815125� 10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that
the action is symmetric in that interval. The true values are at 0.5.
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Figure 2.16: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the second stage of the minimization process. The parameters are scaled in
the interval r0, 1s, corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau �
t10 km, 2.815125� 10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that
the action is symmetric in that interval. The true values are at 0.5.
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For a function f of n ¡ 2 variables we investigate eigenvalues of the Hessian matrix in
a critical point ~P � pp1, p2, � � � , pnq (local minimum, local maximum or saddle). If the
Hessian matrix is positive - all its eigenvalues are positive - then the function f has a
local minimum in point ~P .

Degeneracies in unperturbed, Schwarzschild metric First we considered unper-
turbed, Schwarzschild metric, which is spherically symmetric. True orbital parameters
of both satellites are:

• satellite 1: Ω1 � 20�, ω1 � 120�, ι1 � 40�, a1 � 30025 km, ε � 0.008, ta1 �
7.04 h, τa1 � 0,

• satellite 2: Ω2 � 20�, ω2 � 120�, ι2 � 80�, a2 � 30025 km, ε2 � 0.008, ta2 � ta1 �
7.04 h, τa2 � 0.

Action S is calculated for one orbit.
Scanning the action S we find that parameters: ι1-ι2, Ω1-Ω2, and ta1-ta2 are degener-

ate. In the scanning region in the vicinity of their true values, the action S has a shape
of a ”valley” (Fig. 2.17,2.18, 2.19). Degenerate points lie on a line x � y, which is under-
standable if we think of spherical symmetry of Schwarzschild metric. Changing ι and Ω
of both satellites’ orbital planes by the same amount, i.e. keeping the same orientation
of one satellite with respect to the other, means moving along one of the Hessian matrix
eigenvector direction (see Fig. 2.17,2.18, 2.19) and does not make a difference in action
S . No difference in action S is expected also if ta of both satellites are changed by the
same amount.

Other orbital parameters are not degenerate as can be seen in Figures: 2.20-2.23.

54



Figure 2.17: Left: 2D scan of action S for ι1-ι2 pairs in case of unperturbed, Schwarz-
schild metric. Blue arrows show the direction of eigenvectors of the Hessian matrix.
Right: Section of action S along the eigenvector directions for ι1-ι2 pairs. It is evident
that there is a degeneracy along the direction marked ’1,1’. ’�0.5’ on horizontal axes
corresponds to �0.01 rad.

Figure 2.18: Left: 2D scan of action S for Ω1-Ω2 pairs in case of unperturbed, Schwarz-
schild metric. Blue arrows show the direction of eigenvectors of the Hessian matrix.
Right: Section of action S along the eigenvector directions for Ω1-Ω2 pairs. It is evi-
dent that there is a degeneracy along the direction marked ’Eigenvector 2’. ’�0.5’ on
horizontal axes corresponds to �2 � 10�4 rad.
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Figure 2.19: Left: 2D scan of action S for ta1-ta2 pairs in case of unperturbed, Schwarz-
schild metric. Blue arrows show the direction of eigenvectors of the Hessian matrix.
Right: Section of action S along the eigenvector directions for ta1-ta2 pairs. It is evi-
dent that there is a degeneracy along the direction marked ’Eigenvector 2’. ’�0.5’ on
horizontal axes corresponds to �5 � 107 rg{c � 7.5 � 10�4 s.
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Figure 2.20: Left: 2D scan of action S for ω1-ω2 pairs in case of unperturbed, Schwarz-
schild metric. Blue arrows show the direction of eigenvectors of the Hessian matrix.
Right: Section of action S along the eigenvector directions for Ω1-Ω2 pairs. It is evident
that there is no degeneracy. ’�0.5’ on horizontal axes corresponds to �1 � 10�4 rad.

Figure 2.21: Left: 2D scan of action S for a1-a2 pairs in case of unperturbed, Schwarz-
schild metric. Blue arrows show the direction of eigenvectors of the Hessian matrix.
Right: Section of action S along the eigenvector directions for a1-a2 pairs. It is evident
that there is no degeneracy. ’�0.5’ on horizontal axes corresponds to �2 �106 rg � �8900
m.
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Figure 2.22: Left: 2D scan of action S for a1-ε2 pairs in case of unperturbed, Schwarz-
schild metric. Blue arrows show the direction of eigenvectors of the Hessian ma-
trix. Right: Section of action S along the eigenvector directions for a1-ε2 pairs. It
is evident that there is no degeneracy. ’�0.5’ on horizontal a1 axis corresponds to
�2 � 106 rg � �8900 m, ’�0.5’ on ε2 axis corresponds to �0.07.

Figure 2.23: Left: 2D scan of action S for ta1-τa2 pairs in case of unperturbed,
Schwarzschild metric. Blue arrows show the direction of eigenvectors of the Hessian
matrix. Right: Section of action S along the eigenvector directions for ta1-τa2 pairs.
It is evident that there is no degeneracy. ’�0.5’ on horizontal axes corresponds to
�5 � 107 rg{c � 7.5 � 10�4 s.
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Figure 2.24: Left: 2D scan of action S for ι1-ι2 pairs in case of metric perturbed by Earth
multipoles, Earth tides and ocean tides. Blue arrows show the direction of eigenvectors
of the Hessian matrix. Right: Section of action S along the eigenvector directions for ι1-
ι2 pairs. It is evident that there is no degeneracy. ’�0.5’ on horizontal axes corresponds
to �0.01 rad.

Degeneracies in perturbed metric We then repeated our analysis for the case of
perturbed metric. First we include only Earth multipoles, Earth tides and ocean tides.
Since the metric is no longer spherically symmetric, above three degeneracies dissapear
as is evident in Fig. 2.24-Fig. 2.26. We also repeated our analysis for the case of metric
including all gravitational perturbations. Results for ι1-ι2 and Ω1-Ω2 pairs are shown in
Fig. 2.28-Fig. 2.29.
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Figure 2.25: Left: 2D scan of action S for Ω1-Ω2 pairs in case of metric perturbed
by Earth multipoles, Earth tides and ocean tides. Blue arrows show the direction of
eigenvectors of the Hessian matrix. Right: Section of action S along the eigenvector
directions for Ω1-Ω2 pairs. It is evident that there is no degeneracy. ’�0.5’ on horizontal
axes corresponds to �2 � 10�4 rad.

Figure 2.26: Left: 2D scan of action S for ta1-ta2 pairs in case of metric perturbed
by Earth multipoles, Earth tides and ocean tides. Blue arrows show the direction of
eigenvectors of the Hessian matrix. Right: Section of action S along the eigenvector
directions for ta1-ta2 pairs. It is evident that there is no degeneracy. ’�0.5’ on horizontal
axes corresponds to �5 � 107 rg{c � 7.5 � 10�4 s.
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Figure 2.27: Left: 2D scan of action S for a1-ω2 pairs in case of metric perturbed
by Earth multipoles, Earth tides and ocean tides. Blue arrows show the direction of
eigenvectors of the Hessian matrix. Right: Section of action S along the eigenvector
directions for a1-ω2 pairs. It is evident that there is no degeneracy. ’�0.5’ on horizontal
a1 axis corresponds to �2 � 104 rg � �89 m, ’�0.5’ on ω2 axis corresponds to �1 � 10�4

rad.

Figure 2.28: Left: 2D scan of action S for ι1-ι2 pairs in case of metric including all
gravitational perturbations. Blue arrows show the direction of eigenvectors of the Hessian
matrix. Right: Section of action S along the eigenvector directions for ι1-ι2 pairs. It is
evident that there is no degeneracy. ’�0.5’ on horizontal axes corresponds to �1 rad.
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Figure 2.29: Left: 2D scan of action S for ω1-Ω2 pairs in case of metric including
all gravitational perturbations. Blue arrows show the direction of eigenvectors of the
Hessian matrix. Right: Section of action S along the eigenvector directions for ω1-Ω2

pairs. It is evident that there is no degeneracy. ’�0.5’ on horizontal ω1 axis corresponds
to �0.01 rad, ’�0.5’ on Ω2 axis corresponds to �2 � 10�2 rad.
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To summarize: there are degeneracies in the case of spherically symmetric Earth in
pairs of orbital parameters which preserve relative orientation of two satellites. As soon
as perturbations are present (Earth multipoles etc.) degeneracies disappear.

Conclusions for WP3: In WP3 we have shown how to construct a relativistic GNSS
in a perturbed Schwarzschild space-time including all relevant gravitational perturba-
tions. We find that a user, which receives proper times of four satellites, can determine
its position in such RPS with accuracy of the order of 10�32�10�30 for coordinate t, and
10�28 � 10�26 for coordinates x, y, and z. We simulated inter-satellite links and built
a model of the ABC system, independent of terrestrial reference frames. We showed
that using only inter-satellite links and minimizing action S (2.137) for 2x6 orbital pa-
rameters, such a system can determine orbital parameters of satellites with accuracy of
10�22. We investigated possible degeneracies in action S and found that in perturbed
metric there is no degeneracy between orbital parameters present.
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Figure 2.30: Mapping the space-time with three satellites.

2.4 Work Package 4 - Determination of gravitational pa-
rameters

Abstract of WP4: When the satellites exchange communication, they actually scan
the space-time around Earth (see Fig. 2.30). In this work package we try to determine
whether such mapping could be used to find/measure the properties of the sources re-
sponsible for the space-time curvature. In a similar way as in Work Package 3, we
simulate a constellation of GNSS satellites with inter-satellite links and assume that in
addition to initial values of orbital parameters also gravitational perturbation coefficients
are known only with limited accuracy. We investigate if action S (2.137) has a well de-
fined minimum also in this case. We vary 2 � 6 orbital parameters + 14 gravitational
parameters and use several numerical methods to find the minimum of action. We in-
vestigate to which level of accuracy it would be possible to refine values of gravitational
parameters by this method. We discuss prospects and limitations of using GNSS constel-
lation of satellites to probe the space-time around Earth, i.e. to measure gravitational
perturbations, and how this influences possible scientific applications.

As in subsection 2.3.2, we construct a model of the RPS with inter-satellite links, and
assume that the initial orbital parameters pQµp0q, Pµp0qq and gravitational parameters
(e.g. mass of the Moon) are not known very precisely. Giving the satellites some initial
orbital parameters pQµp0q, Pµp0qq we let them evolve with time according to gravitational
perturbations. We calculate satellite orbits, simulate their communication, and calculate
the action S according to (2.137). We repeat this for various values of orbital and
gravitational parameters to scan the parameter space and investigate whether the action
S has a well defined minimum.

2.4.1 Minimum of the action S and refinement of gravitational param-
eters

We take two satellites on orbits with the following initial orbital parameters:
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Figure 2.31: Action S as a function of relative offset of Earth’s angular velocity ΩC from
its true value. Value 1 on x axis corresponds to ∆ΩC{ΩC � 0.000014. Knee in S is at
� 10�16, which corresponds to ∆ΩC{ΩC � 10�21.
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Figure 2.32: Action S as a function of relative offset of Earth’s multipole M20 from its
true value. Value 1 on x axis corresponds to ∆M20{M20 � 0.00007. Knee in S is at
� 10�18, which corresponds to ∆M20{M20 � 7 � 10�23.

• satellite 1: Ω1 � 0�, ω1 � 0�, ι1 � 60�, a1 � 30025 km, ε � 0.007, ta1 � 7.04 h,

• satellite 2: Ω2 � 120�, ω2 � 20�, ι2 � 60�, a2 � 30025 km, ε2 � 0.008, ta2 �
ta1 � 7.04 h.

First, we vary each of 14 gravitational parameters individually and calculate action
S. We find that in all cases the minimum of the action S is well defined and deep13.

To investigate how accurately one could determine gravitational parameters by this
method, we calculate action S as a function of a relative offset of the gravitational
parameter from its true value. Results are shown in Figs. 2.31 – 2.44.

In all cases, the action stays more or less constant to some relative offset, and after
it, it starts increasing. Position of this “knee” determines how accurately it is possible
to determine a given gravitational parameter with this method, namely, for offsets below

13Depth of the minimum depends on the numerical precision, e.g. if we do all calculations in double
precision, then the minimum is displaced from the true value, and is not as deep as in case of quad
precision.
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Figure 2.33: Action S as a function of relative offset of Earth’s multipole RetM21u from
its true value. Value 1 on x axis corresponds to ∆RetM21u{RetM21u � 5 � 10�18. Knee
in S lies above that value, therefore it is not possible to refine this parameter using the
method of action minimization.
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Figure 2.34: Action S as a function of relative offset of Earth’s multipole ImtM21u from
its true value. Value 1 on x axis corresponds to ∆ImtM21u{ImtM21u � 8 � 10�19. Knee
in S lies above that value, therefore it is not possible to refine this parameter using the
method of action minimization.
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Figure 2.35: Action S as a function of relative offset of Earth’s multipole RetM22u from
its true value. Value 1 on x axis corresponds to ∆RetM22u{RetM22u � 0.02. Knee in S
is at � 10�18, which corresponds to ∆RetM22u{RetM22u � 2 � 10�20.
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Figure 2.36: Action S as a function of relative offset of Earth’s multipole ImtM22u from
its true value. Value 1 on x axis corresponds to ∆ImtM22u{ImtM22u � 0.04. Knee in
S is at � 10�18, which corresponds to ∆ImtM22u{ImtM22u � 4 � 10�20.
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Figure 2.37: Action S as a function of relative offset of the Moon’s mass MK from its
true value. Value 1 on x axis corresponds to ∆MK{MK � 1. Knee in S is at � 10�21,
which corresponds to ∆MK{MK � 10�21.
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Figure 2.38: Action S as a function of relative offset of the Moon’s distance rK from its
true value. Value 1 on x axis corresponds to ∆rK{rK � 1. Knee in S is at � 10�21,
which corresponds to ∆rK{rK � 10�21.
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Figure 2.39: Action S as a function of relative offset of the Sun’s mass M@ from its true
value. Value 1 on x axis corresponds to ∆M@{M@ � 1. Knee in S is at � 10�21, which
corresponds to ∆M@{M@ � 10�21.
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Figure 2.40: Action S as a function of relative offset of the Sun’s distance r@ from its
true value. Value 1 on x axis corresponds to ∆r@{r@ � 1. Knee in S is at � 10�21,
which corresponds to ∆r@{r@ � 10�21.
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Figure 2.41: Action S as a function of relative offset of Venus’ mass MB from its true
value. Value 1 on x axis corresponds to ∆MB{MB � 1. Knee in S is at � 10�14, which
corresponds to ∆MB{MB � 10�14.
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Figure 2.42: Action S as a function of relative offset of the Venus’ distance rB from its
true value. Value 1 on x axis corresponds to ∆rB{rB � 1. Knee in S is at � 10�15,
which corresponds to ∆rB{rB � 10�15.
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Figure 2.43: Action S as a function of relative offset of Jupiter’s mass ME from its true
value. Value 1 on x axis corresponds to ∆ME{ME � 1. Knee in S is at � 10�14, which
corresponds to ∆ME{ME � 10�14.
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Figure 2.44: Action S as a function of relative offset of the Jupiter’s distance rE from
its true value. Value 1 on x axis corresponds to ∆rE{rE � 1. Knee in S is at � 10�16,
which corresponds to ∆rE{rE � 10�16.
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the knee value, this method is not sensitive. These limiting (knee) values for different
gravitational perturbations are given in Table 2.2. Table 2.2 also gives values of action S
and change in position ∆L for some representative offsets in gravitational parameters.14

Based on these results (Figs. 2.31 – 2.44 and Table 2.2) we can conclude that, in
principle, it is possible to refine the gravitational parameters to a very high degree15

just by finding the minimum of the action.16

Table 2.2: Influence of gravitational parameter variation on the action S and satellite’s
position. Columns are: gravitational parameter, its relative change, corresponding value
of action S and change in satellite’s position ∆L, knee value order of magnitude.

parameter P ∆P
P S r� rgc �2s ∆L rms p∆P

P qknee

ΩC 1.4 � 10�8 1.1 � 10�6 0.00048 10�21

M2,0 7 � 10�8 1.5 0.1 7 � 10�23

Re M2,1 5 � 10�21 1 � 10�31 8 � 10�24 ¡ 5 � 10�18

Im M2,1 8 � 10�22 1 � 10�31 4 � 10�21 ¡ 8 � 10�19

Re M22 0.00002 10 0.38 2 � 10�20

Im M22 0.00004 12 0.002 4 � 10�20

MK 0.001 4.6 � 106 140 10�21

rK 0.001 2 � 107 261 10�21

M@ 0.001 71000 113 10�21

r@ 0.001 2.8 � 106 220 10�21

MB 0.001 4.2 � 10�7 0.00008 10�14

rB 0.001 1.5 � 10�6 0.00016 10�15

ME 0.001 0.000086 0.00046 10�14

rE 0.001 0.0003 0.00084 10�16

2.4.2 Finding the minimum

We used different minimization methods. When working in double precision, we used
the following algorithms from NLopt library (Johnson 2013): gradient-based (LBFGS,
NEWTON, MMA, SLSQP), gradient-free (COBYLA, BOBYQA, NEWUOA, PRAXIS,
Nelder-Mead Simplex, Sbplx), and global (DIRECT, DIRECT-L, CRS, MLSL, StoGO,
ISRES, ESCH). For global minimization, we also used Multinest (Feroz and Hobson
2008; Feroz et al. 2009, 2013) and Pswarm (Vaz and Vicente 2007, 2009; Le Thi et al.
2012). For quad precision, we implemented the following methods, which we found most
promising based on their performance in double precision: gradient-based BFGS, and

14∆L has been calculated in the same way as in Sec. 2.2.3, Fig. 2.12.
15At this point, we have to note again, that these numbers represent the accuracy of the numerical

methods used. In a real system, the accuracy would be much lower due to numerous effects, e.g. non-
gravitational perturbations, atmospheric effects, clock errors...

16Except for the M2,1 multipole, which is already known with great accuracy.
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gradient-free simplex, powell, and praxis. In Figs. 2.45 – 2.51 we show only a tiny fraction
of all the countless combinations and tests which we performed.

Minimization approaches From the analysis of action in Figs. 2.31 – 2.42 it follows
that it is reasonable to do minimization only with those parameters, which are relevant at
current value of action; i.e. we start with the fewest possible parameters, which produce
the largest errors in the action, and as the minimization progresses and the action is
lowered, we include more and more parameters. In this way it is possible to speed up
the whole process. (Basically, it is best to have dimensions of equal size.) Note, however,
that gradient-based methods are unaffected by dimension sizes, so we may just include
all the parameters at the very beginning of the minimization.

This behaviour can be observed in Figs. 2.50 – 2.51, where we added 5 gravitational
parameters (Earth rotation frequency and 4 quadrupoles) to the orbital ones, and used
gradient-based method BFGS for minimization. In both plots we can see the horizon-
tal lines, which correspond to the gravitational parameters – the method never modi-
fies these parameters while searching for the minimum. Nevertheless, even though the
method correctly ignores the small parameters and the final action is much lower than
the initial one, the method did not reach the minimum.

In Figs. 2.45 – 2.49 we added only one gravitational parameter (Earth rotation fre-
quency) to the orbital parameters in minimization. In this case, gradient-free methods
approach the true minimum, and the most successful ones manage to minimize all but
two parameters (both times of apoapsis passage). The still high values of the final action
clearly show, that the true minimum has not been reached yet.

We performed numerous other tests with different initial points, and have found out
that the final values of parameters can be different. Although we did many scans of
action and did not find any other local minima,17 we also used global minimizers just to
be sure that this is not an issue. An example of global minimization is in Fig. 2.49.

We also found out that the results are independent of number of orbits or number
of communication pairs per orbit.18

Finally, we have confirmed that it is not possible to decouple minimization of the
orbital parameters from minimization of the gravitational parameters, i.e. it is not
possible to first minimize wrt. orbital parameters and afterwards wrt. gravitational
parameters. As soon as a gravitational parameter is changed from its true value, also
the minimum in the orbital parameters shifts from its correct position.

Speed of calculations vs. accuracy In previous sections it was shown that we have
to work with 128-bit precision (quad precision) floating point numbers in order to not
lose any significant digits for the weakest perturbations. However, doing calculations in
quad precision is extremely slow. For example, just by replacing double precision with
quad precision variables, the calculations slow down by a factor of 30. Furthermore, if

17Except if we extend the interval for ω and Ω so that the periodic nature of these angles starts to
show.

18In the previous Ariadna studies this was not the case!
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Figure 2.45: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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Figure 2.46: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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Figure 2.47: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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Figure 2.48: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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Figure 2.49: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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Figure 2.50: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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Figure 2.51: The action SpQµp0q, Pµp0qq (top) and the orbital parameters (bottom)
during the minimization process. The parameters are scaled in the interval r0, 1s,
corresponding to the absolute errors t∆a,∆ε,∆ω,∆Ω,∆ι,∆tau � t10 km, 2.815125 �
10�5, 1.689075� 10�2, 1.12605� 10�2, 3.37815� 10�3, 0.2 su, so that the action is sym-
metric in that interval. The true values are at 0.5.
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we reduce the step-size in the numerical integrator to get the output in quad precision,
the time of calculation increases by an additional factor of 30. In the end, it takes
140 seconds to calculate only one action (one step) for a duration of 10 orbits, if the
Earth rotation and quadrupoles are the only gravitational parameters included in the
minimization. But to do minimization, thousands of action calculations are required,
which would take tens of days. And because the number of calculations quickly increases
with number of dimensions, it could take months to do only one single minimization test!
This is why we put a lot of effort into reducing the calculation times. Here are a few
things that we tried:

• Since we found out that the number of orbits and communication pairs per orbit
does not affect the end result, we decided to mostly work with only 2 orbits and
used only 36 communication pairs per orbit, i.e. we simulated the satellites for 2
periods and let them communicate only every 10�.

• Calculation of planetary perturbations requires data from ephemerides, which we
have to interpolate. This is a very slow process, especially if the number of in-
terpolations required is very large – which it is, if we want the results in quad
precision. Minimizing the action wrt. planetary parameters (their mass and dis-
tance) slows down the calculations by an order of magnitude (or more!), therefore
we only include the Earth multipoles in the minimization.

• To speed up calculation of an action, the orbits of the satellites and the summation
of the communication pairs are calculated in parallel.

• We tried 2 parallel minimization methods (Multinest and Pswarm), however they
are global minimization methods, which are always slower than local methods (even
if parallel). Furthermore, they are implemented only for double precision.

• Working with double precision variables. Although this is very fast (and this is
why we did many tests with it), the precision loss is too severe, so at some point
we had to abandon double precision.

• Use gradient-based minimizers. These require much less steps to find the minimum.
The problem is, though, that we do not have an analytic expression for gradient
of the action, so we have to calculate it numerically, which takes a very long time.
Consequently, calculations of the action are very slow, and in the end, the benefits
of the fewer minimization steps are gone. Furthermore, since we calculate the
gradient numerically, the minimizer typically stops after a small number of steps
due to cancellation errors in gradient computations.

• We used quad precision variables, but increased the integrator step-size so that its
output is accurate only to double precision. In this way we were able to maintain
all the 16-17 digits of double precision in all the internal computations. This is
how Figs. 2.45 – 2.51 were obtained.
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• Finally, as it turned out that the equations used in the Hamiltonian formalism
(Sec. 2.2 and App. A) are prone to cancellation errors (e.g. some derivatives lose 10
digits!), we decided not to use it for the WP4 minimization, but rather implemented
an integrator of the geodesic equation (2.100). The equations involved in this
integrator are very meek compared to the Hamiltonian ones and the mere number
of them is much lower, so in the end we not only got rid of the cancellation errors,
but also gained some speed-up in calculations.

For all the reasons mentioned above, we never performed minimization on all 30 � 40
parameters. It is simply impossible, at least with the hardware that we have at our
disposal.

Although none of the tested methods were able to find the minimum when the
gravitational parameters were included, the results of all the analysis done clearly show
that the action has one minimum for the true values of the gravitational parameters, and
if we find a way to get to the minimum, the gravitational parameters can be determined
with unprecedented accuracy. But to get there, we would most likely need some non-
generic minimizers written especially for this minimization problem, as well as use much
better equipment for numerical computations.

2.4.3 Degeneracies

In a similar way as in subsection 2.3.3, we studied possible degeneracies between differ-
ent gravitational parameters. Some results for the case of metric perturbed by Earth
multipoles, Earth tides and ocean tides are presented in Figures 2.52-2.55. We find no
degeneracy in action S between gravitational parameters.
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Figure 2.52: Left: 2D scan of action S for Re M2,1 and Im M2,1 pairs in case of metric
perturbed by Earth multipoles, Earth tides and ocean tides. Blue arrows show the
direction of eigenvectors of the Hessian matrix. Right: Section of action S along the
eigenvector directions for Re M2,1 and Im M2,1 pairs. It is evident that there is no
degeneracy. ’�0.5’ on horizontal Re M2,1 axis corresponds to �3.79 � 1017 m5s�2, ’�0.5’
on Im M2,1 axis corresponds to �2.42 � 1018 m5s�2.

Figure 2.53: Left: 2D scan of action S for Re M2,2 and Im M2,2 pairs in case of metric
perturbed by Earth multipoles, Earth tides and ocean tides. Blue arrows show the
direction of eigenvectors of the Hessian matrix. Right: Section of action S along the
eigenvector directions for Re M2,2 and Im M2,2 pairs. It is evident that there is no
degeneracy. ’�0.5’ on horizontal Re M2,2 axis corresponds to �1.98 � 1021 m5s�2, ’�0.5’
on Im M2,2 axis corresponds to �2.27 � 1021 m5s�2.
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Figure 2.54: Left: 2D scan of action S for ΩC and M2,0 pairs in case of metric perturbed
by Earth multipoles, Earth tides and ocean tides. Blue arrows show the direction of
eigenvectors of the Hessian matrix. Right: Section of action S along the eigenvector
directions for ΩC and M2,0 pairs. It is evident that there is no degeneracy. ’�0.5’ on
horizontal ΩC axis corresponds to �1.02 � 10�9 s�1, ’�0.5’ on M2,0 axis corresponds to
�1.94 � 1021 m5s�2.

Figure 2.55: Left: 2D scan of action S for ΩC and Im M2,2 pairs in case of metric
perturbed by Earth multipoles, Earth tides and ocean tides. Blue arrows show the
direction of eigenvectors of the Hessian matrix. Right: Section of action S along the
eigenvector directions for ΩC and Im M2,2 pairs. It is evident that there is no degeneracy.
’�0.5’ on horizontal ΩC axis corresponds to �1.02 � 10�9 s�1, ’�0.5’ on Im M2,2 axis
corresponds to �2.27 � 1021 m5s�2
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Conclusions for WP4: In WP4 we simulated a constellation of GNSS satellites with
inter-satellite links and assumed that in addition to initial values of orbital parameters
also gravitational perturbation coefficients are known only with limited accuracy. We
used action S (2.137) and found that it has a well defined minimum also in these cases.
By varying each gravitational parameter individually we found that the minimum in
action S is pronounced and narrow enough to theoretically allow the refinement of grav-
itational parameters (e.g. Earth multipoles, mass of the Moon) to very high accuracies
(see Table 2.2). We then varied orbital and gravitational parameters, and used several
numerical methods to find the minimum of action. Although none of the tested methods
were able to find the minimum when the gravitational parameters were included, the
results of all the analysis done in WP4 clearly show that the action has one minimum
for the true values of the gravitational parameters, and if we find a way to get to the
minimum, the gravitational parameters can be determined with unprecedented accu-
racy. Their accuracy is therefore not limited by this method, but rather by other effects
(e.g. non-gravitational perturbations, clock noise, atmospheric effects). We investigated
possible degeneracies between gravitational parameters and found none.
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Chapter 3

Summary

In this project we continued work done under two ESA Ariadna projects carried out in
2010 and 2011 (Čadež et al. 2010, 2011; Delva et al. 2011). It was shown there that GNSS
could be modelled in general relativity, and that RPS and ABC concepts are feasible,
stable and highly accurate in the case that space-time around Earth is described with
Schwarzschild metric, i.e. idealized, spherically symmetric Earth and no other celestial
objects.

For a high accuracy GNSS, several gravitational perturbations have to be taken into
account in order to get a more realistic model. From Fig. 2.1 we can see that at the GNSS
(Galileo, GPS) altitudes relevant gravitational perturbations are (in approximative order
of decreasing magnitude) due to: Earth multipoles, the Moon, the Sun, Earth solid tide1,
Venus, Jupiter, Earth ocean tide, and Kerr effect due to Earth’s rotation.

Our work and results can be divided in the following Work Packages:

• In WP1 we built a scheme for including all relevant gravitational perturbations
(Earth multipoles up to the 6th, Earth solid and ocean tides, the Sun, the Moon,
Jupiter, Venus, and the Kerr effect) to the background of the Schwarzschild metric
in the weak-field limit with the linear perturbation theory. We used the Regge-
Wheeler-Zerilli formalism, i.e., expand perturbations in terms of tensor spherical
harmonics, and found connection between our solutions and Newtonian multipole
coefficients in the cÑ8 limit. We took into account also the frame-dragging effect
of the Earth by the first order term in the expansion of the Kerr metric for a ! 1.
The result is a perturbed Schwarzschild metric, with perturbations incorporating
effects due to Earth’s multipoles, tides and rotation, and weak gravitational influ-
ences of other Solar System objects. It is written to the first order with explicit
expressions (2.96) and (2.97) and fully determined by multipole momenta M

`
nm,

M
a
nm, Kerr parameter a, and functions P

piq
n and R

piq
n .

1We note that effects of Earth tides were not part of the original proposal of this project. Since their
effects are comparable or even larger than effects of some other gravitational perturbations included in
the project, we decided to include also tides to have a complete description of gravitational perturbations.
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• In WP2 we calculated satellite dynamics in perturbed space-time. We use per-
turbed metric derived in WP1 and perturbative Hamiltonian formalism to obtain
time derivatives of 0th order constants of motion. With the derivatives known,
we were able to determine the time evolution of 0th order constants of motion
and because they are varying slowly, we applied them to analytic solutions for
Schwarzschild geodesics to calculate orbits of satellites in perturbed space-time.
We investigated the influence of individual gravitational perturbations on the or-
bital parameters evolution (Fig. 2.3 - 2.10) and on the satellite’s position and time
(Fig. 2.12 - 2.13). We also calculated orbital parameter evolution due to all grav-
itational perturbations together (Fig. 2.11). We estimated the influence of gravi-
tational perturbations on the user-satellite and inter-satellite light signal time-of-
flight and found it to be negligible.

• In WP3 we used perturbed satellite orbits from WP2 to model the relativistic
positioning in gravitationally perturbed space-time and test its accuracy. We found
that a user, which receives proper times of four satellites, can determine its position
in an RPS with accuracy of the order of 10�32 � 10�30 for coordinate t, and
10�28 � 10�26 for coordinates x, y, and z. We then simulated inter-satellite links
and built a model of an ABC system. We assumed that the initial values of 0th

order constants of motion are known with limited accuracy and showed that a
system of two satellites, using only inter-satellite links and minimizing action S
(2.137) for 2x6 orbital parameters, can determine their orbital parameters with
accuracy of 10�22. We also investigated possible degeneracies between orbital
parameters. We found that degeneracies between ι1-ι2, Ω1-Ω2, and ta1-ta2 exist
in unperturbed, Schwarzschild metric (Fig. 2.17-2.19), but they disappear in the
perturbed, non-spherically symmetric metric (Fig. 2.24-Fig. 2.26).

• In WP 4 we used a similar procedure as in WP3 to simulate a constellation of
GNSS satellites with inter-satellite links and assumed that in addition to initial
values of 0th order constants of motion also gravitational perturbation coefficients
are known only with limited accuracy. We investigated the behaviour of the action
S (2.137) and found that it has a well defined minimum also in these cases. By
varying each gravitational parameter individually we found that the minimum in
action S is pronounced and narrow enough to theoretically allow the refinement of
gravitational parameters to very high accuracies (see Table 2.2). We then varied
orbital and gravitational parameters, and used several numerical methods to find
the minimum of action. Although none of the tested methods were able to find
the minimum when the gravitational parameters were included, the results of all
the analysis done in WP4 clearly show that the action has one minimum for the
true values of the gravitational parameters, and if we find a way to get to the
minimum, the gravitational parameters can be determined with unprecedented ac-
curacy. But to get there, we would most likely need some non-generic minimizers
written especially for this minimization problem, as well as use much better equip-
ment for numerical computations. We investigated possible degeneracies between
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gravitational parameters and found none.

• We presented our work and results of this project at two international meetings.
The first one was the ESA - Faculty of Mathematics and Physics (University of
Ljubljana) workshop Relativistic Positioning Systems and Their Scientific Appli-
cations, which we organized from 19th to 21st Sep 2012 at Brdo near Kranj in
Slovenia (http://rgnss.fmf.uni-lj.si/workshop). We co-edited the workshop
proceedings, which were published as a special issue of the ESA Advanced Con-
cepts Team publication Acta Futura, Issue 7 (http://www.esa.int/gsp/ACT/doc/
ACTAFUTURA/AF07/ACT-BOK-AF07.pdf). The second meeting was the 4th Interna-
tional Colloquium Scientific and Fundamental Aspects of the Galileo Programme,
held from 4th to 6th Dec 2013 in Prague, Czech Republic, where we co-chaired the
session on Relativistic Positioning.

Results of our work are very promising. We find that positioning in an RPS with
gravitational perturbations is feasible, highly accurate and stable. Our results show that
it is also possible to use RPS with inter-satellite links as an ABC and that a system of
satellites can determine their own dynamics, and any additional satellite can be used to
increase accuracy of the system and to probe gravitational field. Namely, we find that if
we individually vary gravitational parameters, action S has a very well defined minimum
and theoretically allows refinement of most gravitational parameters to highly accurate
values. This indicates that RPS with inter-satellite links may have big scientific potential
in various areas of gravimetry, geology, astronomy etc. Namely, as quoted in Table 2.2, it
would be theoretically possible with the action minimization to determine gravitational
parameters, such as Earth multipoles, celestial objects’ masses and distances. We note
however, that in practice there are several difficulties:

• Theoretically possible highly accurate values of gravitational parameters may not
be achievable due to effects not considered in this project, e.g. non-gravitational
perturbations, clock-noise, atmospheric effects etc.

• Existence and efficiency of numerical multi-dimensional minimization methods
which would allow fast and highly precise convergence to the action minimum.

• Minimization problems are expected to be even more severe in cases, where we
would like to minimize action in all orbital and gravitational parameters at the
same time.

Nevertheless, a system with inter-satellite links and action minimization offers a
new, independent way of probing space-time in the vicinity of Earth and measuring
the gravitational influence of not only Earth and its multipoles and tides, but also
gravitational parameters (e.g. mass and distance) of other celestial bodies. The concept
of RPS GNSS has the potential to measure gravitational perturbations to unprecedented
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accuracies, which could bring yet unforeseen and various scientific applications, and
therefore deserves further studies.

The main reason to further develop a concept of RPS with inter-satellite links is in
the accuracy and lower costs of such a system. Namely, although we are not experts on
this, we expect that the cost of on-board transmitters and receivers is much lower than
the cost of building, running and maintaining ground-based stations to track satellites in
order to determine their positions in some terrestrial reference frame. The link between
terrestrial reference frames and ABC can be obtained by placing several receivers at
the known terrestrial positions, the cost of which is again expected to be low compared
to cost of ground-based tracking. All the heavy computations would be preformed in
ground-based computing facility. In addition, there would be no need to synchronize
satellite clocks to a time-scale realized on the ground.

Next steps should, in our opinion, include:

• Study of more suitable numerical methods for highly accurate and faster minimiza-
tion of action S.

• Study of the influence of non-gravitational perturbations (e.g. Solar radiation
pressure, Earth albedo) on an RPS performance and orbital and gravitational
parameters determination.

• Tests on real satellite data: use data of real satellites’ orbits, compare them with
predictions by a model, and from residuals ’measure’ perturbing effects (gravita-
tional and non-gravitational).

• Feasibility study focused on ground-based infrastructure and on-board hardware
required for implementing the ABC system.

List of all software and relevant papers is given in App. C.
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Appendix A

Canonical transformation

For the transformation F2 : pqµ, pµq Ñ pQµ, Pµq, it is best to take the characteristic
function F2 such that F2 � F2pqµ, Pµ, τq �W pqµ, Pµq�Hτ , so that pµ and Qµ following
from this F2 are (Goldstein 1980):

pµ � BF2

Bqµ � BW
Bqµ (A.1)

Qk � BF2

BPµ . (A.2)

The Hamiltonian is therefore

H � 1

2

�
gµν

BW
Bqµ

BW
Bqν



. (A.3)

Because H satisfies the Staeckel conditions, the Hamilton-Jacobi equations are com-
pletely separable, so the function W is simply

W �Wtptq �Wrprq �Wθpθq �Wφpφq . (A.4)

Since coordinates t and φ are cyclic and therefore the momenta pt and pφ are constant,
it is reasonable to keep them also after the canonical transformation:

P1 � �pt � E � const. (A.5)

P3 � pφ � lz � const. (A.6)

Also due to the cyclic nature of the coordinates, the corresponding functions Wµ are
very simple (Goldstein 1980):

Wt � ptt � �P1t (A.7)

Wφ � pφφ � P3φ . (A.8)

With these, it is possible to write the Hamiltonian as

H � 1

2

�
� 1

1� 2M{rP
2
1 �

�
1� 2M

r


�BW
Br


2

� 1

r2

��BW
Bθ


2

� 1

sin2 θ
P 2

3

��
. (A.9)
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The expression in the square parenthesis depends only on θ, and is therefore constant
(Goldstein 1980). If we label this constant as P2, we get an expression for BW {Bθ:�BW

Bθ

2

� p2
θ � P 2

2 �
P 2

3

sin2 θ
. (A.10)

Having in mind equations (A.1), (A.6), and (A.10), it is easy to see that P2 is the
magnitude of the angular momentum:

P 2
2 � p2

θ �
p2
φ

sin2 θ
� l2 � const. (A.11)

If we use all the constants to write H

H � 1

2

�
� 1

1� 2M{rP
2
1 �

�
1� 2M

r


�BW
Br


2

� P 2
2

r2

�
, (A.12)

and take into account that H itself is constant

P0 � H �
#
�1

2 , time-like

0, light-like
(A.13)

we get the expression for BW {Br:�BW
Br


2

� p2
r �

1

1� 2M{r
�

P 2
1

1� 2M{r �
P 2

2

r2
� 2P0

�
. (A.14)

Now we can write the function W from (A.4)

W � �P1t� P3φ�
» r
ra

BW
Br dr �

» θ
π{2

BW
Bθ dθ , (A.15)

and finally

W � �P1t� P3φ�
» r
ra

1

X

d
P 2

1 �X

�
P 2

2

r2
� 2P0



dr �

» θ
π{2

d
P 2

2 �
P 2

3

sin2 θ
dθ , (A.16)

where X � 1� 2M{r and ra the apoapsis.1

The new coordinates Qµ after the canonical transformation F2 are obtained from
(A.2) and (A.16):

Q0 � BF2

BP0
� �τ �

» r
ra

1a
P 2

1 �XpP 2
2 {r2 � 2P0q

dr � const. (A.17)

1The signs of the square roots are chosen so that if the satellite starts at apoapsis, it approaches
Earth.
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Q1 � BW
BP1

� �t�
» r
ra

P1

X
a
P 2

1 �XpP 2
2 {r2 � 2P0q

dr � const. (A.18)

Q2 � BW
BP2

�
» r
ra

P2

r2
a
P 2

1 �XpP 2
2 {r2 � 2P0q

dr �
» θ
π{2

P2b
P 2

2 � P 2
3 { sin2 θ

dθ � const.

(A.19)

Q3 � BW
BP3

� φ�
» θ
π{2

P3

sin2 θ
b
P 2

2 � P 2
3 { sin2 θ

dθ � const. . (A.20)

A.1 Physical meaning of Qµ

The integral in (A.18) measures time since apoapsis, so the difference between time and
this integral equals the time of the first apoapsis passage, i.e. Q1 � �ta. Similarly,
Q0 � �τa marks the proper time of the first apoapsis passage.

To obtain the physical meaning of the remaining two coordinates, it is best to consider
geometric relations which follow from the sine and cosine laws for spherical triangles (see
Fig. 2.2).

First, there is a relation between P3 in P2:

P3 � P2 cos ι , (A.21)

where ι is the inclination of the orbital plane. This is, essentially, a relation between z-
component of the angular momentum plzq and the magnitude of the angular momentum
plq. So, instead of pl, lzq, we can use pl, ιq (or, instead of pP2, P3q, use pP2, ιq).

Because the orbit is planar, it is better to introduce the true anomaly λ (see Fig. 2.2)
than to use two angles pθ, φq or proper time τ to describe the orbit. The true anomaly
can be calculated from:

rλ, ls � 1 (A.22)

9λ � rλ,Hs � l

r2
, (A.23)

and/or from the geometric relations between the angles pθ, φq and pω,Ωq:

sinpλ� ωq � cos θ

sin ι
(A.24)

cospλ� ωq � cospφ� Ωq sin θ (A.25)

sinpφ� Ωq � sinpλ� ωqcos ι

sin θ
(A.26)

tan
φ� Ω

2
� sinpλ� ωq cos ι

sin θ � cospλ� ωq . (A.27)

These relations give: d
P 2

2 �
P 2

3

sin2 θ
� P2

sin ι cospλ� ωq
sin θ

(A.28)
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cospλ� ωqdλ � �sin θ

sin ι
dθ , (A.29)

which simplifies equations (A.19) and (A.20) for Q2 and Q3:

Q2 �
» r
ra

p...qdr �
» θ
π{2

sin θ

sin ι cospλ� ωqdθ �
» r
ra

p...qdr �
» λ
�ω

dλ �
» r
ra

p...qdr � pλ� ωq

(A.30)

Q3 � φ� arctan

�� P3 cot θb
P 2

2 � P 2
3 { sin2 θ

�� φ� arctan

�
cot ι cos θ

cospλ� ωq


. (A.31)

The remaining integral in the above equation for Q2 gives the angle from the apoapsis,
but since the true anomaly λ is already measured from the apoapsis, it follows that
Q2 � ω, i.e. the longitude of the apoapsis. If we invert equation (A.31) and take into
account the geometric relations, we find

tanpφ�Q3q � cot ι cos θ

cospλ� ωq �
cot ι cot θ

cospφ� Ωq � tanpφ� Ωq , (A.32)

so, obviously, Q3 � Ω.

A.2 Radial integrals

The r integrals in equations (A.17) – (A.19) can be calculated after introducing a new
variable u

u � 2M

r
(A.33)

and two dimensionless parameters a and b

a � 2ME

l
� 2MP1

P2
b � 8M2P0

P 2
2

. (A.34)

With these, the variables Q0, Q1 and Q2 are rewritten as:

Q0 � �τa � �τ � 2Ma

E

» u
u3

du

u2
a
a2 � u2p1� uq � bp1� uq (A.35)

Q1 � �ta � �t� 2Ma

» u
u3

du

u2p1� uq
a
a2 � u2p1� uq � bp1� uq (A.36)

Q2 � ω � �
» u
u3

dua
a2 � u2p1� uq � bp1� uq � λ� ω , (A.37)

which are the well known equations of orbit and time, with the already known solutions
(Čadež et al. 2010; Delva et al. 2011; Kostić 2012; Gomboc 2001):

Q0 � �τa � �τ � t

E
� 2n

l̃u3

�
Πpn1;χ|mq � u3

1� u3
Πpn2;χ|mq



(A.38)
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Q1 � �ta � �t� 2na

u2
3

��
1� u3 � n2

1 �m

2pm� n1qpn1 � 1q



Πpn1;χ|mq � u2
3

1� u3
Πpn2;χ|mq

� n1{2
pm� n1qpn1 � 1q

�
Epχ|mq �

�
1� m

n1

	
Fpχ|mq � n1 sin 2χ

a
1�m sin2 χ

2p1� n1 sin2 χq

��
(A.39)

Q2 � ω � �nFpχ|mq � λ� ω , (A.40)

where F , E, and Π are the elliptic integrals of the first, the second, and the third kind,
respectively, (definitions are from Wolfram (1996)) and χ is such that

upχq � u2 � pu2 � u3q cos2 χ , (A.41)

while the parameters u1, u2, and u3 are the roots of the polynomial under the square
root in equations (A.35), (A.36) and (A.37):

u1 � 1

3

�
1� 2|D| cos

ψ

3

	
(A.42a)

u2 � 1

3

�
1� 2|D| cos

ψ � 2π

3

	
(A.42b)

u3 � 1

3

�
1� 2|D| cos

ψ � 2π

3

	
. (A.42c)

All the parameters depend only on E and l (i.e. on P1 and P2):

α � 1� 9b� 27

2
a2 β � �1� 3b (A.43a)

D � α2 � β3 |D| �
a
�β (A.43b)

ψ � 2 arctan

� ?�D
α�

a
�β3

�
(A.43c)

m � u2 � u3

u1 � u3
n � 2?

u1 � u3
(A.43d)

n1 � 1� u2

u3
n2 � u2 � u3

1� u3
. (A.43e)

For completness, using the inverse of (A.40)

χpλq � ampλ
n
|mq , (A.44)

we also provide a direct relation between u and λ

upλq � u2 � pu2 � u3qcn2
�λ
n
|m� (A.45)

However, it turns out, that the form of (A.42a) – (A.43c) is not the most suitable for
GNSS, because due to “weak relativity” precision loss will occur. For this reason, it is
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necessary to use the following set of parameters (Čadež et al. 2010):

q �
3

b
12η2 � p�81η4 � 324η3 � 378η2 � 108η � 3q l̃�2 � 24η � 12l̃�4

2l̃
�

1� 3l̃�2
	3{2

(A.46a)

ψa � � arcsinpqq (A.46b)

p �
b

1� 3{l̃2 (A.46c)

u1 � p� 1{l̃2
1� p

� 4p

3
sin2 ψa

6
(A.46d)

u2 � 1

3

�
3{l̃2
1� p

� p
?

3 sin
ψa
3
� 2p sin2 ψa

6

�
(A.46e)

u3 � 1

3

�
3{l̃2
1� p

� p
?

3 sin
ψa
3
� 2p sin2 ψa

6

�
, (A.46f)

where η � E � 1 and l̃ � l{2M .
The major semi-axis a and the eccentricity ε of the orbit are trivially calculated from

the periapsis rp � 2M{u2 and the apoapsis ra � 2M{u3:

a �M

�
1

u2
� 1

u3



(A.47)

ε � u2 � u3

u2 � u3
. (A.48)

A.3 Derivatives of canonical variables

First, we define a number of auxilliary functions and their derivatives (we use definitions
from App. A.2 and App. A.3.1):

J �
» r
ra

P2

r2
a
P 2

1 �XpP 2
2 {r2 � 2P0q

dr (A.49)

BJ
BP2

� � n3

4P2n2
A

�
p1� u3qNscd � nA

�� 2� 3u3 � n2
Au3 � nAp3u3 � 1q�Ncd�

�n
2
A

m

�
nAu3 �mp�1� p3� nAqu3q

�
Nd � u3n

3
A

m

λ

n

�
� λ

P2

(A.50)

BJ
BP1

� P1n
3

P 2
2 n

2
Au

2
3

Nscd (A.51)

BJ
BP0

� n3

P 2
2 pu2 � u3q2 rp1� u3qNscd � nAu3Ncds (A.52)

I �
» r
ra

P1

X
a
P 2

1 �XpP 2
2 {r2 � 2P0q

dr (A.53)
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BI
BP2

� � BJ
BP1

(A.54)

BI
BP1

� 4P 2
1 n

3

P 3
2 n

2
Au

2
3

�
1

u2
3

NQQscd � 1

u3
NQscd � 1

1� u3
NQ1scd

�
�

� 4n

P2

�
1

u2
3

NQQ � 1

u3
NQ � 1

1� u3
NQ1

� (A.55)

BI
BP0

� 4P 2
1 n

3

P 3
2 u

2
3pu2 � u3q2NQQscd (A.56)

K �
» θ
π{2

P2b
P 2

2 � P 2
3 { sin2 θ

dθ (A.57)

BK
BP3

� �cot ι tanpλ� ωq
P2 sin ι

(A.58)

BK
BP2

� 1

P2
cot2 ι tanpλ� ωq (A.59)

L �
» θ
π{2

P3

sin2 θ
b
P 2

2 � P 2
3 { sin2 θ

dθ (A.60)

BL
BP3

� �tanpλ� ωq
P2 sin2 ι

(A.61)

BL
BP2

� �BK
BP3

(A.62)

�M �
b
P 2

2 � P 2
3 { sin2 θ (A.63)

B�M
Bθ � P3 cot θ cot ι

sin θ cospλ� ωq (A.64)

B�M
BP3

� � cot ι

sin θ cospλ� ωq (A.65)

B�M
BP2

� sin θ

sin ι cospλ� ωq (A.66)

rR � du

dλ
� 2pu2 � u3q

n
snpλ

n
|mqcnpλ

n
|mqdnpλ

n
|mq (A.67)

N � 1

X

�
P 2

1

X
� P 2

2

r2
� 2P0



(A.68)

?
N � P2

4X
rR (A.69)

B?N
Br � 2

P2r2 rR
�
�N � P 2

2

r2
� P 2

1

X2



(A.70)

B?N
BP2

� � 2

r2 rR (A.71)
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B?N
BP1

� 2P1

P2X rR (A.72)

B?N
BP0

� 2

P2
rR (A.73)

G �
» r
ra

1a
P 2

1 �XpP 2
2 {r2 � 2P0q

dr (A.74)

BG
BP2

� � BJ
BP0

(A.75)

BG
BP1

� BI
BP0

(A.76)

BG
BP0

� 4n3

n2
Au

3
3P

3
2

�
1

u3
NQQscd �NQscd

�
(A.77)

which we use to rewrite the equations (2.115) – (2.122) in the following form:

F1 � Q1 � t� IpP0, P1, P2, rq � 0 (A.78)

F2 � Q2 � JpP0, P1, P2, rq �KpP2, P3, θq � 0 (A.79)

F3 � Q3 � φ� LpP2, P3, θq � 0 (A.80)

F4 � pt � P1 � 0 (A.81)

F5 � pθ � �MpP2, P3, θq � 0 (A.82)

F6 � pφ � P3 � 0 (A.83)

F7 � pr �
a
NpP0, P1, P2, rq � 0 (A.84)

F8 � rQ0 �GpP0, P1, P2, rq � 0 , (A.85)

where rQ0 � Q0 � τ , however, for simplicity, hereafter we omit the tilde sign and write
simply Q0 (note, that the following derivatives are unaffected by this change).

Now we have a system of 8 equations, which defines implicit relations between pqµ, pµq
and pQµ, Pµq. Using the rules for derivatives of implicit functions, the following expres-

sions for derivatives
Bpµ
BQµ ,

Bqµ

BQµ ,
Bpµ
BPµ

, Bq
µ

BPµ
are obtained:

Bt
BQ1

� �1
Br
BQ1

� Bθ
BQ1

� Bφ
BQ1

� Bpt
BQ1

� Bpr
BQ1

� Bpθ
BQ1

� Bpφ
BQ1

� 0 (A.86)

Bt
BQ2

� Br
BQ2

� 0
Bθ
BQ2

� � 1

F2,θ

Bφ
BQ2

� �F3,θ

F2,θ
� F3,θ

Bθ
BQ2

(A.87)

Bpt
BQ2

� Bpr
BQ2

� 0
Bpθ
BQ2

� F5,θ

F2,θ
� �F5,θ

Bθ
BQ2

Bpφ
BQ2

� 0 (A.88)

Bt
BQ3

� Br
BQ3

� Bθ
BQ3

� Bpt
BQ3

� Bpr
BQ3

� Bpθ
BQ3

� Bpφ
BQ3

� 0
Bφ
BQ3

� 1 (A.89)

Bt
BP1

� �F1,P1 �
F1,r

F8,r
F8,P1 � �F1,P1 � F1,r

Br
BP1

(A.90)
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Br
BP1

� �F8,P1

F8,r
� F8,P1

Br
BQ0

(A.91)

Bθ
BP1

�
�
F2,rF8,P1

F8,r
� F2,P1



1

F2,θ
� �

�
F2,r

Br
BP1

� F2,P1



1

F2,θ
(A.92)

Bφ
BP1

� F3,θ
Bθ
BP1

Bpt
BP1

� �1 (A.93)

Bpr
BP1

� �F7,P1 �
F7,rF8,P1

F8, r
� �F7,P1 � F7,r

Br
BP1

(A.94)

Bpθ
BP1

� F5,θ

F2,θF8,r
p�F2,rF8,P1 � F2,P1F8,rq � �F5,θ

Bθ
BP1

Bpφ
BP1

� 0 (A.95)

Bt
BP2

� �F1,P2 �
F1,rF8,P2

F8,r
� �F1,P2 � F1,r

Br
BP2

(A.96)

Br
BP2

� �F8,P2

F8,r
� F8,P2

Br
BQ0

(A.97)

Bθ
BP2

� 1

F2,θ

�
F2,rF8,P2

F8,r
� F2,P2



� � 1

F2,θ

�
F2,r

Br
BP2

� F2,P2



(A.98)

Bφ
BP2

� F3,P2 � F3,θ
Bθ
BP2

Bpt
BP2

� 0 (A.99)

Bpr
BP2

� �F7,P2 �
F7,rF8,P2

F8,r
� �F7,P2 � F7,r

Br
BP2

(A.100)

Bpθ
BP2

� �F5,P2

F2,θ

�
F2,r

F8,P2

F8,r
� F2,P2



� F5,P2 � �F5, θ

Bθ
BP2

� F5,P2 (A.101)

Bpφ
BP2

� 0
Bt
BP3

� Br
BP3

� 0
Bθ
BP3

� �F2,P3

F2,θ
(A.102)

Bφ
BP3

� F3,P3 �
F2,P3F3,θ

F2,θ
� F3,P3 � F3,θ

Bθ
BP3

Bpt
BP3

� Bpr
BP3

� 0 (A.103)

Bpθ
BP3

� �F5,P3 �
F2,P3F5,θ

F2,θ
� �F5,P3 � F5,θ

Bθ
BP3

Bpφ
BP3

� 1 (A.104)

Bt
BQ0

� F1,r

F8,r
� �F1,r

Br
BQ0

Br
BQ0

� � 1

F8,r

Bθ
BQ0

� F2,r

F2,θF8,r
(A.105)

Bφ
BQ0

� F2,rF3,θ

F2,θF8,r
� Bθ
BQ0

F3,θ
Bpt
BQ0

� 0
Bpr
BQ0

� F7,r

F8,r
� �F7,r

Br
BQ0

(A.106)

Bpθ
BQ0

� �F2,rF5,θ

F2,θF8,r
� �F5,θ

Bθ
BQ0

Bpφ
BQ0

� 0 (A.107)

Bt
BP0

� �F1,P0 �
F1,rF8,P0

F8,r
� �F1,P0 � F1,r

Br
BP0

Br
BP0

� �F8,P0

F8,r
(A.108)

Bθ
BP0

� F2,rF8,P0

F2,θF8,r
� F2,P0

F2,θ
� � 1

F2,θ

�
F2,r

Br
BP0

� F2,P0


 Bφ
BP0

� F3,θ
Bθ
BP0

(A.109)

Bpt
BP0

� 0
Bpr
BP0

� �F7,P0 �
F7,rF8,P0

F8,r
� �F7,P0 � F7,r

Br
BP0

(A.110)
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Bpθ
BP0

� �F5,θ
Bθ
BP0

Bpφ
BP0

� 0 (A.111)

where Fi,Qµ � BFi{BQµ and Fi,Pµ � BFi{BPµ. The functions Fi,Qµ and Fi,Pµ in (A.86) – (A.111)
are replaced with derivatives in (A.49) – (A.77) to obtain the final expressions for the
derivatives (here we list only the derivatives with values � t�1, 0, 1u):

Bθ
BQ2

� �sin ι cospλ� ωq
sin θ

Bφ
BQ2

� cos ι

sin2 θ

Bpθ
BQ2

� P2 cos θ cos2 ι

sin3 θ
(A.112)

Bt
BP1

� � BI
BP1

� 4P 2
1 n

3

P 3
2 u

2
3pu2 � u3q2XNQQscd (A.113)

Br
BP1

� � 4P 2
1 n

2

P 2
2 u

2
3pu2 � u3qsnp

λ

n
|mqcnpλ

n
|mqdnpλ

n
|mqNQQscd (A.114)

Bθ
BP1

� sin ι cospλ� ωq
sin θ

P1n
3

P 2
2 pu2 � u3q2 rNscd �Q2NQQscds (A.115)

Bφ
BP1

� � cos ι

sin2 θ

P1n
3

P 2
2 pu2 � u3q2 rNscd �Q2NQQscds (A.116)

Bpr
BP1

� � 2P1

P2X rR � P1n
3

P 3
2 pu2 � u3q2

�
�N � P 2

2

r
� P 2

1

X2



Q2NQQscd (A.117)

Bpθ
BP1

� �cos2 ι cos θ

sin3 θ

P1n
3

P2pu2 � u3q2 rNscd �Q2NQQscds (A.118)

Bt
BP2

� P1n
3

P 2
2 pu2 � u3q2

��
1� 1� u3

X



Nscd � nAu3

X
Ncd

�
(A.119)

Br
BP2

� n2

P2pu2 � u3qsnp
λ

n
|mqcnpλ

n
|mqdnpλ

n
|mqrp1� u3qNscd � nAu3Ncds (A.120)

Bθ
BP2

� sin ι cospλ� ωq
sin θ

�
n3

4P2n2
A

Q2rp1� u3qNscd � nAu3Ncds�

� BJ
BP2

� 1

P2
cot2 ι tanpλ� ωq


 (A.121)

Bφ
BP2

� �cot ι tanpλ� ωq
P2 sin ι

� cot ι

sin θ cospλ� ωq
Bθ
BP2

(A.122)

Bpr
BP2

� 2

r2 rR � n3Q2

4P 2
2 n

2
A

�
�N � P 2

2

r
� P 2

1

X2



rp1� u3qNscd � nAu3Ncds (A.123)

Bpθ
BP2

� � sin θ

sin ι cospλ� ωq
�

1� P2 cos2 ι cot θ

sin2 θ

Bθ
BP2



(A.124)

Bθ
BP3

� cot ι sinpλ� ωq
P2 sin θ

Bφ
BP3

� cospλ� ωq sinpλ� ωq
P2 sin2 θ

(A.125)

Bpθ
BP3

� cot ι cospλ� ωq
sin3 θ

Bt
BQ0

� P1

X

Br
BQ0

� �P2
rR

2
(A.126)

Bθ
BQ0

� �P2

r2

sin ι cospλ� ωq
sin θ

Bφ
BQ0

� P2

r2

cos ι

sin2 θ
(A.127)
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Bpr
BQ0

� 1

r2

�
�N � P 2

2

r
� P 2

1

X2


 Bpθ
BQ0

� P 2
2

r2

cos2 ι cos θ

sin3 θ
(A.128)

Bt
BP0

� 4P1n
3

P 3
2 u

2
3pu2 � u3q2

�
u

1� u
NQQscd � u3

X
NQscd

�
(A.129)

Br
BP0

� � 4n2

u3pu2 � u3qP 2
2

snpλ
n
|mqcnpλ

n
|mqdnpλ

n
|mq

�
1

u3
NQQscd �NQscd

�
(A.130)

Bθ
BP0

� �sin ι cospλ� ωq
sin θ

�
P2

r2

BG
BP0

� BJ
BP0



(A.131)

Bφ
BP0

� cos ι

sin2 θ

�
P2

r2

BG
BP0

� BJ
BP0



(A.132)

Bpr
BP0

� � 2

P2
rR � 1

r2

�
�N � P 2

2

r
� P 2

1

X2


 BG
BP0

(A.133)

Bpθ
BP0

� P2 cos θ cos2 ι

sin3 θ

�
P2

r2

BG
BP0

� BJ
BP0



(A.134)

A.3.1 Special Functions

We use the following parameters: m from (A.43d), m1 � 1�m, χ � ampx|mq, nA � �n1,
n1A � �n2, where n1 and n2 are defined in (A.43e). To facilitate the comparison with
Allison (1989), we use their notation.

Ns �
»

dx

sn2px|mq � x� cn2px|mqdn2px|mq
sn2px|mq � Epχ|mq (A.135)

Nc �
»

dx

cn2px|mq �
1

m1

�
snpx|mqdnpx|mq

cnpx|mq �m1x� Epχ|mq



(A.136)

Nd �
»

dx

dn2px|mq �
1

m1

��msnpx|mqcnpx|mq
dnpx|mq � Epχ|mq



(A.137)

Ncd �
»

dx

cn2px|mqdn2px|mq �
1

m1
pNc �mNdq (A.138)

Nscd �
»

dx

sn2px|mqcn2px|mqdn2px|mq � Ns � 1

m1

�
Nc �m2Nd

�
(A.139)

Q � 1� nAsn2px|mq (A.140)

Q1 � 1� n1Asn2px|mq (A.141)

NQ �
»
dx

Q
� Πp�nA|χ|mq (A.142)

NQ1 �
»
dx

Q1
� Πp�n1A|χ|mq (A.143)

NQs �
»

dx

Qsn2px|mq � Ns � nANQ (A.144)

NQc �
»

dx

Qcn2px|mq �
1

1� nA
pNc � nANQq (A.145)
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NQd �
»

dx

Qdn2px|mq �
1

m� nA
pmNd � nANQq (A.146)

NQ1s �
»

dx

Q1sn2px|mq � Ns � n1ANQ1 (A.147)

NQ1c �
»

dx

Q1cn2px|mq �
1

1� n1A
pNc � n1ANQ1q (A.148)

NQ1d �
»

dx

Q1dn2px|mq �
1

m� n1A
pmNd � n1ANQ1q (A.149)

NQscd �
»

dx

Qsn2px|mqcn2px|mqdn2px|mq � NQs � 1

m1
pNQc �m2NQdq (A.150)

NQ1scd �
»

dx

Q1sn2px|mqcn2px|mqdn2px|mq � NQ1s � 1

m1
pNQ1c �m2NQ1dq (A.151)

NQQ �
»
dx

Q2
� 1

2p1� naqpm� nAq
�
n2
Asnpx|mqcnpx|mqdnpx|mq

Q
�

�nAEpχ|mq � pm� nAqx� pn2
A � 2nAp1�mq � 3mqNQ

� (A.152)

NQQs �
»

dx

Q2sn2px|mq � Ns � nApNQ �NQQq (A.153)

NQQc �
»

dx

Q2cn2px|mq �
1

pnA � 1q2 pnApnA � 1qNQQ � nANQ �Ncq (A.154)

NQQd �
»

dx

Q2dn2px|mq �
1

pnA �mq2
�
nApnA �mqNQQ � nAmNQ �m2Nd

�
(A.155)

NQQscd �
»

dx

Q2sn2px|mqcn2px|mqdn2px|mq � NQQs � 1

m1

�
NQQc �m2NQQd

�
� � 1

p1� nAq2
�
n2
Ap1� nAqNQQd � p2� nAqn2

ANQd � nAp2� nAqNcd

��Nscd

(A.156)

Some additional useful integrals:»
sn2px|mqdx

cn2px|mqdn2px|mq � Ncd �Nd (A.157)»
sn4px|mqdx

cn2px|mqdn2px|mq � Ncd �Nd � 1

m
Nd � 1

m
x (A.158)»

Q2dx

sn2px|mqcn2px|mqdn2px|mq � Nscd � p2nA � n2
AqNcd � n2

ANd (A.159)»
Q3dx

sn2px|mqcn2px|mqdn2px|mq �
»

Q2dx

sn2px|mqcn2px|mqdn2px|mq�

nAp1� nAq2Ncd � n2
Ap2� nA � nA

m
qNd � n3

A

m
x

(A.160)
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»
Q2dx

cn2px|mqdn2px|mq � p1� nAq2Ncd � nAp2� nA � nA
m
qNd � n2

A

m
x (A.161)» θ

π{2

�
P 2

2 �
P 2

3

sin2 θ


�1{2

dθ � �λ� ω

P2
(A.162)

» θ
π{2

�
P 2

2 �
P 2

3

sin2 θ


�3{2

dθ � �cot2 ι tanpλ� ωq
P 3

2

� λ� ω

P 3
2

(A.163)

» θ
π{2

�
P 2

2 �
P 2

3

sin2 θ


�3{2
dθ

sin2 θ
� �tanpλ� ωq

P 3
2 sin2 ι

(A.164)
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Appendix B

Multipole momenta

B.0.2 Planets, the Moon, the Sun

We consider the Newtonian gravitational potential of celestial bodies Φa in a point
of space around the Earth r and far away from celestial bodies in the Earth-centered
inertial (ECI) system, such as International Celestial Reference System (ICRS)/J2000.0
Ma et al. (1997); Souchay (2006); Petit and Luzum (2010), written as

Φapt, rq �
¸
i

GMi

}ri � r} , (B.1)

where Mi are the masses of celestial bodies and ri are vectors pointing to the celestial
body. The latter are functions of time and are supplied by JPL’s Horizons System NASA
JPL’s Solar System Dynamics group (2013) in ICRS/J2000.0.

We associate to vectors ri and r spherical coordinates pri, θi, ϕiq and pr, θ, ϕq, respec-
tively. The spherical coordinates pr, θ, ϕq P R� � r0, πs � r0, 2πs are related to Cartesian
coordinates px, y, zq as

px, y, zq � rpsin θ cosϕ, sin θ sinϕ, cos θq . (B.2)

Because ri " r, we can write the reciprocal distance in Φa (B.1) as a series of Legendre
polynomials (Abramowitz and Stegun 1964):

1

}ri � r} �
1

ri

1a
1� 2r � ri{ri � pr{riq2

� 1

ri

8̧

n�0

�
r

ri


n
Pnpcos γiq

(B.3)

where cos γi is a scalar product of unit vectors ri{}ri} and r{}r}:

cos γi � cos θi cos θ � sin θi sin θ cospϕi � ϕq . (B.4)
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According to the addition theorem of Legendre polynomials (Arfken 1985), we can fur-
ther expand Legendre polynomials in (B.3) as

Pnpcos γiq � 4π

2n� 1

ņ

m��n

Y m
n

�pθi, ϕiqY m
n pθ, ϕq , (B.5)

with pq� denoting the complex conjugate and Y m
n representing the spherical harmon-

ics (Arfken 1985). By substituting Pnpcos γiq in (B.3) with (B.5), we can expand the
potential Φa (B.1) in terms of spherical harmonics

Φapt, rq �
8̧

n�0

ņ

m��n

rnMa
nmptqY m

n pθ, ϕq , (B.6)

where we identify the interior multipole moments associated to the celestial bodies given
by

Ma
nmptq �

4πG

2n� 1

¸
i

Mi

rn�1
i ptqY

m
n

�pθiptq, ϕiptqq , (B.7)

which are time dependent if position of celestial bodies relative to our reference system
is changing with time. Note that Ma

nm are complex with the symmetry

Ma
nm

� � p�1qmMa
n,�m , (B.8)

which makes the potential Φa a real valued function.

B.0.3 Earth tides

The Earth’s Newtonian gravitational potential Φ`, called geopotential, is time varying,
because the deformed Earth is rotating and the gravitational influence of other, external
celestial bodies deforms the Earth. The external bodies change Earth’s shape, and these
changes are called the solid Earth tides, while the shape of the fluid on the surface of
the Earth is called the ocean tides. Here we take into account only the most important
external bodies, i.e. the Moon and the Sun.

We start by discussing the Newtonian gravitational potential Φ in the Earth centered
Earth fixed (ECEF) system, such as the International Terrestrial Reference Systems
(ITRS) Petit and Luzum (2010), and then transform it into the Earth-centered inertial
(ECI) system, such as International Celestial Reference System (ICRS)/J2000.0 Ma et al.
(1997); Souchay (2006); Petit and Luzum (2010).

In the spherical coordinates defined in subsection B.0.2 and based on ITRS, the
geopotential can be written in terms of the spherical harmonics Y m

n as

Φ`pt, rq �
8̧

n�0

ņ

m��n

Mnmptq
rn�1

Y m
n pθ, ϕq , (B.9)

where Mnmptq P C are called the complex multipole moments depending on time t and
possessing the symmetry Mn,�m � p�1qmM�

n,m. In the chosen coordinate system, which
is attached to Earth’s mass centre, there is no dipole contribution: M1m � 0.
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In geodesy and related fields, see e.g. Torge (2001), the geopotential is expressed
using the time dependent normalized geopotential coefficients Cnmptq and Snmptq and
normalized Legendre polynomial Pnm as

Φ`pt, rq � GMC

r

"
1�

8̧

n�2

�rC
r

	n
�

ņ

m�0

rCnmptq cospmϕq � Snmptq sinpmϕqsPnmpcos θq
*
,

(B.10)

where MC and rC are the mass and the mean radius of Earth, respectively. The nor-
malized Legendre polynomial are defined as

Pnm � p�1qmNnmP
m
n , (B.11)

where the normalization factor is

Nnm �
d
p2� δm,0qp2n� 1qpn�mq!

pn�mq! , (B.12)

and Pmn are standard Legendre polynomials (Abramowitz and Stegun 1964).
Note that the sum over n in (B.10) runs only from the quadrupole term due to choice

of coordinate system, and by definition, Sn0 � 0 for all n.
The normalized geopotential coefficients are connected to the complex multipoles in

(B.9) for positive orders m ¡ 0 via formula

Mnm � p�1qm
d

4π

2� δm,0
GMCr

n
CTnm , (B.13)

where we introduce a complex normalized geopotential coefficient

Tnm � Cnm � iSnm , (B.14)

which is used in tide calculations as it allows us to work with both real geopotential
coefficients in the same expression.

The complex normalized geopotential coefficients Tnm can be decomposed into a sum
of constant (time average) coefficients T 0

nm and its perturbation, i.e., time dependent
coefficients T e

nmptq and T o
nmptq corresponding to Earth and ocean tides, respectively:

Tnmptq � T 0
nm � T e

nmptq � T o
nmptq . (B.15)

The constant contributions T 0
nm are up to degree 360 available from Earth Gravitational

Model 1996 (EGM96) (Lemoine and Center 1998). In the following subsections, we
separately discuss each of the perturbations to Tnm.
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Solid Earth tides

The solid Earth tides represent deformations of the Earth due to gravitational forces of
other celestial bodies. Following the International Earth rotation and reference systems
service (IERS) Conventions (Petit and Luzum 2010, Ch. 6) and Montenbruck and Gill
(2005, Sec. 3.7.2), we write the complex geopotential coefficients of solid Earth as a sum
of contributions due to presence of the Moon K (j � 1) and the Sun @ (j � 2):

T e
nmptq �

knm
2n� 1

2̧

j�1

Mj

MC

�
rC
rj


n�1

Pnmpsin θjqe�imϕj , (B.16)

where Mj , rj , θj and ϕj are the mass, the distance from the Earth center, the latitude
and the east longitude from Greenwich, respectively, of the jth body in ITRS. The
position prj , θj , ϕjq as a function of time is provided by Astronomical Almanac (U.S.
Nautical Almanac Office 2012) together with The Explanatory Supplement (Seidelmann
et al. 1992).

The knm are the nominal Love numbers describing Earth’s response to pn,mq-multipoles
of the external potential and depend on the considered Earth model. Here we assume
that the Earth is elastic and use the numbers reported in Table B.1.

Table B.1: Nominal values of the Love numbers for the solid tides of elastic Earth model
(Petit and Luzum 2010).

pn,mq (2,0) (2,1) (2,2) (3,0) (3,1) (3,2) (3,3)

knm 0.29525 0.29470 0.29801 0.093 0.093 0.093 0.094

With such description, we capture only the main body deformations, whereby the
motion of the poles is left out of discussion. These can be included as perturbations
of the moments, but their dynamical model is fundamentally different. The position of
poles is affected by Chandler wobble of period 435 days, see e.g. Stacey and Davis (2008),
annual oscillation forced by seasonal displacement of air and water masses and diurnal
and semi-diurnal variations forced by oceanic tides. The model describing perturbations
of multipole coefficients is given in Moyer (2005, Sec. 5.2.8.) and concrete data can be
found in Petit and Luzum (2010, Sec 6.4.).

Ocean tides

Gravitational forces of celestial bodies cause the displacement of the ocean water on the
surface of the Earth. The surface of the ocean follows an equipotential surface of the
gravitational potential. The ocean tides are influenced mainly by presence of the Moon
and the Sun and only these are taken into account in present ocean tide models. For
further reading see e.g. Petit and Luzum (2010, Sec 6.5.).

The ocean tide can be broken down into its independent constituents representing
perpetual dynamics of ocean surface of incommensurable frequency. A. T. Doodson in
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Doodson (1921) introduced an efficient practical labeling system of labeling constituents
based on non-negative numbers mi. Each tide constituent, which is practically relevant,
can be labeled by a Doodson number as

m1m2m3,m4m5m6 , (B.17)

which is constructed as a concatenation of mi with comma ”,” serving as a separator.
There exists an alternative labeling of tide constituents introduced by G. H. Darwin
(1845-1912) and labels are called the Darwin symbols, which are useful for textual ref-
erencing of tides. Few of the most influential tide constituents used in our analysis are
listed in Table B.2. K1 is Lunisolar diurnal constituent, which with O1, expresses the
effect of the Moon’s declination. They account for diurnal inequality and, at extremes,
diurnal tides. For a given constituent f labeled by the Doodson number mi we introduce

Table B.2: The few first most significant tidal constituents in decreasing order of signif-
icance.

Description
Darwin Doodson
symbol number

Principal lunar semidiurnal M2 255,555
Principal solar semidiurnal S2 273,555

Larger lunar elliptic semidiurnal N2 245,655
Lunar diurnal K1 165,555
Lunar diurnal O1 145,555

Doodson coefficients ni P Z,

m1 � n1 , mi � ni � 5 for i � 2, . . . , 6 . (B.18)

We are interested in the perturbations of the geopotenial due to ocean tides. According
to Montenbruck and Gill (2005, Sec. 3.7.2) and the IERS Conventions (Petit and Luzum
2010), the geopotential coefficients due to ocean tides can be represented as a sum over
constituents f

T o
nmptq �

¸
f

¸
sPt�,�u

rCsf,nm � isSsf,nmses iθf ptq , (B.19)

where θf ptq is the Doodson argument θf defined as a linear combination of six Doodson
fundamental arguments βi given by

θf ptq �
6̧

i�1

niβiptq , (B.20)

and Csf,nm and Ssf,nm are geopotential harmonic amplitudes corresponding to constituent
f and multipoles indices pn,mq. For details on the tidal dynamics see McCarthy and
Seidelmann (2009). The amplitudes Csf,nm and Ssf,nm based on Finite element solutions
of global tides for year 2004 (FES2004) (Lyard et al. 2006) are provided by R. Biancale
(Biancale 2012).
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Transforming multipoles from ITRS to ICRS

Here we outline the transformation of multipoles while transforming coordinates of geo-
potential from ITRS into ICRS. The transformation of coordinates from ICRS into ITRS
is given as a time dependent rotation

rITRS � RptqrICRS , (B.21)

where rITRS and rICRS are vectors of Cartesian coordinates in ITRS and in ICRS, re-
spectively, and time t variable. For details see Montenbruck and Gill (2005, Sec. 5.2)
with references to the IERS Conventions Petit and Luzum (2010, Ch. 5). The rotation
matrix Rptq is defined as a product of rotation matrices Pptq, Nptq, Θptq and Πptq
corresponding to coordinate transformation due to precession, nutation, Earth rotation
around its own axis, and polar motions, respectively:

Rptq � ΠptqΘptqNptqPptq . (B.22)

Each of the rotation matrices Pptq (Montenbruck and Gill 2005, Eq. 5.46), Nptq (Mon-
tenbruck and Gill 2005, Eq. 5.62), Θptq (Montenbruck and Gill 2005, Eq. 5.67), and
Πptq (Montenbruck and Gill 2005, Eq. 5.75) can be expressed as products of elementary
rotations Rx, Ry and Rz around x, y and z axis, respectively:

Pptq � Rzp�zqRypθqRzp�ζq ,
Nptq � Rxp�ε�∆εqRzp�∆ψqRxpεq ,
Θptq � RzpGASTq ,
Πptq � Ryp�xpqRxp�ypq

(B.23)

where angles of rotation z, θ, ζ, ε, ∆ε, ∆ψ, GAST, xp and yp depend in time only. The
elementary rotations using notation c � cosφ and s � sinφ are defined as

Rxpφq �
�� 1 0 0

0 c s
0 �s c

� , (B.24)

Rypφq �
�� c 0 �s

0 1 0
s 0 c

� , (B.25)

Rzpφq �
�� c s 0

�s c 0
0 0 1

� . (B.26)

The angles of rotation are given as power series in the time argument – Julian date
since J2000 using terrestrial time (TT) for precession and nutation and using universal
time (UT1) for Earth’s rotation and polar motion. For details see Montenbruck and
Gill (2005, p. 167, 175, 181). It is clear from the definition of the rotation matrix Rptq
(B.22) that it can be written as a product of pp� 9q elementary rotations

Rptq � Rx1pt1q . . .Rxpptrq , (B.27)
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where xi denotes the axis ith rotation and ti is the corresponding angle of rotation
depending on time t.

Lets introduce a direction vector r̂ :� r{}r} in Cartesian coordinate system written
in spherical coordinates pr, θ, ϕq P R� � r0, πs � r0, 2πs as

r̂ � psin θ cosϕ, sin θ sinϕ, cos θq , (B.28)

and define a spherical harmonics in that direction Y m
n pr̂q :� Y m

n pθ, ϕq.
Finally, the geopotential in ICRS coordinates ΦICRS can be compactly expressed with

the geopotential in ITRS coordinates as

Φ`,ICRSpt, rq � Φ`pt,Rptqrq ,
�
¸
nm

M`
nmptqr�n�1Y m

n pRptqr̂q . (B.29)

We can expand the spherical harmonics with rotating argument Y m
n pRptqr̂q into spherical

harmonics

Y m
n pRptqr̂q �

ņ

m1��n

Unm1,mptqY m1

n pr̂q , (B.30)

by taking into account the orthogonality of spherical harmonics»
Ω

dΩpr̂qY m1

n1
�pr̂qY m

n pr̂q � δn,n1δm,m1 (B.31)

and introducing a time dependent transition matrix for spherical harmonics given by

Unm1,mptq �
»

Ω
dΩpr̂qY m1

n

�pr̂qY m
n pRptqr̂q , (B.32)

with a differential of the solid angle dΩpr̂q � sin θdθdϕ on domain Ω � tpθ, ϕq P r0, πs �
r0, 2πsu. Matrix

Unptq � rUnm1,mptqsnm1,m��n (B.33)

is unitary. The spherical harmonics with an argument rotating around specific axis can
be expanded into spherical harmonics as

Y n
mpRiptqr̂q �

ņ

m1��n

Y n
m1pr̂qrUn

i ptqsm1,m , (B.34)

by introducing the rotation matrices Un
i ptq in the basis of spherical harmonics defined

via the Wigner D-matrix Dn
m1,m (Varshalovich et al. 1988):

rUn
xptqsm1,m � Dn

m1,m

�π
2
, t,�π

2

	
,

rUn
yptqsm1,m � Dn

m1,mp0, t, 0q ,
rUn

z ptqsm1,m � Dn
m1,mp0, 0, tq ,

(B.35)
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where r�sa,b denotes the matrix element of indices pa, bq. By using the expression for
Y n
mpRiptqr̂q (B.34) for each elementary rotation Riptq in the product forming Rptq (B.27)

we can write

Y n
mpRptqr̂q �

ņ

m1��n

Y n
m1pr̂qrUn

xpptpq . . .Un
x1pt1qsm1,m . (B.36)

By plugging this expression in equation (B.32) we obtain the transition matrix expressed
as product rotation matrices in basis of spherical harmonics:

Unptq � Un
xpptpq . . .Un

x1pt1q . (B.37)

By using the expansion (B.30) in formula (B.29) and exchanging the order summation,
we obtain potential in geopotential in ICRS:

Φ`,ICRSpt, rq �
¸
nm

M`,ICRS
n,m1 ptqr�n�1Y m

n pr̂q , (B.38)

which is expressed using the multipole moments in ICRS M`,ICRS
n,m1 given by

M`,ICRS
n,m1 ptq �

ņ

m��n

Unm1,mptqMn,mptq . (B.39)
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Appendix C

Contents of ESA SVN

RPS-PECS

Literature.article Organized collection of articles.

WP1 Work Package 1

ABC Testing the concept of the ABC reference frame via toy models.

Earth Perturbations Discussion of multipoles of the Earth.

Earth Rotation Discussing Earth rotation: Kerr metric, Spin-spin coupling.

Linear gravity
Discussing linear gravity equations and solutions of the RWZ
formalism

Multipole Combinations Multipoles for the Earth with tides (named AllEarth).

Planets Perturbations
Multipoles for celestial bodies (named Moon, Sun, Venus,
Jupiter) and all together (named Planets).

Tidal Perturbations Multipoles for tidal deformations (named Earth, Ocean) of the
Earth.

. . .

Figure C.1: Directory structure of ESA’s SVN.
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WP2 Work Package 2

Ephemerides
Time tables of ephemerides for celestial bodies (named Moon,
Sun, Venus, Jupiter) in ECI.

LieIntegrator Discussion of Lie integrator application

SchwCanonical Deriving Hamiltonian formalism for the Schwarzschild metric.

TestKerr Discussion of the perturbation to Schwarzschild due to rotation.

WP3 Work Package 3

c++ Collection of final versions of C/C++ and Fortran source
codes.

data Collection of data and results used in reports.

lib
Development C/C++ files for numerical routines: quad sup-
port, integrator, interpolation, minimization, spherical har-
monics, RWZ solutions.

non rel
Discussion of non-relativistic dynamics of satellites under in-
fluence of celestial objects.

WP4 Work Package 4

c++ Collection of final versions of C/C++ and Fortran source
codes.

data Collection of data and results used in reports.

giove Construction of Gallileo satellites (Giove 1 and 2) trajectories
in ICTRS.

ictr itrs Transformation between ICTRS and ITRS.

lib
Development C/C++ files for numerical routines: integrator,
minimization, multipole models of perturbations.

non rel
Discussion of non-relativistic dynamics of satellites and forces
on them under influence of different perturbations.

rel
Discussion of relativistic dynamics of satellites for different per-
turbations using RWZ formalism with geodesic equations.

Figure C.2: Continuing. . .
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