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Abstract
This paper summarizes the findings and the research status on Flower Constellations , a novel and revolutionary way to
design satellite constellations that has been discovered and proposed at Texas A&M University. The theory of Flower
Constellations is a natural consequence of the theory of compatible (or resonant) orbits. The most surprising aspect of
the Flower Constellations is that the satellite distribution identifies the edges of rotating figures whose shapes are time
invariant. The complex synchronized dynamics of the satellites preserves the shape of a space object. The whole Flower
Constellation is an axial-symmetric rigid object in space that is spinning with prescribed angular velocity. The shape
of this object can be deformed by playing with the Flower Constellation design parameters, and the object’s axis of
symmetry can be set to point to any inertial direction. In particular, when the axis of symmetry is aligned with the Earth’s
spin axis, the J2 linear-dominant effect is identical for all the orbits. In this case, the J2 effect deforms the object shape
while preserving the axial-symmetry.

Introduction

The Flower Constellations constitute an infinite set
of satellite constellations characterized by periodic
dynamics. They have been discovered [1] on the way to
the generalization of the concept of some existing satellite
constellations. The dynamics of a Flower Constellation
identify a set of implicit rotating reference frames on
which the satellites follow the same closed-loop relative
trajectory [2]. In particular, when one of these rotating
reference frames is “Planet Centered, Planet Fixed”, then
all the orbits become compatible (resonant) with the
Planet, and consequently, the projection of the relative
trajectory on the planet becomes a repeating ground track.

As a particular case, the Flower Constellations can
be designed as J2 compliant [1, 3], that is with orbit
compatibility that takes into account the linear effects
of the J2 perturbation. By considering the J2 effect
on these relative trajectories, it is possible to identify a
set of critical inclinations associated with dynamically
repeating relative trajectories, called repeating2 ground
track orbits [4], and to identify the two-way orbits [5],
having identical and parallel perigee and apogee ground
tracks, a property that allows us to design constellations
observing the same geographical region from apogee
and perigee, simultaneously. The recently proposed

Synodic and Relative Flower Constellations [6, 7, 2]
which use dual compatible orbits, as well as the results
obtained in designing reconnaissance orbits for Earth sites
[8] constitute key initial conditions for many potential
research proposals as some of these designs would
allow both long-term, stand-off surveillance, and episodic
close-in inspection.

In the rotating reference frames the relative trajectories,
which depend on five independent integer parameters,
constitute a continuous, closed-loop, symmetric pattern
of flower petals. Two integer parameters establish the
orbit period and the other three distribute the satellites
into an upper bounded number of admissible positions.
One of the most important consequences of the Flower
Constellation theory is that, for a particular set of the five
integer parameters, the satellite distribution highlights the
existence of Secondary Paths [9]. These Secondary Paths,
which exhibit many beautiful and intricate dynamics and
mysterious properties, are close to being fully understood,
and the prediction of them appears to be linked to
real algebraic geometry. Finally, the possibilities of
re-orienting the Flower Constellation axis and playing
with multiple Flower Constellations allow the design
of a constellation of constellations, and constellations of
formation flying schemes.

The Flower Constellation theory has been developed
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at Texas A&M University. Along with the theory, the
Flower Constellations Visualization and Analysis Tool
(FCVAT) [10] has been developed and coded using Java
and Java3D technologies. FCVAT software represents a
truly fundamental breakthrough in satellite constellation
design methodology, as it makes it easier to see and
understand the complicated satellite dynamics, and to see
the effects on the constellation of variations of the design
parameters. This allows users to easily find different
types of satellite formations which have been very difficult
to construct using current methods. It is important to
emphasize that, in order to design a Flower Constellation ,
a program like FCVAT must be first developed. Without
such a specific program, or equivalent, the design (and
the understanding) of Flower Constellation dynamics
becomes very difficult or almost impossible.
The Flower Constellations are characterized by an axis
of symmetry about which the constellation is rotating
in the inertial space as a rigid body and with angular
velocity of the rotating compatible reference frame. For
Secondary Paths the angular velocity is related to four
integer parameters, number of peri-petals, peri-petal step,
number of apo-petals, and apo-petal step [7, 9].
The dynamics of a Flower Constellation can then be seen
as consisting of two distinct parts: (1) an internal part,
that describes the dynamics of the satellites within the
“object-constellation”, and (2) an external part, where the
“rigid object” rotates in inertial space about a spin axis
with an angular velocity that can be positive or negative.
Some of the resulting shapes are shown in Figs 1 through
2, showing both the versatility and the infinite variety of
possible shapes which we call “choreographes”.
Flower Constellations thus open a new frontier in
complex satellite constellations: in particular, these
constellation-objects can be used as building blocks to
construct configurations that can accomplish arbitrarily
complex tasks. Indeed, just as the concepts of modularity
and functionality gave important paradigm shifts in
software design (allowing millions of similar tasks to
be treated by one chunk of code), Flower Constellations
provide building blocks to enable the creation of arbitrarily
complicated ensembles of satellite orbits. Indeed,
current approaches to satellites constellation are a simple
by-product of the functionality they are designed for. By
enabling the research community (and even the general

population) to consider constellation as rigid objects,
we enable new functionalities of satellites in urgently
needed applications, and the study of even more intricate
constellations for which functionalities have yet to be
found.
Flower Constellations also allow us to profitably
transform our intuition by thinking of trajectories in the
solar system not just as shells like the LEO/MEO/GEO
elliptical orbits, but rather as the union of several
objects represented by different Flower Constellations
. In interferometry, for example, a star-like Flower
Constellation (see Fig. 17) can be thought as a unique
radar-like antenna instead of as a collection of spacecraft.
Other interesting Flower Constellations are characterized
by morphing capabilities, as for the morphing Flower
Constellation shown in Figs. 3 and 4. This constellation
has a dynamics that periodically changes from a five-loop
aspect (Fig. 3) to an inscribed pentagon aspect (Fig. 4).
The particular dynamics of a Flower Constellation are
obtained by introducing an automatic mechanism, ruled
by a set of three integer parameters, to distribute the
satellites into a limited set of “admissible locations”. This
is shown in Fig. 7, where 17 spacecraft are located on
the same inertial orbit (green) and all of them belong to
the same ECEF relative trajectory (red). These parameters
rule the important phasing of the Flower Constellations
. In this way, this new methodology to design satellite
constellations has greatly simplified the constellation
design problem and, thus, has provided the means to solve
an extremely difficult family of problems.
Recently, two novel constellation design methodologies
have been proposed [6, 2]. These are the Synodic
and the Dual (or Relative) Flower Constellations ,
which constitute the important extension of Flower
Constellations synchronized with the motion of two
celestial objects (e.g., two planets) orbiting about the same
gravitational mass. These two rotating reference frames
can also be associated with natural or artificial satellites
(e.g., moons, spacecraft) orbiting about a planet, and one
of these frames can also be associated with the rotation of
the central body itself. In particular, a Synodic Flower
Constellation is made with orbits that are compatible
with a reference frame rotating with a period suitably
derived from the synodic period of the two objects, while
a Dual Flower Constellation is made of orbits that are,
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Figure 1: King Defense Flower Constellation

Figure 2: Two 3× 3 formation flying loops

simultaneously, compatible with both the objects rotating
reference frames. The latter, however, can be achieved
under a very particular condition, that can be numerically
approximated. The resulting constellation dynamics
is synchronized with the dynamics of the geometrical
rotation of the two objects.
The Flower Constellations , with its latest “Synodic”
and “Relative” extensions, have already been partially
investigated and some results for classical applications
been obtained.

Compatible orbits
The Flower Constellation theory is built and derived
from the theory of compatible (or resonant) orbits. The
“compatibility” is a synchronization property between two
rotating reference frames. Mathematically, the rotating
reference frames, F1 and F2, are compatible or resonant,
if their constant angular velocities, ω1 and ω2, satisfy the
relationship

N1 ω2 = N2 ω1 (1)

where N1 and N2 can be any integers. In the case the
angular velocities are not constant, then F1 and F2 are
compatible iff ω1(t) and ω2(t) are periodic functions. In
this case, the compatibility is specified by the relationship

N1

∫ T2

0

ω2 dt = N2

∫ T1

0

ω1 dt (2)

where T1 and T2 are the periods of the rotating frames.
The orbit mean motion n is a fictitious constant angular
velocity associated with the periodic motion of the satellite
along its orbit. Therefore, an orbit is compatible, with
respect to a reference frame F rotating with angular
velocity ω, if the orbit period T satisfies the relationship

Np T = Np
2π
n

= Nd
2π
ω

(3)

where Np and Nd are two positive integers characterizing
compatible orbits. Alternatively, the definition of a
compatible orbit can be expressed by saying that an orbit
is compatible when the ratio of its period with that of the
rotating reference frame is rational.
Equation (3) simply states that after Np orbital periods
the rotating reference frame has performed Nd complete
rotations and, consequently, the satellite and the rotating
reference frame come back to their initial positions. This
implies that the trajectory of the satellite in the rotating
reference frame - the relative trajectory - is a continuous
closed-loop trajectory that can be seen as a closed-loop
3-dimensional space track.1 Two examples are provided
in Figs. 5 and 6. In particular, Np T represents the
time required by the satellite to repeat the entire relative
trajectory.
In the Flower Constellation theory the two integers, Np

and Nd, are identified as the Number of Petals and the
Number of Days, respectively. The reason for that arises
because if the rotating reference frame is selected to be

1Even though compatible orbits are known as “repeating ground track” orbits, we want to highlight the distinction between these two definitions. A
ground track is just the projection of the closed-loop trajectory on the Earth surface. This projection does not contain the full information of the 3-D
trajectory. Moreover, the set of compatible orbits is just a subset of the repeating ground track orbits set (e.g., any equatorial orbit is repeating ground
track!).
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Figure 3: Morphing Flower Constellation : Five-loop

Earth-Centered Earth-Fixed, then Nd really represents the
number of days to repeat the relative trajectory, while the
Number of PetalsNp, that actually represent the number of
orbit revolutions, finds its origin because of the petal-like
shape of the relative trajectory.
It is important to understand that an orbit, that is
compatible with respect to an assigned rotating reference
frame, is also compatible with an infinite set of rotating
reference frames. In fact, an orbit satisfying Eq. (3) is also
compatible with all the reference frames F ′ rotating with
angular velocity

ω′ = ω

(
N ′

d

N ′
p

) (
Np

Nd

)
(4)

where N ′
p, N ′

d, and ω′, satisfy the compatibility condition

N ′
p T = N ′

d

2π
ω′

(5)

Flower Constellation Phasing
Flower Constellations are built with the constraint that
all the satellites belong to the same relative trajectory. In
order to obtain the mathematical relationship stating this
property, let us consider two identical compatible orbits
having node lines displaced from each other by ∆Ω. Let
us consider, as initial condition (t = 0), the satellite in
the first orbit be located at pericenter (M = 0). This
implies that the time interval ∆t spent by the rotating
reference frame to rotate of ∆Ω (the relative trajectory is
fixed in the rotating reference frame) must be identical to
that associated with the increase of the mean anomaly of
the spacecraft along its orbit. Therefore, we can write the
relationship

∆t = −∆Ω
ω

=
∆M
n

(6)

where ω is the angular velocity of the rotating reference
frame and n the orbit mean motion. The reason of the
negative sign depends on the fact that for positive ω, the
inertial orbits rotate clock-wise while Ω increases counter
clock-wise. Figure 1 of Ref. [1] helps in understanding it.
Equation (6) shows a direct relationship between right
ascension of the ascending node and mean anomaly.
Substituting Eq. (3) in Eq. (6) we obtain

−Np ∆Ω = Nd ∆M (7)

This relationship, which represents the fundamental
equation of the Flower Constellation phasing, allows us
to evaluate the “admissible locations” where to place the
constellation satellites in order they all belong to the same
relative trajectory. In other words, if a satellite is located
at position M1 of the orbit characterized by Ω1 then, in
order to belong to the same relative trajectory, a satellite
on a different orbit characterized by Ω2 must be placed at
position M2, where

M2 = M1 − (Ω2 − Ω1)
Np

Nd
(8)

In the case the second orbit coincides with the first orbit
(Ω2 − Ω1 = Fh 2π, where Fh can be any integer), then
Eq. (8) highlights all the admissible locations per orbit

M1,k+1 = M1,k − Fh 2π
Np

Nd
(9)

where Fh = 0, 1, · · · , Nd − 1. Equation (9) allows us to
state the following:

1. Two satellites on the same orbit and displaced by
∆M = 2π FhNp/Nd, where Fh can be any integer,
belong to the same relative trajectory.

2. The number of admissible locations per orbit in
Flower Constellation is Nd.
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Figure 4: Morphing Flower Constellation : Inscribed pentagon

Figure 5: Relative trajectory example #1

Equation (8) provides us with the natural admissible
location where to place the satellite. However, since there
are Nd admissible locations per orbit, all the admissible
locations in the orbit characterized by Ω2 are provided by
the relationship

M2 = M1 − (Ω2 − Ω1)
Np

Nd
− Fh 2π

Np

Nd
(10)

Consequently: we have the complete free choice of where
to place the first satellite (Ω1,M1), but when this is done
then, for any assigned number N of orbits (not necessarily
evenly distributed in 2π), the admissible locations are
all defined. It is clear that evenly orbits distribution are
preferred whenever the symmetry is desired. In the Flower
Constellations this is obtained by selecting a rational value
of 2π for the orbit node lines step

∆Ω = Ωk+1 − Ωk = 2π
Fn

Fd
(11)

where Fn and Fd can be any two integers. If the first orbit
is selected having Ω1 = M1 = 0, then Eq. (11) provides
us with the orbit node lines sequence

Ωk = 2π
Fn

Fd
(k − 1) (12)

while Eq. (8) the associated admissible locations

Mk = 2π
FnNp + Fd Fh

FdNd
(1− k) (13)

Equation (13) governs the sequence of the mean
anomalies, which is dictated by the rational parameter
(FnNp + Fd Fh)/(FdNd). This ratio might be further
simplified. To this end, let C = gcd(FnNp +
Fd Fh, FdNd). This implies that Eq. (13) can be
re-written in the following simplified way

Mk = 2π
FnNp + FdFh

FdNd
(1− k) = 2π

Rn

Rd
(1− k) (14)

where k = 1, 2, . . . , Ns, and where

Rn =
FnNp + Fd Fh

C
and Rd =

FdNd

C
(15)

Equation (14) implies that when we come back to the
initial orbit with the sequence index k = Fd + 1, then
the mean anomaly of the second satellite belonging to the
first inertial orbit is

MFd+1 = −2π
Rn

Rd
Fd (16)
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Figure 6: Relative trajectory example #2

Figure 7: Phasing Geomery

Let Cr = gcd(Fd, Rd). Therefore, the integer

Nso =
Rd

Cr
where Nso ≤ Nd (17)

represents the number of satellites per orbit for the
chosen distribution sequence and constellation. As a
consequence, the total number of satellites will be

Ns = Nso Fd ≤ Nd Fd (18)

The parameter Nso also represents the number of loops
around the Earth that are completed while placing
satellites in a Flower Constellation . That is to say, if one
places a single satellite in each of Fd orbits, it will take
you Nso cycles to place all the satellites. Now, since Nd

represents the overall number of admissible locations in
one orbit, thenNso tells you how many of theNd locations
are filled in a given satellite distribution. Therefore, if
Nso = Nd then all the available admissible spots are filled,

while if Nso = 1 then only one admissible spot (per orbit)
is used. If Nso < Nd, then we define Ns ≡ Nso Fd

and describe the satellite distribution as forming aNso/Nd

Secondary Path.
In summary, associated with a given distribution sequence
there is always an upper limit for the number of admissible
locations where one can locate satellites. Therefore, a
single Flower Constellation cannot be host to more than
Ns satellites, where

Ns ≤ Nd Fd (19)

However, for an assigned sequence distribution, there
exists the possibility that the sequence distribution does
not fill all the Nd Fd admissible locations. This happens
when, during the satellite distribution, a satellite should
be placed onto the initial location of the first satellite,
that has already been occupied. When this happens the
satellites are distributed along a secondary path, which
is associated with a sequence distribution that creates a
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premature closing loop. Depending upon the number
of satellites per orbit Nso constituting this particular
distribution, a classification of the secondary paths is
given. So, a secondary path having Nso satellites/orbit is
called “secondary path of order Nso”.

Secondary Paths
When all the admissible locations of a Flower
Constellation are filled (especially when the number
of these locations are many), the Flower Constellation
dynamics reveals the shape of the relative trajectory by
clearly showing the number of petals (apogees of the
relative trajectory). In this case the whole constellation
appears to be rotating, as a rigid body, with the angular
velocity of the planet, if the orbits are compatible with the
planet’s spin rate. Sometimes, however, the phasing does
not allow us to fill out all the admissible locations and
it happens that the satellite distribution sequence comes
back to the first position (Ω = 0 and M = 0) before all
the admissible locations are filled. When this happens, the
Flower Constellation dynamics highlights the existence of
Secondary Paths (SP) that have unexpected and beautiful
shapes that are time invariant [3].
The immobility of the printed figure does not allow us
to demonstrate the resulting complex shape-preserving
dynamic. While complete Flower Constellations spin
with a prescribed angular velocity (i.e. the same rate
as that of the rotating reference frame), the spin rate of
a secondary path should be quantified. Note that the
angular velocity of a secondary path is apparent and not
real. That is to say, the apparent angular rotation is not a
motion that can be described by any particular dynamical
relationship but rather is an artifact of the mathematics
that generates a Flower Constellation . In other words, the
appearing angular rotation IS NOT continuous but appears
continuous. However, the continuity nor is discrete, as
in the effect of the fast flow of photograms of motion
pictures, because the satellites motion IS continuous. In
effect, the angular motion pops up because of a particular
combination of the continuity motion of a satellite along
its orbit and the discrete separation of contiguous orbits.

Loops, petals, and jumping parameters

While in a complete Flower Constellation the satellites
highlight the shape of the relative trajectory by moving
along the single loop, in secondary paths the satellites can
form single (N` = 1) or multiple (N` > 1) loops2. Figures
(8) and (9) show a single- and a double-loop Secondary
Paths, respectively. In the following, we introduce and
explain the parameters characterizing the Secondary Paths
and the relationships between them.
In addition to the number of loops N`, a Secondary Path
is characterized by four integer parameters: the overall

number of apogees (apo-petals), Na`, the overall number
of perigees (peri-petals), Np`, and the two jumping-petal
step parameters, Ja` and Jp`, indicating the petal sequence
visited by any satellite while moving from the petal k to
the petal (k+ Ja`) or (k+ Jp`), where the apo/peri-petals
are counted counter clockwise, and where 0 ≤ Ja` < Na`

and 0 ≤ Jp` < Np`.
Each loop is characterized by Na`/N` apo-petals and
by Np`/N` peri-petals. Therefore, in a single loop
the angles between any two consecutive apo-petals and
between any two consecutive peri-petals are 2πN`/Na`

and 2πN`/Np`, respectively.
Most of the Secondary Paths are characterized by Na` =
Np`. However, for some sets of design parameters, it is
possible to have the number of apo-petals different from
the number of peri-petals. As example, Fig. (10) shows a
Secondary Path having Na` = 10 and Np` = 5.
In a Secondary Path the time required for a satellite to
move from a petal to the next is, clearly, one orbit period.
Therefore, in order to complete the loop, the value of the
jumping parameter must be consistent with the number of
petals. This consistency is mathematically defined by the
following property: the greatest common divisor between
the jumping parameter and the number of petals must be
one for the apo-petals

gcd(Na`/N`, Ja`) = 1 (20)

and one for the peri-petals

gcd(Np`/N`, Jp`) = 1 (21)

This propriety assures the connection between all the
petals of a loop, that is, it ensures that the satellites visit
all the petals of the loop to which they belong.
After one orbit period, the satellite comes back to its initial
position, but on a different petal of its loop3. After Na`

orbit periods, the satellite has completed the visiting of all
the apo-petals of his loop. In the case the Secondary Path
has just anN` = 1 single loop,Na` = 2 apo-petals, and an
Ja` = 1 jumping apo-petal step parameter, then after Na`

orbit periods the Secondary Path is rotated by an angle
2π and, therefore, the Secondary Path angular velocity is
ω = 2π/(Na` T ).
The expression for the general case, when the Secondary
Path loop is characterized by any value ofNa` and Ja`, can
be easily derived. For the apo-petals we have two distinct
solutions. One is associated with a clockwise loop rotation

ωa	 =
2π
T
· Na` − Ja`

Na`
(22)

while the second is associated with counter clockwise loop
rotation

ωa� = −2π
T
· Ja`

Na`
(23)

2The shape of the loops in multi-loop Secondary Paths are all identical. They are just rotated one to another by an angle 2π/N`.
3If it comes back on the same petal, then the problem becomes trivial because it implies that the angular velocity of the Secondary Path is identical

to that of the rotating reference frame. This cannot happen in Secondary Path but just in complete Flower Constellations .
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Figure 8: Single-loop Secondary Path

Figure 9: Double-loop Secondary Path

Analogously, for the peri-petals and in the general case
when Na` 6= Np` (and Ja` 6= Jp`), we have two distinct
angular velocities: the clockwise

ωp	 =
2π
T
· Np` − Jp`

Np`
(24)

and the counter clockwise

ωp� = −2π
T
· Jp`

Np`
(25)

respectively. Equations (22) through (25) show that the
angular velocity of a Secondary Path does not depend on
N`,

Flower Constellation orientation

A non-oriented Flower Constellation has the
characteristic property of having the axis of symmetry
coincident with the planet’s spin axis. The main reason is
because two important orbital parameters - inclination and
right ascension of the ascending node - are derived with
respect to that axis. In the important case of choosing the
constellation axis of symmetry as the planet’s spin axis and
the rotating reference as “planet-centered planet-fixed”,
then all the Flower Constellation satellites will travel
along an identical repeating ground track. However,
in general, the pointing of the axis of symmetry of a
Flower Constellation is (as for the angular velocity of the
reference rotating frame) a choice that is left completely
free to users.
When choosing the constellation’s axis of symmetry to
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Figure 10: SP with Na` = 10 and Np` = 5

not be coincident with the planet’s spin axis, then it is
important to be aware that all the orbits of the constellation
will have, in general, different inclination and right
ascension of the ascending node. This implies that each
orbit is subjected to different J2 perturbations. Therefore,
the deformation of the relative trajectory will be different
for each orbit and, consequently, the beautiful symmetrical
dynamics will be destroyed, unless using active control
to compensate the relative perturbations and maintain the
constellation dynamics.
To evaluate inclination and right ascension of ascending
node of an oriented Flower Constellation we proceed
as follows. Let r and v be the position and velocity
inertial vectors (cartesian coordinates), respectively, of a
generic satellite on a non-oriented Flower Constellation .
In particular, r and v can be expressed in term of orbital
parameters

r = RT
OI

p

1 + e cosϕ

 cosϕ
sinϕ

0

 (26)

and

v = RT
OI

√
µ

p

 − sinϕ
e+ cosϕ

0

 (27)

where e is the orbit eccentricity, p the semilatus rectum, ϕ
the true anomaly, and

ROI = R3(ω)R1(i)R3(Ω) (28)

is the orthogonal transformation matrix moving from
Inertial to Orbital reference frame. Matrices R1(ϑ) and
R3(ϑ) are the matrices performing rigid rotation about the

first and third coordinate axis

R1(ϑ) =

 1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ

 (29)

and

R3(ϑ) =

 cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1

 (30)

Now, let

d̂ =

 sinα cosβ
sinα sinβ

cosα

 (31)

be the direction of the desired Flower Constellation axis
(where α and β are colatitude and longitude of the Flower
Constellation axis in ECI). This implies that all the orbits
of the Flower Constellation must be rotated by the angle
α about the axis

â =

 − sinβ
cosβ

0

 (32)

The matrix performing such a rigid rotation is

R(â, α) = I3 cosα+ (1− cosα) ââT + Ã sinα (33)

where I3 is the 3× 3 identity matrix and

Ã =

 0 0 cosβ
0 0 sinβ

− cosβ − sinβ 0

 (34)

is the skew-symmetric matrix performing the vector
cross-product.
Now, the rotated orbit has, in general, new values for
inclination, argument of perigee, and right ascension of
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ascending node that can be derived from the new rotated
cartesian vectors

rn = R(â, α) r and vn = R(â, α) v (35)

using well known transformations.

Dual-Compatible Flower Constellations
This section analyzes some particular Flower
Constellations whose orbits are simultaneously
compatible with two rotating reference frames. As it will
be demonstrated later, for these Flower Constellations ,
we are no longer free to choose where to locate the orbit
apsidal lines (i.e the values of Ωk). Furthermore, the
overall number of admissible locations strongly depend
on the design parameters.
An orbit is Dual-Compatible (or dual-resonant) if,
assigned the four integers Np1, Nd1, Np2, and Nd2, its
orbital period T satisfies the two relationships

Np1 T = Nd1 T1 and Np2 T = Nd2 T2 (36)

where
T1 =

2π
ω1

and T2 =
2π
ω2

(37)

are the periods associated with two reference frames
rotating with angular velocities ω1 and ω2, respectively.
Based on the above definition, any orbit characterized by
orbit period T , is compatible with an infinity of rotating
reference frames characterized by the set of angular
velocities

ωk =
2π
T

Ndk

Npk
= n

Ndk

Npk
(38)

where n is the orbit mean motion.
In order to find out where to locate the satellite of a
Dual-Flower Constellation , let us evaluate the RAAN
variation between two consecutive satellites

∆Ω = Ωk+1 − Ωk (39)

where to allocate one orbit (k + 1) with respect to the
previous one (k). The satellite in the (k + 1)-th orbit will
have a variation of the mean anomaly with respect to the
value of the previous satellite that can be evaluated using
Eq. (10). The ∆M expression is

∆M = Mk+1 −Mk = −∆Ω
Np

Nd
− 2π

Fh

Nd
(40)

We can evaluate the variation ∆M using both
sequences, F1 , {Np1, Nd1, Fn, Fd, Fh} and F2 ,
{Np2, Nd2, Fn, Fd, Fh}. These two distributions, F1 and
F2, must provide values for ∆M that can differ just of
2π `, where ` can be any integer. Therefore, we can write
that

∆M = −∆Ω
Np1

Nd1
− 2π

Fh

Nd1
=

= −∆Ω
Np2

Nd2
− 2π

Fh

Nd2
+ 2π `

(41)

This equation allows us to obtain an expression for ∆Ω
that is a function of the integer parameter `

∆Ω` = 2π
Fh(Nd2 −Nd1) + `Nd1Nd2

Nd1Np2 −Nd2Np1
=

= 2π
G`

Gd

(42)

which allows us to evaluate the values (therefore, the
sequence) of the right ascension of the ascending nodes,
Ωk, where the two distributions locate satellites with the
same values of the mean anomaly (same orbital position).
In order to use Eq. (42), the condition Gd 6= 0, that is

Nd1Np2 6= Nd2Np1 (43)

must be satisfied. This condition implies that the case
T1 = T2 should be avoided. In addition, the values of `
satisfying

`Nd1Nd2 = Fh(Nd1 −Nd2) ↔ G` = 0 (44)

which are associated with the condition ∆Ω` = 0, allow
us to obtain the sequence of all the solutions per orbit. This
sequence can also be obtained for the values of ` giving
∆Ω` = 2πm, which is satisfied when

gcd (G`, Gd) = Gd (45)

For each value of ∆Ω` provided by Eq. (42), we have an
associated value for ∆M`

∆M` = −∆Ω`
Np1

Nd1
− 2π

Fh

Nd1
=

= −∆Ω`
Np2

Nd2
− 2π

Fh

Nd2
+ 2π `

(46)

Summarizing, a dual-compatible Flower Constellation is
built using the phasing sequence{

Ωk+1 = Ωk + ∆Ω`

Mk+1 = Mk + ∆M`
(47)

where k = 1, 2, · · · , and ∆Ω` and ∆M` are provided by
Eqs. (42) and (46), respectively.

Examples and Potential Applications

The Flower Constellations and the recently introduced
Dual Flower Constellations combine a number of new
attractive features suitable for many potential classic
applications (communications, Earth and deep space
observation, coverage, navigation systems, etc.), as well
as for new and advanced concepts. Some Flower
Constellations schemes can be suitable for very futuristic
applications while other can be of immediate use. Let us
briefly describe soem of these potential applications:
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Figure 11: Dual Flower Constellation Example #1

1. Space Network Architecture (SNA) for planetary
communications. Interplanetary communications
are presently performed by means of single-hop
links. In this simple architecture there is one
node at the exploration planet (e.g. Mars) and
one node at the Earth (specifically, the antennae
of the NASA Deep Space Network). This simple
architecture presents two severe constraints: it
requires direct visibility (and hence limited duration
operation) and it does not tolerate node failure.
Using Dual Flower Constellations we can design a
constellations that are synchronized with the motion
of two rotating reference frames (e.g., Earth and
planet orbital periods). Dual Flower Constellations
[6, 7, 2] can provide solutions that avoid the
mentioned critical constraints and would improve
the communications necessary for human planetary
missions. The design of a SNA using Dual Flower
Constellation could potentially consist of multi-hop
links, a constellation of spacecrafts connecting the
Earth with a mission planet (or moon) and would
drive to improve the connectivity of the deep
space network. Reference [6] introduced this idea
and proposed some approximated solutions to help
communication for future missions to Mars and/or
Jupiter.

Reference [7] provided novel insights on the
theory (specially on the phasing rules) while the
complete mathematical theory (tractatus) on Flower
Constellations will be presented in Refs. [2] and
[9]. Figure 11 and 12 show two Dual Flower
Constellation examples. In these figures the

relative trajectories, associated with two distinct
and independent reference frames are provided.
The spacecrafts are located at some “admissible”
intersections of the two relative trajectories that
rotates with different constant angular velocities.

The design of a Space Network Architecture for
planetary communications must take into proper
consideration the effects of the orbital geometry on
the network topology, and the resulting effects of
path delay and handover on network traffic (due
to the great distances involved). In addition to
these problems, a wide variety of requirements and
constraints must also be satisfied. These are:

(a) Service continuity: if any one of the nodes
becomes inoperative (either, permanently or
momentarily), then the communications are
still guaranteed.

(b) Power efficiency: minimize inter-node angle
variations (to narrow the antennae FOV),
minimize inter-node distances (to limit
communication power), etc,

(c) Time efficiency: minimize the overall distance
(to limit communication times), and

(d) Fuel efficiency: seek to minimize the
orbit maintenance requirements by optimizing
amongst feasible orbit configurations.

2. Solar Global Navigation System. This can
be investigated using Flower Constellations
synchronized with a reference frame rotating
with the Earth orbit mean motion. The existing
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Figure 12: Dual Flower Constellation Example #2

Global Navigation systems (GPS, GLONASS,
GalileoSat) are build using circular orbits (Walker
constellations), only. European GalileoSat
constellation is designed as in Fig. 13 with satellites
lying on three orthogonal orbit planes.

This choice creates eight holes, one for each octant,
which keep the satellites allocation far from being
uniformly distributed in space. A first attempt to
design a Global Navigation Flower Constellation
(GNFC), has brought to the solution scheme shown
in Fig. 14 [11, 12], where the optimality is
defined as the most uniform satellite distribution
along the relative trajectory. Using the same
number of satellites as GalileoSat, GNFC provides
better Geometric and Attitude Dilution of Precision
parameters [11, 12] or the same level of accuracy
with lesser satellites.4

3. Space Dynamo. The Faraday law of inductance
states that a voltage is generated by a coil of wire
when the magnetic flux enclosed by it changes.
A space dynamo, for energy production in space,
can be obtained using Flower Constellations with
multiple Secondary Paths forming inclined circles.
In this configuration, each Secondary Path can
be considered a very long single wire where the
circuit could be closed by electron cannons. By
orbiting, each wire experiences the variation of
planet’s magnetic flux (planets are big magnets in
space). In this way we pay for the energy induced
on the wire by orbit decay. The orbit decay could be
compensated by solar pressure if orbiting about the
Sun.

Figures 15 and 16 show two Flower Constellations
architectures for power production in space. To my
knowledge no constellation architecture has been
developed or proposed for power production in
space. In the current thinking, Space Solar Power
Satellites require the launching and assembling
in space of a very large structure in order to
be economically viable. I believe that some
Flower Constellation concepts can remove the need
for in-space assembly. This architecture would
replace the bulky approach to producing large areas
where energy is collected into smaller and cheaper
components. The advantage would be to provide a
means of assembling a large collecting area without
making it a grand challenge. Figures 15 and 16
show two view of a potential configuration. We
outline about the possibility to re-orient the whole
constellation and the possibility that each circle can
be differently oriented. The dynamics is double: the
circles spin about their centers and all of them spin
(as rigid body) about the Flower Constellation axis
of symmetry.

4. Pointing Architectures for a hyper large directional
instrument through the use of Flower Constellations
. These architectures would have the following
functional capabilities:

(a) use the possibility to align satellites using
elliptical orbits (see Fig. 17 where
more alignments are combined to form a
more complex “star”-object), to promote
directional active and passive observation and
transmission of particles and energy on length

4Reference [11, 12] have shown that a GalileoSat GDOP-accuracy can be achieved by a GNFC made of 27 satellites, only. Recent investigations on
designing GNFC using genetic algorithms provide even better results, bringing down to 26 (or even 25) the total number of satellites.
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Figure 13: GalileoSat orbit planes

scale of the order of 1 AU or larger (passive
observation can be performed through the
pinpointing of a large lens assembly or the
use of the interferometry configuration for
the observation of planets of the solar system
or other terrestrial planets outside the solar
system)

(b) by collimating the Sun or other source of
energy, one can provide active observation of
materials of planets in our solar system by
studying the properties of atmosphere and soil
scattering of other planets with observatories
on Earth. In particular, one could provide
energy and particle transmission to future
NASA mission probes beyond Jupiter by
focusing energy or particles towards these
probes, or provide a means of ablation to
deflect asteroids.

(c) send signals beyond solar system by imitating
common shapes on a very large scale.

(d) a small constellations fo surveillance and
reconnaissance and well as for Space and
Earth science.

5. Laser Propulsion and Asteroid Deflection. The
idea is to design a Flower Constellation for laser
propulsion of remote spacecraft using directional
aligned lasers. The combination of lasers and
satellites has captured the imagination of and
interest of the scientific community. The potential
applications, while futuristic at the current stage, are
simply too important to discount: from laser beams
that intercept and deflect earth-bound asteroids
to laser propulsion in deep space, relaying and
direction of the laser beams in the future will
be accomplished by satellites. Despite the large

advances in rocketry, the increases in payload
capacity, and the effectiveness of orbit insertion,
the possibility of putting massive lasers in orbit
in the near future is minimal. If the laser beam
pointing and steering can be accomplished by
reflective and/or refractive elements on satellites,
the potential exists for higher accuracy due to the
lack of atmospheric beam steering, and reduction in
the required laser power due to such accuracy. The
Flower Constellation has one major advantage over
other possible arrangements viz-a-viz laser beam
manipulation: the existence of conserved paths with
respect to the earth frame. One may think of ten
satellites in a Flower Constellation as one large
body in motion. Consequently, it is easier and
more economical to aim one large-diameter beam
towards the relaying Flower Constellation satellites
than it is to aim several laser beams at every single
satellite belonging in a general constellation. Severe
beam decollimation occurs as laser beams propagate
through the atmosphere, or even in vacuum. This is
particularly true for the very powerful ultra-violet
(UV) lasers that would have to be used for either
laser propulsion or asteroid deflection. To some
extent, the Flower Constellation turns this basic
fact of laser propagation into an advantage: a circle
of craft flying in a closed formation of a circle
can be used for the relaying of a single laser beam
of a given diameter. The precise choreography of
the Flower Constellation craft makes it easier to
generate these multiple laser beams in the first place.

The Flower Constellations represent a fundamental
advance and a viable means to efficiently design new
space objects, characterized by two, distinct, dynamics.
The Flower Constellations represent a dramatic step
forward with wide-ranging mission design impact, both



20

Figure 14: Flower Constellation Global Navigation

for future geocentric missions and the goals to move to
the Moon, Mars, and beyond. In fact, new and more
effective satellite constellations would strongly benefit
many of the key strategic focus areas, already identified
by NASA and ESA. In particular, we do expect to
identify direct beneficiaries such as the Robotic and
human lunar expeditions, the sustained, long-term robotic
and human exploration of Mars, the robotic exploration
across the solar system, the development of advanced
telescopes searching for Earth-like planets and habitable
environments, and the exploration of the Universe, of the
dynamic Earth system, and of the Sun-Earth system.

It is obvious that in order to validate the proposed
configurations, the analysis of the perturbations acting
on each specific proposed constellations, must be done.
Other validation criteria and performance metrics will be
specific for each proposed solution. For instance, we may
need to evaluate the type of particle/energy transmission
capability that could benefit from these configurations
(supercritical repeaters, collection of mirrors focalizing on
one point) or evaluate the type of u-v-w plane capability
for interferometry. In fact, in the interferometry systems
currently evaluated by NASA, there is an expectation that
a series of spacecrafts will be flying in constellation. This
constellation flying constellation is likely to be restricted
to a small baseline. We do expect to study how a line of
sight between different spacecrafts can be attained using a
Flower Constellation that enables a very large baseline.
We do also expect to quantify the GNC system efforts
needed to allow each spacecrafts to pinpoint in the right
direction for interferometric observation.

Conclusion

Flower Constellations will have a large impact on future
mission architectures and concepts. Flower Constellations
are the 3-dimensional equivalents of “orbits with repeating
ground tracks” which have been a staple for planet
orbiting missions from Topex, EOS, to many of the
planetary observation missions such as at Mars. Flower
Constellations are ideal for studying 3-dimensional large
scale structures and phenomena in space such as the
detection of gravity waves, the study of magnetospheres,
and radiation environment over vast regions around
planets and moons. For example, such orbits could be
used for the “Magnetospheric Constellation” that has been
studied by NASA. Also, such orbits could provide the
backbone for an “Inter-Planetary Network” for navigation
and communication throughout the Earth-Moon system,
at Mars and Jupiter, and eventually the entire Solar
System. Such a “GPS” type network could enable the
automation of many spacecraft functions including the
adaptive on-board mission design and navigation in the
future.
The 3-dimensional nature of these constellations enables
the repeated visits of spatial locations to permit
the study of the 3-dimensional structures of time
varying phenomena in space around a planet. These
constellations can be designed to enable complex,
distributed instruments with virtual apertures extending
10s to 100s of km in diameter. As a bonus, if the
axis of symmetry is aligned with the planet poles, these
constellations actually have repeating ground tracks to
boot.
The use of compatible orbits allows us to extend and
enable the powerful techniques for studying planetary
surfaces to 3-dimensional space around planets, as for
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Figure 15: Flower Constellation Space Dynamo (view 1)

instance the planet’s magnetosphere. By working with
natural dynamics, Flower Constellations eliminate costly
deterministic controls that limit current designs of more
complex constellations around a planet.
Flower Constellations will have a dramatic impact
on reducing cost and optimizing the functionality of
satellite constellations for planetary exploration, as well as
mapping the features of interest from orbit. The efficient
use of natural dynamics reduces the number of control
maneuvers required to maintain such constellations. This
saves both propellant and operational costs. At the
same time, the great variety of constellation patterns and
3 dimensionality of the constellation will enable new
mission concepts and applications. Flower Constellations
represent a fundamental advance in orbit design; the
demonstration of a viable means to efficiently design
Flower Constellations will represent a dramatic step
forward with wide-ranging mission design impact, both
for future geocentric missions and the goals to move to
the Moon, Mars, and beyond.
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