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1. Background and study motivation 
 

Many natural phenomena found in various areas, such as orbital mechanics, fluid 
dynamics or quantum mechanics, can be described in terms of Hamiltonian dynamics.  
Multi-dimensional Hamiltonian systems often exhibit chaotic behaviour, which makes 
their analysis difficult. The use of surfaces of sections, such as a Poincaré return map, 
is commonly employed to get insight into the phase space of dynamical systems, 
which present both, regular and chaotic behaviour.  
 

1.1 Surfaces of section for the study of dynamical systems 
 

In the last decade, maps have been used extensively in a wide range of scientific and 
engineering problems to understand the dynamical structure of complex systems. A 
Poincaré surface of section, as illustrated in Figure 1, can be interpreted as a discrete 
dynamical system with a state space that is one dimension smaller than the original 
continuous dynamical system. On the map, a periodic trajectory becomes a point, 
while a non-periodic trajectory is represented by a set of points. 
 

 
Figure 1: Schematic of a Poincaré surface of section (courtesy of Haapala [1]) 

One of the advantages of the Poincaré map lies in its power as a visualization tool. 
Such a map reduces the order of the problem, condensing quantities of information 
into a lower-dimensional image. Poincare maps reveal, at a glance, regions of well-
ordered behaviour, despite the chaotic nature of the underlying problem. An example 
of a Poincaré map is represented in Figure 2. This map is generated in the Planar 
Circular Restricted Three-Body Problem (PCR3BP), so that the system is initially 
four-dimensional. To create the map, a grid of initial conditions is selected and 
integrated forward in time. The intersections of each trajectory with the surface of 
section create the Poincaré map. Three types of behaviours are easily identified on the 



map represented in Figure 2: periodic orbits, quasi-periodic motion, and chaotic 
trajectories. 

 
Figure 2:  Example of Poincaré map (courtesy of Haapala [1]) 

 
Generating maps provides a global picture of the phase space for complex dynamical 
systems and offers features that might be difficult to identify otherwise. However, 
despite how valuable these maps are, their implementation is not practical. Two main 
limitations prevent their utilisation:  

- The computation of the maps often takes time. To generate a Poincaré surface 
of section, the integration of the full nonlinear dynamics is usually required.  

- There is no easy way to extract the information from the maps. Typically, the 
selection of initial conditions is obtained by hand, by zooming on some 
regions of interest on the maps.  

 
Therefore, new efficient ways to employ these maps need to be evaluated. An 
automatic method to detect and extract structures quickly from the map is required.  
 

1.2 Visualization of structures in maps 
 

An effective analysis of maps remains a difficult task. The complexity of surfaces of 
sections often makes the identification of the topology challenging. In computer 
visualization, discrete dynamical systems and area-preserving maps are not typical 
research topics. Helman and Hesselink introduce some topological approaches to 
reproduce a topologic skeleton [2]. Peikert and Sadlo employ a Poincaré map 
approach to the visualization of vortex rings [3,4]. Recently, Tricoche, Garth and 
Sanderson presented a method to automatically extract and characterise structures on 
area-preserving maps [5]. Figure 3 illustrates the algorithm of Tricoche et al., which 
captures very subtle structures in the individual islands of the map.  
 
The precision of the characterisation and extraction of area-preserving maps depends 
heavily on an accurate and efficient integration of the flow map. The more iterations 
are used to create the map, the more accurate the extraction can become, but the 



longer the whole process gets. Hence, trade-offs need to be made between the process 
that generates the map and the visual algorithm that detects and extracts the 
information from the map.  
 

 
Figure 3:  Structures of a Poincaré map captured via visualization algorithm (courtesy of 
Tricoche [5]) 

 
1.3 The Keplerian map for resonant transfers between Jovian’s moons 

 
Different maps can be generated for different applications. Besides the traditional 
Poincaré map, other types of maps are the Periapsis Poincaré maps or Keplerian 
maps, which display the semi-major axis of each trajectory as it evolves over time as a 
function of the initial periapsis angle ω [6]. A Keplerian map is represented in Figure 
4, where the semi-major axis is denoted ‘a’ on the y-axis of the map. 
 

 
Figure 4: Phase space of the Keplerian map (courtesy Lantoine [7]) 



Keplerian maps offer some advantages compared to the traditional Poincaré maps:  
- The geometry and structures of Keplerian maps are relatively straight-forward 

to detect. These maps are composed of resonant structures, which govern 
transport from one orbit to another. The random scattered points correspond to 
chaotic motion whereas blank ‘holes’ represent stable resonant islands. For 
every semi-major axis value, corresponding to a K:L resonance, there is a band 
of L islands. For instance, the large dots in Figure 4 give the successive 
resonant path to lower or increase the semi-major axis of a spacecraft’s orbit. 

- The Keplerian maps are typically generated via integration of the full 
dynamics in the circular restricted-three body model, using a Poincaré surface 
of section at periapsis. For orbits nearby Keplerian energies, the dynamics of 
the PCR3BP can be approximated via a symplectic twist maps, which capture 
well the dynamics of the full equations of motion. Using symplectic maps as 
an approximation of the full dynamics considerably reduce the computation 
and enable the design of quick algorithms for low-energy transfers and 
optimization procedures. 

 
Some authors consider Keplerian maps to determine the long-time evolution of nearly 
parabolic comets [8,9]. In this investigation, Keplerian maps are employed to identify 
resonant transfer trajectories applicable to spacecraft in a planet-moon system [6,10]. 
A very challenging part in the design of a planetary moon tour, such as a multi-moon 
orbiter in the Jupiter system, is the orbital transfer from one planetary moon to 
another for low-energy transfers. Multiple gravity assists by moons could be used in 
conjunction with ballistic capture to drastically decrease fuel usage. In planetary 
systems, the strong dependence on the three-body regimes of motion precludes the 
use of a patched conic approach. Instead, some recent approaches employ patched 
three-body models to enable multiple “resonant-hopping” gravity assists. An example 
of a low-energy inter-moon transfer via resonant gravity assists is represented in 
Figure 5.  
 
 

  
Figure 5: Inter-moon transfer via resonant gravity assists in the Jupiter system (courtesy Ross et 
al. [10]) 

 



In Figure 5(a), the spacecraft lowers its perijove by a sequence of successive resonant 
orbits with the outer moon M1. Once the spacecraft’s orbit comes close to grazing the 
orbit of the inner moon M2, the inner moon takes “control.” The spacecraft orbit 
where this occurs is denoted E. In Figure 5(b), the spacecraft now receives gravity 
assists from the inner moon at perijove and decreases its apojove by following a 
sequence of successive resonant orbits. Then, the spacecraft gets ballistically captured 
by the inner moon M2.  
 

2. Study objective 
 

The goal of the Ariadna project is the implementation of a fast and accurate 
visualization algorithm to characterize and extract structures directly in area-
preserving maps. In particular, the project is based on the features of Keplerian maps 
and intends to apply this algorithm to extract sequences of resonant orbits to generate 
low-energy inter-moon transfers.   
 

3. Proposed Methodology 
 

The following methodology is proposed for this study, and should be discussed in the 
proposal, though argued alternatives are welcome as long as they promise to achieve 
the project goals. 
 

- Automatic characterisation of various features in Keplerian maps 
An efficient way to visualise the different structures on the maps should be proposed. 
To speed up the detection process, one feature at a time could be examined. For 
example, Figure 6 illustrates the same Keplerian map with different features added on 
top of the background. Unstable resonant orbits are represented by red dots in Figure 
6(a). Then, stable/unstable manifolds associated with a 1:2 unstable resonant orbit are 
new features added to the map in Figure 6(b). Finally, an exit zone that corresponds to 
ballistic capture is also added on top of the map and is represented in Figure 6(c). The 
option to add and remove specific features of the map should be explored to aid in the 
detection process.  

  
(a) 

 



  
(b) 
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Figure 2: Various features on the same Keplerian map (courtesy Ross and Scheeres [6]); (a) 
Unstable resonant orbits; (b) Unstable/stable manifolds corresponding to a 1:2 resonant orbit; (c) 
Exit zone for ballistic capture. 

 
- Automatic extraction of initial conditions directly from the map  

An accurate way to extract data from the map should be introduced. In particular, the 
algorithm should extract accurate sequences of resonant orbits that can be employed 
to generate low-energy inter-moon transfers.   
 
The efficiency of the detection and precision of the extraction are closely related to 
how well and how fast the Keplerian map is generated. The more iterations of the 
maps, the more accurate the extraction is but the slower it gets. Therefore, trade-offs 
need to be investigated between the process that generates the map and the visual 
algorithm that detects and extracts the information from the map.  
 



This Ariadna project proposal is addressed at research groups with expertise in 
any of the following domains: computer science and vision, dynamical systems and 
chaotic motion, applied mathematics, orbital mechanics, astrodynamics and mission 
design.  
 

4. ACT Contribution 
 

The project will be conducted in close scientific collaboration with ACT-researchers. 
In particular, ACT-researchers will provide expertise in orbital mechanics and 
dynamical systems and will provide knowledge of Keplerian maps.  
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