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Project Summary 
 
Objective: 

Study the applicability of Spiking Neural Networks (SNNs) based on temporal 
coding for onboard Artificial Intelligence applications, focusing on scene 
classification case studies. To this aim, we will investigate the trade-offs between 
accuracy and complexity of different SNN models based on temporal coding. In 
addition, assuming the availability of dedicated chips, the project aims to establish 
an upper-bound for the energy per inference of one of the investigated SNN 
models.  

 
Target university partner competences 
 Artificial Intelligence, Spiking Neural Networks 
 
ACT provided competences. 
 Artificial Intelligence, embedded computing, onboard AI 
 
Keywords 
 Spiking Neural Networks, Scene classification, temporal coding, energy efficiency, 
embedded  computing 
 

 

Study Objective 
This study aims to perform a preliminary investigation of the potential benefits of Spiking 
Neural Networks (SNNs) based on temporal coding for onboard Artificial Intelligence (AI) 
applications, considering the case study of scene classification. To achieve this goal, state 
of the art SNN models are to be compared in terms of accuracy and complexity (here 
considered as the number of synaptic operations, number of spikes per neuron, and others) 
on the EuroSAT RGB and EuroSAT multispectral datasets. To this aim, proper training 
algorithms for the SNN models shall be also evaluated and selected. Eventually, we aim to 
establish an upper-bound for the energy per inference of selected SNN models, assuming 
the availability of a dedicated neuromorphic chip.  
The results of the analysis will highlight the possible advantages and drawbacks of SNN 
models compared to Artificial Neural Networks (ANNs), which represent the state of the art 
for scene classification. 
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Background and Study Motivation 
Interest in AI, and in particular ANNs, on board satellites is growing. The use of onboard AI 
could be exploited to mitigate the bandwidth requirements of Earth Observation satellites by 
avoiding the download of corrupted or unmeaningful data, to perform early-detection of 
potential catastrophic events [1,2] and other applications. However, small Earth observation 
satellites, such as CubeSats, tend to have small memory and power budgets [2]. Therefore, 
the use of energy-efficient algorithms could increase the number of potential AI algorithms 
executed on board, and thus the degree of 'intelligence' of the satellite, given a fixed energy 
budget. 
Previous work carried out by ESA’s Advanced Concepts Team (ACT), aimed to study the 
use of a specific neuromorphic sensor for space landing scenarios [3-5]. This project aims 
to investigate the usability of SNNs and neuromorphic computing for onboard scene 
classification problems.  
SNNs have attracted the interest of researchers due to their low-power [6,7] and energy-
efficient computing properties [8-14]. These characteristics are due to the brain-inspired 
nature of such networks, which are based on layers of neurons that communicate through 
spikes. Although there are different models of spiking neurons [8-16], the latter generally 
accumulate incoming spike currents in different timesteps, increasing their membrane 
voltage. When the latter exceeds a fixed threshold, the neuron spikes, and its membrane 
voltage is reset [10,16]. Compared to standard ANNs, whose inference requires updating all 
neuron activations and synapses, synaptic operations for spiking neurons are performed 
when an input event occurs, leading to a sparse computing paradigm [6,8]. 
By implementing SNNs on event-based neuromorphic hardware, it is possible to benefit from 
their sparse computation, leading to solutions that generally outperform those based on 
ANNs in terms of power consumption [6,7] and, depending on the model of neurons [7,8,15], 
information encoding [7,8,13], number of timesteps used, input data [6,7,13] and hardware 
implementation [7], in terms of energy efficiency.  
Despite the potential energy efficiency of SNNs, the state-of-the-art of these models cannot 
compete with deep ANNs in terms of accuracy for many applications due to the lack of 
training algorithms capable of scaling to deep models [10,11]. Some researchers have 
studied approaches that allow conversion between deep ANNs and SNNs [11,13,17]. In 
many of these cases, the conversion process is based on the close correlation between the 
activation rate of spiking neurons and the activation of Rectified Linear Units (ReLUs) in 
standard ANNs. Thanks to these methods, rate-based conversion between ANNs and SNNs 
can be done with minimal loss of accuracy [6,13,17]. However, the use of rate-based SNNs 
usually requires high fire-rates and a high number of timesteps to provide acceptable 
accuracy [11,16]. In this respect, this approach seems to bring real benefits in terms of 
energy efficiency only for event-based datasets [7]. On the contrary, for standard static 
images, which represent the data of interest for many remote sensing applications, the gain 
in terms of energy savings seems to be reduced for complex datasets due to the higher 
number of timesteps required, which also leads to higher processing latencies [6,7].  
In that respect, methods based on temporal-coding might offer more promising trade-offs 
[8,10-12, 14,15]. Such approaches encode information in the fire time of neurons. For 
example, according to the time-to-first-spike coding, neurons are generally forced to fire 
once at most during an inference; moreover, the more a neuron is activated, the shorter is 
its firing delay [8,10,11,12]. In view of the reduced firing-rate activations, SNN models based 
on temporal coding are attractive for energy-constrained applications. 
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Some energy efficiency benefits of time-coding based SNNs for static data are shown in [10] 
for the MNIST dataset on the BrainScaleS-2 neuromorphic processor. However, the 
applications of SNNs for space applications are still limited [18,19,20,21], and the ability of 
these models to cope with complex features such as those included in scene classification 
datasets still awaits a convincing demonstration.  
 

Proposed Methodology 
To assess the benefits of using SNNs for on-board scene classification tasks, a comparison 
in terms of energy efficiency/inference time/accuracy [1,2,20] is to be performed on scene 
classification datasets. One possibility is to deploy spiking models on different hardware 
solutions (analogue, digital, hybrid) and measure directly their performances. However, this 
approach would limit the results to the specific hardware platforms chosen and would require 
the simultaneous availability of the platforms. 
This study will follow a different approach and perform, instead, a theoretical analysis 
comparing simulations of different SNN models in terms of accuracy and complexity. The 
latter will be related to parameters such as the number of spikes, the number of synaptic 
operations, the number of timesteps, the number of neuron updates, and others. Although a 
reliable estimation of latency and energy per inference through a theoretical approach is 
difficult due to the strong dependence of these parameters on the hardware implementation, 
proxies such as those mentioned can be used to form a fair rank of different models, helping 
to identify which approach would eventually lead to lower latency and energy usage 
[6,13,22].  
After having proposed an overall methodology to perform the study, the applicants should 
propose various SNN models to be compared in terms of complexity/accuracy on the 
EuroSAT RGB and EuroSAT multispectral datasets [23] as well as propose training 
approaches for SNN models, which could include ANN/SNN conversion [11] or spike domain 
training [8,10,12,15].  
EuroSAT is a reference dataset for scene classification that includes multispectral imagery 
provided by the Sentinel-2A satellite, divided into 13 bands over 10 different land use and 
land cover classes. An RGB version of the dataset is also provided. 
As a final goal, the study aims also at establishing an upper-bound for the energy per 
inference of the SNN model that is found to offer the best trade-offs in terms of accuracy and 
energy efficiency. To find such an upper bound, the availability of a dedicated hardware chip 
developed for the selected SNN model is to be assumed.  
For this purpose and to validate and improve the energy estimation proxies, the 
characterisation of one or more models on a specific neuromorphic device can also be 
proposed and discussed.   
 

ACT Contribution 
The project will be conducted in close scientific collaboration with ESA/ACT researchers. 
ESA/ACT researchers will provide technical expertise in embedded systems and onboard 
AI to identify the best metrics to use in the evaluation of the different SNN models. 
ESA/ACT will also implement one of the identified/agreed models using a common, agreed, 
framework. 
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