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1 Introduction

1.1 Project motivation and objectives

Traditional space missions usually involve a single spacecraft endowed with a
large set of functionalities. This spacecraft is typically complex, expensive, and
in case of severe damage, the loss of the spacecraft is equivalent to the complete
failure of the mission. Furthermore, many researchers in space applications
believe that the inevitable physical limitations in space propulsion technology
will make it impossible, in the future, to realize more complex missions in which
a single and large spacecraft possesses the capabilities for performing all the
needed tasks.

For this reasons, NASA and ESA are recently studying mission concepts in
which coordinated swarms of satellites are involved. Prominent examples are
NASA’s ANTS [1] and ESA’s APIES [2] missions. Both aim at exploring the
asteroid belt. The danger of destructive impacts in a mission like this is very
high, and the use of swarms of spacecraft is expected to increase fault tolerance.
Moreover, being able to position themselves around an asteroid, the spacecraft
composing the swarm can obtain measures in a way that is simply impossible
for a single spacecraft. Besides this example of coordinated observation, the
use of swarms of spacecraft has been proposed for other applications such as
planet exploration and on-orbit self-assembly [3]. Among the many issues that
this new way of conceiving space missions presents, one of the most challenging
is the design of distributed control strategies for the spacecraft in the swarm.
Collective robotics [4] and swarm intelligence [5] can play an important role in
providing us with insight and new solutions [6].

The main goal of this project is to show that controllers for swarms of
satellites can be developed using swarm intelligence principles and evolution-
ary robotics tools.

Drawing inspiration from the work of Izzo and Pettazzi [6], we develop indi-
vidual mechanisms that result in a coordinated and effective collective response
of the satellite swarm.

This project is intended as a “proof-of-concept” study: our results inform
the aerospace community on the potentialities of the swarm intelligence and
evolutionary robotics methodologies for the design of controllers for autonomous
spacecraft.

1.2 Swarm intelligence and swarm robotics

Swarm intelligence is the discipline that studies phenomena whereby a system
composed of many locally acting individuals displays a meaningful global be-
haviour. Such swarm systems make use of self-organising, decentralised control
mechanisms. Swarm intelligence finds its theoretical roots in recent studies of
animal societies, such as ants and bees. Natural swarm systems are highly scal-
able – they are sometimes made up of many millions of individuals. In addition,
such systems tend to be flexible and robust. They respond well to rapidly chang-
ing environments, and continue to function even if many of the individual agents
are incapacitated. Studies have shown that in many cases simple behavioural
rules at the level of the individual are sufficient to explain complex group be-
haviour. Nor do these models require any global communication – they rely
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only on local sensing and communication. Researchers have therefore started
to use similar behavioural models in artificially created swarms.

In swarm robotics the principles of swarm intelligence are directly applied
to the design of hardware and/or control mechanisms of systems composed of
swarms of robots tightly interacting and cooperating to reach their goals [7].
The potential advantages of the swarm intelligence approach are manifold:

• collective robustness – the failure of individual components does not sig-
nificantly hinder the performance of the swarm;

• individual simplicity – agents act following simple rules. The local inter-
actions among them make it possible for complexity to arise;

• scalability – the performance of the swarm is not dependent on the number
of agents in the swarm.

The collective behaviour of a swarm of robots results from the local interactions
among the members of the group. That is, the activity of a swarm is determined
by the unfolding in space/time of individual actions taken in response to local
contingencies. The latter are produced by the behaviour of the agents as well as
by changes in the environmental conditions including those directly produced by
the activities of the agents. As suggested in various works [1, 2, 8], the aerospace
community is interested in scientific and technological advances in the design of
swarms of autonomous robots because they may make possible the development
of spacecraft with autonomous decision capabilities to carry out missions such
as planetary exploration, on-orbit assembly, sensor web, formation fly, and so
on.

1.3 Main achievements

We propose an algorithm that allows a swarm of small spacecraft, called pico
satellites, to build an hexagonal lattice in orbit around a planet. The ability
of constructing configurations like the one studied here is considered to be an
important prerequisite for applications such as autonomous self-assembly of so-
lar powered satellites [9], large antennas and large reflectors in space. As it is
clarified in Section 3, the algorithm follows the principles of swarm intelligence:
it is completely distributed and interactions among spacecraft are only local.
Thanks to these characteristics, the algorithm is highly scalable. Other impor-
tant features of the algorithm are the guarantee of convergence to the desired
configuration for almost any initial condition and the absence of collisions when
the initial relative speed of the spacecraft is not too high. The validity of our
results has been tested in simulations of up to 500 spacecraft. We optimize the
control parameters for a real orbital environment through a genetic algorithm,
a well known optimization technique in evolutionary robotics. We study the
precision of the formed lattice with a different number of satellites and with
different initial conditions.

2 Problem Statement

To simulate the pico satellites and their environment, we set up a mathematical
model in which the swarm is represented as a set of N identical point-masses.
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Figure 1: An example of hexagonal
lattice with 100 satellites.

Orbit ω (rad/s) R (km) T (s)

LEO 1 · 10−3 7,000 6,283
GEO 7.3 · 10−5 42,000 86,071
Amalthea 1.5 · 10−4 181,000 41,888
Metis 2.5 · 10−4 129,000 25,133
Io 4.1 · 10−5 421,600 153,248

Figure 2: Different types of orbital
environments considered. ω is the
angular speed of rotation around the
planet, R is the distance from its cen-
ter and T is the time needed to com-
plete one orbit.

Initially, the satellites are randomly distributed in space under the gravita-
tional influence of a near planet. Consider a predefined point ~p orbiting around
the planet. Point ~p defines the origin of a reference frame that is moving with
angular velocity ω with respect to the center of the planet. By saying “prede-
fined”, we mean that ~p and the orientation of the reference frame are decided
by the designers of the mission. The control strategy we present in this doc-
ument lets the satellites position themselves around the origin of the reference
frame identified by ~p. The target configuration is a regular hexagonal lattice
located on the xy plane. The satellites keep a mutual target distance σ which is
a control parameter fixed at design time (see Figure 1). From the mathematical
point of view, the motion of a satellite in the reference frame defined by ~p can
be modeled with the Hill’s system of differential equations [10], sometimes also
called Clohessey-Wiltshire equations:











q̈x − 2ωq̇y − 3ω2qx = ux,

q̈y + 2ωq̇x = uy,

q̈z + ω2qz = uz,

where ~q = [qx, qy, qz ] is the position of the i-th satellite with respect to ~p, and
~u = [ux, uy, uz] is its control strategy, which dimensionally is an acceleration.
The given form of the Hill’s equation assumes that the orbit of ~p around the
planet is circular. For all the experiments we used a fourth-order Runge-Kutta
integrator [11].

In our simulations, the satellites have a mass m = 100 kg and a thrusting
capability Tmax = 5 · 10−2 N. The swarm has been tested in various orbital
scenarios, reported in Table 2: geostationary orbits (GEO), low Earth orbits
(LEO), and Jupiter orbits close to those of its satellites Amalthea, Metis and
Io.

Besides the orbital environment and the limits of the satellites, other impor-
tant requirements make the design of ~u even more challenging. Scalability is one
of the main issues of this work: the control strategy must not depend (either
explicitly or implicitly) on the number N of satellites forming the swarm. As
explained in Section 3, we cope with this issue by letting the satellites inter-
act only with its closest M ≪ N neighbors. Another issue is preventing the
satellites from getting lost in space. The control strategy promotes gathering
towards ~p by assuming that all the satellites in the swarm know their position
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~q. This is not a stringent requirement in a space application because many well
known techniques can be employed, spanning from the use of triangulation with
fixed star positions to placing a special satellite in ~p that broadcasts its position
in space. A final important constraint is avoiding collisions among satellites.

3 The Control Strategy

The control strategy ~u studied in this work follows the artificial potential ap-
proach [12]. This idea has been first introduced for robot path planning [13]
and proved effective also in satellite control problems [14]. The original way
of applying the method is to imagine that the satellite is immersed in a vir-
tual potential field that is in fact the superposition of two fields: an attractive
field, that pulls the satellite towards the goal position, and a repulsive field,
which prevents the satellite from colliding with obstacles. The control strategy
~u acts therefore as a virtual force due to the virtual potential field. The final
configuration corresponds to the status of minimum energy.

The features of the task we consider in this paper suggested a novel and
completely different definition of the virtual potential field. In fact, the task of
forming a flat hexagonal lattice in space can be decomposed in three distinct
problems:

1. flattening the distribution of satellites on the xy plane;

2. creating the lattice on that plane while avoiding collisions;

3. preventing satellites from getting lost in space.

The control strategy ~u has been expressed as the superposition of three contri-
butions:

~u = ~g +~l + ~d, (1)

where

• ~g is a force that attracts each satellite towards the origin of the common
reference frame (i.e. point ~p) and flattens the distribution on the xy plane.
Hence, ~g tackles problems 1 and 3;

• ~l is a force that creates local lattices with the neighboring satellites and
avoids in-swarm collisions (problem 2)

• ~d is a damping factor analogous to viscosity, used to stabilize the behavior
of the swarm and to ensure convergence.

The following discussion presents the details of each term. Simulations revealed
that once the lattice has been formed, residual oscillations are present. These
oscillations entail an undesirable loss of propellant, thus leading to the need for a
stabilization mechanism to damp the oscillations. Such mechanism is explained
in Section 3.4.
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(a) The equipotential curves
of gxy on the xy plane.

(b) The force field due to gxy

on the xy plane. The center
of the field is the origin.

xy

(c) The force field due to gz

along the z axis. The middle
line represents the xy plane.

Figure 3: The virtual force fields which build up the global field ~g.

3.1 Global Attraction to the Origin

One of the requirements on the algorithm we have devised is to prevent satellites
from getting lost in space. Moreover, the satellites are supposed to gather
around point ~p, defined at design time. If we assume that the satellites know
their position with respect to this point, it is possible to define a very simple
virtual potential field that attracts a satellite towards ~p with a force directly
proportional to its distance from ~p. Thanks to virtual viscosity (term ~d of
Equation 1, see also Section 3.3), a satellite starting from any point in space
converges, after some time, to the desired point.

In fact, the aim of this work is to create a planar structure on the xy plane
of the global reference frame. The virtual potential above explained tends to
create a sphere around the origin, where instead a circle on the xy plane would
be needed. Furthermore, simulations showed that, when ~g and ~l act together, a
virtual potential directly proportional to the square of the distance to the origin
gives more stable results. For this reason, the actual global potential has been
expressed as the superposition of two subfields:

1. the first attracts the satellites towards the origin and parallely to the xy
plane;

2. the second subfield acts parallely to the z axis to flatten the distribution
of satellites on the xy plane.

Recalling that ~q = [qx, qy, qz]
T is the position of a satellite with respect to ~p,

and defining the normalized vector ~̂q = [q̂x, q̂y, q̂z ]
T = ~q/‖~q‖, then

~g =







−ηxy‖~q‖
2q̂x

−ηxy‖~q‖
2q̂y

−ηzqz






, (2)

where ηxy is a design parameter that accounts for the attraction to the origin
(i.e., ~p) on the xy plane, and ηz plays the same role for the attraction to the xy
play parallel to the z axis. The force fields on the xy plane and along the z axis
are depicted in Figures 3b–3c.
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Figure 4: A butterfly shaped lattice obtained with a suitable ~g potential.

V

r

σ

ǫ

0

(a) The Lennard-Jones potential L that models the
interaction between two satellites at mutual dis-
tance r. At the target distance σ the potential
presents a minimum point whose value is ǫ. The
deeper the minimum, the more stable is the mutual
arrangement of the satellites at distance σ.

(b) The points of minimum energy of
the Lennard-Jones potential define an
hexagonal lattice.

Figure 5: The Lennard-Jones potential and its equilibrium state.

An important insight about this potential is the fact that sections cut parallel
to the xy plane are circle shaped (see Figure 3a). Therefore, the global shape
of the swarm is a circle. Using a potential with a different section contour, it
is possible to change the global shape of the formation. This means that it is
possible to control the shape of the formation by choosing the potential whose
sections are of the desired shape. As an example, Figure 4 depicts a butterfly
shape obtained with a different ~g potential.

3.2 Local Lattice Formation

The local potential field lets a satellite interact with its neighbors to create a
lattice, while avoiding collisions. Inspiration for a virtual potential with these
characteristics has been taken from a simple and very well known physical model
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of molecular interaction, the Lennard-Jones potential [15]:

V (r) = ǫ

[(

σ

r

)12

− 2

(

σ

r

)6]

, (3)

Figure 5a depicts V (r), r being the distance between two molecules. The force
~F (r) between two molecules is given by

~F (r) = −∇V (r) = −
d

dr
V (r)~̂r, (4)

where ~̂r is a normalized vector directed as the line going from the center of the
first molecule to the center of the second. The force the molecules experience
is null when their distance coincides with the target distance σ; the force is in-
creasingly repulsive as r < σ becomes smaller and smaller; the force is attractive
when r > σ. As Figure 5a shows, the attraction is very strong when r is not
much larger than σ, but after a certain distance this force fades to zero. This
means that two molecules, or in our case two satellites, interact strongly only
when their mutual distance is within a certain value, thus explaining the reason
why we called this potential local. The stable arrangement of two molecules in-
teracting with each other is such that they respect the mutual target distance σ.
Increasing the number of molecules, the stable arrangement is a perfect hexagon
as Figure 5b proves with a geometrical construction.

The reason why the Lennard-Jones potential is so interesting for the lattice
formation problem is not only its behavior. In fact, the design parameters of
the potential are few and very intuitive to set: σ is the mutual distance among
the satellites in the lattice, while ǫ is the depth of the potential well, which
accounts for the attractiveness and stability of the minima located at distance
σ. Another important feature of this potential is that the lattice is formed on
the basis of positional information only: no communication is needed.

According to Equations 3 and 4, the magnitude of the virtual force of inter-
action ~li between a satellite and its i-th neighbor is given by

li = −
d

dr
V (r) =

12ǫ

r

[(

σ

r

)12

−

(

σ

r

)6]

.

Since the global potential ~g attracts the satellites to the xy plane, it is enough
that the direction of ~li is parallel to this plane, so ~li = [liq̂x liq̂y 0]

T
. Even-

tually, ~l is defined as the average of the virtual forces due to the M closest
neighbors:

~l =
1

M

M
∑

i=1

~li.

Without averaging, the magnitude of ~l would be strongly dependent on M .
Since ~l and ~g are summed, this in turn would make the choice of ηxy and ηz

dependent on M : averaging removes this unnecessary dependence.
Similarly to what has been discussed about the link between the sections of

the global potential and the shape of the formation, it is possible to control the
local lattice changing the Lennard-Jones potential with a different potential.
Hence, the proposed method of defining the artificial potential is general, and
its effectiveness goes beyond the shape we show in this paper. For example,
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it is possible to substitute the Lennard-Jones potential with another molecular
model already studied in crystallography, thus obtaining another lattice. In
other terms, the work presented here suggests a link between crystallography
and lattice formation in robotics.

3.3 Ensuring Convergence

From a physical point of view, ~g and ~l define conservative fields. This means
that convergence to a stable state is impossible, without a dissipative term. The
role of ~d in Equation 1 is exactly to dissipate the artificial energy of the swarm
as it moves through the artificial field.

To this aim, a simple physical reasoning suggests to imagine the satellites
immersed in a viscous medium, such as for example air or some liquid. There-
fore, the mathematical expression of ~d is analogous to viscosity: ~d = −ξ~̇q, where
ξ is a design parameter, usually smaller than 0.2.

3.4 Formation Stabilization After Convergence

Once the swarm converges to its final configuration, the gravitational influence
of the planet tends to disrupt the formation, therefore the satellites need to
use their thrusters to maintain their relative positions. Simulations show that
the satellites actually oscillate around their equilibrium points, thus wasting
propellant.

A solution to this problem can be found again with physical considerations.
In fact, by increasing the damping factor ξ, oscillations decrease as well. The
value D for which oscillations disappear depends on the orbit at which ~p is
located.

Stabilization around the equilibrium point is therefore obtained increasing
the virtual viscosity ξ according to the following rule:

ξ̇ =

{

Ke−ξ/2 if ξ < D,

0 otherwise.

Another separate problem is when to trigger the stabilization. In the current
status of our work, we have devised a simple time-based criteria. Each satel-
lite individually measures the time elapsed since the beginning of the shape
formation process. After a certain time threshold T , which is a further design
parameter, stabilization is triggered. A more elegant method would be to trigger
the stabilization with a distributed consensus algorithm, such as those in [16].

4 Results

In this section we report the results of the experiments we run to study the
features of the algorithm. Initially, we set parameters by hand and we discov-
ered that even with suboptimal parameters the system works reasonably well.
Convergence, scalability and independence of initial conditions are always at an
acceptable level. Our tests also showed that usually good parameters for an
orbital environment are not equally good for another [17, 18]. In the second
phase, we optimized the parameters to minimize positioning errors in the lat-
tice. With these parameters, we tested the behavior of the swarm for different
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Parameter Value

Number of generations 1000
Population size 50
Mutation probability 0.2
Crossover probability 0.9
Elitism the best survives

Figure 6: Parameters of the genetic algorithm
employed for setting the control parameters.

Parameter Value

ηxy 1.6295 · 108

ηz 5.96201 · 108

ǫ 4.5332 · 104

ξ 0.165984

Figure 7: Values of the con-
trol parameters obtained
via the genetic algorithm.

numbers of satellites to study scalability. Finally, we tested the dependence
of the algorithm on initial conditions (placement of satellites and their initial
speed).

4.1 Optimizing the Control Parameters

We optimized the control parameters with a classical genetic algorithm [19].
Figure 6 summarizes the parameter values used for the genetic algorithm. The
control parameters to optimize, see Figure 7 are few: for the global potential
field we optimized ηxy and ηz, while for the local potential field we optimized ǫ.
The viscosity factor, ξ, has been optimized too.

Evolutions were performed with 10 satellites in a GEO environment. Each
satellite was interacting with the 6 closest neighbors keeping a mutual distance
σ = 300 m. The trials lasted 1000 time steps, each time step being 12.5 s long.
The placement of a satellite has been evaluated as follows:

χi =
1

Ni

∑

j∈Ni

|σ − rij |

σ

where Ni is the set containing the closest neighbors of satellite i, Ni is the
number of neighbors in Ni, rij is the relative distance between the satellites i
and j at the final lattice acquisition time.

The genetic algorithm minimizes the worst satellite placement, defined as
χ = maxi χi.

The best control parameters that we obtained are reported in Figure 7. They
yield a score χ = 0.012842, which corresponds to a positioning error of 3.85 m
(σ = 300 m).

4.2 Scalability

Figure 8 reports the behavior of the placement error for different numbers of
satellites. The placement error is calculated as

χ̄ =
1

N

N
∑

i=1

χi

As the graph shows, although the parameters were obtained through trials in-
volving only 10 satellites, χ̄ keeps practically constant around the value 0.02
(that corresponds to 6 m), with a minimum of 0.007 (2.1 m) and a maximum of
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Figure 8: Average placement error for dif-
ferent numbers of satellites: 10, 20, 50, 100,
200 and 500.

Distribution χ̄

Centered Cubic 0.0215913
Centered Spheric 0.0199159
Decentered Cubic 0.0207984
Decentered Spheric 0.0191019

Figure 9: Placement error χ̄ ob-
tained with different initial spa-
tial distributions.

0.035 (10.5 m). Only with 500 satellites the maximum error is slightly larger:
0.088 (26.4 m). Scalability is a very important feature. Since the effectiveness
of the control parameters (and therefore also the placement error) is influenced
by the orbital environment, it is possible to optimize the parameters with a
minimal number of satellites thus finding quickly a convenient setup.

4.3 Initial Conditions

From a mathematical point of view, convergence to the final structure can be
easily proven by the presence of the global attractor located at the origin of
the artificial global field and by the known results about the Lennard-Jones
potential.

Figure 9 shows the results of a set of experiments run to test if χ̄ is affected
by the initial spatial distribution of the swarm. In the centered cubic distribu-
tion, the satellites are placed uniformly in a cube with side of 6 km and centered
around the origin. The centered spheric distribution is a hollow sphere centered
around the origin with radius 3 km and 300 m thick. The decentered distribu-
tions are identical, the only difference being that they are centered in point [3
3 3] (coordinates in km). For all the experiments, the same experimental con-
ditions described in Section 4.1 have been used. Swarms of 100 satellites were
used. The results show that χ̄, as expected, has values similar to those found
for the scalability tests.

5 Conclusions

Autonomous multi-robot systems have recently attracted the interest of roboti-
cists since, when compared to single-robot systems, they provide increased ro-
bustness by taking advantage of parallelism and redundancy. Moreover, multi-
robot systems provide the heterogeneity of structures and functions required
to undertake different activities in hazardous and partially or totally unknown
environmental conditions. Because of these properties, they may represent a
suitable platform to carry out various activities in space. In particular, multi-
agent systems whose control structures are designed by using the principles of
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swarm intelligence seems to be among the most promising technologies for the
design of autonomous vehicles to undertake missions in the space [6].

The objectives foreseen in the project proposal have been met:

• The control system of each single agent shall be defined first. It will map
the sensed environment into actuation commands and it will typically de-
pend upon a number of parameters.
The proposed system consists in a control strategy followed by each agent
that maps the sensed position relative to the global meeting point and to
the closest neighbours into a thrusting action. The system is based on
the artificial potential field approach. A novel way of defining the poten-
tial is proposed, that allows the designer to split the problem of forming
the lattice into two more intuitive subproblems: an artificial field attracts
globally the satellites towards a meeting point and controls the shape of
the formation; another artificial field takes care of defining the interactions
among the satellites to form local lattices. In this work, the Lennard-Jones
potential has been used as local field. The control parameters to be set
by the designer are few and very intuitive.

• [The control parameters] shall then be optimised globally in order to min-
imise some objective function rewarding the achievement of the considered
collective behaviour. One possibility is to think about the combination of
neural controllers and evolutionary strategies, but this study is opened also
to different suggestions.
Results showed that an acceptable performance can be obtained even by
setting the control parameters by hand. Using a genetic algorithm, a
very well known technique in evolutionary robotics, we have optimized
the control parameters to minimize the placement error.

• Various optimisation techniques shall be considered as well as different
control system parameterisations.
We have focused on the simplest parametrization possible for our system.
Being the potentials physics-based, we set some of their values to the phys-
ically realistic number to diminish the complexity of the system and to
make optimization faster. The good results easily obtained with the ge-
netic algorithm made it unnecessary to try other optimization techniques.

• Various behaviours shall be chosen during the research and will include ‘re-
main grouped with little fuel consumption’, ‘establish a formation’, ‘main-
tain a formation’.
We implemented two basic behaviours: ‘establish a formation’ and ‘main-
tain a formation’ (here referred to as ‘stabilization’).

• Swarm elements and the optimised controls will be defined and simulated
on a number of case studies defined during the research. The satellites
will be modelled as three or six degrees of freedom bodies and the sensed
quantities will be the relative positions and velocities or the absolute ones.
We simulated the satellites as three degrees of freedom bodies. The sensed
quantities are the relative positions of a satellite with respect to its N
closest neighbours and the absolute position and speed of each satellite
with respect to a predefined point in space that is the position of the
center of the formation to be created.
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An interesting feature of the proposed system is that the positioning error
is independent of the number of satellites and of the initial spatial distribution
of the swarm.

The way here proposed to define the artificial potential field suggests a pos-
sible link between lattice formation in robotics and known results in crystal-
lography. Further works could study other potentials that are known in the
literature, extending the approach here presented.
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