
Ariadna Study

Investigation of low energy Spiking
Neural Networks based on temporal

coding for scene classification

Final Report

Authors: Paolo Lunghi1, Stefano Silvestrini1,
Dominik Dold2, Gabriele Meoni2, Dario Izzo2

Affiliation: 1Politecnico di Milano, Aerospace Science and Technology Dept,
2ESA ACT

Date: 24/08/2023

Contacts:

Paolo Lunghi
Tel: +39 02 2399 8041
Fax: +39 02 2399 8334
e-mail: paolo.lunghi@polimi.it

Leopold Summerer (Technical Officer)
Tel: +31(0)715654192
Fax: +31(0)715658018
e-mail: act@esa.int

Available on the ACT
website
http://www.esa.int/act

Ariadna ID: 21/8601
Ariadna study type: Standard

Contract Number: 4000135881/21/NL/GLC/my

Ariadna Study
Investigation of low energy Spiking Neural Networks based on temporal coding for

scene classification

Paolo Lunghi1, Stefano Silvestrini1, Dominik Dold2, Gabriele Meoni2, and
Dario Izzo2

1Politecnico di Milano
2ESA ACT

24/08/2023

Contents

List of Acronyms 4

1. Introduction 5
1.1. Study objectives . 6
1.2. Case study: EuroSAT dataset . 6

2. Enabling latency-based SNNs with backpropagation 7
2.1. Backpropagation Through Time (BPTT) . 7
2.2. Optimization of spike times . 7
2.3. Surrogate gradient (SG) . 8

3. Neuron Models 9
3.1. Integrate and Fire (IAF) . 9
3.2. IFL . 10
3.3. LIF . 11
3.4. Special features . 11

3.4.1. Neurons Spiking Once at most . 11
3.4.2. Recurrent spiking layers . 11

3.5. Output layers . 12
3.5.1. Leaky Integrator (LI) . 12
3.5.2. TTFS readout . 12

4. Input encoding 13
4.1. Rate based encoding . 13

4.1.1. Constant Current LIF . 13
4.1.2. Poisson . 13

4.2. Latency encoding . 13
4.2.1. Linear TTFS encoder . 15
4.2.2. Constant Current IAF (one spike at most) . 15
4.2.3. Latency LIF encoder . 15

4.3. Convolutional learnable encoder . 15

2

5. Output decoding 17
5.1. Last timestamp logarithmic voltage . 17
5.2. Maximum voltage . 17
5.3. Maximum logarithmic voltage . 17
5.4. Negative Time-To-First-Spike . 17
5.5. Logarithmic inverse Time-To-First-Spike . 18

6. Regularization 19
6.1. Target output time . 19
6.2. Regularization loss based on the sum of synaptic weights 19
6.3. Batch normalization through time (BNTT) . 20

7. SNN models 21
7.1. Multilayer Perceptrons . 21
7.2. Convolutional Spiking Neural Networks . 21
7.3. Multilayer perceptron with limited receptive fields . 22

8. Estimation of computational load 23
8.1. Assumptions . 24
8.2. Neuron models . 24

8.2.1. IFL neuron . 25
8.2.2. LIF neuron . 26
8.2.3. IF (Mostafa 2017) neuron . 26

8.3. Estimation procedure . 27
8.3.1. Computation of connectivity parameters . 28
8.3.2. Equivalent ANN . 28

8.4. Known limitations . 29

9. Numerical results 30
9.1. Test cases . 30
9.2. Accuracy vs EMACS . 30
9.3. EMAC vs number of spikes . 32
9.4. Effectiveness of regularization . 33

9.4.1. Target output time . 35
9.4.2. Sum of synaptic weights . 35
9.4.3. Batch Normalization Through time . 35

9.5. Scaling to deeper architectures . 36

10.Conclusion 40

A. Test cases table 41

B. Test cases notation 47

3

List of Acronyms

AC Accumulate operation

ANN Artificial Neural Network

API Application Program Interface

BN Batch Normalization

BNTT Batch Normalization Through Time

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

EMAC Equivalent Multiply-Accumulate operations

FLOP Floating Point Operations

FLOPS Floating Point Operations per Second

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HW Hardware

IF non-leaky Integrate and Fire (neuron model)

IFL non-leaky Integrate and Fire Linear (neuron model)

LI Leaky Integrator

LIF Leaky Integrate and Fire (neuron model)

MAC Multiply-Accumulate operation

MLP Multi-Layer Perceptron

MVM Matrix-Vector Multiplication

ROC Rank Order Coding

R-STDP Rewarded Spike Timing-Dependent Plasticity

SG Surrogate Gradient

SNN Spiking Neural Network

STDP Spike Timing-Dependent Plasticity

SW Software

TPU Tensor Processing Unit

TTFS Time To First Spike

4

1. Introduction

In recent years, interest in AI applications (notably ANNs) onboard satellites, has grown a lot. Poten-
tial applications in space systems include early detection of potential failures or catastrophic events
[1, 2], feature detection and tracking in Guidance, Navigation, and Control systems [3, 4, 5], pre-
processing of collected data by Eart Observation satellites to mitigate bandwidth requirements due to
unmeaningful or corrupted data, advanced navigation and signal processing tasks [6, 7], and others.
On the other hand, space systems are traditionally limited in computational and memory resources,
a condition even more stressed due to the recent trend toward extreme miniaturization, i.e. CubeSats
and other types of micro and pico satellites [2]. The adoption of highly energy efficient algorithm and
computing could expand dramatically the autonomy of space missions.

Spiking Neural Networks (SNN) are highly attractive, due to their low-power and energy-efficient
properties [8, 9, 10, 11, 12, 13, 14, 15, 16]. Such features are due to the brain-inspired architecture
of this network, in which neurons communicate by means of discrete spikes. Neurons can be modeled
in many different ways [17] but all of the models share a general behavior in which input event are
somewhat accumulated along time, increasing an internal state called membrane voltage (mimicking
the membrane voltage of biological neurons). Whenever the membrane voltage exceeds a certain
threshold, a spike is released and the voltage is reset [16, 18]. Differently with respect to traditional
ANNs, computation is performed only at the time a spike is received, making the overall activity
inside the network inherently sparse [8, 10].

SNNs can be implemented on event-based neuromorphic hardware, designed to fully exploit such
asynchronous, sparse computation paradigm to achieve solutions capable to outperform those based on
ANNs in term of power consumption and energy efficiency [8, 9]. Nevertheless, the final performance
is largely dependent on the combination of many parameters and design choices, such as the model
of the neurons, the scheme of information encoding, target number of time steps at inference, and
hardware implementation [8, 9, 10, 14, 19].

Nevertheless, state-of-the-art SNNs struggle to scale to very deep models, due to lacking of suitable
training algorithms. Looking for biologically plausible mechanisms, researchers proposed unsuper-
vised training methods like Spike Timing-Dependent Platicity (STDP), a form of Hebbian learning
where weight changes depend on the relative timing between pre and postsynaptic action potentials
[20, 21, 22]. Using STDP, the network can successfully extract frequently occurring visual features.
However, an unsupervised learning rule alone is not sufficient for decision making. To cope with this
issue, Rewarded STDP (R-STDP) has been proposed [23, 24], a reinforcement learning rule designed
to modulate STDP to match a desired output. Nevertheless, STDP-based networks still have to
demonstrate their effectiveness in complex tasks.

Some approaches have been studied that allow conversion between deep ANNs and SNNs [12, 14,
25]. In many of these cases, the conversion process is based on the close correlation between the
activation rate of spiking neurons and the activation of Rectified Linear Units (ReLUs) in standard
ANNs. Thanks to these methods, rate-based conversion between ANNs and SNNs can be done with
minimal loss of accuracy [8, 14, 25]. However, the use of rate-based SNNs usually requires high fire-
rates and a high number of timesteps to provide acceptable accuracy [12, 18]. In this respect, this
approach seems to bring real benefits in terms of energy efficiency only for event-based datasets [9].
On the contrary, for standard static images, which represent the data of interest for many remote
sensing applications, the gain in terms of energy savings seems to be reduced for complex datasets
due to the higher number of timesteps required, which also leads to higher processing latencies [8, 9].

Methods based on temporal coding, also called latency-based methods, might offer more promising
trade-offs [10, 16, 12, 13, 15, 19]. Such approaches encode information in the fire time of neurons.
According to the Time-To-First-Spike (TTFS) coding, the more a neuron is activated, the shorter is
its firing delay, and more significant the associated transmitted information [10, 16, 12, 13]. For clas-
sification tasks, Rank Order Coding (ROC) is even more simple, for the attribution class corresponds
to the ouput neuron that fires first, regardless of the exact spike time. In such encoding schemes,
neurons can be even forced to fire once at most during an inference, making SNN models based on

5

temporal coding extremely attractive for energy-constrained applications. In a benchmark comparison
among different coding schemes, latency-based methods showed the highest potential performances in
terms of accuracy, latency, power consumption and number of synaptic operation, albeit with some
potential lack of robustness in case of input or synaptic noise [26]. Some energy efficiency benefits of
time-coding based SNNs for static data are shown in [16] for the MNIST dataset on the BrainScaleS-2
neuromorphic processor. However, the applications of SNNs for space applications are still limited
[27, 28, 29, 30], and the ability of these models to cope with complex features such as those included
in scene classification datasets still awaits a convincing demonstration.

Recently, novel training method like Surrogate Gradient (SG) [31, 18, 32, 33, 34] and Backpropaga-
tion Through Time (BPTT) [35, 36, 37, 15, 13, 10, 19] showed promising result in successfully training
deeper networks, but still an effective demonstration on latency-based SNNs on more complex tasks
is still missing.

1.1. Study objectives

This study aims to perform a preliminary investigation of the potential benefits of Spiking Neural
Networks (SNNs) based on temporal coding for onboard Artificial Intelligence (AI) applications, con-
sidering the case study of scene classification. To achieve this goal, state of the art SNN models are
to be compared in terms of accuracy and complexity (here considered as the number of synaptic op-
erations, number of spikes per neuron, and others) on a scene classification task, using the EuroSAT
RGB dataset (see the next Section). To this aim, proper training algorithms for the SNN models shall
be also evaluated and selected. Eventually, the aim is to establish a method to perform hardware-
agnostic, relative comparison of the computational load required by different architectures, both SNNs
and ANNs. The results of the analysis will highlight the possible advantages and drawbacks of SNN
models compared to ANNs, which represent the state of the art for scene classification.

1.2. Case study: EuroSAT dataset

EuroSAT is a reference dataset for scene classification representative of a plausible use case in the
Earth Observation field, i.e. land use classification [38]. It includes multispectral imagery provided
by the Sentinel-2A satellite, divided into 13 bands over 10 different land use and land cover classes.
An RGB version of the dataset is also provided.

The activity presented in this report focuses on the RGB EuroSAT dataset. Each image is then an
8 bit, 3×64×64 px (c, h, w) in size tensor. The dataset consists in 27 000 images, divided in 10 classes
each one represented by a number of samples between 2000 and 3000. Some samples for each class in
the dataset are shown in Fig. 1. A 70/20/10 (training, validation, test) subdivision has been adopted
for the training and cross-validation of all the models tested in this activity. Random horizontal and
vertical flip have been adopted as only data augmentation at training time.

Figure 1: RGB EuroSAT dataset samples from [38].

6

2. Enabling latency-based SNNs with backpropagation

In this section the training methods considered in this work are presented. The following criteria have
been followed in the seclection:

• suitability for latency-based networks, which constitute the main subject of the study;

• flexibility to handle different neuron models and encoding schemes;

• possibility to fast-prototyping benchmark cases;

• compatibility with existing network training libraries (i.e. PyTorch or Tensoflow) to leverage
efficient computation and optimization tools.

Two alternatives, emerged in recent years as most prominent methods to train latency-based net-
works, have been considered: minimization of spiking times error and Backpropagation Through
Time (BPTT) with Surrogate Gradient (SG) training.

2.1. Backpropagation Through Time (BPTT)

Once the graph of a discrete time SNN is unrolled along the time dimension, SNNs works essentially
as Recurrent Neural Networks (RNN). The most common training methods for such networks is the
Backpropagation Through Time (BPTT), consisting in the direct application of error-backpropagation
to this unrolled graph. Nevertheless, and differently w.r.t. RNNs, the intrinsically discontinuous
nature of the spikes prevents a correct flowing of the gradients through the network in the backward
pass, making the application of standard BPTT to SNNs infeasible. To overcome this limitation,
two popular approaches are considered: optimization of spike times and Surrogate Gradient (SG)
techniques.

2.2. Optimization of spike times

This training approach considers spike times instead of spikes themselves as information-carrying
quantity. This is achieved by relating the time of any spike, in a differentiable way, to the times of
the presynaptic spikes that had a causal influence on its generation. In this way, the (discontinu-
ous) derivation of the thresholding activation function is no longer required. Instead, dealing with a
continuous representation make gradient descent by means of backpropagation feasible.

This training approach allows a high degree of control on the internal dynamics of a network, down
to the single spike time, which would be impossible in other training methods. On the other hand,
it is heavy tailored on the specific network: whenever neuron model, loss function, regularization
loss functions (if any), and other parameters are changed, the formulation of the derivatives could
need to be rewritten from scratch. As example, in [36], is formulated for non-leaky integrate-and-fire
with exponentially decaying synaptic current neuron (LIF, see Sec. 3.3; [13] applies the technique to
non-leaky integrate-and-fire neurons with instantaneous synapse (IAF, see Sec. 3.1); [37] considers
non-leaky integrate-and-fire neurons with step-wise constant synaptic current (IFL, see Sec. 3.2); [19]
formulates the problem for alpha-synaptic function neurons. Moreover, optimization of spike times
is intrinsically constrained to stick to latency encoding, usually with neurons forced to spike once at
most.

Remark. Due to this lack of flexibility, optimization of spike times was not selected as the main
methodology to carry out testing activity in this work. Nevertheless, one test case using this
technique has been included for comparison purposes.

7

Figure 2: Examples of surrogate gradient function from [32]: SuperSpike [31], which is the derivative of a fast sigmoid
function: h(x) = (β|x| + 1)−2; the derivative of a standard Sigmoid functiton: h(x) = s(x)(1 − s(x)) with the sigmoid
function s(x) = (1 + exp(−βx))−1; Esser et al., a piece-wise linear function [39, 40]: h(x) = max(0, 1.0 − β|x|). The
trend for each gradient function is shown for different values of the hyperparameter β.

2.3. Surrogate gradient (SG)

Surrogate Gradient (SG) training has emerged as a popular solution for enablig training SNNs end-
to-end with BPTT. Neuronal spiking dynamics lacks of a continuous gradient, preventing them to
be directly optimized by traditional backpropagation algorithms. To circumvent this limitations,
in the SG method the actual derivative of a spike, which appears in the analytic expressions of
the gradients, is replaced by any well-behaved function. There are many possible choices of such
surrogate derivatives, making the resulting surrogate gradient not unique (differently to the unique
true gradient of a function). Examples of possible choices in shown in Fig. 2. Several studies have
successfully applied different types of surrogate derivatives to various problem sets [39, 40, 41, 34, 42,
31], suggesting that the methods does not crucially depends on the specific choice of the surrogate
derivative. Such hypothesis was proven in [32], where it is shown that SG is robust to the shape of
the surrogate derivative, but also to changes in the loss function, input paradigms, and dataset. Such
robustness make SG methods very attractive to application to SNNs:

• the use of SG in standard frameworks for backpropagation training (e.g. PyTorch, TensorFlow...)
requires only the surrogate gradient function to be implemented in a custom backward function.
Then, the reminder of the network and the training process (loss, regularization loss, etc.) can
be formulated with standard ANN building blocks, maintaining the coding effort to a minimum;

• different neuron models can be easily compared with no additional effort, being the formulation
independent on the specific neuron model;

• the training method is not constrained to a specific coding scheme, and can be applied to both
rate and latency based encoding.

Remark. Due to the possibility of fast formulation and easy comparison between different ar-
chitectures and neuron models, Surrogate Gradient training has been selected as main training
method in this work. If not explicitly stated, test cases are trained with Surrogate Gradient, in its
SuperSpike [31] variant.

For rate-based networks, the method proved to be sensitive to weights initialization [33], but such
limitation is still to be assessed for latency-based systems. Moreover, even if most of the works cited
in this section applied SG to rate-based networks, the method is not constrained to a specific coding,
once the possibility to the gradient to flow is granted. To this purpose, a special TTFS readout layer
(see Sec. 3.5.2) has been developed to convert output spikes to spike times in a differentiable way,
enabling training with SG with latency-based encoding networks.

8

3. Neuron Models

The most peculiar feature of SNNs is that the neurons possess temporal dynamics: typically, an
electrical analogy is used to describe their behavior. Each neuron has a voltage potential that builds
up depending on the input current that it receives. The input current is generally triggered by the
spikes the neuron receives. There are numerous neural architectures that combine these notions into
a set of mathematical equations [17]. Most of them are summarized in Fig. 3.

Figure 3: Comparison of the neuro-computational properties of spiking and bursting models; ”# of FLOPS” is an
approximate number of floating point operations (addition, multiplication, etc.) needed to simulate the model during a
1ms time span. Each empty square indicates the property that the model should exhibit in principle (in theory) if the
parameters are chosen appropriately, but the author of [17] failed to find the parameters within a reasonable period of
time. Figure taken from [17].

Remark. In this activity, biological plausibility was not included in the criteria considered in
the formulation of the test cases. Hence, only the most simple neuron models, among the wide
list of possibilities, were considered, for energy efficiency is the main parameter of interest in the
adoption of SNNs in space applications.

In the following, the models considered in this study are briefly presented.

3.1. Integrate and Fire (IAF)

The IF neuron model assumes that spike initiation is governed by a voltage threshold. When the
synaptic membrane reaches and exceeds a certain threshold, the neuron fires a spike and the membrane
is set back to the resting voltage Vrest. In mathematical terms, its simplest form reads:

C
dV (t)

dt
= i(t) (3.1)

9

The first implementation used in this work entails a direct synapse, where input spikes are just
integrated directly. In the discrete implementation, the spikes are just weighted Kronecker’s deltas,
thus the are injected into the neuron and summed up to the membrane voltage. Therefore, the voltage
trend is step-wise constant, as shown in Figure 4.

0.05
0.00
0.05

Z I
N

0.0

0.5

1.0

1.5

2.0

vo
lta

ge

0 20 40 60 80 100
Time [ms]

0.05
0.00
0.05

Z O
U

T

Figure 4: Example of membrane voltage, input and output spikes in a Non-leaky Integrate and Fire neuron with direct
synapse. In this neuron model, there is no current state.

3.2. IFL

The non-leaky itegrate and fire linear neuron (IFL) is a slight modification of the direct synapse
integrate and fire neuron (IF). In this model the synapse receives the (weighted) input spikes and

updates the post-synaptic current i with the formula: di(t)
dt =

∑
t S(t). In the discrete version, since

the input spikes are just weighted Kronecker’s deltas, they are just summed up to the post-synaptic
current yielding a linear behavior of the membrane potential voltage, as shown in Figure 5.

0.05
0.00
0.05

Z I
N

0

1

2

3

cu
rre

nt

0.00

0.02

0.04

vo
lta

ge

0 20 40 60 80 100
Time [ms]

0.05
0.00
0.05

Z O
U

T

(a) IFL neuron.

0.05
0.00
0.05

Z I
N

0

1

2

3

cu
rre

nt

0.00

0.02

0.04

vo
lta

ge

0 20 40 60 80 100
Time [ms]

0.05
0.00
0.05

Z O
U

T

(b) IFLOnce neuron.

Figure 5: Non-leay Integrate and Fire with stepwise constant synapse. Example of input spikes, current, voltage, and
output spikes. 5a) standard version of IFL neuron; 5b) IFL which fires once at most.

10

3.3. LIF

The LIF neuron is a slightly modified version of the IF neuron model. Indeed, it entails an exponential
decrease in membrane potential when not excited. The membrane charges and discharges exponentially
in response to injected current. The differential equation governing such behavior can be written as:

C
dV (t)

dt
+ λV (t) = i(t) (3.2)

where λ is the leak conductance and V is again the membrane potential with respect to the rest value.
Figure 6 shows how exponential relaxation of V (t) to a steady state value follows current injection,
where 0 is the initial membrane potential and reset value.

0.05
0.00
0.05

Z I
N

0.0

0.5

1.0

cu
rre

nt

0.0

0.2

0.4

0.6

vo
lta

ge

0 20 40 60 80 100
Time [ms]

0.05
0.00
0.05

Z O
U

T

Figure 6: LIF neuron. Example of input spikes, current, voltage, and output spikes.

3.4. Special features

All the spiking layers can be equipped with additional special features, detailed in this Section.

3.4.1. Neurons Spiking Once at most

All the types of neuron can be forced to spike once at most (by setting a large refractory time after
the spike or just by design). Such feature is attractive in the pursuit of an energy-efficient network
implementation, mainly for two reasons:

1. the number of spikes emitted at inference is largely limited;

2. once a neuron has emitted a spike, the related memory can be freed, limiting even more the
netowrk memory footprint.

3.4.2. Recurrent spiking layers

Working along time, spiking layers can be recurrent : their output can be mapped as input to the layer
itself in the subsequent time step. Such recursion can we weighted, storing additional information in
the process as in standard Recurrent Neural Networks.

11

0.05
0.00
0.05

Z I
N

0 20 40 60 80 100
Time [ms]

0.0

0.1

0.2

0.3

vo
lta

ge

Figure 7: LI neuron. Top: input spikes. Bottom: LI neuron voltage. The layer act as a LIF neuron except that no
spike is emitted.

0.05
0.00
0.05

Z I
N

0 20 40 60 80 100
Time [ms]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

vo
lta

ge

Figure 8: TTFS readout layer. Top: input spikes. Bottom: neuron internal state. As the first input spike is received,
the time integration stops, fixing the value to the time-to-first-spike. Subsequent spikes do not further alter the value of
internal state.

3.5. Output layers

3.5.1. Leaky Integrator (LI)

A Leaky Integrator works in the same way as a LIF neuron, except for the fact that it is a non-spiking
layer: there is no threshold and there is no emission of spikes as output. Such type of layer is usually
placed as last layer at the network output for rate-base decoding schemes (see Sec. 5). Its behavior is
visually represented in Fig. 7.

3.5.2. TTFS readout

The function of a TTFS readout layer is to output the time of the first received spike in a way that
preserves automatic differentiation, to enable backpropagation with latency decoding (see Sec.5). The
layers acts as a simple time integrator: the integration stops whenever the first input spike is received.
Then, the value of this internal state (hereby referred to voltage) at the last time step coincides with
the time the spike has been received. Figure 8 shows the typical behavior of such layer. Obviously, to
perform such readout operation the layer must be placed just after a spiking layer, and 1-to-1 synaptic
connection for each neuron of the previous layer is required.

12

4. Input encoding

The transition between dense data and sparse spiking patterns requires a coding mechanism for input
coding and output decoding. One of the distinguishing features of spiking neural networks is that they
operate on temporal data encoded as spikes. Common datasets in machine learning do not use such
an encoding and therefore make an encoding step necessary. For what concerns the input coding, the
data can be transformed from dense to sparse spikes in different ways, among which the most used
are:

• Rate coding: it converts the input intensity into a firing rate or spike count;

• Temporal (or latency) coding: it converts the input intensity to a spike time or relative spike
time.

Similarly, in output decoding, the data can be transformed from sparse spikes to network output
(such as classification class) in different ways, among which the most used are:

• Rate coding: it selects the output neuron with the highest firing rate, or spike count, as the
predicted class;

• Temporal (or latency) coding: it selects the output neuron that fires first, or before a given
threshold time, as the predicted class

Roughly speaking, the current literature agrees on specific advantages for both the coding tech-
niques. On one hand, the rate coding is more error tolerant given the reduced sparsity of the neuron
activation. Moreover, the accuracy and learning convergence have shown superior results in rate-based
applications so far. On the other hand, given the inherent sparsity of the encoding-decoding scheme,
latency-based approaches tend to outperform the rate-based architectures in inference, training speed
and, above all, power consumption [26].

4.1. Rate based encoding

4.1.1. Constant Current LIF

Encodes input currents as fixed (constant) voltage currents, and simulates the spikes that occur during
a number of timesteps. Here we choose to treat the grayscale value of an MNIST image as a constant
current to produce input spikes to the rest of the network. As can be seen from the spike raster plot,
this kind of encoding does not produce spike patterns which are necessarily biologically realistic. We
could rectify this situation by employing cells with varying thresholds and a finer integration time
step.

4.1.2. Poisson

This rate-based encoder is formulated under the independent spike hypothesis, which is the assumption
that if the precise spiking time of a neuron is not important, and all the information is carried by
the spike frequency, then each spike of each neuron can be generated randomly, independently from
the others. Spikes are then produced by a Poisson random generator, set to hit a target spike rate
proportional to the input to be encoded [43, 44]. Figure 11 shows a raster plot of an entry from the
EuroSAT dataset, processed by a Poisson encoder.

4.2. Latency encoding

Latency encoders codify the information in the spike times. Usually, the most siginificant and/or
higher value information correspond to an earlier time of the spike.

13

time [ms]

0 25 50 0
25
50

25
50

time [ms]

0 25 50 0
25
50

0
25
50

time [ms]

0 25 50 0
25
50

0
25
50

Figure 9: Example of encoding of an RGB Eurosat input image. Each channel is shown as separate image.

20 30 40 50 60
Time [ms]

0

2000

4000

6000

8000

10000

12000

In
pu

t U
ni
t

Figure 10: Raster plot for a constant current LIF encoder.

0 10 20 30 40 50 60
Time [ms]

0

2000

4000

6000

8000

10000

12000

In
pu

t U
ni
t

Figure 11: Raster plot for a Poisson encoder.

14

40 45 50 55 60
Time [ms]

4000

6000

8000

10000

12000

In
pu

t U
ni
t

Figure 12: Raster plot for a latency LIF encoder.

4.2.1. Linear TTFS encoder

The input value xi is linearly mapped to a spike time 0 ≤ ti ≤ tmax with the following equation:

ti = tmax

(
1 − xi − xmin

xmax − xmin

)
(4.1)

where the input is assumed to be bounded between xmin and xmax, and tmax is a hyperparameter. The
higher the value, the earlier the neuron spikes.

4.2.2. Constant Current IAF (one spike at most)

In this type of encoder, the input value is fed as a constant current into a layer of Integrate-and-Fire
neurons (see Sec. 3.1 at page 9), set to spike once at most. In this way, the higher the input, the
sooner the correspondent neuron spikes, in a TTFS scheme. This scheme works well as long as the
input is positive (i.e. images): in fact, negative inputs would lead to silent neurons.

4.2.3. Latency LIF encoder

Similarly to Constant current IFL (Sec. 4.2.2) the input is directly fed to a layer of LIF neurons, with
an infinite refractory time. In this way, the neurons spike only once at most, and the higher input
value lead to earlier spiking times.

4.3. Convolutional learnable encoder

In an ideal implementation, the encoders expounded above generate spikes at continuous times, capable
to encode information with infinite precision. But in a digital implementation, spikes cannot happen
at arbitrary times, but only at discrete time steps. This can potentially lead to loss of information,
especially if low latency (and consequently a reduced number of time steps) is pursued. Let’s take
the case of a linear TTFS encoder (see Sec. 4.2.1): a typical RGB input entails 3 channels in which
the information is represented with 8 bit, thus 256 levels. At encoding, if for example ∆t = 1 ms
and tmax = 32 ms are selected, if each pixel in each channel is mapped to a single neuron, only 32
levels are available to encode for the pixel intensity. This potential problems applies also to other
types of encoders, both rate and latency based. In fact, even if it could be a viable way to compress
information, there no guarantee that the process would be lossless. To cope with this issue, the first,
most obvious option would be an appropriate selection of the hyperparameters to ensure the necessary
number of time steps to completely represent the input. Nevertheless, such solution would potentially
lead to large number of steps, with consequently long latency and increased energy consumption. The
other possibility is to first apply a convolution to the original input, with appropriate large number
of output channels, and then feed the convoluted input to the desired encoder. In this way, the

15

original information is spread over a higher number of channels, allowing a complete representation
of the input even in a reduced number of time steps. The weight of the convolution filters could also
be optimized by including them in the training. This solution can be combined with every type of
encoder, to achieve a learnable optimal encoder.

16

5. Output decoding

In this section, the decoders adopted in this work are expounded. The encoder/decoder coupling is
not predetermined: a latency-based encoding can be mixed with a rate-based decoder and vice versa.
The network type (latency/rate) is determined by the decoder.

Remark. In this work, being the analyzed benchmark problem essentially a classification task,
latency-based decoding follows a Rank Order Coding (ROC) scheme.

In fact, while the time to first spike is used as classification score for the class represented by a certain
output neuron, the precise timing of the spike is not considered, and only relative differences count,
being the scores always normalized by Softmax or LogSoftmax functions.

5.1. Last timestamp logarithmic voltage

Rate-based decoding. To apply this decoding, the last layer of the architecture should consists of N
output Leaky-Integrate (LI) neurons, where N is the number of classes that should be distinguished.
Indeed, each neuron is assigned to a specific class. Decoding is, then, performed by applying a
logarithmic softmax to the voltage values of the various neurons of the architecture in the last timestep
and picking the maximum, as shown in Eq. (5.1):

c = arg max
i

(
LogSoftmax

(
Vi(t = T)

))
(5.1)

5.2. Maximum voltage

Rate-based decoding. For the i-th class, the score is represented by the maximum value assumed
by the potential of the related i-th output neuron Vi along the inference time, normalized then by a
softmax function. The decoder equation is represented in Eq. (5.2). It is designed to be coupled with
a LI output layer (Sec. 3.5.1).

c = arg max
i

(
Softmax

(
maxVi(t)

))
(5.2)

5.3. Maximum logarithmic voltage

Rate-based decoding. For the i-th class, the score is represented by the maximum value assumed
by the potential of the related i-th output neuron Vi along the inference time. The score is then
processed by a logarithmic softmax. The decoder equation is represented in Eq. (5.3). It is designed
to be coupled with a LI output layer (Sec. 3.5.1), and it works with a negative log likelihood loss
function1.

c = arg max
i

(
LogSoftmax

(
maxVi(t)

))
(5.3)

5.4. Negative Time-To-First-Spike

Latency decoding. For the i-th class, the score is represented by the negative of the time-to-first-spike
of the related i-th output neuron τi. The score is then processed by a logarithmic softmax. The
decoder equation is represented in Eq. (5.4). It works with a negative log likelihood loss function2. In
this work, it is used for models trained with BPTT as in [36].

c = arg max
i

(
LogSoftmax(−τi)

)
(5.4)

1https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html – Last visited: 27/06/2023.
2Ibid.

17

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html

5.5. Logarithmic inverse Time-To-First-Spike

Latency decoding. For the i-th class, the score is represented by the inverse of the time-to-first-spike
of the related i-th output neuron τi. The decoder equation is represented in Eq. (5.5). It works with a
negative log likelihood loss function3and takes as input the times at which the first spikes are emitted
by the output layer, obtained by means of a TTFS readout layer (Sec. 3.5.2) or other methods. In
this works, it is the default decoder for latency-based test cases.

c = arg max
i

(
LogSoftmax(1/τi)

)
(5.5)

3Ibid.

18

6. Regularization

Three network normalization schemes have been tested on latency networks:

• Target output time (Sakemi 2021, [37]);

• Sum of weights (Stanojevic 2021, [45]);

• Batch Normalization Through Time (Kim 2021, [46].

6.1. Target output time

The regularization, originally proposed in [37] for improve training in SNNs based on rank order coding
with Backpropagation Through Time, consists in the modification of the cost function is the form:

C(t(M),k,w) = L(t(M),k,w) +
γ

2
R(t(M)) (6.1)

where C is the cost function, L is the training loss function, k and w are respectively the training labels
and the network weights. The temporal penalty term R(t(M)), weighted by the term γ, is defined by
the total difference between the spike timing of the output neurons t(M) and the timing of a reference
spike t(ref):

R(t(M)) =

N∑
i=1

(
t
(M)
i − t(ref)

)2
(6.2)

where N is the number of neurons in the output layer (which coincides with the number of the
classes). During the training, this penalty term forces all the output neurons to spike improving
the gradient flow in backpropagation. At inference, this adds no additional activity in the network,
since the computation ends as the first output neuron spikes (before t(ref)). The effectiveness of this
regularization scheme is here assessed with SG training.

6.2. Regularization loss based on the sum of synaptic weights

In this type of regularization a penalization term, based on the sum of the weights in each neuron’s
receptive field, is added to the loss to counteract dead neurons. In the scheme proposed in [45] such
penalization term takes the form:

Lsilent = k
∑
i

max(0, −
∑
j

wij) (6.3)

where k is an hyperparameter, and wij are the weights at each neuron input. Such regularizer would
ensure that the summation of input weights to a neuron does not drop below zero so as to avoid silent
neurons. In [45], it is used with a ANN/SNN conversion approach, still in a latency-based network
together with a neuron model very similar to the IFL discussed in Sec. 3.2. In this work, its efficacy
is assessed with SG training.

A very similar penalty term is adopted in [47], associated with BPTT training:

Lsilent = k
∑
i

max(0, 1 −
∑
j

wij) (6.4)

in this form, the regularizer assures that the sum of the weights of the i-th neuron is above 1, which
ensures that a neuron spikes if all its input neurons spike. Instead of 1, a tunable threshold can be
adopted like a hyperparameter. Such regularized has been adopted for test cases based on BPTT
training (see Sec. 9.1).

19

6.3. Batch normalization through time (BNTT)

Batch Normalization [48] is one of the most adopted regularization techniques used to improve and
accelerate training in ANNs. However, when applied to SNNs and Surrogate Gradient training in
particular, marginal improvement have been observed [49]. To cope with this limitation, in [46] Batch
Normalization Through Time (BNTT) has been proposed. BNTT decouples the hyperparameters of
a BN layer (notably the output scaling parameter γ) along time, and make them learnable at training
time. This allows the BNTT layer to learn input time pattern, enabling low-latency and low-energy
performances.

Aside of this feature, BNTT acts as a standard BN layer. At training, given a mini-batch B =
{x1,...,m}, the mean and variace of B are computed as:

µB =
1

m

m∑
b=1

xb; σ2
B =

1

m

m∑
b=1

(xb − µB)2. (6.5)

Then the input features are normalized with:

x̂b =
xb − µB√
σ2
B + ϵ

(6.6)

where ϵ is a small constant to avoid numerical instability. In standard BN, at this point the normalized
input is fed to the next layer after an affine transformation:

BN(xi) = γx̂i + β (6.7)

where γ and β are learnable parameters. Global statistics µ and σ2 are learned along batches by means
of exponential moving average. At inference time, the stored global statistics are used to normalize
the input.

Conversely, in SNNs, the input has an additional dimension along time. In BNTT, a different
value of γt is used for each time step t, and µt and (σ2)t are computed separately for each t as well.
Moreover, the BNTT layer is applied in convolutional layer just after the convolution and before the
spiking layer. This allow the imposition of β = 0, since the offset would be just redundant with the
learnable bias in the convolution. Then:

BNTT(xti) = γtx̂ti (6.8)

From the energy consumption perspective, the placement of the BNTT layer just before spiking neu-
rons would allow, in a trained network at inference time, to incorporate the normalization operations
in the convolution weights, without further computational load. BNTT has been originally developed
in [46] for rate-based networks with LIF neurons, trained from scratch with SG. In this work, its
effectiveness in latency based network with IFL neurons is tested. The normalization of the input
can be applied across different dimensions of the minibatch. Two variants have been tested here:
neuron-wise BNTT, in which statistics and hyperparameters are computed for each single neuron,
and spatial BNTT, in which statistic are computed for each channel in the convolution (so there is a
dedicated value of µ, β, γ for each layer, for each channel, for each time step).

20

7. SNN models

Spiking Neural Network models adopted in this work do not differ with respect to regular ANNs, except
for the activation functions, replaced by layers of spiking neurons. Multilayer Perceptrons (MLP) and
Convolutional Neural Networks (CNN) are the building blocks used in this activity to define the test
cases. A MLP with Limited Receptive Field has also been developed to circumvent some possible
limitations of neuromorphic hardware in implementing convolution (even if SNNs hardware tests are
not directly included in this activity). In this section, only significant differences w.r.t. standard
Neural Network models are detailed.

7.1. Multilayer Perceptrons

The most simple ANN architecture, Spiking MLPs up to 3 hidden layer in size have been tested.

7.2. Convolutional Spiking Neural Networks

State-of-the-art performances in image classification tasks are achieved by means of Convolutional
Neural Networks. A benchmark architecture of a Spiking CNN has been formulated to be adopted
in numerical tests. The use of a common baseline structure for test cases is useful to highlight the
relative impact of single changes. This allows to easily compare SNN-specific variations: neuron model,
encoder/decoder models, neuron hyperparamentes, and so on.

Such benchmark architecture is shown in Fig. 13. A VGG-style general architecture has been
selected: it consists in a learnable convolutional encoder (see Sec. 4.3), followed by two convolutional
layers. Except at the encoder, at each convolution spatial dimensions half in size, while the number
of filters is doubled. Two fully connected layers (a hidden layer and the output layer) are placed on
top of the network. The reduction in size along the spatial dimensions (height and width) is achieved
by means of a stride value s = 2 in the convolution, a solution that proved to be more efficient
at training SNNs in preliminary tests. Nevertheless, also models with classic max pooling has been
tested. Variations with different number of layers, different neurons, types of regularization, size of
layers, and encoding/decoding styles have been studied.

16
Encoder:

ConvIAFOnce(k3 s1)

I

32
Conv1:
k5 s2

I/
2

64
Conv2:
k5 s2

I/
4

100

FC1

10

FC2

10

Decoder

Convolution Spiking layer Fully connected

Figure 13: Benchmark convolutional architecture.

21

7.3. Multilayer perceptron with limited receptive fields

Convolutional Neural Network models are one of the most natural choice for the processing of images
for artificial models, given the high compatibility with hardware such as Graphics Processing Units
(GPUs) or other devices. This is not the case for most of neuromorphic hardware. Indeed, mixed-
signals chips as BrainScale2 [50] are incompatible with convolution, given the design of the analog
crossbar array hardware performing Multiply and ACcumulation (MAC) operations. Even for digital
neuromorphic hardware devices, which could theoretically support convolution, this is not always
the case. For instance, in the case of Loihi [51], the lack of support is due to the design of the
software Application Program Interface (API). In many of these cases, to infer convolutional models
on neuromorphic hardware, it is necessary to unroll the convolutional operation, leading to a memory
inefficient implementation.

Because of that, we decided to include Multi-Layer-Perceptron (MLP) models among the models to
test and benchmark, which represents a more hardware compatible choice compared to convolutional
spiking models. Generally the models are made by two or more cascaded MLP layers, each one having
LIF neurons as activations. The only exception is the last layer, which include LI neurons to enable
the use of Maximum last timestamp logarithmic voltage decoding, detailed in Sec. 5.1.

To emulate the behavior of convolutional models, which process images with a limited receptive
fields, we artificially limited the receptive field of the first MLP layer by multiplying its weights by a
matrix that masks the connections outside of a specific receptive field. An example of MLP-LRF model
is shown in Fig. 14. Furthermore, to potentially increase the performance, some of the models were
tested by making the LIF and LI neurons of each layers trainable. To this aim, synaptic and membrane
constants were randomly initialized at the beginning of training by using a normalized distribution.
In case of trainable LIF neurons, threshold voltage were also made trainable and initialized by using
a user-specified initial value for each layer.

3

Encoder

MLP-LRF

100

FC1

10

FC2

10

Decoder

Limited
receptive field

Spiking layer Fully connected

Figure 14: Example of MLP model with LRF layer. Input is divided in independent limited receptive fields, each one
mapped to a MLP layer of spiking neurons.

22

8. Estimation of computational load

One of the aims of this project is the establishment of a more rigorous way to compare energy consump-
tion among different Spiking Neural Networks, and between SNNs and their ANN/DNN counterparts.
The final objective is not to develop a method to estimate the absolute energy required, for the number
of the unknown parameters is too high for such a task, but rather to achieve a credible way to perform
relative comparisons.

When dealing with ANNs in traditional computing hardware (CPU, GPU, TPU), data movement
dominates energy consumption at inference, reaching up to 90 % of the total for certain architectures
[52, 53]. Hence, even if widely used, number of MAC (FLOP, MVM) and the number of weights are
not ideal metrics for energy computation. Hence, energy consumption can be expressed by the sum
of two terms:

E = Ecomp + Emem (8.1)

where Ecomp is the computational energy, and Emem is the memory energy, consumed to move data
(weights and feature maps) across the memory. While the computational energy is directly dependent
on the actual number and type of floating point operations, the estimation of the memory energy is
more complex, for modern hardware organizes memory in hierarchy with different speed of access.
The way in which data flows across the hierarchy is one of the most prominent factors that affect
and differentiate the various architectures (CPU, GPU with and without dedicated tensor operations,
e.g. Nvidia tensor cores). An accurate estimation of the energy would require the modeling of the
data flow, tailored for the specific network and layer architecture (i.e. layer types, dimensions, and
sequence) [52]. It would seem reasonable to adopt a black-box approach like in [54] to estimate a
general metrics, expressed in GMAC/W (billions of MAC operation per Watt) as an attempt to take
into account the average contributions of both computational and memory energy. While such method
could be simplistic for absolute comparison between different networks (e.g. a CNN w.r.t. a MLP,
which require radically different handling of memory), it could be a viable way to compare the same
network architecture on different computing hardware. Nevertheless, this approach comes with its own
limitations. In recent years, machine learning-tailored hardware has seen an impressive increment in
both absolute performance and power efficiency (see in example [55] compared to [56]), mostly due to
specialized computing units (tensor cores, TPUs). But such performances are achieved by means of
extreme parallelism, which entails the processing of data in batches. In fact, there is a huge difference
in energy consumption between batched and non-batched data in such type of hardware, especially
due to the fact that most of the memory optimization strategies are way less effective without massive
parallelization [57]. Unfortunately, the estimation of the energy spent in non-batched data processing
cannot be generalized and would require direct measurement on specific use cases. Moreover, the
energy efficiency drops quickly whenever the HW capability is not saturated, due to relatively high
power consumption in idle mode, in which a modern GPU can require up to 80 W4.

The most used metrics to compare SNNs performances are the number of emitted spikes and the
number of synaptic operations [26, 46]. Even if a certain increasing trend in energy can expected
with increasing number of spikes, different internal connectivity can lead to very different numbers of
synaptic operations, making such metric only a very rough estimation. [26] estimates and compare
the power consumption of different coding schemes in SNNs by implementing very simple benchmark
networks on an FPGA. Useful to compare different coding schemes, this method is hardly effective in
comparing large networks and different neuron models, for an equivalent HW implementation should
be realized for each architecture. Moreover, a comparison with equivalent ANN models would be
impossible.

4Measurement taken on a Nvidia RTX A6000 GPU board, mounted in a Intel(R) Xeon(R) W-2275 CPU, 128 GB RAM
system. The reported power value is related only to the GPU.

23

8.1. Assumptions

The aim of this work is to find a hardware-agnostic method, capable to put in place a relative compar-
ison of the computational load of SNNs based on different neuron models, and to compare them with
their ANN counterparts. To this aim, the number of Equivalent Multiply and Accumulate Operations
(EMAC) is proposed as metric. Such metric is indeed not suitable to estimate the absolute energy
consumption at inference, for several assumptions and experimental measurements related to actual
hardware architecture and implementation would be needed; nevertheless, is a good starting point to
perform initial trade-offs and relative comparison between network architectures.

Remark. For sake of simplicity from here forward in this document the terms energy consumption
and computational load of a network are both referred, even if in not completely appropriate way,
to the value of EMAC required by the network to perform a single inference.

Also, the assumptions required for the implementation of the proposed method are minimized:

Relative weights of different types of floating point operations. All the floating point operations
performed in standard ANNs are of the Multiply and Accumulate (MAC) type. Conversely, in SNNs
a significant part of the computation entails simpler Accumulate (AC) operations, thanks to the
binary nature of spikes. Then, different relative weights need to be assigned to AC and MAC in the
estimation of the related computational burden. [53] reports a 0.9 pJ energy consumption for AC,
4.6 pJ for MAC, for FP32 number format in a 45 nm CPU architecture, taking into account only the
actual computation energy (excluding the memory contribution). In this work, it is assumed that
memory movement is the dominant factor in the determination of the energy performance: assuming
a unitary weight for MAC, this leads to a conservative value of 2/3 assigned to the AC weight, due to
the fact that in an Accumulate operation only 2 numbers are involved, instead of 3 as in the MAC.

Optimal network implementation. No assumption is made on the actual implementation of the
networks. Only the strict number of floating point operations necessary for inference is included in
the estimation, with no overhead related to input/output operations, system idle power consumption,
or software libraries implementation.

Digital implementation All the assumptions above imply a further, underlying assumption, that is
the network is implemented in a digital fashion. Although analog neuromorphic processors promise
unprecedented improvements in energy consumption [58, 59, 60], a rigorous comparison between dif-
ferent networks would be even harder, being the actual energy consumption extremely dependent on
the specific technological solution, often tailored to specific types of network (i.e. neuron models). The
assumption of a digital implementation allows the achievement of more reliable comparison between
different architectures. Moreover, SNN performances obtained with this method can be considered a
conservative estimate, especially in the comparison with ANNs.

8.2. Neuron models

In this section, the number and types of floating point operations required by the different neuron
models adopted in this work are identified. In a Spiking Neural Network, part of the operations is
performed whenever a spike is received or emitted (synaptic operations, while other operations are
executed at each time step during the update of the neurons internal states. Then, the total number
of equivalent MAC operations Etot depends on two distinct contributions:

Etot = Esyn + Eupd (8.2)

24

where Esyn is the synaptic operation contribution, and Eupd the neuron update. The two term can be
further expanded in:

Etot = sesyn + nTeupd (8.3)

where s is the total number of synaptic operations performed during the inference, n is the number
of neurons in the network, and T is the number of time steps. The two terms esyn and eupd are
respectively the energy per synaptic operation and the energy per neuron update and they depend on
the specific neuron model. In the following, these two parameters are derived for the different types on
neuron considered in this work, expressed in terms of EMAC (as defined in Sec. 8.1). The distinction
is still convenient whenever applied to actual energy estimation, for in neuromorphic hardware the
single floating point operation can have different energy costs but energy consumption can still be
distinguished between synaptic operations and neuron updates.

8.2.1. IFL neuron

The discrete dynamic of an IFL neuron in the Norse framework is described by the following equations
(the index of the neuron is omitted for clarity):

ik+1 = ik +
∑nS

j=1wjSjk + b

vk+ 1
2

= vk + ik+1∆t

vk+1 = vk+ 1
2
− vthSk+1

(8.4)

where i and v are the neuron current and potential, respectively; k and k + 1 identify two subsequent
discrete time steps, nS is the number of pre-synaptic neurons (the neurons in the receptive field of the
unit), Sj the received pre-synaptic spikes (the spikes emitted by the jth pre-synaptic neuron), wj the
corresponding weights , b the bias, Sk+1 = H(vk+ 1

2
−vth) the emitted spikes, ∆t the width of the time

step. No index is indicated for the bias: in fact in a linear, fully connected layer, there are just one
bias for the whole layer, while for a convolutional layer there is a bias for each channel. Nevertheless,
from the perspective of the single neuron is irrelevant. Looking to an energy-efficient implementation,
the current update can be rewritten as:

ik+1∆t = ik∆t +

nS∑
j=1

wj∆tSjk + b∆t (8.5)

and since ∆t is constant, i∆t = ĩ, wj∆t = w̃j , and b∆t = b̃ can be treated as single quantities (avoid
in this way the multiplication by ∆t), leading to:

ĩk+1 = ĩk +
∑nS

j=1 w̃jSjk + b̃

vk+ 1
2

= vk + ĩk+1

vk+1 = vk+ 1
2
− vthSk+1

(8.6)

From the point of view of the necessary floating point operations, the contribution of each term in the
system (8.6) is:

• accumulation of input spikes: given that the input spikes Sjk are binary spikes, +
∑nS

j=1 w̃jSjk

is a AC operation every time a spike is received (synaptic operation);

• current bias update: +b̃ is a AC op. every time instant (contribution to neuron update);

• potential update, input current contribution: +ĩ is a AC op. every time instant (contribution
to neuron update);

25

• potential reset at spike emission: −vthSk+1 is formally an AC op. for each emitted spike, but
the potential reset can be implemented in different ways, among which the simplest is just the
assignment of v = vreset that is not even a floating point operation. The contribution of spike
emission to total energy consumption is neglected.

The energy parameters for the IFL neuron can be then expressed as:

IFL:

{
esyn = 1 AC = 0.667 EMAC

eupd = 2 AC = 1.333 EMAC
(8.7)

8.2.2. LIF neuron

The discrete LIF dynamics in Norse can be described as:
ik+1 = ik − ik

∆t

τsyn
+
∑nS

j=1wjSjk + b

vk+ 1
2

= vk + (ik+1 − vk)
∆t

τmem

vk+1 = vk+ 1
2
− vthSk+1

(8.8)

Following the same procedure as seen for the IFL neuron, the contributions to the energy parameters
are:

• accumulation of input spikes: +
∑nS

j=1wj∆tSjk is a AC operation every time a spike is received
(synaptic operation);

• current update, exponential decay: −i
∆t

τsyn
is a MAC operation every time instant (contribution

to neuron update). Please note that it is no more possible here to aggregate i∆t as in the IFL
case;

• current update, bias: +b is a AC op. every time instant (contribution to neuron update);

• potential update: +(i− v)
∆t

τmem
is an AC op. (the parenthesis), followed by a MAC op. every

time instant (contribution to neuron update);

• potential reset at spike emission: this contribution is neglected (see IFL neuron at Sec. 8.2.1).

Then, the energy parameters for the LIF neuron are:

LIF:

{
esyn = 1 AC = 0.667 EMAC

eupd = 2 AC + 2 MAC = 3.333 EMAC
(8.9)

8.2.3. IF (Mostafa 2017) neuron

The discrete dynamics of this neuron can be described as follows:
ik+1 = ik − ik

∆t

τsyn
+
∑nS

j=1wjSj

vk+ 1
2

= vk + ik+1∆t

vk+1 = vk+ 1
2
− vthSk+1

(8.10)

As in the IFL model, some operations can be aggregated to optimize the computation. The current
update can be rewritten as:

ik+1∆t = ik∆t− ik∆t
∆t

τsyn
+

nS∑
j=1

wj∆tSj (8.11)

26

again, i∆t = ĩ and wj∆t = w̃j , leading to the simplified system:
ĩk+1 = ĩk − ĩk

∆t

τsyn
+
∑nS

j=1 w̃jSj

vk+ 1
2

= vk + ĩk+1

vk+1 = vk+ 1
2
− vthSk+1

(8.12)

The energy parameters can be now obtained from the system (8.12):

• accumulation of input spikes: given that the input spikes Sjk are binary spikes, +
∑nS

j=1 w̃jSjk

is a AC operation every time a spike is received (synaptic operation);

• current update, exponential decay: −ĩk
∆t

τsyn
is a MAC op. every time instant (contribution to

neuron update);

• potential update, input current contribution: +ĩ is a AC op. every time instant (contribution
to neuron update);

• potential reset at spike emission: this contribution is neglected (see IFL neuron at Sec. 8.2.1)

Then, the energy parameters for the IF (Mostafa 2017])neuron are:

IF (Mostafa 2017):

{
esyn = 1 AC = 0.667 EMAC

eupd = 1 AC + 1 MAC = 1.667 EMAC
(8.13)

8.3. Estimation procedure

The energy consumption at inference is then computed by means of Eq. (8.3), here reported for clarity:

Etot = sesyn + nTeupd (8.14)

Given the specific network architecture, the number of neurons n and the number of time steps T are
immediately known, while a way to estimate the number of synaptic operations s is needed. The com-
putation can be performed layer-wise. The first contribution to the total synaptic operations derives
by the flowing of spikes between subsequent layers. The number of synaptic operations performed
between a layer l and the previous layer l − 1 can be estimated by:

s(l) = ns(l) nn(l) T P(l−1)(S) (8.15)

where ns is the number of pre-synaptic connections in the neuron receptive field, and nn is the number
of neuron in the layer, both dependent on the type of layer (convolutional, fully connected etc.). T is
the number of time steps, and P(l−1)(S) is the probability that a pre-synaptic neuron emits a spike.
This last term can be estimated by:

P(l−1)(S) ∼
Ns(l−1)

T nn(l−1)
(8.16)

in which Ns(l−1) is the total number of spikes emitted by the previous layer at inference. Substituting
(8.16) in (8.15) we obtain:

s(l) ∼ ns(l) nn(l) T
Ns(l−1)

T nn(l−1)
= ns(l) nn(l)

Ns(l−1)

nn(l−1)
= ns(l) nn(l) f(l−1) (8.17)

where fl−1 is the spiking rate of the previous layer.

27

Additional synaptic operations are performed inside recurrent layers. In this case, the layer output
spikes are routed recursively as input to the layer itself: depending on the type of layer (convolutional,
fully connected, etc.), such recursive routing is itself a convolution or a linear connection. In this case,
the number of synaptic operations due to the recursion sr(l) can be computed as:

sr(l) = ns(l) nn(l) f(l) (8.18)

which is similar to Eq. (8.17) except that the spiking rate of the same layer f(l) is used.

TTFS decoding. In case of Time-To-First-Spike and rank order encoding, the inference ends de facto
at the time the first spike is emitted by the output layer: that time instant shall be considered for
estimation of spike rate and number of time steps, leading to an even lower computational burden.
This implies also that the inference time T is not fixed and can vary for each single inference: latency
performance can be still assessed in a statistical way. Conversely, for rate-based encoding the time of
inference T is constant and predefined.

8.3.1. Computation of connectivity parameters

In this section the computation of the connectivity parameters ns and nn is expounded for different
layer types.

2D Convolution. For a Conv2d layer:

ns = k2Cin (8.19)

nn = whCout (8.20)

where k is the kernel size, w and h are the two spatial dimensions of the output (width and height after
the convolution), Cin and Cout the number of respectively input and output channels. The output
dimensions w and h can be computed with the parameters of the convolutional layer with the standard
formula:

h = floor

(
h− + 2p− k

s

)
+ 1 (8.21)

where h− is the height before the convolution, p is the padding, k the kernel size, s the stride. The
same formula is used also for the computation of the width w.

Fully connected layer. The computation of connectivity parameters for a Linear, fully connected
layer is simply:

ns = Cin (8.22)

nn = Cout (8.23)

MLP with limited receptive field. A perceptron layer with limited receptive field is equivalent to a
convolution with a single output channel (Cout = 1) and kernel size (which is the size of the receptive
field) equal to the stride value (k = s). Equations (8.19), (8.20), and (8.21) are used, with a proper
selection of parameters.

8.3.2. Equivalent ANN

For a ANN, floating point operations happen for all the inputs of each neurons, but without the time
dimension and the states updates. So for each layer we have just one contribution:

nS nNEMAC (8.24)

28

The nonlinear output function of the ANN neurons can or cannot contribute to the energy con-
sumption: i.e. a ReLU is in practice not a floating point operation at all, and it could be neglected;
more complex functions, like Sigmoid Tangent or SeLU, involve some computation and could have an
impact. For simplicity, we stick to ReLU and do not consider any additional contribution by output
function.

8.4. Known limitations

The energy estimation approach here presented has both strengths and weaknesses. The main ad-
vantage is the achievement of a metric more accurate than the mere number of spikes (see Sec. 9.3),
capable to compare very different models (different encoding, different neurons models, and even SNNs
w.r.t. ANNs). In analyzing the results, it must be taken into account that some network architectures
are not equally efficient while implemented on different hardware. In fact, while ANN are nowadays
extremely efficient on hardware like GPU and TPU (especially if batched computation is applicable),
their implementation on neuromorphic hardware could be even impossible. The opposite is valid for
SNNs: while on neuromorphic devices they promise to be extremely efficient in terms of energy, with
no need to operate in batch, their implementation on standard hardware is complex, if efficiency is
desired: the use of libraries such PyTorch make prototyping and training very easy, but slow and
memory consuming, for the network is to be unrolled in time. Moreover, while the network is trained
offline it still could be possible to process input in batches, but in a real world application this could be
easily not possible. In this, SNNs on neuromorphic hardware would have a clear advantage. Another
issue that makes the estimation of absolute energy even more hardware-dependent is the fact that
on standard computing devices (CPU/GPU/TPU) the relative weight of a floating point operation
is always the same, while it is not necessarily the same on neuromorphic hardware, where, even in
digital implementation, synaptic operations and neuron update may happen in different parts of the
processor, leading to different energy consumption even for operations that formally are of the same
type [51].

Still, the approach followed in this work maintain a certain usefulness. Being hardware-agnostic,
it allows relative comparisons between architectures, enabling at least preliminary information for
trade-off. Moreover, in case a SNN would achieve a better adimensional energy consumption w.r.t.
its ANN counterpart, it can be expected that such advantage would be even larger once ported on
neuromorphic hardware.

In the current approach, there are some known factors that lead to a potential overestimation of
the adimensional energy. In absence of biases, the internal state (post-synaptic current and potential)
of each neuron does not require updates until the first input spike is received. As the number of layer
increases, this factor becomes more relevant. Moreover, when neuron that spike once at most are used,
after a spike is emitted the neuron goes silent and its update can be stopped. In any case, such kind of
optimization could be not necessarily available in actual implementation, depending on the hardware
and/or the API used. For this reason they were not included in the energy estimation process.

There are also underestimation factors. In fact, the adopted approach does not take into account any
energy consumption contribution but the operations strictly necessary for the inference. In particular,
idle power consumption and possible overhead due to general API implementation are not taken into
account: these two terms can have a very large variability depending on the actual hardware platform.
Their general effect would be to reduce relative differences.

29

9. Numerical results

In this section, the tests carried out to assess the potential performance of SNNs are expounded, and
the achieved results are discussed. Several architectures have been trained, SNNs and their ANN
counterparts, to compare their performance in terms of accuracy vs EMAC.

9.1. Test cases

The 57 test cases run in this activity are summarized in Table 3 in Appendix A. If not otherwise spec-
ified, all the cases are trained with the Superspike surrogate gradient method [31, 18] in a customized
Norse framework [61]. Test cases belong to four main categories:

• spiking Multilayer Perceptrons, IFLOnce neurons, latency encoding;

• spiking Multilayer Perceptrons with Limited Receptive Field, LIF neurons, rate encoding;

• spiking Convolutional Neural Networks, IFLOnce neurons, latency encoding;

• spiking Convolutional Neural Networks, LIF neurons, rate encoding.

Also, their corresponding ANN counterparts have been trained to have a term of comparison. All
the ANNs adopt ReLU as activation function:

• Multilayer Perceptrons;

• Multilayer Perceptrons with limited receptive field;

• Convolutional Neural Networks.

Moreover, some special cases have been trained to test specific features:

• P020 tests the effectiveness of LIF neurons with latency encoding and SG training;

• dodo a is a convolutional network with LIF network and a different architecture w.r.t. the
VGG-style used as general benchmark (see Sec. 7.2);

• dodo b is a MLP with IF neurons (one spike at most) with latency encoding, trained with
optimization of spike times like in [47], to compare this training method with SG;

• dodo c is a recurrent MLP with LIF neurons and rate encoding, designed to assess the effect of
recurrence in spiking layers.

In the following sections, the achieved results are shown and their implications are discussed.

9.2. Accuracy vs EMACS

The first and most important figure of merit is the achieved accuracy w.r.t. the energy consumption.
Figure 15 shows the obtained results. Not all the test cases are shown, but just the ones which
attain the best performance for each of the groups mentioned in Sec. 9.1, to highlight what could
be considered a Pareto front of the achieved performance. The box at the bottom right shows the
distribution of the test cases among the aforementioned groups.

The first, and most notable, result is that SNNs are able to reach performance comparable of
ANNs, with significantly less floating point operations. This is particularly evident looking at the
latency architectures P032, P036, and P039, corresponding respectively to the ANNs cases PANN16,
PANN13, and PANN14 : a ∼ 2.5 % drop in efficiency corresponds to a ∼ 60 % decrease in the number
of floating point operations per inference. Performances and not equally good for rate based networks
(P041, P021, P019) with the benchmark architecture (Sec. 7.2), which have a slightly worse accuracy
w.r.t. latency ones, coupled with an energy consumption worse than the ANNs counterparts. But the

30

TEST_0

TEST_4

TEST_8

TEST_5

P017

P019
P021P041

dodo_a

dodo_c

P020

P030
P031

P032 P036
P039

P043

P045

dodo_b

PANN02

PANN03

PANN04

PANN05

PANN06

PANN10

PANN11

PANN13
PANN14

PANN15

PANN16

2 5 100k 2 5 1M 2 5 10M 2 5 100M 2 5

0.4

0.5

0.6

0.7

0.8

0.9

1 encoding, neuron
rate, LIF_trainable
rate, LIF
ttfs, LIF
ttfs, IFLOnce
ttfs, IF
ANN, ReLu

E_tot (EMAC)

Te
st

 a
cc

ur
ac

y

Figure 15: Accuracy vs adimensional energy (EMAC). The dimension of the marker is proportional to the number of
the network layers, as a rough index of the network complexity. In the square at the lower right, the main groups of
test cases are higlighted: A) ANN – MLP with limited receptive field; B) ANN – MLP; C) ANN – CNN; D) SNN –
MLP with TTFS encoding, IF neuron; E) SNN – CNN with TTFS encoding, IF neuron; F) SNN – MLP with rate-based
coding, LIF neuron; G) SNN – CNN with rate-based coding and LIF neuron. A part of the main groups, dodo c is a
SNN MLP with recurrence and LIF neuron, while P020 is a convolutional SNN with TTFS encoding and LIF neuron.

alternate architecture dodo a hits better performance than latency ones on both accuracy and EMAC.
This suggests that architectures that are good for standard ANNs could not necessarily be the best
ones for Spiking Neural Networks.

The opposite can be observed for simpler networks: both MLPs and MLP with Limited Receptive
Field present increased performance w.r.t. their ANNs counterpart in term of accuracy, highlighting
the potential of spiking system to store a large amount of information efficiently. Nevertheless, for
such simple networks, this is achieved at the expense of a larger amount of floating point operations
(EMAC). Moreover, the accuracy of spiking MLP and MLP-LRF networks still remains relatively low,
under 75 %, a value uncompetitive with the CNNs and the SCNNs, albeit better than their ANNs
counterparts. It must be said that a prominent role in the determination of the total EMAC per
inference in SNNs is played by the number of time steps in the simulation, a hyperparameter whose
optimization has not been specifically pursued in the this work. Its role is even more important in
simple networks in which the reduced number of neurons forces the information to be compressed,
reducing in this way the sparsity of the computation (with a high number of synaptic operations
due to the fully connected architecture of the MLPs). In this case, a non optimized number of time
steps acts as a multiplier in the estimation of the EMAC per inference. The limited receptive field,
applicable only to the first layer in the network to cope with this specific problem, seems not sufficient
to significantly limit the impact of the subsequent fully connected layers. Conversely, the inherently
small receptive field of the convolutional layers is particularly apt to exploit the sparsity of the spiking
computation. A more detailed analysis on the different sources of energy consumption inside the
networks at inference time is included in Sec. 9.3.

31

Case P020 shows how the coupling of LIF neurons with latency encoding and SG training suffers a
loss in accuracy.

The effect of recurrence has been analyzed in case dodo c: despite a certain increase in accuracy in
a very compact model, being the recurrence a way to store additional information in the same layer,
the number of EMAC is significantly increased as well. Being the recurrent layer placed at the bottom
of the layer stack, it happens in a relatively large layer, with a significant impact over the number of
synaptic operations. The impact of recurrence on higher and/or convolutional layers is still an open
point. Additional considerations about the impact of the internal network connectivity to the total
number of EMACs per inference are made in Sec. 9.3.

Case dodo b has been adopted to compare latency encoding trained with SG method to a similar
network trained with Backpropagation Through Time (BPTT) in the flavor described in [36]. The
training achieved a remarkably low level of EMAC per inference, compared to similar networks trained
with SG. Nevertheless, BPTT showed to require a huge computational effort in the training phase.
To achieve a functional network on the available computational resources, the input required to be
scaled to 16 × 16 pixel. Such scaling has for sure contributed to the reduction in energy consumption
but also poses doubts to possible increase in performance, involving a loss of information. Moreover,
the huge computational effort could make the scaling to larger models impracticable. With respect
to Surrogate Gradient, since spike times are directly computed, there is no way to impose an upper
bound on the maximum simulation time, and since spike times are computed analytically, there’s no
pre-determined time step, with possible issues for a digital implementation on hardware. To perform a
proper comparison, an arbitrary selection of ∆t = 1 ms has been made. For an optimized application,
a proper ∆t selection is required, in order to minimize the number of time steps at inference, preserving
the necessary amount of time resolution to avoid degradation in information decoding. All these issues
make the BNTT option less viable with respect SG training.

9.3. EMAC vs number of spikes

In this section the metric here proposed as harware-agnostic proxy of the energy consumption at
inference (EMAC) is compared with the most simple estimation often adopted in literature as first
estimation, that is the number of emitted spikes at inference.

Figure 16 shows the distribution of the two quantities across the test cases listed in Table 3 in
Appendix A. The average values evaluated on the test set are shown. If a general trend is present (as
the spikes increase, the EMACs are generally larger) it can be seen how limiting the estimation to the
spikes only could lead to large errors with a large variation of computational load among cases with
almost the same number of spikes, and vice versa. Moreover, this happens the most in the region of
maximum interest, the one at low energy/EMAC, zoomed in the box at lower-right in the Figure.

The reason of this behavior reside in the fact that a significant part of the EMAC per inference
is due to synaptic operations. Hence, the actual routing of spikes between layers, and the network’s
internal connectivity pattern can change drastically the overall EMAC even with a similar number
of emitted spikes. Figure 17 shows the breakdown of EMAC per inference among neuron update,
synaptic operations, and recurrent synaptic operations for some selected test cases, while Fig. 18
shows their respective number of emitted spikes. Histograms show the average value, while error
bars shows the standard deviation. Cases P004 and P005 share the same convolutional architecture,
in terms of neuron types, latency encoder/decoder, and number and size of spiking layers. The
only difference between the twos is the connection pattern between convolutional layers: in P004
convolution is performed with kernel size k = 3 and stride s = 1, and dimensional reduction is
achieved with standard maxpool layers; conversely, in P005 convolution is performed with k = 5 and
s = 2, with no maxpooling. Due to the larger receptive field of neurons, P005 exhibits a ∼ 45 %
increase in EMAC/inference, even with ∼ 10 % less spikes. Looking at the EMAC breakdown, sharing
the same number and type of neurons, and with an almost equal average number of time steps at
inference (38.1 ms and 37.1 ms) P004 and P005 spend a practically equal amount of EMAC for neurons
update: the totality of the increase is instead due to a large difference in the energy spent for synaptic

32

0 100k 200k 300k 400k 500k

0

20M

40M

60M

80M

100M

120M

140M encoding, neuron
rate, LIF_trainable
rate, LIF
ttfs, LIF
ttfs, IFLOnce
Overall Trendline

Total spikes

E
_t

ot
 (E

M
A

C
)

0 20k 40k 60k

0

10M

20M

30M

40M

50M

Figure 16: Adimensional energy (EMAC) w.r.t. total emitted spikes per inference (average values over the test set).

operations. From the energy consumption perspective, it would appear advisable to privilege a low
level of internal connectivity (also takiong into account consideration made in Sec. 9.2). However,
it must be said that a larger receptive field in the convolution seems to bring significant benefit to
the system performance, with P005 scoring a 5.3 % in the absolute test accuracy. A careful trade-off
between energy and accuracy should be performed in the determination of am effective architecture.

The discrepancy between the number of spike and the computational load is even more evident in
the case dodo a, still a convolutional architecture. Being a rate-based network, the number of emitted
spikes is high, and almost doubles the values achieved by P004 and P005. Nevertheless, the lower
number of time steps (32 ms), and the lower size and number of layers make the average value of
EMAC/inference almost a third w.r.t. P005.
P030 and dodo c are another notable example showing the importance of the internal connectivity.

They both share the same MLP architecture with one hidden layer of 100 neurons, but while P030
is a standard MLP, with IFLOnce neurons and latency encoding, the hidden layer of dodo c is made
by recurrent LIF neurons with rate encoding. From Fig. 17 is possible to see how the computational
effort required at inference due to neuron update is practically the same (lighter IFLOnce neuron are
compensated by a higher number of time steps at inference). But recurrence involves a higher number
of synaptic operations, leading to a value of EMAC per inference more than 5 times higher. In case
dodo c, ∼ 92 % of the computational effort is due to synaptic operations in the recurrent layer.

9.4. Effectiveness of regularization

In this section, the results observed by the use of the regularization techniques detailed in Sec. 6 are
discussed.

33

P004 P005 P030 dodo_a dodo_c
0

5M

10M

15M
Energy contribution

Recurrent syn ops
Synaptic ops
Neuron update

Case name

E
ne

rg
y

(E
M

A
C

)

Figure 17: EMAC per inference for selected cases: breakdown among network tasks, average value over the test set.
The standard deviation value is indicated by black error bars.

P004 P005 P030 dodo_a dodo_c

5

100

2

5

1000

2

5

10k

2

5

Case name

To
ta

l s
pi

ke
s

Figure 18: Total emitted spike per inference, average value over the test set. The standard deviation value is indicated
by black error bars..

34

9.4.1. Target output time

In preliminary tests, the use of target output time regularization (see Sec. 6.1) showed only marginal
improvements in final test accuracy, when applied in SG training. See as example, the test cases P006
(with regularization) and P016/P018 (without). Nevertheless, a certain speedup in training has been
detected, proving a certain beneficial effect in the gradient flowing induced by the temporal penalty
term in Eq. (6.2). Except for some selected cases, this regularization has been used by default in
latency-based, SG trained networks.

9.4.2. Sum of synaptic weights

When applied to SG trained networks, the regularization scheme explained in [45] (see Sec. 6.2) did
not prove beneficial (see cases P013 and P014), with an even slightly decreased test accuracy value.
The scheme adopted by [36] was used in case dodo b, which implements the same network scheme of
the original paper.

9.4.3. Batch Normalization Through time

Figure 19 shows the impact of Batch Normalization Thorugh Time (BNTT, see Sec. 6.3). The his-
tograms report test accuracy, EMAC/inference, and number of emitted spikes per inference for three
test cases: P005, P016, and P032. These models entails the same convolutional architecture, with
IFL neurons spiking once at most, and latency encoding. The only difference is that P005 entails
no BNTT; neuron-wise BNTT is applied in P016 ; spatial BNTT is applied in P032. The number
of spikes is similar in all the 3 cases (with a lightly reduced value for P016). Neuron-wise BNTT
seems beneficial for the energy consumption, but with no improvement on the test accuracy. Spatial
BNTT improves both the accuracy, with a 5.4 % gain in the absolute test accuracy, and the energy
consumption, with a 24 % drop in EMAC per inference w.r.t. case P005.

0.8

0.85

0.9

0.95

10M

12M

14M

16M

P005 P016 P032
0

5k

10k

15k

20k

Test accuracy
Etot (EMAC)
Spikes

Test case

Te
st

 a
cc

ur
ac

y
E

to
t (

E
M

A
C

)
S

pi
ke

s

Figure 19: Effect of Batch Normalization Through Time. The three test cases shares the same convolutional architecture
presented in Sec. 7.2, except for the application of BNTT. P005) no BNTT; P016) neuron-wise BNTT; P032) spatial
BNTT.

35

Moreover, BNTT can give some insights on the internal functioning of the network. Figure 20 shows
the values of the output scale parameter γ for the two convolutional layers in case P032. In each layer,
there is a value of γ fore each time step, for each convolution channel, since spatial BNTT is applied.
In this case, γ are initialized at 1 at the beginning of the training. It is clearly visible ho a temporal
pattern is correctly learned for each channel. But in both the layers is possible to see which is the
time interval in which the training has changed the value of the parameters: from zero to 25 ms for the
first layer, from 3 ms to 40 ms for the second one. This range is shifted forward in time for the higher
layer, as it could be expected, as it takes a certain amount of time for the potential in the lower layer
to increase enough to spike. But this information shows also which is the time range in which each
layer affects the network output, i.e. the fact that backpropagation has left the values of γ in layer 2
unchanged after 40 ms is an indication that any spike emitted by the layer after that time has a null
or negligible impact on the final output. This information could be exploited in future developments
to further optimize the training process.

0 10 20 30 40 50 60

0.8

1.0

1.2

1.4

L1

0 10 20 30 40 50 60
Time (ms)

0.8

1.0

1.2

L2

Figure 20: P032, Batch Normalization Through Time, learned γ in the two convolutional layers. The network is capable
to identify a temporal pattern in the incoming spike trains.

9.5. Scaling to deeper architectures

Despite the regularization schemes tested in this work, and the generally promising performances
achieved in accuracy at inference, SNNs still show a certain struggle in scaling to deeper architectures.
In this section, the behavior of SNNs with respect to scaling is analyzed. Figure 21, a close-up of
Fig. 15, shows the performances, in term of test accuracy vs energy (average EMAC per inference)
of the most notable convolutional architectures tested in this work. Differently from Fig. 15, not
just the top performing models are shown, but also some other test cases designed to study the
performances achieved when equal architectures (in term of layer type and sequence) are applied to
different types of network (latency-based SNNs, rate-based SNNs, ANNs). Table 1 summarizes the
test cases of Figure 21, showing in a synoptic way the correspondences of architectures, ordered in
increasing complexity.

All the latency-based SNNs adopt a ranking order coding, with IFL neurons set to spike once at
most, and they are mostly variations of the benchmark architecture detailed in Sec. 7.2. Latency
based encoding is achieved by means of a convolutional version of of a constant current IAF (with one
spike at most, see Secs. 4.2.2 and 4.3). All latency-based models are trained with BNTT applied to
convlutional layers (Sec. 9.4.3). Among the rate-based networks, all the networks adopts a max voltage
decoder, while the encoder is different: in dodo a, the encoding is obtained by convoluting the input
image, and feeding the convolution output as a constant input to a layer of LIF neurons; P019 adopts

36

a convolutional variant of a constant current LIF encoder (see Sec. 4.1.1; in case P021, whilst being
a rate-based network, the same latency encoder mentioned above for latency-based cases is adopted
as a way to limit the number of spikes at inference. Case P041 is the same model of case P021, but
the number of time step at inference is truncated at the minimum with no performance degradation,
evaluated on the validation set (while performances shown in Fig. 21 are evaluated on the test set).
This allows to significantly limit the energy consumption of a rate-based with max voltage decoder,
with a minimal impact on the accuracy. The included ANN models are the respective counterparts of
the SNNs.

P019

P021P041

dodo_a

P032

P033

P035

P036
P039

P044

P045

PANN01

PANN09

PANN13

PANN14

PANN15

PANN16

3 4 5 6 7 8 9
10M

2 3 4 5 6 7 8 9
100M

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

encoding, neuron
rate, LIF
ttfs, IFLOnce
ANN, ReLu

E_tot (EMAC)

Te
st

 a
cc

ur
ac

y

Figure 21: Scalability of SNNs. Spiking Neural Networks still struggle when scaled to deeper architectures, w.r.t.
ANNs.

The synoptic table allows us to discern different trends as the architecture complexity increases,
among the different network types. It can be seen that convolutional ANNs follows a general trend in
which as the network complexity increases, scaling to deeper architectures, also the accuracy tends to
improve. Even if at a certain point also the training hyperparameters and the selection of the correct
LR scheduling assumes a certain importance (see PANN09 as example, in which the accuracy drops
despite the higher number of layers), it is known that VGG-style ANNs of moderate deepness are
capable to achieve state of the art accuracy >99 % [62]. A different behavior is observed for Spiking
Neural Networks: while at lower complexities they even outperform ANNs, showing the potential
of spiking neuron in storing information, as the network deepness increases they reach a sort of
maximum: at this point they seems to preserve a good performance, with a clear advantage in terms
of energy (as EMAC per inference), w.r.t. their ANN counterparts. But as the complexity increases,
the performance starts to drop to unsatisfactory levels of accuracy.

A deeper insight of this phenomenon can be obtained by looking at the internal dynamics of the
networks. Figure 22 shows the temporal trend of the number of spikes emitted by each layer of different
models with increasing number of layers. All the models in the figure are latency based: P036, P039,
and P033 are also included in Fig. 21; P012 is a 11-layer model (10 plus the convolutional spiking
encoder) of the same network type that failed training (with a final test accuracy equal to 14.26 %,
slightly higher w.r.t. a random guess). P036 in Fig. 22a represents a case of well trained SNN:
in the two convolutional levels, the layer takes a certain amount of time to collect spikes from its

37

Table 1: Synoptic table with test cases in Fig. 21. Cases are ordered in increasing complexity and deepness of the
network. Convolutional encoder, if present, is included in the layers listed in the ”Architecture” field.

Input
size

Kernel,
stride

Architecture Latency Rate ANN

32 k3, s1 C(20), MP(2), C(40), MP(2), C(20),FC(10) P044 dodo a PANN15

32 k5, s2 C(16), C(32), C(64), FC(100), FC(10) P043

32 k5, s2 C(32), C(64), C(128), FC(100), FC(10) P045 PANN16

64 k5, s2 C(16), C(32), C(64), FC(100), FC(10) P032 P019,
P021,
P041

PANN01

64 k5, s2 C(16), C(64), C(128), FC(100), FC(10) P036 PANN13

64 k5, s2 C(16), C(64), C(128), C(256), FC(100), FC(10) P039 PANN14

64 k5, s2 C(16), C(32), C(32), C(64), C(64), FC(100), FC(10) P033

64 k5, s2 C(16), C(16), C(16), C(32), C(32), C(64), C(64), C(128),
C(128), FC(100) ,FC(10)

PANN09

predecessor, and the neurons’ potential increases. As the voltage levels approach the threshold, the
number of emitted spikes starts to increase, reaches a maximum, and then slowly decrease, as less
significant neurons spike. As it can be expected, the response of subsequent layers is slightly translated
along time, as each layer needs to accumulate a certain amount of spikes emitted by the layer before.
In case P0339 (Fig. 22b), with just one convolutional layer more, the trained response is already
suboptimal. In fact, at the second layer the rise in spikes number proceeds in two steps: first, around
6 ms the spike level rises, to stabilize at ∼9 ms; a second, more relevant rise starts at 15 ms, culminating
in the layer’s peak at ∼20 ms. At layer 3, this behavior repeats even more evident, with a secondary
peak at ∼12 ms and the main peak at 25 ms; this leads the subsequent layer 4 to its peak of activity
well before the previous layer has emitted its most relevant spikes. The synchronicity is recovered
between layers 4 and 5 (the output layer) but that means that the final output depends on partial
information.

As the number of layers increases, this behavior is even more pronounced. In case P033 in Fig. 22c,
layer 5 reaches its top activity before the peak is reached by the two previous layers, 4 and 3. As the
deepness continue to increase, this phenomenon compromises the training. Case P012 in Fig. 22d is
a clear example: spike activity in layer 5 rises and reach its peak in response of a very few input spike
from the previous layer. In this way, the most of the information included in the input is not involved
in the inference, resulting in a poor final accuracy. More investigation are needed to unlock successful
training on deeper networks. Two possible directions for future investigations are possible: network
initialization and regularization during training.

38

0 10 20 30 40 50 60
0

500

1000

1500

L1
 sp

ike
s

0 10 20 30 40 50 60
0

250

500

750

L2
 sp

ike
s

0 10 20 30 40 50 60
0

5

10

L3
 sp

ike
s

0 10 20 30 40 50 60
Time (ms)

0

1

2

L4
 sp

ike
s

(a) Case P036 – effectively trained network.

0 10 20 30 40 50 60
0

500

L1
 sp

ike
s

0 10 20 30 40 50 60
0

250

500

L2
 sp

ike
s

0 10 20 30 40 50 60
0

200

L3
 sp

ike
s

0 10 20 30 40 50 60
0

5
L4

 sp
ike

s

0 10 20 30 40 50 60
Time (ms)

0

2

L5
 sp

ike
s

(b) Case P039 – suboptimal training.

0 10 20 30 40 50 60
0

200
400

L1
 sp

ike
s

0 10 20 30 40 50 60
0

500

1000

L2
 sp

ike
s

0 10 20 30 40 50 60
0

200

L3
 sp

ike
s

0 10 20 30 40 50 60
0

100

L4
 sp

ike
s

0 10 20 30 40 50 60
0

5

L5
 sp

ike
s

0 10 20 30 40 50 60
Time (ms)

0

1

2

L6
 sp

ike
s

(c) Case P033 – suboptimal training.

0 10 20 30 40 50 60
0

250

L1
 sp

ike
s

0 10 20 30 40 50 60
0

500

L2
 sp

ike
s

0 10 20 30 40 50 60
0

250

L3
 sp

ike
s

0 10 20 30 40 50 60
0

250

L4
 sp

ike
s

0 10 20 30 40 50 60
0

100

L5
 sp

ike
s

0 10 20 30 40 50 60
0

1000

L6
 sp

ike
s

0 10 20 30 40 50 60
0

1000

L7
 sp

ike
s

0 10 20 30 40 50 60
0

2500

L8
 sp

ike
s

0 10 20 30 40 50 60
0

20

L9
 sp

ike
s

0 10 20 30 40 50 60
Time (ms)

0

2

L1
0

sp
ike

s

(d) Case P012 – failed training.

Figure 22: Scaling to deeper networks with SCNN and rank order coding (IFLOnce neurons). In the 3 examples above,
batch normalization through time is applied on convolutional layers (all except the last two). As the number of layers
grows, subsequent layers fail to collect most of the information of lower layers, and starts to emit spikes basing only on
a few presynaptic spikes.

39

10. Conclusion

A preliminary investigation of the potential benefits of Spiking Neural Networks based on temporal
coding for onboard Artificial Intelligence applications in space was carried out in this work. As case
study, a scene classification task was considered, based on the EuroSAT RGB dataset. SNN models,
and their ANN counterparts, were compared in term of accuracy and complexity.

A new metrics, Equivalent MAC operations (EMAC) per inference, was developed to estimate the
relative computational load in a hardware-agnostic way. With respect to spikes count or number of
synaptic operations, EMAC is suitable to assess the impact of different neuron models, to weight
separately contributions given by synaptic operations w.r.t. neuron updates, and to compare SNNs
with their ANN counterparts. Albeit the version presented in this study achieves adimensional esti-
mation, and then is only a proxy of energy consumption, internal parameters can be tuned to match
the features of specific hardware, if known, achieving also absolute estimation.

Benchmark SNN models, both latency and rate based, exhibited a minimal loss in accuracy, com-
pared with their equivalent ANNs, with significantly lower (from −50 % to −80 %) EMAC per infer-
ence. An even larger improvement in energy consumption can be expected with SNNs when imple-
mented on actual neuromorphic hardware, with respect to standard ANNs running on TPUs. While
Surrogate Gradient proved to be an easy and effective way to achieve offline, supervised training of
SNNs, scaling to very deep architectures, to recover state-of-the-art performances, is still an issue.
This is in part due to the large amount of memory required at training: this value scales linearly with
the size of the network (with constant number of time steps) and linearly with the number of time
steps; but even if the final latency can be limited at the end of the training (especially with TTFS
coding in which the inference ends as the first output spike is emitted), more deep networks require a
higher latency at training, to allow a proper propagation of the spikes in the network: so, in practice,
the memory used at training scales similarly to the square of the network size. This could limit the
effectiveness of some regularization techniques, like BNTT: enabling training with limited memory
can be achieved by reducing the batch size, which on the other hand can degrade the precision of sta-
tistical quantities like mean and variance of the input. Also, a higher number of time steps implies an
accumulation over time of intrinsic gradient estimation errors due to surrogate gradient formulation,
further lowering the training performance.

A research effort is still needed, especially in the search of new architectures capable to exploit SNNs
peculiarities, and in the development of regularization techniques and initialization methods suited
to latency-based networks. Attention should be also given to recent developments in online training
techniques which do not require backward propagation in time, but only along the network at each time
step [63], and new ANN-to-SNN conversion techniques tailored to achieve extremely low latency [64].
Overall, Spiking Neural Networks are a competitive candidate to achieve autonomy in space systems.
For a successful application, future works should also explore sensitivity of neuromorphic processors
and other event-based hardware to space environment, to identify possible disturbance models to be
included in the training, enabling robustness even in presence of input or synaptic noise.

40

A. Test cases table

The complete list of the test cases run during the Aridna activity, together with their settings and parameters, is summarized in the following table. The notation adopted to describe the table field is detailed in Appendix B.

Table 3: Test cases and results.

Case Type Arch Input size Encoder Structure Neuron Decoder Decoding dt T Regularization Nl Np Test Acc. Emitted spikes Latency Etot (EMAC)

(ms) mean (std) mean (std) mean (std)

TEST 0 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(128),
FC(10)

LIF trainable last time voltage log Rate 1 64 — 3 6 013 092 0.671 11 390.0 (221.7) 64.0 (0.0) 2.8191e+06 (2.1354e+04)

TEST 1 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(5), FC(128),
FC(10)

LIF trainable last time voltage log Rate 1 64 — 3 2 100 792 0.656 11 371.0 (223.3) 64.0 (0.0) 2.7490e+06 (2.0605e+04)

TEST 2 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(128),
FC(10)

LIF trainable last time voltage log Rate 1 64 — 3 6 013 092 0.665 19 366.8 (199.0) 64.0 (0.0) 2.8175e+06 (2.0732e+04)

TEST 3 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(5), FC(128),
FC(10)

LIF trainable last time voltage log Rate 1 64 — 3 2 100 792 0.666 85 395.1 (216.2) 64.0 (0.0) 2.7489e+06 (2.0390e+04)

TEST 4 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(32),
FC(64), FC(10)

LIF trainable last time voltage log Rate 1 64 — 4 5 967 908 0.618 15 725.2 (304.4) 64.0 (0.0) 2.8122e+06 (1.9858e+04)

TEST 5 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(5), FC(32),
FC(64), FC(10)

LIF last time voltage log Rate 1 64 — 4 2 085 033 0.552 04 870.1 (573.3) 64.0 (0.0) 2.7481e+06 (2.0925e+04)

TEST 6 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(5), FC(32),
FC(64), FC(10)

LIF trainable last time voltage log Rate 1 64 — 4 2 085 848 0.603 33 741.7 (313.5) 64.0 (0.0) 2.7433e+06 (1.9164e+04)

TEST 7 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(64),
FC(10)

LIF trainable last time voltage log Rate 10 64 — 3 5 981 220 0.529 26 2908.7 (611.1) 64.0 (0.0) 3.2530e+06 (1.1720e+05)

TEST 8 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(128),
FC(10)

LIF trainable last time voltage log Rate 1 128 — 3 6 013 092 0.711 67 543.7 (296.8) 128.0 (0.0) 5.6319e+06 (4.0391e+04)

TEST 9 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(128),
FC(10)

LIF trainable last time voltage log Rate 1 128 — 3 6 013 092 0.683 15 2082.4 (1 429.4) 128.0 (0.0) 5.6844e+06 (6.6741e+04)

TEST 10 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(3), FC(128),
FC(128), FC(256),
FC(10)

LIF trainable last time voltage log Rate 1 256 — 5 6 065 060 0.685 56 12 294.5 (5 486.5) 256.0 (0.0) 1.2482e+07 (3.5838e+05)

TEST 11 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(5), FC(128),
FC(128), FC(256),
FC(10)

LIF trainable last time voltage log Rate 1 256 — 5 2 152 760 0.665 93 12 164.6 (5 449.6) 256.0 (0.0) 1.2170e+07 (3.4204e+05)

TEST 12 SNN MLP—LRF 3,64,64 ConstCurrentLIF
(30, 0, 0.1)

LRF(5), FC(128),
FC(128), FC(256),
FC(10)

LIF trainable last time voltage log Rate 1 256 — 5 2 152 760 0.672 04 5171.2 (2 864.0) 256.0 (0.0) 1.1643e+07 (1.7653e+05)

P001 SNN CONV 3,64,64 TTFSLinear (0.032) C(16,3,1,1,zeros),
MP(2),
C(32,3,1,1,zeros),
MP(2),
C(64,3,1,1,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

5 1 662 984 0.724 07 45 301.5 (1 562.3) 43.1 (2.8) 1.1407e+07 (3.0088e+05)

P002 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

MP(2),
C(32,3,1,1,zeros),
MP(2),
C(64,3,1,1,zeros),
FC(10) *

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

4 187 328 0.809 44 11 898.6 (1 725.6) 41.2 (3.9) 9.6125e+06 (4.1941e+05)

P003 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

MP(2),
C(32,3,1,1,zeros),
MP(2),
C(64,3,1,1,zeros),
FC(10)

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

4 187 424 0.828 33 10 976.1 (2 292.6) 38.2 (4.3) 8.7620e+06 (4.8070e+05)

(continued on next page)

41

Table 3, continued

Case Type Arch Input size Encoder Structure Neuron Decoder Decoding dt T Regularization Nl Np Test Acc. Emitted spikes Latency Etot (EMAC)

(ms) mean (std) mean (std) mean (std)

P004 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

MP(2),
C(32,3,1,1,zeros),
MP(2),
C(64,3,1,1,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

5 1 662 984 0.799 07 22 372.0 (1 332.2) 38.1 (2.5) 1.1343e+07 (2.7786e+05)

P005 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

5 1 703 944 0.852 22 20 692.8 (1 458.5) 37.1 (2.4) 1.6175e+07 (5.1048e+05)

P006 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise),
Sakemi2021
(0.055, 70.0)

5 4 849 672 0.849 44 15 272.5 (2 088.8) 41.0 (3.1) 1.4490e+07 (1.0759e+06)

P007 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

5 1 703 944 0.338 70 152 444.6 (28 323.7) 8.1 (1.3) 3.9955e+07 (4.7815e+06)

P008 SNN CONV 3,64,64 ConvConstCurrentLIF
(16, 3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

5 1 703 944 0.380 93 301 364.1 (144 284.0) 17.4 (6.9) 9.7982e+07 (2.9040e+07)

P009 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 64 — 5 1 703 944 0.835 93 377 620.6 (20 541.6) 64.0 (0.0) 1.0641e+08 (3.8253e+06)

P010 SNN CONV 3,64,64 ConvConstCurrentLIF
(16, 3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 64 — 5 1 703 944 0.812 41 864 987.6 (53 506.4) 64.0 (0.0) 3.1440e+08 (1.7705e+07)

P011 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(16,3,1,1),
C(16,3,1,1),
C(32,5,2,2),
C(32,3,1,1),
C(64,5,2,2),
C(64,3,1,1),
C(128,5,2,2),
C(128,3,1,1),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

11 1 288 072 0.111 85 87 184.9 (2 184.8) 64.0 (0.0) 4.6041e+07 (3.4887e+05)

P012 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(16,3,1,1),
C(16,3,1,1),
C(32,5,2,2),
C(32,3,1,1),
C(64,5,2,2),
C(64,3,1,1),
C(128,5,2,2),
C(128,3,1,1),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise),
Sakemi2021
(0.055, 70.0)

11 17 016 712 0.142 59 32 913.8 (16 018.7) 34.6 (13.2) 2.7176e+07 (3.4052e+06)

P013 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0),
Stanojevic2022
(0.001)

5 1 703 944 0.813 89 24 687.1 (1 177.1) 39.7 (2.8) 1.7593e+07 (4.6403e+05)

P014 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise),
Sakemi2021
(0.055, 70.0),
Stanojevic2022
(0.001)

5 4 849 672 0.815 37 13 882.4 (2 660.1) 41.8 (3.8) 1.2472e+07 (7.5213e+05)

(continued on next page)

42

Table 3, continued

Case Type Arch Input size Encoder Structure Neuron Decoder Decoding dt T Regularization Nl Np Test Acc. Emitted spikes Latency Etot (EMAC)

(ms) mean (std) mean (std) mean (std)

P016 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise)

5 4 849 672 0.850 37 15 988.5 (2 743.1) 42.0 (3.5) 1.3362e+07 (8.4222e+05)

P017 SNN CONV 3,64,64 ConvConstCurrentLIF
(16, 3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 64 — 5 1 703 944 0.813 15 804 631.1 (40 287.7) 64.0 (0.0) 3.0185e+08 (1.3671e+07)

P018 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise)

5 4 849 672 0.842 22 15 658.3 (3 119.0) 42.5 (3.1) 1.4066e+07 (9.1655e+05)

P019 SNN CONV 3,64,64 ConvConstCurrentLIF
(16, 3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 64 — 5 1 703 944 0.879 63 292 867.3 (99 414.0) 64.0 (0.0) 1.0862e+08 (2.5971e+07)

P020 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF ttfs log Latency 1 64 Sakemi2021
(0.055, 70.0)

5 1 703 944 0.833 52 113 548.8 (33 674.8) 35.0 (8.1) 3.5702e+07 (4.5138e+06)

P021 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 64 — 5 1 703 944 0.896 67 153 847.0 (8 911.4) 64.0 (0.0) 6.3803e+07 (2.5125e+06)

P022 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise)

5 4 856 822 0.756 30 14 920.3 (4 105.2) 41.6 (7.4) 1.5054e+07 (1.2918e+06)

P024 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise),
Sakemi2021
(0.055, 70.0)

5 4 849 782 0.835 19 16 073.0 (3 239.6) 38.9 (2.6) 1.2853e+07 (1.1155e+06)

P025 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT
(neuron-wise),
Sakemi2021
(0.055, 70.0)

5 4 856 182 0.847 22 17 511.1 (5 016.9) 39.8 (2.8) 1.3430e+07 (1.7634e+06)

P028 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 1 710 088 0.859 26 14 469.8 (1 228.1) 38.7 (2.4) 1.4149e+07 (5.1347e+05)

P029 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 1 710 088 0.886 48 14 841.0 (2 164.0) 37.5 (2.3) 1.3810e+07 (6.2981e+05)

P030 SNN MLP 3,64,64 TTFSLinear (0.032) FC(100), FC(10) IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

2 1 229 910 0.697 41 58.0 (5.4) 41.5 (3.5) 1.5061e+06 (5.7275e+04)

P031 SNN MLP 3,64,64 TTFSLinear (0.032) FC(200), FC(200),
FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

3 2 500 010 0.711 48 264.5 (15.7) 42.0 (4.5) 2.3682e+06 (7.3751e+04)

P032 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 1 710 088 0.906 11 19 244.6 (2 659.8) 36.4 (2.3) 1.2319e+07 (9.9517e+05)

P033 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(32,5,1,2,zeros),
C(64,5,2,2,zeros),
C(64,5,1,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

7 1 287 638 0.859 44 38 494.6 (4 497.0) 40.3 (2.1) 2.9616e+07 (2.7428e+06)

P034 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 3 521 128 0.852 96 35 373.2 (4 766.6) 39.0 (2.2) 3.4918e+07 (2.6614e+06)

(continued on next page)

43

Table 3, continued

Case Type Arch Input size Encoder Structure Neuron Decoder Decoding dt T Regularization Nl Np Test Acc. Emitted spikes Latency Etot (EMAC)

(ms) mean (std) mean (std) mean (std)

P035 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
C(256,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

6 2 718 568 0.886 85 44 001.7 (2 688.3) 38.6 (2.1) 4.6846e+07 (1.7757e+06)

P036 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 3 521 238 0.909 81 39 504.2 (4 786.2) 35.9 (2.3) 2.9090e+07 (3.6289e+06)

P037 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 3 521 238 0.893 52 38 325.6 (3 021.7) 35.6 (2.3) 2.6249e+07 (2.8770e+06)

P038 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 1 710 198 0.879 44 18 643.6 (2 268.5) 36.5 (2.5) 1.4988e+07 (7.9992e+05)

P039 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
C(256,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

6 2 718 678 0.902 41 47 948.5 (7 764.5) 37.5 (2.3) 4.3057e+07 (5.0240e+06)

P040 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 3 521 238 0.902 96 38 159.6 (3 512.2) 35.7 (2.2) 2.9737e+07 (2.2662e+06)

P041 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 39 — 5 1 703 944 0.895 37 71 688.1 (8 635.4) 39.0 (0.0) 3.6394e+07 (2.4550e+06)

P042 SNN CONV 3,64,64 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

LIF max voltage log Rate 1 64 BNTT (spatial), 5 1 710 088 0.731 48 504 926.0 (95 288.1) 64.0 (0.0) 1.0024e+08 (1.8734e+07)

P043 SNN CONV 3,32,32 ConvIAFOnce (16,
3, 1, 1)

C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 481 288 0.837 59 6801.6 (409.5) 36.1 (3.6) 3.6992e+06 (1.2957e+05)

P044 SNN CONV 3,32,32 ConvIAFOnce (20,
3, 1, 1)

C(40,5,2,2,zeros),
C(20,5,2,2,zeros),
FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

4 57 260 0.800 93 5839.5 (414.8) 36.8 (4.8) 3.9688e+06 (3.1635e+05)

P045 SNN CONV 3,32,32 ConvIAFOnce (32,
3, 1, 1)

C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

IFLOnce ttfs log Latency 1 64 BNTT (spatial),
Sakemi2021
(0.055, 70.0)

5 1 089 576 0.891 85 9568.0 (557.0) 37.9 (2.5) 1.1026e+07 (4.7378e+05)

PANN01 ANN CONV 3,64,64 — C(16,3,1,1,zeros),
C(32,5,2,2,zeros),
C(64,5,2,2,zeros),
FC(100), FC(10)

ReLU — — — — — 5 1704 284 0.931 30 — — — — 2.9623e+07 (0)

PANN02 ANN MLP—LRF 3,64,64 — LRF(3), FC(128),
FC(10)

ReLU — — — — — 3 63 406 0.660 00 — — — — 7.6300e+04 (0)

PANN03 ANN MLP—LRF 3,64,64 — LRF(5), FC(128),
FC(10)

ReLU — — — — — 3 23 134 0.592 04 — — — — 3.5587e+04 (0)

PANN04 ANN MLP—LRF 3,64,64 — LRF(3), FC(32),
FC(64), FC(10)

ReLU — — — — — 4 18 318 0.499 44 — — — — 3.1244e+04 (0)

PANN05 ANN MLP—LRF 3,64,64 — LRF(5), FC(32),
FC(64), FC(10)

ReLU — — — — — 4 8286 0.395 93 — — — — 2.0771e+04 (0)

PANN06 ANN MLP—LRF 3,64,64 — LRF(5), FC(64),
FC(10)

ReLU — — — — — 3 11 614 0.433 70 — — — — 2.4131e+04 (0)

(continued on next page)

44

Table 3, continued

Case Type Arch Input size Encoder Structure Neuron Decoder Decoding dt T Regularization Nl Np Test Acc. Emitted spikes Latency Etot (EMAC)

(ms) mean (std) mean (std) mean (std)

PANN07 ANN MLP—LRF 3,64,64 — LRF(3), FC(128),
FC(128), FC(256),
FC(10)

ReLU — — — — — 5 114 222 0.487 22 — — — — 1.2673e+05 (0)

PANN08 ANN MLP—LRF 3,64,64 — LRF(5), FC(128),
FC(128), FC(256),
FC(10)

ReLU — — — — — 5 73 950 0.543 33 — — — — 8.6019e+04 (0)

PANN09 ANN CONV 3,64,64 — C(16,3,1,1),
C(16,3,1,1),
C(16,3,1,1),
C(32,5,2,2),
C(32,3,1,1),
C(64,5,2,2),
C(64,3,1,1),
C(128,5,2,2),
C(128,3,1,1),
FC(100), FC(10)

ReLU — — — — — 11 1 289 180 0.861 85 — — — — 8.9097e+07 (0)

PANN10 ANN MLP 3,64,64 — FC(100), FC(10) ReLU — — — — — 2 1229 916 0.649 44 — — — — 1.2298e+06 (0)

PANN11 ANN MLP 3,64,64 — FC(200), FC(200),
FC(10)

ReLU — — — — — 3 2500 016 0.692 96 — — — — 2.4996e+06 (0)

PANN12 ANN CONV 3,64,64 — C(16,3,1,1,zeros),
MP(2),
C(32,3,1,1,zeros),
MP(2),
C(64,3,1,1,zeros),
FC(100), FC(10)

ReLU — — — — — 5 1663 324 0.743 15 — — — — 1.2846e+07 (0)

PANN13 ANN CONV 3,64,64 — C(16,3,1,1,zeros),
C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

ReLU — — — — — 5 3509 372 0.943 89 — — — — 8.3690e+07 (0)

PANN14 ANN CONV 3,64,64 — C(16,3,1,1,zeros),
C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
C(256,5,2,2,zeros),
FC(100), FC(10)

ReLU — — — — — 6 2690 940 0.962 96 — — — — 1.3448e+08 (0)

PANN15 ANN CONV 3,32,32 — C(20,3,1,1,zeros),
MP(2),
C(40,3,1,1,zeros),
MP(2),
C(20,3,1,1,zeros),
FC(10)

ReLU — — — — — 4 27 906 0.822 22 — — — — 2.8698e+06 (0)

PANN16 ANN CONV 3,32,32 — C(32,3,1,1,zeros),
C(64,5,2,2,zeros),
C(128,5,2,2,zeros),
FC(100), FC(10)

ReLU — — — — — 5 1077 852 0.942 04 — — — — 2.7919e+07 (0)

dodo a SNN CONV 3,32,32 — C(20,3,1,1,zeros),
MP(2),
C(40,3,1,1,zeros),
MP(2),
C(20,3,1,1,zeros),
FC(10)

LIF max voltage Rate 1 32 — 4 18 140 0.917 22 40 850.6 (13 766.5) 32.0 (0.0) 5.7632e+06 (6.9816e+05)

dodo b SNN MLP 3,16,16 — FC(100), FC(200),
FC(10)

IAFOnce ttfs neg Latency adim — Mostafa2017 3 98 800 0.682 59 264.0 (39.4) 755.1 (225.8) 4.5527e+05 (8.4250e+04)

(continued on next page)

45

Table 3, continued

Case Type Arch Input size Encoder Structure Neuron Decoder Decoding dt T Regularization Nl Np Test Acc. Emitted spikes Latency Etot (EMAC)

(ms) mean (std) mean (std) mean (std)

dodo c SNN MLP 3,32,32 ConstCurrentLIF
(100, 0, 0.2)

RecFC(100), FC(10) LIF max voltage log Rate 1 32 — 2 656 400 0.732 04 3793.4 (616.1) 32.0 (0.0) 8.4346e+06 (1.2618e+06)

46

B. Test cases notation

In this section the notation adopted in Table 3 is explained. Each table field is expounded in the
following.

Case

The identifier of the test case.

Type

SNN | ANN

Type of neural network (Spiking Neural Network or Artificial Neural Network).

Arch

Type of general architecture.

CONV

Convolutional Neural Network.

MLP

Multilayer Perceptron

MLP-LRF

MLP with limited receptive field (Sec. 7.3 at page 22).

Input size

nchannels,height,width

Size of the input image. If different from the original images in the EuroSat dataset, the file is
properly scaled before to be fed to the network.

Encoder

Type of encoder:

ConstCurrentLIF (tau_syn, tau_mem, threshold)

Constant current LIF encoder (Sec. 4.1.1 at page 13). Some parameters to define the LIF neuron
properties are needed in input.

TTFSLinear (tmax)

Linear TTFS encoder (Sec. 4.2.1 at page 4.2.1). tmax correspond to the maximum time to map the
input as spike as in Eq. (4.1).

ConvIAFOnce (nchannels, kernelsize, stride, padding)

47

Learnable, convolutional variant (see Sec. 4.3 at page 15) of the Constant Current IAF encoder, with
neurons spiking once at most (Sec. 4.2.2 at page 15). Convolution parameters are shown.

ConvConstCurrentLIF (nchannels, kernelsize, stride, padding)

Learnable, convolutional variant (see Sec. 4.3 at page 15) of the Constant Current LIF encoder (see
above).

Structure

This field reports the actual structure of the network, describing all the sequence of the internal layers
after the encoder (if any). In the following, the types of layer are summarized.

C (nchannels, kernelsize, stride, padding, padding_type)

Convolution layer.

FC (n_neurons)

Fully connected layer.

LRF (size_receptiveField)

Limited Receptive Field layer (see Sec. 7.3 at page 22).

MP (size)

Max Pool layer.

Neuron

Type of neuron adopted in teh network.

LIF

Leaky Integrate and Fire (Sec. 3.3 at page 11).

LIF_trainable

LIF neuron in which neuron internal parameters are actively learned and optimized during training.

IFLOnce

Non-leaky Integrate and Fire neuron with stepwise constant synapse (see Sec. 3.2 at page 3.2), which
can spike once at most.

IAFOnce

Integrate And Fire neuron with direct synapse (see Sec. 3.1 at page 9), which can spike once at most.

ReLU

Standard ReLU activation function for ANNs.

48

Decoder

Specific type of decoder adopted at network output.

last_time_voltage_log

Last timestamp logarithmic voltage decoder (see Sec. 5.1 at page 17).

max_voltage_log

Maximum logarithmic voltage decoder (see Sec. 5.3 at page 17).

max_voltage

Maximum voltage decoder (see Sec. 5.2 at page 17).

ttfs_log

Logarithmic inverse Time-To-First-Spike decoder (see Sec. 5.5 at page 18).

ttfs_neg

Negative Time-To-First-Spike decoder (see Sec. 5.4 at page 17).

Decoding

Rate | Latency

Type of decoding: rate based or latency based, as detailed in Sec. 5 at page 17

dt (float)

Width of the adopted time step (ms). Time steps are often expressed with a physical unit of measure
(ms), but for some architectures (i.e. case dodo b) can be adimensional.

T (int)

Number of time steps in the simulation.

Reg loss

Regularization method applied to the model. More than one type of regularization can be applied to
the same model.

BNTT (type)

Batch Normalization Through Time (see Sec. 6.3 at page 20). Two types of BNTT have been tested:
neuron-wise or spatial.

Sakemi2021 (t_target, gamma)

Output spikes regularization for rank order coding like in [37] (see Sec. 6.1 at page 19). Target output
time (t_target) and loss weights (gamma) are shown.

49

Stanojevic2022 (gamma)

Weight sum regularization as in [45] (see Sec. 6.2 at page 19). The value of the loss weight (gamma)
is shown.

Mostafa2017

Weight sum regularization as in [36] (see Sec. 6.2 at page 19).

Nl (int)

Number spiking layers: it includes the encoder (if any).

Np (int)

Number of trainable parameters.

Test Acc. (float)

Classification accuracy evaluated on the test set.

Emitted spikes (float, float)

Emitted spikes per inference (mean value and standard deviation, evaluated on the test set). Inference
is assumed to end at the Time-To-First-Spike at the output layer (for latency-based decoders); at the
last time step T for rate-based decoding.

Latency (float, float)

Latency at inference (mean value and standard deviation, evaluated on the test set), expressed in
number of time steps. Inference is assumed to end at the Time-To-First-Spike at the output layer
(for latency-based decoders); at the last time step T for rate-based decoding. Time steps are often
expressed with a physical unit of measure (ms), but for some architectures (i.e. case dodo b) can be
adimensional. Nevertheless, for the purposes of the energy consumption estimation, is the number of
computed time step that matters, especially in a digital implementation in which the execution time
does not necessarily coincide with the simulation time.

Etot (float, float)

Adimensional energy consumption per inference, expressed in Equivalent Multiply and ACcumulation
floating point operation (EMAC) as detailed in Sec. 8 at page 23. The estimate is given as mean value
and standard deviation. Inference is assumed to end at the Time-To-First-Spike at the output layer
(for latency-based decoders); at the last time step T for rate-based decoding.

50

References

[1] Gianluca Giuffrida et al. “CloudScout: A Deep Neural Network for On-Board Cloud Detection
on Hyperspectral Images”. In: Remote Sensing 12.14 (2020). issn: 2072-4292. doi: 10.3390/
rs12142205. url: https://www.mdpi.com/2072-4292/12/14/2205.

[2] Gianluca Furano et al. “Towards the Use of Artificial Intelligence on the Edge in Space Systems:
Challenges and Opportunities”. In: IEEE Aerospace and Electronic Systems Magazine 35.12
(Dec. 2020), pp. 44–56. issn: 1557-959X. doi: 10.1109/MAES.2020.3008468.

[3] Michele Bechini, Michèle Lavagna, and Paolo Lunghi. “Dataset Generation and Validation
for Spacecraft Pose Estimation via Monocular Images Processing”. In: Acta Astronautica 204
(Mar. 1, 2023), pp. 358–369. issn: 0094-5765. doi: 10.1016/j.actaastro.2023.01.012. url:
https://www.sciencedirect.com/science/article/pii/S0094576523000127 (visited on
01/13/2023).

[4] Stefano Silvestrini et al. “Implicit Extended Kalman Filter for Optical Terrain Relative Naviga-
tion Using Delayed Measurements”. In: Aerospace 9.9 (2022). issn: 2226-4310. doi: 10.3390/
aerospace9090503.

[5] Stefano Silvestrini et al. “Optical Navigation for Lunar Landing Based on Convolutional Neural
Network Crater Detector”. In: Aerospace Science and Technology 123 (2022), p. 107503. issn:
1270-9638. doi: 10.1016/j.ast.2022.107503.

[6] Guy Revach et al. “KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 1532–1547. issn: 1941-
0476. doi: 10.1109/TSP.2022.3158588.

[7] Arne Niitsoo et al. “A Deep Learning Approach to Position Estimation from Channel Impulse
Responses”. In: Sensors 19.5 (5 Jan. 2019), p. 1064. issn: 1424-8220. doi: 10.3390/s19051064.
url: https://www.mdpi.com/1424-8220/19/5/1064 (visited on 06/28/2023).

[8] Bing Han et al. “Cross-Layer Design Exploration for Energy-Quality Tradeoffs in Spiking and
Non-Spiking Deep Artificial Neural Networks”. In: IEEE Transactions on Multi-Scale Comput-
ing Systems 4.4 (Oct. 2018), pp. 613–623. issn: 2332-7766. doi: 10.1109/TMSCS.2017.2737625.

[9] Maxence Bouvier et al. “Spiking Neural Networks Hardware Implementations and Challenges:
A Survey”. In: ACM Journal on Emerging Technologies in Computing Systems 15.2 (Apr. 5,
2019), 22:1–22:35. issn: 1550-4832. doi: 10.1145/3304103. url: https://dl.acm.org/doi/
10.1145/3304103 (visited on 06/29/2023).

[10] Saeed Reza Kheradpisheh and Timothée Masquelier. “Temporal Backpropagation for Spiking
Neural Networks with One Spike per Neuron”. In: International Journal of Neural Systems
30.06 (2020), p. 2050027. doi: 10.1142/S0129065720500276.

[11] Aaron R. Voelker, Daniel Rasmussen, and Chris Eliasmith. A Spike in Performance: Training
Hybrid-Spiking Neural Networks with Quantized Activation Functions. Mar. 1, 2021. doi: 10.
48550/arXiv.2002.03553. arXiv: 2002.03553 [cs, q-bio, stat]. url: http://arxiv.
org/abs/2002.03553 (visited on 06/29/2023). preprint.

[12] Christoph Stöckl and Wolfgang Maass. Recognizing Images with at Most One Spike per Neuron.
2020. doi: 10.48550/arXiv.2001.01682. arXiv: 2001.01682 [cs]. url: https://arxiv.
org/abs/2001.01682. preprint.

[13] Saeed Reza Kheradpisheh, Maryam Mirsadeghi, and Timothée Masquelier. “BS4NN: Binarized
Spiking Neural Networks with Temporal Coding and Learning”. In: Neural Processing Letters
54.2 (Apr. 1, 2022), pp. 1255–1273. issn: 1573-773X. doi: 10.1007/s11063-021-10680-x.
url: https://doi.org/10.1007/s11063-021-10680-x (visited on 06/29/2023).

51

https://doi.org/10.3390/rs12142205
https://doi.org/10.3390/rs12142205
https://www.mdpi.com/2072-4292/12/14/2205
https://doi.org/10.1109/MAES.2020.3008468
https://doi.org/10.1016/j.actaastro.2023.01.012
https://www.sciencedirect.com/science/article/pii/S0094576523000127
https://doi.org/10.3390/aerospace9090503
https://doi.org/10.3390/aerospace9090503
https://doi.org/10.1016/j.ast.2022.107503
https://doi.org/10.1109/TSP.2022.3158588
https://doi.org/10.3390/s19051064
https://www.mdpi.com/1424-8220/19/5/1064
https://doi.org/10.1109/TMSCS.2017.2737625
https://doi.org/10.1145/3304103
https://dl.acm.org/doi/10.1145/3304103
https://dl.acm.org/doi/10.1145/3304103
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.48550/arXiv.2002.03553
https://doi.org/10.48550/arXiv.2002.03553
https://arxiv.org/abs/2002.03553
http://arxiv.org/abs/2002.03553
http://arxiv.org/abs/2002.03553
https://doi.org/10.48550/arXiv.2001.01682
https://arxiv.org/abs/2001.01682
https://arxiv.org/abs/2001.01682
https://arxiv.org/abs/2001.01682
https://doi.org/10.1007/s11063-021-10680-x
https://doi.org/10.1007/s11063-021-10680-x

[14] Eric Hunsberger and Chris Eliasmith. Training Spiking Deep Networks for Neuromorphic Hard-
ware. 2016. doi: 10.13140/RG.2.2.10967.06566. arXiv: 1611.05141 [cs]. url: http:
//arxiv.org/abs/1611.05141 (visited on 01/20/2023). preprint.

[15] Seongsik Park et al. T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding.
2020. doi: 10.48550/arXiv.2003.11741. arXiv: 2003.11741 [cs]. url: http://arxiv.org/
abs/2003.11741. preprint.

[16] Julian Göltz et al. Fast and Energy-Efficient Neuromorphic Deep Learning with First-Spike
Times. May 17, 2021. doi: 10.48550/arXiv.1912.11443. arXiv: 1912.11443 [cs, q-bio,

stat]. url: http://arxiv.org/abs/1912.11443 (visited on 12/22/2022). preprint.

[17] E.M. Izhikevich. “Which Model to Use for Cortical Spiking Neurons?” In: IEEE Transactions
on Neural Networks 15.5 (Sept. 2004), pp. 1063–1070. issn: 1941-0093. doi: 10.1109/TNN.
2004.832719.

[18] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gradient Learning in
Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neu-
ral Networks”. In: IEEE Signal Processing Magazine 36.6 (Nov. 2019), pp. 51–63. issn: 1558-
0792. doi: 10.1109/MSP.2019.2931595.

[19] Iulia M. Comsa et al. “Temporal Coding in Spiking Neural Networks with Alpha Synaptic Func-
tion”. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). May 2020, pp. 8529–8533. doi: 10.1109/ICASSP40776.2020.
9053856.

[20] Natalia Caporale and Yang Dan. “Spike Timing–Dependent Plasticity: A Hebbian Learning
Rule”. In: Annual Review of Neuroscience 31.1 (2008), pp. 25–46. doi: 10.1146/annurev.
neuro.31.060407.125639. pmid: 18275283. url: https://doi.org/10.1146/annurev.
neuro.31.060407.125639 (visited on 06/29/2023).

[21] Peter Diehl and Matthew Cook. “Unsupervised Learning of Digit Recognition Using Spike-
Timing-Dependent Plasticity”. In: Frontiers in Computational Neuroscience 9 (2015). issn:
1662-5188. doi: 10 . 3389 / fncom . 2015 . 00099. url: https : / / www . frontiersin . org /

articles/10.3389/fncom.2015.00099.

[22] Amirhossein Tavanaei, Timothée Masquelier, and Anthony S. Maida. “Acquisition of Visual
Features through Probabilistic Spike-Timing-Dependent Plasticity”. In: 2016 International
Joint Conference on Neural Networks (IJCNN). 2016 International Joint Conference on Neural
Networks (IJCNN). July 2016, pp. 307–314. doi: 10.1109/IJCNN.2016.7727213.

[23] Milad Mozafari et al. “Bio-Inspired Digit Recognition Using Reward-Modulated Spike-Timing-
Dependent Plasticity in Deep Convolutional Networks”. In: Pattern Recognition 94 (2019),
pp. 87–95. issn: 0031-3203. doi: 10.1016/j.patcog.2019.05.015.

[24] Milad Mozafari et al. “SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Net-
works With at Most One Spike per Neuron”. In: Frontiers in Neuroscience 13 (2019), p. 625.
issn: 1662-453X. doi: 10.3389/fnins.2019.00625.

[25] Peter U. Diehl et al. “Fast-Classifying, High-Accuracy Spiking Deep Networks through Weight
and Threshold Balancing”. In: 2015 International Joint Conference on Neural Networks (IJCNN).
2015 International Joint Conference on Neural Networks (IJCNN). July 2015, pp. 1–8. doi:
10.1109/IJCNN.2015.7280696.

[26] Wenzhe Guo et al. “Neural Coding in Spiking Neural Networks: A Comparative Study for
Robust Neuromorphic Systems”. In: Frontiers in Neuroscience 15 (2021), p. 212. issn: 1662-
453X. doi: 10.3389/fnins.2021.638474.

52

https://doi.org/10.13140/RG.2.2.10967.06566
https://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1611.05141
https://doi.org/10.48550/arXiv.2003.11741
https://arxiv.org/abs/2003.11741
http://arxiv.org/abs/2003.11741
http://arxiv.org/abs/2003.11741
https://doi.org/10.48550/arXiv.1912.11443
https://arxiv.org/abs/1912.11443
https://arxiv.org/abs/1912.11443
http://arxiv.org/abs/1912.11443
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1146/annurev.neuro.31.060407.125639
18275283
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.3389/fncom.2015.00099
https://www.frontiersin.org/articles/10.3389/fncom.2015.00099
https://www.frontiersin.org/articles/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2016.7727213
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.3389/fnins.2019.00625
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.3389/fnins.2021.638474

[27] Pritam Bose et al. “Spiking Neural Networks for Crop Yield Estimation Based on Spatiotempo-
ral Analysis of Image Time Series”. In: IEEE Transactions on Geoscience and Remote Sensing
54.11 (Nov. 2016), pp. 6563–6573. issn: 1558-0644. doi: 10.1109/TGRS.2016.2586602.

[28] Xiaoli Tao and Howard E. Michel. “Novel Artificial Neural Networks for Remote-Sensing Data
Classification”. In: Optics and Photonics in Global Homeland Security. Optics and Photonics
in Global Homeland Security. Vol. 5781. SPIE, May 19, 2005, pp. 127–138. doi: 10.1117/
12.609117. url: https://www.spiedigitallibrary.org/conference-proceedings-of-
spie/5781/0000/Novel- artificial- neural- networks- for- remote- sensing- data-

classification/10.1117/12.609117.full (visited on 06/29/2023).

[29] Edgar Lemaire et al. “An FPGA-Based Hybrid Neural Network Accelerator for Embedded
Satellite Image Classification”. In: 2020 IEEE International Symposium on Circuits and Sys-
tems (ISCAS). 2020 IEEE International Symposium on Circuits and Systems (ISCAS). Oct.
2020, pp. 1–5. doi: 10.1109/ISCAS45731.2020.9180625.

[30] Shilpa Suresh, Devikalyan Das, and Shyam Lal. “A Framework for Quality Enhancement of
Multispectral Remote Sensing Images”. In: 2017 Ninth International Conference on Advanced
Computing (ICoAC). 2017 Ninth International Conference on Advanced Computing (ICoAC).
Dec. 2017, pp. 9–14. doi: 10.1109/ICoAC.2017.8441181.

[31] Friedemann Zenke and Surya Ganguli. “SuperSpike: Supervised Learning in Multilayer Spiking
Neural Networks”. In: Neural Computation 30.6 (June 2018), pp. 1514–1541. issn: 0899-7667.
doi: 10.1162/neco_a_01086.

[32] Friedemann Zenke and Tim P. Vogels. “The Remarkable Robustness of Surrogate Gradient
Learning for Instilling Complex Function in Spiking Neural Networks”. In: Neural Computation
33.4 (Mar. 2021), pp. 899–925. issn: 0899-7667. doi: 10.1162/neco_a_01367.

[33] Julian Rossbroich, Julia Gygax, and Friedemann Zenke. “Fluctuation-Driven Initialization for
Spiking Neural Network Training”. In: Neuromorphic Computing and Engineering (Oct. 2022).
doi: 10.1088/2634-4386/ac97bb;10.48550/arXiv.2206.10226.

[34] Sumit Bam Shrestha and Garrick Orchard. SLAYER: Spike Layer Error Reassignment in Time.
Sept. 5, 2018. arXiv: 1810.08646 [cs, stat]. url: http://arxiv.org/abs/1810.08646
(visited on 12/22/2022). preprint.

[35] Sander M. Bohte, Joost N. Kok, and Han La Poutré. “Error-Backpropagation in Temporally
Encoded Networks of Spiking Neurons”. In: Neurocomputing 48.1 (Oct. 1, 2002), pp. 17–37.
issn: 0925-2312. doi: 10.1016/S0925-2312(01)00658-0. url: https://www.sciencedirect.
com/science/article/pii/S0925231201006580 (visited on 06/30/2023).

[36] Hesham Mostafa. “Supervised Learning Based on Temporal Coding in Spiking Neural Net-
works”. In: IEEE Transactions on Neural Networks and Learning Systems 29.7 (July 2018),
pp. 3227–3235. issn: 2162-2388. doi: 10.1109/TNNLS.2017.2726060.

[37] Yusuke Sakemi et al. “A Supervised Learning Algorithm for Multilayer Spiking Neural Net-
works Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design”. In: IEEE
Transactions on Neural Networks and Learning Systems (2021), pp. 1–15. issn: 2162-2388. doi:
10.1109/TNNLS.2021.3095068.

[38] Patrick Helber et al. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use
and Land Cover Classification. Feb. 1, 2019. arXiv: 1709.00029 [cs]. url: http://arxiv.
org/abs/1709.00029 (visited on 12/22/2022). preprint.

[39] Guillaume Bellec et al. Long Short-Term Memory and Learning-to-Learn in Networks of Spiking
Neurons. Dec. 25, 2018. doi: 10.48550/arXiv.1803.09574. arXiv: 1803.09574 [cs, q-bio].
url: http://arxiv.org/abs/1803.09574 (visited on 12/22/2022). preprint.

53

https://doi.org/10.1109/TGRS.2016.2586602
https://doi.org/10.1117/12.609117
https://doi.org/10.1117/12.609117
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5781/0000/Novel-artificial-neural-networks-for-remote-sensing-data-classification/10.1117/12.609117.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5781/0000/Novel-artificial-neural-networks-for-remote-sensing-data-classification/10.1117/12.609117.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5781/0000/Novel-artificial-neural-networks-for-remote-sensing-data-classification/10.1117/12.609117.full
https://doi.org/10.1109/ISCAS45731.2020.9180625
https://doi.org/10.1109/ICoAC.2017.8441181
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.1088/2634-4386/ac97bb; 10.48550/arXiv.2206.10226
https://arxiv.org/abs/1810.08646
http://arxiv.org/abs/1810.08646
https://doi.org/10.1016/S0925-2312(01)00658-0
https://www.sciencedirect.com/science/article/pii/S0925231201006580
https://www.sciencedirect.com/science/article/pii/S0925231201006580
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1109/TNNLS.2021.3095068
https://arxiv.org/abs/1709.00029
http://arxiv.org/abs/1709.00029
http://arxiv.org/abs/1709.00029
https://doi.org/10.48550/arXiv.1803.09574
https://arxiv.org/abs/1803.09574
http://arxiv.org/abs/1803.09574

[40] Steven K. Esser et al. “Convolutional Networks for Fast, Energy-Efficient Neuromorphic Com-
puting”. In: Proceedings of the National Academy of Sciences 113.41 (Sept. 2016), pp. 11441–
11446. issn: 1091-6490. doi: 10.1073/pnas.1604850113.

[41] Dongsung Huh and Terrence J Sejnowski. “Gradient Descent for Spiking Neural Networks”.
In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc., 2018.
url: https://papers.nips.cc/paper_files/paper/2018/hash/185e65bc40581880c4f2c82958de8cfe-
Abstract.html (visited on 06/30/2023).

[42] Stanis law Woźniak et al. “Deep Learning Incorporating Biologically Inspired Neural Dynamics
and In-Memory Computing”. In: Nature Machine Intelligence 2.6 (6 June 2020), pp. 325–336.
issn: 2522-5839. doi: 10.1038/s42256- 020- 0187- 0. url: https://www.nature.com/

articles/s42256-020-0187-0 (visited on 06/30/2023).

[43] Daniel Auge et al. “A Survey of Encoding Techniques for Signal Processing in Spiking Neural
Networks”. In: Neural Processing Letters 53.6 (Dec. 1, 2021), pp. 4693–4710. issn: 1573-773X.
doi: 10.1007/s11063-021-10562-2. url: https://doi.org/10.1007/s11063-021-10562-2
(visited on 06/28/2023).

[44] Sophie Denève and Christian K. Machens. “Efficient Codes and Balanced Networks”. In: Nature
Neuroscience 19.3 (3 Mar. 2016), pp. 375–382. issn: 1546-1726. doi: 10.1038/nn.4243. url:
https://www.nature.com/articles/nn.4243 (visited on 06/28/2023).

[45] Ana Stanojevic et al. “Approximating Relu Networks by Single-Spike Computation”. In: 2022
IEEE International Conference on Image Processing (ICIP). 2022 IEEE International Confer-
ence on Image Processing (ICIP). Oct. 2022, pp. 1901–1905. doi: 10.1109/ICIP46576.2022.
9897692.

[46] Youngeun Kim and Priyadarshini Panda. “Revisiting Batch Normalization for Training Low-
Latency Deep Spiking Neural Networks From Scratch”. In: Frontiers in Neuroscience 15 (2021).
issn: 1662-453X. doi: 10.3389/fnins.2021.773954. url: https://www.frontiersin.org/
articles/10.3389/fnins.2021.773954 (visited on 12/22/2022).

[47] Hesham Mostafa. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Aug. 16, 2017. doi: 10.48550/arXiv.1606.08165. arXiv: 1606.08165 [cs]. url: http:
//arxiv.org/abs/1606.08165 (visited on 12/22/2022). preprint.

[48] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. Version 3. Mar. 2, 2015. doi: 10.48550/arXiv.1502.
03167. arXiv: 1502.03167 [cs]. url: http://arxiv.org/abs/1502.03167 (visited on
12/22/2022). preprint.

[49] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. “Training Deep Spiking Neural Networks
Using Backpropagation”. In: Frontiers in Neuroscience 10 (2016). issn: 1662-453X. url: https:
//www.frontiersin.org/articles/10.3389/fnins.2016.00508 (visited on 06/22/2023).

[50] Christian Pehle et al. “The BrainScaleS-2 Accelerated Neuromorphic System With Hybrid
Plasticity”. In: Frontiers in Neuroscience 16 (2022). issn: 1662-453X. url: https://www.

frontiersin.org/articles/10.3389/fnins.2022.795876 (visited on 06/27/2023).

[51] Mike Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip Learning”. In:
IEEE Micro 38.1 (Jan. 2018), pp. 82–99. issn: 1937-4143. doi: 10.1109/MM.2018.112130359.

[52] Tien-Ju Yang et al. “A Method to Estimate the Energy Consumption of Deep Neural Net-
works”. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers. 2017 51st
Asilomar Conference on Signals, Systems, and Computers. Oct. 2017, pp. 1916–1920. doi:
10.1109/ACSSC.2017.8335698.

54

https://doi.org/10.1073/pnas.1604850113
https://papers.nips.cc/paper_files/paper/2018/hash/185e65bc40581880c4f2c82958de8cfe-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/185e65bc40581880c4f2c82958de8cfe-Abstract.html
https://doi.org/10.1038/s42256-020-0187-0
https://www.nature.com/articles/s42256-020-0187-0
https://www.nature.com/articles/s42256-020-0187-0
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1038/nn.4243
https://www.nature.com/articles/nn.4243
https://doi.org/10.1109/ICIP46576.2022.9897692
https://doi.org/10.1109/ICIP46576.2022.9897692
https://doi.org/10.3389/fnins.2021.773954
https://www.frontiersin.org/articles/10.3389/fnins.2021.773954
https://www.frontiersin.org/articles/10.3389/fnins.2021.773954
https://doi.org/10.48550/arXiv.1606.08165
https://arxiv.org/abs/1606.08165
http://arxiv.org/abs/1606.08165
http://arxiv.org/abs/1606.08165
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1502.03167
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://www.frontiersin.org/articles/10.3389/fnins.2016.00508
https://www.frontiersin.org/articles/10.3389/fnins.2016.00508
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/ACSSC.2017.8335698

[53] Mark Horowitz. “1.1 Computing’s Energy Problem (and What We Can Do about It)”. In: 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). Feb.
2014, pp. 10–14. doi: 10.1109/ISSCC.2014.6757323.

[54] Brian Degnan, Bo Marr, and Jennifer Hasler. “Assessing Trends in Performance per Watt for
Signal Processing Applications”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 24.1 (Jan. 2016), pp. 58–66. issn: 1557-9999. doi: 10.1109/TVLSI.2015.2392942.

[55] NVIDIA Corporation. GP100 Pascal Whitepaper. 2016. url: https : / / images . nvidia .

com/content/pdf/tesla/whitepaper/pascal- architecture- whitepaper.pdf (visited
on 06/30/2023).

[56] NVIDIA Corporation. Nvidia Ampere GA102 GPU Architecture Whitepaper. 2021. url: https:
//www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-

v2.pdf (visited on 03/03/2023).

[57] Mike Davies et al. “Advancing Neuromorphic Computing With Loihi: A Survey of Results and
Outlook”. In: Proceedings of the IEEE 109.5 (May 2021), pp. 911–934. issn: 1558-2256. doi:
10.1109/JPROC.2021.3067593.

[58] Johannes Schemmel et al. Accelerated Analog Neuromorphic Computing. Mar. 26, 2020. arXiv:
2003.11996 [cond-mat, q-bio]. url: http://arxiv.org/abs/2003.11996 (visited on
06/23/2023). preprint.

[59] Writam Banerjee, Revannath Dnyandeo Nikam, and Hyunsang Hwang. “Prospect and Chal-
lenges of Analog Switching for Neuromorphic Hardware”. In: Applied Physics Letters 120.6
(Feb. 7, 2022), p. 060501. issn: 0003-6951. doi: 10.1063/5.0073528. url: https://doi.org/
10.1063/5.0073528 (visited on 06/23/2023).

[60] Giacomo Indiveri et al. “Neuromorphic Silicon Neuron Circuits”. In: Frontiers in Neuroscience
5 (2011). issn: 1662-453X. url: https://www.frontiersin.org/articles/10.3389/fnins.
2011.00073 (visited on 06/23/2023).

[61] Christian Pehle and Jens Egholm Pedersen. Norse - A Deep Learning Library for Spiking
Neural Networks. Version 0.0.7. Oct. 2021. url: https://github.com/norse/norse (visited
on 06/27/2023).

[62] Paolo Lunghi and Stefano Silvestrini. Investigation of Low Energy Spiking Neural Networks
Based on Temporal Coding for Scene Classification – Study Proposal. 2021.

[63] Bojian Yin, Federico Corradi, and Sander M. Bohté. “Accurate Online Training of Dynamical
Spiking Neural Networks through Forward Propagation Through Time”. In: Nature Machine
Intelligence 5.5 (5 May 2023), pp. 518–527. issn: 2522-5839. doi: 10.1038/s42256- 023-

00650- 4. url: https://www.nature.com/articles/s42256- 023- 00650- 4 (visited on
08/22/2023).

[64] Zhanglu Yan et al. HyperSNN: A New Efficient and Robust Deep Learning Model for Resource
Constrained Control Applications. Aug. 17, 2023. doi: 10.48550/arXiv.2308.08222. arXiv:
2308 . 08222 [cs]. url: http : / / arxiv . org / abs / 2308 . 08222 (visited on 08/21/2023).
preprint.

[65] L. Abbott, B. DePasquale, and RM Memmesheimer. “Building Functional Networks of Spiking
Model Neurons”. In: Nature Neuroscience 19 (2016), pp. 350–355. doi: 10.1038/nn.4241.

[66] Guillaume Bellec et al. Biologically Inspired Alternatives to Backpropagation through Time
for Learning in Recurrent Neural Nets. Feb. 21, 2019. doi: 10.48550/arXiv.1901.09049.
arXiv: 1901.09049 [cs]. url: http://arxiv.org/abs/1901.09049 (visited on 12/22/2022).
preprint.

55

https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/TVLSI.2015.2392942
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://doi.org/10.1109/JPROC.2021.3067593
https://arxiv.org/abs/2003.11996
http://arxiv.org/abs/2003.11996
https://doi.org/10.1063/5.0073528
https://doi.org/10.1063/5.0073528
https://doi.org/10.1063/5.0073528
https://www.frontiersin.org/articles/10.3389/fnins.2011.00073
https://www.frontiersin.org/articles/10.3389/fnins.2011.00073
https://github.com/norse/norse
https://doi.org/10.1038/s42256-023-00650-4
https://doi.org/10.1038/s42256-023-00650-4
https://www.nature.com/articles/s42256-023-00650-4
https://doi.org/10.48550/arXiv.2308.08222
https://arxiv.org/abs/2308.08222
http://arxiv.org/abs/2308.08222
https://doi.org/10.1038/nn.4241
https://doi.org/10.48550/arXiv.1901.09049
https://arxiv.org/abs/1901.09049
http://arxiv.org/abs/1901.09049

[67] Guillaume Bellec et al. “A Solution to the Learning Dilemma for Recurrent Networks of Spiking
Neurons”. In: Nature Communications 11.1 (1 July 17, 2020), p. 3625. issn: 2041-1723. doi:
10.1038/s41467-020-17236-y. url: https://www.nature.com/articles/s41467-020-
17236-y (visited on 12/22/2022).

[68] Paolo Gabriel Cachi, Sebastián Ventura, and Krzysztof Jozef Cios. “Fast Convergence of Com-
petitive Spiking Neural Networks with Sample-Based Weight Initialization”. In: Information
Processing and Management of Uncertainty in Knowledge-Based Systems. Ed. by Marie-Jeanne
Lesot et al. Cham: Springer International Publishing, 2020, pp. 773–786. isbn: 978-3-030-50153-
2. doi: 10.1007/978-3-030-50153-2_57.

[69] Kristofor D. Carlson et al. “Biologically Plausible Models of Homeostasis and STDP: Stability
and Learning in Spiking Neural Networks”. In: The 2013 International Joint Conference on
Neural Networks (IJCNN). 2013, pp. 1–8. doi: 10.1109/IJCNN.2013.6706961.

[70] Iulia-Maria Comşa et al. “Spiking Autoencoders With Temporal Coding”. In: Frontiers in
Neuroscience 15 (2021). issn: 1662-453X. url: https://www.frontiersin.org/articles/
10.3389/fnins.2021.712667 (visited on 12/22/2022).

[71] Gourav Datta, Souvik Kundu, and Peter A. Beerel. Training Energy-Efficient Deep Spiking
Neural Networks with Single-Spike Hybrid Input Encoding. July 26, 2021. arXiv: 2107.12374
[cs]. url: http://arxiv.org/abs/2107.12374 (visited on 07/04/2023). preprint.

[72] Mike Davies. “Taking Neuromorphic Computing to the Next Level with Loihi 2”. In: (2021).

[73] Jason K. Eshraghian et al. Training Spiking Neural Networks Using Lessons from Deep Learn-
ing. 2021. preprint.

[74] M. E. Fouda et al. Spiking Neural Networks for Inference and Learning: A Memristor-based
Design Perspective. Oct. 8, 2019. doi: 10.48550/arXiv.1909.01771. arXiv: 1909.01771 [cs].
url: http://arxiv.org/abs/1909.01771 (visited on 02/13/2023). preprint.

[75] E. Paxon Frady et al. Neuromorphic Nearest-Neighbor Search Using Intel’s Pohoiki Springs.
2020. preprint.

[76] Brian Gardner and André Grüning. “Supervised Learning With First-to-Spike Decoding in
Multilayer Spiking Neural Networks”. In: Frontiers in Computational Neuroscience 15 (2021).
issn: 1662-5188. doi: 10.3389/fncom.2021.617862.

[77] Dario Gil and William M. J. Green. “1.4 The Future of Computing: Bits + Neurons + Qubits”.
In: 2020 IEEE International Solid- State Circuits Conference - (ISSCC). 2020 IEEE Inter-
national Solid- State Circuits Conference - (ISSCC). Feb. 2020, pp. 30–39. doi: 10.1109/

ISSCC19947.2020.9062918.

[78] Jesse Hagenaars, Federico Paredes-Vallés, and Guido de Croon. Self-Supervised Learning of
Event-Based Optical Flow with Spiking Neural Networks. arXiv [Preprint] arXiv:2106.01862.
2021.

[79] Avi Hazan and Elishai Ezra Tsur. “Neuromorphic Analog Implementation of Neural Engineer-
ing Framework-Inspired Spiking Neuron for High-Dimensional Representation”. In: Frontiers
in Neuroscience 15 (2021). issn: 1662-453X. url: https://www.frontiersin.org/articles/
10.3389/fnins.2021.627221 (visited on 07/04/2023).

[80] Geoffrey Hinton. The Forward-Forward Algorithm: Some Preliminary Investigations. Dec. 26,
2022. doi: 10.48550/arXiv.2212.13345. arXiv: 2212.13345 [cs]. url: http://arxiv.org/
abs/2212.13345 (visited on 02/03/2023). preprint.

[81] Sebastian Höppner et al. “Dynamic Power Management for Neuromorphic Many-Core Sys-
tems”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 66.8 (Aug. 2019),
pp. 2973–2986. issn: 1558-0806. doi: 10.1109/TCSI.2019.2911898.

56

https://doi.org/10.1038/s41467-020-17236-y
https://www.nature.com/articles/s41467-020-17236-y
https://www.nature.com/articles/s41467-020-17236-y
https://doi.org/10.1007/978-3-030-50153-2_57
https://doi.org/10.1109/IJCNN.2013.6706961
https://www.frontiersin.org/articles/10.3389/fnins.2021.712667
https://www.frontiersin.org/articles/10.3389/fnins.2021.712667
https://arxiv.org/abs/2107.12374
https://arxiv.org/abs/2107.12374
http://arxiv.org/abs/2107.12374
https://doi.org/10.48550/arXiv.1909.01771
https://arxiv.org/abs/1909.01771
http://arxiv.org/abs/1909.01771
https://doi.org/10.3389/fncom.2021.617862
https://doi.org/10.1109/ISSCC19947.2020.9062918
https://doi.org/10.1109/ISSCC19947.2020.9062918
https://www.frontiersin.org/articles/10.3389/fnins.2021.627221
https://www.frontiersin.org/articles/10.3389/fnins.2021.627221
https://doi.org/10.48550/arXiv.2212.13345
https://arxiv.org/abs/2212.13345
http://arxiv.org/abs/2212.13345
http://arxiv.org/abs/2212.13345
https://doi.org/10.1109/TCSI.2019.2911898

[82] Eric Hunsberger and Chris Eliasmith. Spiking Deep Networks with LIF Neurons. Oct. 29, 2015.
doi: 10.48550/arXiv.1510.08829. arXiv: 1510.08829 [cs]. url: http://arxiv.org/abs/
1510.08829 (visited on 06/30/2023). preprint.

[83] Dario Izzo et al. Neuromorphic Computing and Sensing in Space. Version 2. Dec. 17, 2022. doi:
10.48550/arXiv.2212.05236. arXiv: 2212.05236 [cs]. url: http://arxiv.org/abs/2212.
05236 (visited on 01/17/2023). preprint.

[84] Geunyoung Kim et al. “Retention Secured Nonlinear and Self-Rectifying Analog Charge Trap
Memristor for Energy-Efficient Neuromorphic Hardware”. In: Advanced Science 10.3 (2023),
p. 2205654. issn: 2198-3844. doi: 10.1002/advs.202205654. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/advs.202205654 (visited on 06/23/2023).

[85] Youngeun Kim and Priyadarshini Panda. Revisiting Batch Normalization for Training Low-
latency Deep Spiking Neural Networks from Scratch. Nov. 10, 2021. doi: 10.48550/arXiv.
2010.01729. arXiv: 2010.01729 [cs]. url: http://arxiv.org/abs/2010.01729 (visited on
12/22/2022). preprint.

[86] Seijoon Kim et al. “Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object De-
tection”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.07 (07 Apr. 3,
2020), pp. 11270–11277. issn: 2374-3468. doi: 10.1609/aaai.v34i07.6787. url: https:

//ojs.aaai.org/index.php/AAAI/article/view/6787 (visited on 02/10/2023).

[87] Andrzej S. Kucik and Gabriele Meoni. “Investigating Spiking Neural Networks for Energy-
Efficient On-Board AI Applications. A Case Study in Land Cover and Land Use Classifica-
tion”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). Nashville, TN, USA: IEEE, June 2021, pp. 2020–2030. isbn: 978-1-
66544-899-4. doi: 10.1109/CVPRW53098.2021.00230. url: https://ieeexplore.ieee.org/
document/9522999/ (visited on 01/13/2023).

[88] Chankyu Lee et al. “Enabling Spike-Based Backpropagation for Training Deep Neural Network
Architectures”. In: Frontiers in Neuroscience 14 (2020). issn: 1662-453X. url: https://www.
frontiersin.org/articles/10.3389/fnins.2020.00119 (visited on 07/13/2023).

[89] Erwann Martin et al. “EqSpike: Spike-driven Equilibrium Propagation for Neuromorphic Im-
plementations”. In: iScience 24.3 (Mar. 19, 2021), p. 102222. issn: 2589-0042. doi: 10.1016/
j.isci.2021.102222. url: https://www.sciencedirect.com/science/article/pii/
S2589004221001905 (visited on 06/29/2023).

[90] S. R. Nandakumar et al. “Experimental Demonstration of Supervised Learning in Spiking
Neural Networks with Phase-Change Memory Synapses”. In: Scientific Reports 10.1 (2020),
p. 8080. doi: 10.1038/s41598-020-64878-5.

[91] João D. Nunes et al. “Spiking Neural Networks: A Survey”. In: IEEE Access 10 (2022),
pp. 60738–60764. issn: 2169-3536. doi: 10.1109/ACCESS.2022.3179968.

[92] Peter O’Connor et al. “Real-Time Classification and Sensor Fusion with a Spiking Deep Belief
Network”. In: Frontiers in Neuroscience 7 (2013), p. 178. issn: 1662-453X. doi: 10.3389/
fnins.2013.00178.

[93] Garrick Orchard et al. “Efficient Neuromorphic Signal Processing with Loihi 2”. In: 2021 IEEE
Workshop on Signal Processing Systems (SiPS). 2021 IEEE Workshop on Signal Processing
Systems (SiPS). Oct. 2021, pp. 254–259. doi: 10.1109/SiPS52927.2021.00053.

[94] Priyadarshini Panda et al. “ASP: Learning to Forget With Adaptive Synaptic Plasticity in
Spiking Neural Networks”. In: IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 8.1 (2018), pp. 51–64. doi: 10.1109/JETCAS.2017.2769684.

57

https://doi.org/10.48550/arXiv.1510.08829
https://arxiv.org/abs/1510.08829
http://arxiv.org/abs/1510.08829
http://arxiv.org/abs/1510.08829
https://doi.org/10.48550/arXiv.2212.05236
https://arxiv.org/abs/2212.05236
http://arxiv.org/abs/2212.05236
http://arxiv.org/abs/2212.05236
https://doi.org/10.1002/advs.202205654
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202205654
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202205654
https://doi.org/10.48550/arXiv.2010.01729
https://doi.org/10.48550/arXiv.2010.01729
https://arxiv.org/abs/2010.01729
http://arxiv.org/abs/2010.01729
https://doi.org/10.1609/aaai.v34i07.6787
https://ojs.aaai.org/index.php/AAAI/article/view/6787
https://ojs.aaai.org/index.php/AAAI/article/view/6787
https://doi.org/10.1109/CVPRW53098.2021.00230
https://ieeexplore.ieee.org/document/9522999/
https://ieeexplore.ieee.org/document/9522999/
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119
https://www.frontiersin.org/articles/10.3389/fnins.2020.00119
https://doi.org/10.1016/j.isci.2021.102222
https://doi.org/10.1016/j.isci.2021.102222
https://www.sciencedirect.com/science/article/pii/S2589004221001905
https://www.sciencedirect.com/science/article/pii/S2589004221001905
https://doi.org/10.1038/s41598-020-64878-5
https://doi.org/10.1109/ACCESS.2022.3179968
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1109/JETCAS.2017.2769684

[95] Roshani Pawar and Dr. S. S. Shriramwar. “Review on Multiply-Accumulate Unit”. In: Inter-
national Journal of Engineering Research and Applications 07.06 (June 2017), pp. 09–13. issn:
22489622, 22489622. doi: 10.9790/9622-0706040913. url: http://www.ijera.com/papers/
Vol7_issue6/Part-4/B0706040913.pdf (visited on 07/04/2023).

[96] Gabriel Pereyra et al. Regularizing Neural Networks by Penalizing Confident Output Distri-
butions. Jan. 23, 2017. doi: 10.48550/arXiv.1701.06548. arXiv: 1701.06548 [cs]. url:
http://arxiv.org/abs/1701.06548 (visited on 02/03/2023). preprint.

[97] Nicolas Perez-Nieves et al. “Neural Heterogeneity Promotes Robust Learning”. In: Nature Com-
munications 5791.12 (2021). doi: 10.1038/s41467-021-26022-3.

[98] Michael Pfeiffer and Thomas Pfeil. “Deep Learning With Spiking Neurons: Opportunities and
Challenges”. In: Frontiers in Neuroscience 12 (2018), p. 774. issn: 1662-453X. doi: 10.3389/
fnins.2018.00774.

[99] Seth Roffe et al. “Neutron-Induced, Single-Event Effects on Neuromorphic Event-Based Vision
Sensor: A First Step and Tools to Space Applications”. In: IEEE Access 9 (2021), pp. 85748–
85763. issn: 2169-3536. doi: 10.1109/ACCESS.2021.3085136.

[100] Bodo Rueckauer and Shih-Chii Liu. “Conversion of Analog to Spiking Neural Networks Using
Sparse Temporal Coding”. In: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS). May 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351295.

[101] Abhronil Sengupta et al. “Going Deeper in Spiking Neural Networks: VGG and Residual Ar-
chitectures”. In: Frontiers in Neuroscience 13 (2019), p. 95. issn: 1662-453X. doi: 10.3389/
fnins.2019.00095.

[102] Amirhossein Tavanaei et al. “Deep Learning in Spiking Neural Networks”. In: Neural Networks
111 (Mar. 1, 2019), pp. 47–63. issn: 0893-6080. doi: 10.1016/j.neunet.2018.12.002. url:
https://www.sciencedirect.com/science/article/pii/S0893608018303332 (visited on
12/22/2022).

[103] Valerio Venceslai et al. “NeuroAttack: Undermining Spiking Neural Networks Security through
Externally Triggered Bit-Flips”. In: 2020 International Joint Conference on Neural Networks
(IJCNN). July 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9207351. arXiv: 2005.08041
[cs, stat]. url: http://arxiv.org/abs/2005.08041 (visited on 12/22/2022).

[104] Xiaoyu Wang et al. “Advanced Optoelectronic Devices for Neuromorphic Analog Based on Low-
Dimensional Semiconductors”. In: Advanced Functional Materials 33.15 (2023), p. 2213894.
issn: 1616-3028. doi: 10.1002/adfm.202213894. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/adfm.202213894 (visited on 06/23/2023).

[105] Francis Wang et al. “Architecture-Level Energy Estimation for Heterogeneous Computing Sys-
tems”. In: 2021 IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). 2021 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). Mar. 2021, pp. 229–231. doi: 10.1109/ISPASS51385.2021.00042.

[106] Kashu Yamazaki et al. “Spiking Neural Networks and Their Applications: A Review”. In: Brain
Sciences 12.7 (7 July 2022), p. 863. issn: 2076-3425. doi: 10.3390/brainsci12070863. url:
https://www.mdpi.com/2076-3425/12/7/863 (visited on 02/17/2023).

[107] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. “Designing Energy-Efficient Convolutional
Neural Networks Using Energy-Aware Pruning”. In: 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). July 2017, pp. 6071–6079. doi: 10.1109/CVPR.2017.643.

[108] Davide Zambrano and Sander M. Bohte. Fast and Efficient Asynchronous Neural Computation
with Adapting Spiking Neural Networks. 2016. doi: 10.48550/arXiv.1609.02053. arXiv:
1609.02053 [cs]. url: https://arxiv.org/abs/1609.02053. preprint.

58

https://doi.org/10.9790/9622-0706040913
http://www.ijera.com/papers/Vol7_issue6/Part-4/B0706040913.pdf
http://www.ijera.com/papers/Vol7_issue6/Part-4/B0706040913.pdf
https://doi.org/10.48550/arXiv.1701.06548
https://arxiv.org/abs/1701.06548
http://arxiv.org/abs/1701.06548
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/ACCESS.2021.3085136
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1016/j.neunet.2018.12.002
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://doi.org/10.1109/IJCNN48605.2020.9207351
https://arxiv.org/abs/2005.08041
https://arxiv.org/abs/2005.08041
http://arxiv.org/abs/2005.08041
https://doi.org/10.1002/adfm.202213894
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202213894
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202213894
https://doi.org/10.1109/ISPASS51385.2021.00042
https://doi.org/10.3390/brainsci12070863
https://www.mdpi.com/2076-3425/12/7/863
https://doi.org/10.1109/CVPR.2017.643
https://doi.org/10.48550/arXiv.1609.02053
https://arxiv.org/abs/1609.02053
https://arxiv.org/abs/1609.02053

[109] Davide Zambrano et al. “Sparse Computation in Adaptive Spiking Neural Networks”. In: Fron-
tiers in Neuroscience 12 (2019), p. 987. issn: 1662-453X. doi: 10.3389/fnins.2018.00987.

[110] Friedemann Zenke. Pub2018superspike. Jan. 26, 2023. url: https://github.com/fzenke/
pub2018superspike (visited on 08/25/2023).

[111] Junhong Zhao et al. “Spiking Neural Network Regularization With Fixed and Adaptive Drop-
Keep Probabilities”. In: IEEE Transactions on Neural Networks and Learning Systems 33.8
(Aug. 2022), pp. 4096–4109. issn: 2162-2388. doi: 10.1109/TNNLS.2021.3055825.

59

https://doi.org/10.3389/fnins.2018.00987
https://github.com/fzenke/pub2018superspike
https://github.com/fzenke/pub2018superspike
https://doi.org/10.1109/TNNLS.2021.3055825

	List of Acronyms
	Introduction
	Study objectives
	Case study: EuroSAT dataset

	Enabling latency-based SNNs with backpropagation
	Backpropagation Through Time (BPTT)
	Optimization of spike times
	Surrogate gradient (SG)

	Neuron Models
	Integrate and Fire (IAF)
	IFL
	LIF
	Special features
	Neurons Spiking Once at most
	Recurrent spiking layers

	Output layers
	Leaky Integrator (LI)
	TTFS readout

	Input encoding
	Rate based encoding
	Constant Current LIF
	Poisson

	Latency encoding
	Linear TTFS encoder
	Constant Current IAF (one spike at most)
	Latency LIF encoder

	Convolutional learnable encoder

	Output decoding
	Last timestamp logarithmic voltage
	Maximum voltage
	Maximum logarithmic voltage
	Negative Time-To-First-Spike
	Logarithmic inverse Time-To-First-Spike

	Regularization
	Target output time
	Regularization loss based on the sum of synaptic weights
	Batch normalization through time (BNTT)

	SNN models
	Multilayer Perceptrons
	Convolutional Spiking Neural Networks
	Multilayer perceptron with limited receptive fields

	Estimation of computational load
	Assumptions
	Neuron models
	IFL neuron
	LIF neuron
	IF (Mostafa 2017) neuron

	Estimation procedure
	Computation of connectivity parameters
	Equivalent ANN

	Known limitations

	Numerical results
	Test cases
	Accuracy vs EMACS
	EMAC vs number of spikes
	Effectiveness of regularization
	Target output time
	Sum of synaptic weights
	Batch Normalization Through time

	Scaling to deeper architectures

	Conclusion
	Test cases table
	Test cases notation

