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EXECUTIVE SUMMARY

A study of global optimisation methods in the field of interplanetary trajectory
has been performed. The idea was to understand why and how a particular
approach is more suited than others in optimising the trajectory for a certain
type of interplanetary transfer. From the No Free Lunch Theorem (NFLT) it is
impossible that an algorithm outperforms all others in all the possible
applications, therefore the aim of this work was two fold: to identify a suitable
global optimisation algorithm that outperforms all others in a particular transfer
typology; to identify a suitable global optimisation algorithm family that

outperforms all others in all mission analysis transfer problems.

At first a characterisation of the different transfer families, depending on
propulsion system (impulsive and low thrust) and number of planetary bodies
(planet-to-planet, multiple gravity assist, weak stability boundary) was
conducted. The model characterisation was performed within the search space
to describe the morphological features of the objective function, and within the
objective function to identify to evaluate continuity and convexity. Box-
constrained optimisation problems have been taken into account by defining
proper upper and lower bounds for each design variable, while possible
inequality constraints have been treated using the classical approach of defining
the objective function as a suitable weighted sum of several terms, including the

constraints violation.

Once the optimisation problem has been fully defined, an exhaustive and
systematic analysis of the resulting objective function structure has been
performed in order to identify typical features which would mostly affect the
global search; discontinuity as well as non-differentiability regions have been
identified over the search space and particular care has been taken to
characterize the objective function in the neighbourhood of the best known
solution, as this constitutes a remarkable feature strongly affecting the
effectiveness of some global optimisation algorithms at identifying it. The use of

a multi-start search using local optimisation processes starting from initial
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guesses randomly distributed over the search space assisted the systematic
analysis and allowed the identification of big valley structures. Such structures
turned out to be mainly related to the periodicity of all the investigated objective

functions with respect to particular design variables

Global optimisation algorithms can be classified into three main classes:
stochastic, deterministic and metmodels. A particular type of stochastic
approach, evolutionary algorithms can be further divided into genetic
algorithms, evolutionary programming and evolutionary strategies. In total
eleven algorithms, taken from the three main classes mentioned above, were
tested and their performances in identifying global optimal solutions evaluated.
The previously described optimisation problems corresponding to the four
different mission analysis classes were submitted to the whole set of global
optimisation tools and an extensive study carried out in order to recognize
suitable problem-method relations corresponding to the identification of the best

performing algorithms for each mission analysis problem.
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1. INTRODUCTION

In the last two decades, global optimisation approaches have been
extensively used towards the solution of complex interplanetary trajectory
transfers. As operational costs have been increasingly reduced, space systems
engineers have been facing the challenging task of maximising the payload-
launch mass ratio while still achieving the primary mission goals. Methods
ranging from genetic algorithms [Hughes and Mclnnes, 2001] to
neurocontrollers [Dachwald, 2004], from shooting methods [Wirthman et al.,
1995] to collocation methods [Betts and Erb, 2003] have been used with varying
effectiveness. Unfortunately the efficiency, both computational and
performance-wise, of these approaches are strongly linked to the type of
problem that has to be solved. It would therefore be hugely beneficial if mission
designers could rely on a limited number of global optimisation methods

depending on the type of trajectory design, which has to be accomplished.

To achieve this ambitious goal, initially, a thorough identification and
modelling of the main types of orbital transfers has to be performed. The orbital
transfer typologies will be identified both on the basis of the propulsive system
(impulsive or low thrust) and on the number of planetary bodies contributing to
the dynamics of the system. The aim therefore is to achieve the characterisation
of interplanetary transfers based upon:

» 2-Impulse Transfers
» Multiple Gravity Assist Transfers
» Weak Stability Boundary Transfers

» Low Thrust Spiral Transfers

This classification, ranging from simple two body transfers to more complex
interplanetary trajectories, encompasses the current and future requirements of

mission analysis and design problems.
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The models identified previously will then have to be characterised, in
order to hopefully identify some common features. Also, considering the future
requirement of this study for trajectory optimisation, the characterisation

performed will be two-fold:

» Within the search space, by means of a topological analysis aiming to
identify variables which are useful in the description of the morphological
structure of the objective function.

» Within the objective function aiming to identify its structure and

evaluating its continuity and convexity characteristics.

The characterisation will be performed using systematic and/or probabilistic
methodologies. The aim is to identify different transfer families within the same
transfer typology as a function of the parameters of the problem: mass
parameters of the planets in an MGA transfer, parameters of the low thrust

propulsion system, etc.

The attempt here is to assess if commonly encountered problems in
mission analysis are solvable in polynomial time or, if a solution is available, if

the global optimality of this solution can be verified in polynomial time.

We try to asses if, for a given global optimisation problem in mission
analysis 1.

» An algorithm Ap exists such that in polynomial time, given a domain D
and a function f: f(x):xe D cR" — R™ a solution X can be computed.

> An algorithm By that, given D, f and x is able to compute in polynomial
time f;

> An algorithm Cp, that given D, f and x, either produces a new solution
x eD with f(x) < f(x') (assuming a minimization problem) or else concludes

that no such solution exists and x” is a global optimum.
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To do this we first proceed by analysing the main characteristics of common
trajectory design problems in mission analysis. From this analysis, we will try to
infer if the aforementioned algorithm exists or can be derived from problem

characteristics. In doing this we make use of two simple and basic algorithms:

» A random start search with SQP local optimisation

» A grid search with regular sampling of f

The inferred complexity of the problem under study will be done by similarity
with NP-hard problems or associating the solution of the problem /7 to the
solution of an equivalent reduced problem /7 ,. This analysis will contain the
seed for the development of the appropriate solution algorithm since the

complexity of the problem is intrinsically associated to the solving algorithm.

In the following sections we will look at:

» Two impulse direct planet-to-planet transfer

» Multiple gravity assist planet-to-planet transfer
» Low-thrust direct planet-to-planet transfer

» Weak Stability Boundary Transfer

Note that we see the planet-to-planet transfer problem as a generalisation of the
orbit-to-orbit transfer problem since in the former case the phase of the
departure and arrival point must also be considered.
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2. 2-IMPULSE DIRECT PLANET-TO-PLANET TRANSFER

As an example of a 2-impulse transfer, let us consider a direct transfer
from Earth to Mars. We have taken the Mars Express mission as our reference

mission.

2.1 Problem Formulation

Let us suppose the objective function as the overall impulsive AV ; the

sum of the magnitudes of the relative velocities at the beginning, AV,, and the

end, AV., of the interplanetary transfer phase:

f=AV = AV, +AV, [1]

In order to evaluate the previous objective function, the following mathematical

models and methods have been used:

> Restricted 2-body dynamical model (C? in the whole solution space
except in the origin)

» Three dimensional motion

» Analytical ephemeris model (generated by time polynomial series of the
orbital elements)

» Impulsive manoeuvres (i.e. instantaneous variations in velocity)

» Lambert’'s problem formulation (Battin’s algorithm for the problem

solution)

As a consequence of the mathematical models and methods used for the
objective function assessment, the search space is characterized by two design

variables:

» Date of departure from Earth, t,

» Transfer time from Earth to Mars, tt
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Both the previous design variables continuously vary above the set of real

numbers.

X=[t,,tt]e D

D c ®?

f(x):xeDcR> >R (2]
feR

T-periodicity: f(t,+T)= f(t,)

Upper and lower bounds on the design variables are considered. As the
date of departure from Earth coincides with the lower bound, the interval of
variation has been imposed in order to include the date of departure of Mars
Express mission (2 June 2003) and seven synodic period of the Earth-Mars

system (780 days). The resulting intervals of variation are:

[t48, 9% | = [01/01/ 2003, 31/12/ 2017] [3]

[t8,® | = [100,600] days [4]

Note that, when describing the date of departure by means of the Julian date in
days, the dimension of the search space with respect to this design variable is 8

times wider than the other.
2.2 Objective Function Structure Analysis
As the search space has only two dimensions, a visual representation of

the objective function over the whole search space is possible, as illustrated in

Figure 1 and Figure 2.
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Figure 1: Total AV for a direct impulsive Earth-Mars transfer as a function of the date of
departure and the transfer time
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Figure 2: Total AV for a direct impulsive Earth-Mars transfer as a function of the date of
departure and the transfer time (projection on to-tt plane)
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Note that the date of departure in Figure 1 has been indicated as the
modified Julian date, starting from 1% January 2000. As can be seen from
Figure 1, the objective function is a non-convex function over the considered
search space, mainly due to its quasi-periodical feature on the date of departure
values. This result is illustrated in Figure 3, which shows the variation of the
objective function with respect to the date of departure corresponding to a 200
days interplanetary transfer phase: from Figure 3 a period of approximately 780
days can be identified, which obviously corresponds to the synodic period of the
Earth-Mars system. This suggests the possibility of exploiting the quasi-
periodicity information of the objective function, and consequently the synodic
period values, in the global optimisation process. The global optimisation

algorithms can use such information in several ways such as:

» Typical step sizes for global search in the direction of the date of
departure values can be assessed in order to evaluate the goodness of
the various basins of attraction, effectively escaping from convergence

to local optima.

» Smart dimensions of subintervals in case of Branch & Bound algorithms
and global optimisation algorithms using interval analysis can be
evaluated. Note that, in case of using interval analysis, the problem of
programmability must be considered: e.g. the ephemeris model, due to
the use of polynomial time series, can be effectively applied for the
interval evaluation of planetary orbital elements, while the conversion in

Cartesian coordinates must be accurately analysed.

» Smart clustering techniques can be developed in multi-start search
algorithm.

11
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Figure 3: Periodicity of the objective function with respect to the date of departure for a 200
days long interplanetary transfer phase

In order to further analyse the structure of the objective function, the
distribution of the local minima over the whole search domain has been studied.
Reeves and Yamada [Reeves and Yamada, 1998] proposed to assess the
objective function structure in a flow-shop scheduling environment by firstly
identifying as many local minima as possible and then by computing for each
local optimum its average distance from all the other local optima, since the
global optima for the problem are a priori unknown. Not only does this allow us

to identify the best solutions, but also:

» to evaluate the closeness of the local optima to each other
» to analyse the structure of the objective function near the global optima,
by assessing the density and goodness of the nearby local optima

» to identify the presence and features of similar local optima

12
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Due to these attractive features and the important results it led to in the
Flow-Shop Scheduling environment, this objective function structure analysis
methodology has been applied in this work to space mission design. In order to
generate the local minima, 100 randomly distributed points on the overall
search space have been used as starting points for a local search, based on a
Sequential Quadratic Programming algorithm. Figure 4 shows the resulting local
minima distribution over the search domain (black dots plus the red one), where

level curves of the objective function are also illustrated.

x10
600

550
500
4501

400

tt [d] 350

AV [m/fs]

300

250

200

150

\1 i I‘ | 1
100l = i i i t i
1000 2000 3000 4000 5000 6000 7000

to d]
Figure 4: Distribution of the generated local minima.
Figure 4 also highlight the best identified local minimum (red dot), whose
main features are presented in the following pages; Table 1 and Table 2 report

the values of the design variables and of the objective function terms

respectively, while Figure 5 reports the corresponding transfer trajectory.
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Search space
Design variable Best identified solution
Date of departure [d]: 1253.510
Transfer time [d]: 203.541
Table 1: Best identified solution: search space
Objective function space
Term Best identified solution
AV [m/s]: 5678.904
AV, [m/s]: 2999.464
AVE [m/s]: 2679.439
Table 2: Best identified solution: objective function space
1b
2
. 9T
. _~Earth orbit
-1+ !
Mars OZrbit
15 _\ . I |

X [AU]

Figure 5: Best identified solution: transfer trajectory.
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Note that in the case of the real Mars Express mission, the interplanetary
transfer solution corresponds exactly to the solution here identified: in particular,
besides the dates of departure and arrival and the transfer time, the best
identified solution has a velocity, relative to the Earth, at the beginning of the

transfer phase, AV,, equal to 2679.439 m/s. This corresponds to a C3

performance for the launcher of about 7.179 km?/s?; referring to the launcher
adopted in the real mission (Soyuz-Fregat), the performance curve is illustrated

in Figure 6.

Figure 2.1g: LV Performance for Escape Missions: 02 = V.

1700
1400

1500
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1400 =

1300 \\b
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oo I-“h"
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400 \W
oo T T

o 2 4 & B 10 12 14 16 18 20 E 24 4 28 30 X 34 36 3B 40 47 44 4o

7 [km? /57 M - ranstion batesen sub-orhitd and direct
injection profle curves is simphfied

L Parformanca [kg]

Figure 6: Soyuz-Fregat launcher: performance for Escape Missions.

The maximum launch mass for the spacecraft can then be evaluated
from Figure 6, that is about 1350 kg (the launch mass of Mars Express was
equal to 1120 kg). This result can be seen as a confirmation of the validity of the
used mathematical models and methods. Another important feature can be
highlighted on the objective function structure by means of the identified
minima, concerning the comparability of the various local minima. Figure
reports the identified local minima gathered in three subgroups, corresponding

to different level of the objective function value, as described in Table 3.
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Level of the Objective

Function Value [m/s] Dots Colour
AV < 6000 red
6000 < AV <7000 green
AV > 7000 black

Table 3 — Objective function levels and corresponding colours in Figure .
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350
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400

tt[da] 350
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300
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200
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100 — .
1000 2000 3000 4000 5000 6000 7000

t ]

Figure 7: Local minima comparability in terms of objective function value.

Figure 7 shows that local minima exist which can be considered quite
comparable. In particular, by analysing the red dotted and the green dotted local
minima, the corresponding objective function value are characterized by a mean
value of 5952.538 m/s and a standard deviation of 328.778 m/s. Such features
make the 2-impulse direct planet-to-planet transfer problem over the considered
intervals of date of departures an interesting means for evaluating the
effectiveness and robustness of a global solver. Once generated the local
minima, it is possible to analyze the structure of the objective function by using

the Reeves and Yamada methodology. The mean distances of the distinct local

16
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optima from each other have been evaluated: for a clearer interpretation, the
mean distances have been normalized to the length of the iper-diagonal of the
search space. Figure 8 shows the resulting structure: the x-axis reports the
mean distances of each local optima, while the corresponding objective function

values are indicated along the y-axis.

x 10"
1.6 T T T T

141 : D] j : j g

AV [mfs]
T
&)
|

0.4 1 I I 1 I 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.8 1
normalized mean distance

Figure 8: Objective function structure analysis for a direct 2-impulse Earth-Mars transfer.

Figure 8 shows that the mean distance of most local minima from the
others is bounded in the interval [0.2, 0.4] times the typical dimension of the
search space. As a consequence, the distribution of the local minima turns out
to be quite uniform, as Figure 8 fairly illustrates. Table 4 summarizes the

problem characteristics for a direct two-impulse transfer.

I_Droble_m Constraints Search Objective function T-periodicity
Dimension Space

f eR® almost everywhere C?

Box ) . .
2 , DetR locally discontinuous in a Yes
constraints o
countable number limited sets

Table 4: Summary of problem characteristics.
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3. MULTIPLE GRAVITY ASSIST TRANSFERS

As an example of a multiple gravity assist (MGA) interplanetary mission,
let us consider a transfer from Earth to Saturn, taking Cassini as the reference
mission.

3.1 Problem Formulation

Let us suppose the objective function as the overall impulsive AV, . In

order to evaluate it, the following mathematical models and methods have been

used:
» Restricted 2-body dynamic model
» Three dimensional motion
» Analytical ephemeris model
» Linked-conic approximation for gravity assist manoeuvres
» Impulsive manoeuvres, i.e. instantaneous variations in velocity
» Lambert's problem formulation (Battin’s algorithm for the problem

solution)

The objective function is assumed to be the sum of several terms:

» The magnitude of the velocity, relative to Earth, at the beginning of the
interplanetary transfer phase, AV, .

» The magnitude of the velocity variation required to the reach the
insertion orbit at Saturn, AV_.

» The magnitudes of the minimum corrective AV at each gravity assist
manoeuvre, AV, (where the subscript “P” will be substituted with the
initial letter of the name of the planet that contributes to the gravity assist

manoeuvre), which is necessary to link two consecutive interplanetary

transfer arcs resulting from the formulation of Lambert’s problem.

18
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For the evaluation of AV, ., given the input relative velocity vector v, and
the output relative velocity vector v,, an hyperbolic orbit around the planet is
considered as lying on the plane identified by the two vectors v, and v,. The

pericentre of the hyperbole is selected in order to have the minimum
misalignment between the final asymptotic velocity and v, always imposing
the minimum radius necessary to avoid interferences with the planet. For the
evaluation of AV_, the insertion orbit has been taken from the Cassini-Huygens

mission, with the following features:

Pericentre radius: 1.0895-10% m

Eccentricity: 0.98

Table 5: Saturn insertion orbit parameters.

The AV. manoeuvre is applied at the pericentre of the hyperbolic entrance

orbit, tangentially to the velocity vector.

As a consequence of the mathematical models and methods used for the
objective function assessment, the search space is characterized by the

following design variables:

» Date of departure from the Earth, t,

> Sequence of planets, P ={P,P,,...,P,} (where P, is the departure planet
— in our case the Earth — and P, is the arrival planet). Note that a planet
P. can appear more than once in the sequence.

» n-1 transfer times (that is the transfer times of the linking arcs)

Note that the number of design variables is not a priori fixable in this case and
depends on the dimension of the vector P. To evaluate the value of the

objective function, one has to analyse the discrete variable P at first, looking for
its dimension and the sequence of planets it leads to. Supposing an n-

19
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dimensional P vector, then the number of linking arcs (and the associated
transfer times) is n-1. By indicating with dim the operator which evaluates the
dimension of a vector, then the dimension of the whole search space, DIM, is

calculated as follows:
DIM = dim(P) [5]

The more dim(ﬁ) is large, the more the design variables there are and the more

the complex the global search is. In this case the vector P is defined in the
natural numbers set, that is the sequence of planets, while the others are
continuous. No Deep Space Manoeuvre (DSM) is considered in the previous
search space. Should m Deep Space Manoeuvres be performed, the following

design variables would then have to be considered:

» The allocation of the m Deep Space Manoeuvres over the sequence of
planets.
» The m additional transfer times that are related to the m additional

linking arcs.

While the transfer times have a continuous characterization, the allocation of

the m DSMs is a discrete variable and affects the dimension of the search

—

space in a similar way as the previous vector P .

Upper and lower bounds on the design variables are considered. As the
date of departure from Earth coincides with the lower bound, the interval of
variation has been imposed in order to include a period of 5 years centred
around 1% January 1999. This includes the date of departure of Cassini-
Huygens mission, 15" October 1997. The upper and lower bounds for the
transfer times will be specified for each case in the objective function structure

analysis.

20
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3.2 Objective function structure analysis

In order to analyse the structure of the objective function over the search
space, a distinction between discrete and continuous variables has been
considered: a fixed number of sequence of planets has been chosen for the
evaluation of the effects of the discrete variable on the local minima distribution

and consequently on the objective function structure.

Considering the interplanetary transfer from Earth to Saturn and referring to

the Cassini-Huygens mission, the following sequences of planets have been

probed:
1. Earth — Jupiter — Saturn (EJS)
2. Earth — Mars — Jupiter — Saturn (EMJS)
3. Earth — Venus — Earth — Jupiter — Saturn (EVEJS)
4. Earth — Venus — Venus — Earth — Jupiter — Saturn (EVVEJS)

As for the case of the 2-impulse transfer, the objective function structure
analysis for a multiple gravity assist has been based on the Reeves and
Yamada methodology: for each of the previous sequences of planets, 1000
local minima have been found with a random start search (with uniformly
distributed random start points) followed by an SQP optimisation process; the
mean distances of each solution from each other is then assessed and
compared to the corresponding goodness.

For the sake of a clearer analysis, the case of no deep space

manoeuvres is considered at first. The effects of such manoeuvres on the

objective function structure will be assessed later.

21
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3.3 Earth — Jupiter — Saturn (EJS)

Once fixed the value of the discrete variable “sequence of planets” to
EJS, the number of continuous variables which complete the search space is
three: the date of departure from Earth, t,, and the transfer times Earth —
Jupiter and Jupiter — Saturn, tt;; and tt,; respectively. The upper and lower

bounds for the transfer time associated to the two linking arcs E-J and J-S have
been posed equal to 0.1 and 2 times the associated Homann transfer time

respectively. The resulting intervals are:

[ttt 1t | = [99.65, 1993.1]d [6]

[ttt , Y | = [365.02, 7300.4] d [7]

Figure 9 compares the widths of the interval of variation associated to the three
design variables: Earth departure, Earth-Jupiter transfer time and Jupiter-Saturn
transfer time.

8000

7000 -

6000 -

5000 -

4000 +

interval width [d]

3000 -

2000 -

1000 -

t 0 t EJ t JS
design variable

Figure 9: Comparison between the widths of the intervals of variation in the search space.
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After generating the 1000 local minima, the mean distances of each
solution to the others have been evaluated. By using the Reeves and Yamada’s
methodology, Figure 10 shows the resulting structure of the objective function:
the x-axis reports the normalized mean distance of each local optima (for the
definition of the normalized mean distance see the 2-impulse transfer case),

while the corresponding objective function values are indicated along the y-axis.
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Figure 10: Objective function structure analysis for an EJS transfer.

An important observation can be made by analysing Figure 10: the objective
function for an EJS transfer display a big-valley problem structure. A big-valley

structure has the following features:
1. Local optima tend to be relatively close to other local optima

2. Better local optima tend to be closer to global optima

3. Local optima near one another have similar evaluations
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As a consequence, the global optima tend to have good local optima as
neighbourhoods. The mean closeness of most local optima tends to range
between 0.18 and 0.3 times the hyper-diagonal magnitude, that is between
1350 d and 2250 d. In order to analyse the distribution of the local minima and
verify the existence of a big valley structure, the search space is probed further.
Figure 11 shows the dates of departure (x-axis) and the objective function
values (y-axis) corresponding to the identified local optima.
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Figure 11: Local optima distribution over the date of departure design variable.

The local optima tend to gather in groups near fixed date of departure
values. The interval between two of these fixed dates is almost constant and
equal to approximately 400 days. This result can be intuitively explaneed by
means of the quasi-periodicity of the objective function with respect to the date
of departure; that is caused by the synodic periods of the planetary systems.
The synodic period of the Earth-Jupiter system is equal to 398 days associable

to the intervals identified in Figure 11. The synodic period of the Jupiter—Saturn
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system is equal to 7254 days, and is not included in the considered interval of

variation due to being one order of magnitude larger.

The local optima corresponding to a fixed date tend to have similar
objective function evaluations. Let us consider now the remaining design
variables. The x-axis of Figure 12 shows the Earth-Jupiter local minima transfer

times, while the Jupiter-Saturn local minima transfer times are reported on the

y-axis.
aaao T T T T
= o ob i i
7000 . . L L - SneUCTT IRV SRR
' o Ob o 9 0 i
GO0 R R booooe e boeee- 8
' %)j:ﬁiﬁh:l o ool o
IOOO| Oi i
5000 ogoo """" 7
N I 5 .S I N R N
0 s T oTT TG [ [ .
:_-' &y G}ﬂ:gﬁoi S 1 1
' : . : . : Lo
3000 ; --yoﬂ---;r -------- boeemnees fooemeeas bee@eeeefumnnnns .
. . i pomae 002 i q
2000 SR . D L L L L
A " R -
1000 R e s e e .
0 i i i i i i
400 B0 ad 1200 1400 1600 1800 2000
te, [d]

Figure 12: Local minima distribution over transfer times design variables.

The local minima tend to distribute themselves in clearly identifiable structures
over the transfer times subspace: these structures look like curves on this
subspace. A more important consequence can be highlighted by noting that
each identified structure is in fact associable to a well defined date of departure:
consider, for example, the subgroup of local minima associated with values of
the dates of departure close to -200 d; the corresponding transfer times values

are shown in red in Figure 13, together with the remaining local minima.
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Figure 13: The structures associated to the subgroup of local minima corresponding to dates of
departure values close to -200 d.

The previous results show the existence of structures where local optima tend
to be relatively close to other local optima and local optima near one another
have similar evaluations: these are in fact big valley structures in the tt;; —tt
subspace. A three dimensional illustration of the local minima in the search

space is showed in Figure 14.
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Figure 14: Three dimensional illustration of the local minima in the search space.

Figure 14 shows that, besides the presence of the previously identified big-

valley structure in the tt, —tt,; subspace, a similar structure can be also
identified in t, —tt;, and t, —tt,; subspaces. These results have been observed

in all mission analysis classes analysed so far and can be associated to the
date of departure design variable and its quasi-periodicity features due to the
planetary geometry. To better understand the reasons for the presence of the
big-valley structures in the tt., —tt,; space, a thorough analysis is performed by
fixing the value of the date of departure and plotting the objective function with
respect to the other design variables. The date of departure is set to -180 d and
the analysis to the intervals on the Earth-Jupiter transfer time is restricted

to[600,1000]d and on the Jupiter-Saturn transfer time to [1000,7300] d. The

resulting objective function values are showed in Figure 15.
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Figure 15: The AV as a function of the transfer times at a fixed date of departure (-180 d).

Figure 15 also shows 100 local minima generated with a random start search
and a consequent local optimisation process by a SQP algorithm: there is
evidence of the existence of a structure that is associable to a big valley. For
the sake of completeness, note that the two lines of discontinuity, easily
identifiable in Figure 15, correspond to the case when the Earth-Jupiter and
Jupiter-Saturn transfer angles are at 180 degrees. In this case the orbital plane
iIs ambiguous (an infinite number of transfer orbits exist) and Battin’s algorithm
here is singular. An important observation can be made by considering the

trend of each term in the objective function, that is AV, at Earth, AV. at Saturn

and the corrective AV, ; at Jupiter. Figure 16 and Figure 17 respectively show
the (AV, +AV.) and AV, ; as functions of the Earth-Jupiter and Jupiter-Saturn

transfer times.
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Figure 16: AV, + AV as a function of the transfer times at a fixed date of departure (-180 d).
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Figure 17: AV, ; as a function of the transfer times at a fixed date of departure (-180 d).
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Figure 16 and Figure 17 show that, while the sum AV, + AV, has a monotonic
trend with respect to the transfer times in the considered search space by fixing
the date of departure, the AV, , can be considered as the principal reason of
existence of the big-valley structures above identified in the tt.;, —tt,; subspace.

As a confirmation of this observation let us concentrate on the values of each
objective function term along the big-valley structure, highlighted in red in Figure
18.
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Figure 18: Big-valley structure analysis.

Figure 19 shows the transfer trajectories for solutions 1, 2, 3 and 4 highlighted
in Figure 18, along the big-valley structure, while Table 6 shows the

corresponding values of the objective function terms.
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Figure 19: Transfer trajectories for solutions 1, 2, 3 and 4.
Solution AV, [m/s] AVgp , [M/s] AV, [m/s]
Solution 1: 9131.2 14.28 437.31
Solution 2: 9001.3 4.84 430.63
Solution 3: 8977.4 0.0057 431.33
Solution 4: 9214.3 6.68 434.85

Table 6: Values of the objective function terms for solutions 1, 2, 3 and 4.

Table 6 shows that the big-valley structure corresponds to low values of the

corrective AV, ;. Moreover, similar structures can be identified even in case of

simpler mathematical models: as an example a circular and coplanar planetary
orbital model has been investigated. After assuming medium values for
planetary orbital parameters and imposing Earth, Jupiter and Saturn positions at
the date of departure as the projections on the ecliptic plane of their real

position vector in a three dimensional analytical ephemeris model at the
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previously fixed date of departure (-180 d), the trend of the corresponding

objective function has been analysed.

Figure 20 shows the objective function values with respect to the transfer
times, while Figure 21 compares the objective function structure with respect to
the three dimensional case, by showing the differences in the position of the

big-valley structure.

x10

1000

1000 8OO tte, [d]

Figure 20: Objective function values with respect to the transfer times in a circular and coplanar
planetary mathematical model.
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Figure 21: The objective function structure in the circular and coplanar planetary orbital model.
Comparison with respect to the three dimensional case (big valley structure is shown in red).

A big-valley structure can be easily identified also in the coplanar and circular
case and the position of such a structure is quite different with respect to the

three dimensional case, especially in the Jupiter-Saturn transfer time.

Note that, in case of interest in solutions corresponding to the big-valley
structure, the objective function structures are quite similar in the two
dimensional and three dimensional case. Using as a first guess solution for a
deterministic local optimisation process in the three dimensional model an
optimal solution of the two dimensional model, we can easily converge to the
optima of the corresponding structure in the three dimensional case. This
suggests the possibility of firstly executing a global optimisation process in the
two dimensional model, which is far simpler and faster due to the lower
computational costs, and then searching for the global optimum in the three
dimensional case using a local optimisation process, which could be run in the

convex big-valley structure and then solved with a polynomial time algorithm.
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Moreover, note that the principal reason of the presence of the big-valley

structure in the tt.; —tt,; subspace is again the AV, ,. Figure 22 and Figure 23

respectively show the AV, +AV,. and the AV, trend over the transfer times

search space in the two dimensional case.
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Figure 22: (AV, + AV ) values over the transfer times search space in two dimensional case.
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Figure 23: AV, ; values over the transfer times search space in the two dimensional case.

The big valley structure corresponds again to low values of the AV,

term. This leads to the intuition that other mathematical models for multiple

gravity assist interplanetary missions which don’t make use of AV, ; corrective

terms will show a different objective function structure. In order to analyse this
important aspect, the consequence of using deep space manoeuvres instead of

AV, , corrective terms will be addressed at the end of this section. Finally, the

transfer trajectory and the AV features corresponding to the best solution

identified are now presented in Tables 7-8 and Figure 24.
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Date of departure: 06/07/1999
Earth—Jupiter transfer time: 910.11d
Jupiter—Saturn transfer time: | 4416.7 d
Table 7: search space parameters.
Overall AV : 9391.2 m/s
AV, : 8959.3 m/s
AVgy st 4.83-10"m/s
AV : 431.94 m/s
Table 8: Objective space parameters.
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Figure 24: Transfer trajectory corresponding to the best solution found
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3.4 Earth — Mars — Jupiter — Saturn (EMJS)

Once fixed the value of the discrete variable “sequence of planets” to EMJS, the
number of continuous variables which complete the search space is four: the

date of departure from Earth, t,, and the transfer times Earth—-Mars, Mars—
Jupiter and Jupiter—Saturn, tt;,, , tt,;and tt,; respectively. The upper and lower

bounds for the transfer time associated to the three linking arcs E-M, M-J and J-
S have been posed equal to 0.1 and 2 times the associated Homann transfer

time respectively. The resulting intervals are:

[ttt . ttS, |=[25.86, 517.17]d [8]
[ttt 1Y |=[112.54, 2250.7]d [9]
[ttt % |=[365.02, 7300.4]d [10]

Figure 25 compares the widths of the interval of variation associated to the
design variables.
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Figure 25: Comparison between the widths of the intervals of variation in the search space.
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After generating the 1000 local minima, the mean distances of each solution to
the others have been evaluated. By using the Reeves and Yamada
methodology, Figure 26 shows the resulting structure of the objective function:
the x-axis reports the normalized mean distance of each local optima, while the

corresponding objective function values are indicated along the y-axis.
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Figure 26: Obijective function structure analysis for an EMJS transfer

By analysing Figure 26, a big-valley structure of the objective function for an
EMJS transfer can once again be identified. The mean closeness of most local
optima tends to range between 0.2 and 0.4 times the hyper-diagonal
magnitude, corresponding to an interval between 1500 d and 2250 d. In order to
analyse the distribution of the local minima and verify the existence of a big
valley structure, the search space is probed in the following. Figure 27 shows
the dates of departure (x-axis) and the objective function values (y-axis)
corresponding to the identified local optima.
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Figure 27: Local optima distribution over the date of departure design variable.

Even in the EMJS case, the local optima tend to gather in groups near
fixed date of departure values; however, compared to the previous case, the
interval between two of this fixed dates is not constant. This result can be
intuitively explaneed by means of the synodic periods of the planetary systems:
in fact, note that the synodic period of the Earth-Mars system is equal to 780
days and that of the Mars-Jupiter system is equal to 815 days; this leads to two
comparable frequencies on the quasi-periodicity of the objective function with
respect to the design variables that interact with each other (note that the
synodic period of the Jupiter — Saturn system is equal to 7254 days,
corresponding to a frequency that is one order of magnitude bigger). Moreover,
the local optima corresponding to a fixed date tend to have similar objective
function evaluations. Consider now the remaining design variables. Figure 28
shows the local minima distribution over the three dimensional transfer times
subspace, while Figure 29, Figure 30 and Figure 31 plot the projection along the

three z, y and x axis respectively.
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Figure 28: Three dimensional illustration of the local minima in the transfer times subspace.
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Figure 29: Local minima distribution in the ttg,, -tt,,; subspace.

40



=i
LUNIVLESIEY
p‘l-

Ll AL
Ao e ey
i i Loge o 5 Lo
7000 po-vgre-benne et e B TR
o : : : : . :
ol 30 HE e
6000 ---=--- oo : &’""?b‘g'@* ------- e s s = B
: : g o i : : :
& =
L SECH-) i S S - R
= ;09 : : : PO
o Lo 1 O : : :
o :r%--@:roég---:r ------- e oo e g i
o L8 ol 2 : : :
: o : : : :
. IR -
D000 f-m-Tm kb R oY S T R B e SR
5] o ?E “ : : -
e ' '
1000 | | i | | i i
100 150 200 250 300 350 400 450 500 5580
tte,, [d]
Figure 30: Local minima distribution in the tt,, -tt, subspace.
|00 T T T r T T T r T
70oa
B000
a000
=
1
= 4000
3000
2000
1000 I I i I I i i i i

400

OO 300 1000 1200 1400

th,, [d]

1600

1800 2000 2200 2400

Figure 31: Local minima distribution in the tt,,, -tt,; subspace.
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One again big valley structures are easily identifiable. The previous figures also
show (in red) the local optima corresponding to date of departure values close
to -400 d: these local optima tend to distribute themselves over three
dimensional curves on the transfer times subspace with similar objective
function evaluation. Finally, the transfer trajectory and the AV features

corresponding to the best solution found are now presented.

Date of departure: 11/11/1996
Earth—Mars transfer time: 257.87d
Mars-Jupiter transfer time: 906.93 d
Jupiter-Saturn transfer time: 2918.8d

Table 9: Search space parameters.

Overall AV : 8866.5 m/s
AV, : 3282.5 m/s
AV - 5309.6 m/s
AV, 0.0043 m/s
AV.: 274.41 m/s

Table 10: Objective space parameters.
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Figure 32: Transfer trajectory corresponding to the best solution found.
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3.5 Earth — Venus — Earth — Jupiter —

Saturn (EVEJS)

Once fixed the value of the discrete variable “sequence of planets” to

EVEJS, the number of continuous variables which complete the search space is

five: the date of departure from Earth, t,, and the transfer times Earth-Venus,

Venus— Earth, Earth-Jupiter and Jupiter-Saturn (tt., ,tt,,tt.,

tt s

respectively). The upper and lower bounds for the transfer time associated to

the four linking arcs E-V, V-E, E-J and J-S have been set equal to 0.1 and 2

times the associated Homann transfer time respectively. The resulting intervals

are:

[ttt 1%, |=[14.59, 291.83]d
e i |= ftey e, Jo
[ttt 1t |=[99.65,1993.1]d

[ttt , ttY | = [365.02, 7300.4]d

[11]
[12]
[13]

[14]

Figure 33 compares the widths of the interval of variation associated with the

five design variables.
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Figure 33: Comparison between the widths of the intervals of variation in the search space.

After generating the 1000 local minima, the mean distances of each
solution to the others have been evaluated. By using the Reeves and Yamada
methodology, Figure 34 shows the resulting structure of the objective function:
the x-axis reports the normalized mean distance of each local optima, while the

corresponding objective function values are indicated along the y-axis.
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Figure 34: Objective function structure analysis for an EVEJS transfer.

By analysing Figure 34, the objective function for an EVEJS transfer presents a
big-valley structure. The mean closeness of most local optima tends to range
between 0.22 and 0.4 times the hyper-diagonal magnitude that is between
1634.1 d and 2971 d. In order to analyse the distribution of the local minima and
verify the existence of a big valley structure, the search space is probed in more
detail. Figure 35 shows the dates of departure (x-axis) and the objective

function values (y-axis) corresponding to the identified local optima.
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Figure 35: Local optima distribution over the date of departure design variable.

In the EVEJS case, the tendency of local optima to gather in groups near
fixed date of departure values is less recognizable. By analysing the synodic
periods of the planetary systems, one can note that the synodic period of the
Earth-Venus system (583 days) and that of the Earth-Jupiter system (398 days)
are comparable, leading to frequencies on the quasi-periodicity of the objective
function with respect to the design variables that interact with each other (note
that in this case there are two transfer phase that involve the Earth-Venus
system). However, the local optima near a fixed date tend to have similar
objective function evaluations. Consider now the remaining design variables.
Figures 36-39 show the local minima distribution over the four dimensional

transfer times subspace, by mean of the four projections along the four axes.
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Figure 37: Local minima distribution in the tt;, -tt;, -tt,; subspace.
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Figure 39: Local minima distribution in the tt;, -tt . -ttz, subspace.
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Big valley structures are again identifiable: the local optima corresponding to
date of departure values near -200 d are shown (in red) in the previous figures;
they tend to distribute themselves over three dimensional curves with similar
objective function evaluations. The transfer trajectory and the AV features

corresponding to the best solution found are now shown.

Date of departure: 12/06/1999
Earth-Venus transfer time: 160.07 d
Venus-Earth transfer time: 278.59d
Earth-Jupiter transfer time: 1071.4d
Jupiter-Saturn transfer time: 5999.7 d

Table 11: Search space parameters.

Overall AV : 6245.2 m/s
AV, : 3069.7 m/s
AVg,y 0.0208 m/s
AVigpe 2708.4 m/s
AVipy: 0.0398 m/s
AV : 467.00 m/s

Table 12: Objective space parameters.
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Figure 40: Transfer trajectory corresponding to the best solution found.

Figure 40 shows the best solution, by measuring the goodness with respect to
the objective function, corresponding to the overall AV . In fact this could lead to
the identification of a long transfer time solution as in this case (approximately
19 years travel). A careful analysis of the identified solutions however
demonstrates that some of the local minima correspond to solutions with
present shorter transfer times but more expensive energy requirements. For a
better description and understanding of this phenomenon and its

conseqguences, the next transfer case is presented.
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3.6 Earth — Venus — Venus — Earth — Jupiter — Saturn (EVVEJS)

Once fixed the value of the discrete variable “sequence of planets” to
EVVEJS, the number of continuous variables which complete the search space

IS six: the date of departure from Earth, t,, and the transfer times Earth—Venus,
Venus—Venus, Venus—Earth, Earth-Jupiter and Jupiter-Saturn (tt. ,tt,, ,
tt,..tt;, and tt,; respectively). By indicating H as the Homann transfer time

corresponding to the four linking arcs E-V, V-E, E-J and J-S and as T the period
of Venus’ orbit, the upper and lower bounds for the transfer times variables

have been set to:

[ttt . 1t |=[0.1, 2]H =[14.59, 291.83]d [15]
[tts, . ttY, |=[0.1, 2]T =[11.23, 448.92]d [16]
[ttt 1t |=[0.1,1]H =[14.592,145.92]d [17]
[ttt 1t |=[0.1,1]H = [99.65,996.54]d [18]
[ttt tt% |=[0.1,1]H =[365.02,3650.2]d [19]

Figure 41 compares the widths of the interval of variation associated to the six

design variables.
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Figure 41: Comparison between the widths of the intervals of variation in the search space.

After generating the 1000 local minima, the mean distances of each solution to
the others have been evaluated. By using the Reeves and Yamada
methodology, Figure 42 shows the resulting structure of the objective function:
the x-axis reports the normalized mean distance of each local optima, while the

corresponding objective function values are indicated along the y-axis.
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Figure 42: Objective function structure analysis for an EVVEJS transfer.

The objective function for an EVVEJS transfer holds again a big-valley
structure. The mean closeness of most local optima tends to range between
0.25 and 0.4 times the hyper-diagonal magnitude, corresponding to a value
between 975.1 d and 1560.2 d. In order to analyse the distribution of the local
minima and verify the existence of a big valley structure, the search space is
probed further. The local minima distribution over the search space is now
difficult to show, due to the six dimensions and the search space homogeneity
with respect to the design variables. Figure 43 shows the dates of departure (x-
axis) and the objective function values (y-axis) corresponding to the identified
local optima, while Figure 44-46 illustrate the local minima distribution over the

transfer times subspace.
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Figure 46: Local minima distribution in the tf . -ttg, -tt,5 subspace.
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Big valley structures are now identifiable with difficulty (we hypothesize that
more than 1000 local minima are necessary to find such a structure in this six
dimensional case), but nonetheless exist. These structures have been found in
this case particularly at the boundaries of the search space. The transfer
trajectory and the AV features corresponding to the best solution found are

presented now in Figure 47.

Best solution

Date of departure: 20/11/1997

Earth—Venus transfer time: 179.14 d

Venus—Venus transfer time : | 406.53 d

Venus—Earth transfer time: 53.18d

Earth—Jupiter transfer time: 758.33 d

Jupiter—Saturn transfer time: | 3650.2 d

Table 13: Search space parameters.

Overall AV : 6368.2 m/s
AV, : 3888.0 m/s
1% AVg,,y 2032.7 m/s
2" AV, 0.0327 m/s
AVigpe 0.0057 m/s
AV, 0.0078 m/s
AV.: 447.40 m/s

Table 14: Objective space parameters.
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Figure 47: Transfer trajectory corresponding to the best solution found.
The best solution is obtained by measuring the goodness with respect to the
objective function, the overall AV . In fact this could lead to the identification of

long transfer time solution, as in this case. Let us consider now an alternative

solution that has been found between the identified local minima.

Alternative solution

Date of departure: 25/10/1997
Earth—Venus transfer time: 206.38d
Venus—Venus transfer time: 401.21 d
Venus—Earth transfer time: 54.52d
Earth—Jupiter transfer time: 548.84 d
Jupiter—Saturn transfer time: 1747.90d

Table 16: Solution space parameters.
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Overall AV : 7154.6 m/s
AV, : 5756.2 m/s
1% AVg,y 883.54 m/s
2" AV, : 0.0283 m/s
AVigpe 2.3098 m/s
AV, 0.0056 m/s
AV, : 512.52 m/s

Table 17: Objective space parameters.
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Figure 48: Transfer trajectory corresponding to the alternative solution.

A comparison of the best solution with respect to this alternative solution
shows that, although there are little differences in the transfer times E-V, V-V,
V-E and E-J, the J-S transfer time of the best solution is twice that of the
alternative solution. This leads to an alternative solution that is just a little bit
more energetically expensive than the best solution (about 800 m/s) but with a
much shorter travel time of approximately 5.7 years, thus identifying a different
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solution family. In fact, a solution similar to the alternative one has been
adopted in the Cassini-Huygens mission. This is due to the fact that in real
problems the overall AV often is not the unique criterion used for the choice of
the transfer trajectory: the transfer time is, for example an important parameter.
The previous consideration leads to an important observation: in order to avoid

the loss of good solutions one alternatively has to:

» Use global multi-objective optimisation techniques (pareto optimality).

» Build a proper objective function mathematical model, by including as
many terms as the number of the objective function to be considered.

» Use global optimisation techniques that allow maintaining subgroups of
local minima solutions, each one having different characteristics and then

identifying different solution families.

Note that, while in the first two cases one has to clearly know all the objective
functions to be optimised before starting the optimisation process, the last case
has the advantage of identifying different solution families with different
features, so permitting a more flexible choice on the solution to be adopted.
This constitutes an important subject for further studies. Similar results have
been obtained [Gurfil and Kasdin, 2002] in case of orbits characterization in 3D

elliptic restricted three-body problem.
Finally let us consider the comparison between the alternative solution

and the Cassini-Huygens transfer solution. Figure 49 shows the Cassini-

Huygens transfer trajectory.
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Figure 49: Cassini-Huygens transfer trajectory.

The alternative solution trajectory shown in Figure 49, can be seen to be very
similar to the Cassini-Huygens trajectory. By analysing the AV requirements

and by excluding the AV, , the following table compares the two solutions.

Alternative solution Cassini-Huygens
(Overall AV) - AV, 1398.4 m/s about 2000 m/s

Table 18: Solution comparision.

The AV requirements can be seen to be quite different: the alternative solution
resulting to be close to 600 m/s cheaper than the Cassini-Huygens mission. But
one has also to compare the AV, requirements. The AV, requirement
corresponding to the alternative solution is equal to 5756.2 m/s. By considering
the same launcher as the Cassini-Huygens mission, Figure 0 shows the C3

performance of the Titan IV / Centaur.
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Figure 50: Titan IV-Centaur launcher: performance for Escape Missions.

The C3 requirement, corresponding to a AV, of 5756.2 m/s, is 33.13 km?/s?,
which leads to a maximum launch mass of about 4655 kg. However the
Cassini-Huygens launch mass was approximately 5600 kg; consequently the
alternative solution would not be admissible for such a spacecraft. It is also
worth noting that no Deep Space Manoeuvres have been considered here,
while the Cassini-Huygens mission executed a 500 m/s DSM Venus targeting
manoeuvre on the 3" December 1998: this could lead to a better solution than

the here analysed alternative one.

Table 19 summarizes the problem characteristics for multiple gravity

assist interplanetary missions.
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Table 19: Problem characteristics for MGA missions.

Note that analogies of multiple gravity assist interplanetary missions with
either the Hamiltonian circuit problem or the Travelling Salesman problems
could be stated: in fact the optimisation of MGA interplanetary missions can be
associated to the search of an optimum path which links two planets by visiting
a finite set of other planets where the gravity assist manoeuvres are performed.
The planets could be then considered as analogous to the cities in the
Travelling Salesman problem. However, the positions of the cities, or rather
planets, in the case of MGA interplanetary missions are not fixed and the costs
of each link will vary depending on those positions. By highlighting that both
Hamiltonian circuit problem and Travelling Salesman problem have been
demonstrated to be NP-Hard, this analogy could assist in demonstrating that
the MGA interplanetary mission problem is also NP-Hard. This could lead to

better analysis in the future following this proof.
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3.7 MGA With Deep Space Manoeuvres

The consequences of using deep space manoeuvres instead of AV,

corrective terms on the objective function structure are here analysed. For the
sake of a clearer analysis, the case of an Earth-Saturn transfer trajectory with a

Jupiter gravity assist manoeuvre has been considered. The AV, corrective

term has been removed and a deep space manoeuvre inserted during the
Jupiter-Saturn transfer phase. As a consequence of such a decision, the Earth-
Jupiter transfer trajectory is propagated through the hyperbolic gravity assist
manoeuvre into the Jupiter-Saturn transfer phase until the application of the
deep space manoeuvre, which puts the spacecraft in the final Lambert's
transfer trajectory to Saturn. The plane of the gravity assist manoeuvre and the
pericentre of the hyperbole constitute new design variables. The resulting

design variables are:

» The date of departure from Earth, t,
» The transfer time from Earth to Jupiter, tt.,

» The plane of the hyperbole (defined by an angular variable 9 around the
input relative velocity to Jupiter)

> The pericentre of the hyperbole, r,
» The transfer time from Jupiter to Saturn, tt
» The percentage of tt,, that is spent from Jupiter until the deep space

manoeuvre, « .

Note that in the previous case the number of the design variables was three.
The inclusion of a deep space manoeuvre increases the design variables to six.
The interval of variation has been set equal to that of the previous cases. The
upper and lower bounds for the transfer times associated to the two linking arcs
E-J and J-S have set equal again to 0.1 and 2 times the associated Homann

transfer time respectively. The resulting intervals being:
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[ttt 1t |=[99.65,1993.1]d [20]

[ttt Y bt =[365.02,7300.4]d [21]

The minimum and maximum values for the pericentre of the hyperbole have
been set to 1.1 the Jupiter mean radius and the Jupiter sphere of influence

radius respectively, are:

et rY|=|7.69-107, 4.82.10" |m [22]

p

While the upper and lower bounds for the remaining design variables are:

[19L, Y ]= [ 7, z]rad [23]
[aL,aU ]z [0,1] rad [24]

In order to avoid the problem of high differences in the interval dimensions
corresponding to each design variables, a normalization process has been
implemented: the resulting upper and lower bounds are therefore [0,1] for all of
the design variables. After generating the 100 local minima, the mean distances
of each solution from each other have been evaluated. By using the Reeves
and Yamada methodology, Figure 51 shows the resulting objective function

structure, while Figure 52 presents the distribution of the local optima.
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The big valley structure is here less identifiable: the most important difference
with respect to the previous case can be seen in the diversification of the local
minima over the objective function values. This feature is better illustrated in
Figure 53, which shows that, although the local minima gather in groups near
fixed values of the date of departure at regular intervals, which are again
associable to the synodic period of the Earth-Jupiter planetary system, the
objective function evaluations are not similar in each group. In order to analyse

the reasons for such a result, let us consider the best identified solution.

Date of departure: 02/07/1999 (-181 d [MJD])

Earth—Jupiter transfer time: | 911.65d

4: 0.074 rad

r: 1.7029-10° m

Jupiter-Saturn transfer time: | 4429.2 d

a: 0.36

Table 20: Search space parameters.

Overall AV : 9441.1 m/s
AV, : 9009.8 m/s
AVpe - 0.888 m/s

AV, : 430.41 m/s

Table 21: Objective space parameters.

66



=i
LUNIVLESIEY
p‘l-

Ll AL

¥ [AU]

'Earth
{02/07/1599

Figure 53: Transfer trajectory corresponding to the best solution found.

We now fix the value of the date of departure, as well as the values of 9, r,

and «, to that of the best solution. The objective function is plotted with respect
to the other design variables, setting the intervals on the Earth-Jupiter transfer

time equal to[600,1000]d and on the Jupiter-Saturn transfer time equal to

[1000, 7300] d. The resulting objective function values are showed in Figure 54.
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Figure 54: The overall AV as a function of the transfer times at a fixed date of departure.

The comparison of Figure 54 with Figure 18 shows that the big valley structure

in the tt_, —tt,; subspace is absent in this case. This result is also illustrated in

Figure 55 and Figure 56, which shows the (AV, +AV.) and the AV, objective

function terms respectively.
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Another important observation comes from the comparison of Figure 54 with
Figure 18: the application of the deep space manoeuvre in the Jupiter-Saturn
transfer phase allows the mathematical model to avoid the singularities of
Battin’s algorithm, which is here used for the Lambert’'s problem solution,

corresponding to 180 degrees Jupiter-Saturn transfer angles.
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4. LOW THRUST TRANSFERS

As an example of a low thrust interplanetary mission, let us consider a transfer

from Earth to Mars.

4.1 Problem Formulation

In order to assess the objective function, the following mathematical models and

methods have been used:

» Restricted 2-bodies dynamical model

A\

Three dimensional motion

» Analytical ephemeris model (generated by time polynomial series of the
orbital elements)

» Low thrust interplanetary transfer (constant thrust level and variable

direction)

» Forward propagation of initial conditions and thrust control law

The thrust level has been supposed to be constant throughout the whole
transfer and bounded in intervals corresponding to real thrusters values. The
thrust direction during the transfer trajectory is however a design variable and is
evaluated by means of azimuth and elevation angles defined in the local
horizontal plane. To avoid singularities, the integration of motion has been
processed by means of equinoctial elements. The spacecraft initial position
coincides with that of the Earth at the date of departure, while the escape
velocity from Earth has been imposed to have the same direction as the Earth
velocity vector (its magnitude has been considered as a design variable).

The objective function is assumed to be the sum of several terms:

» The magnitude of the spacecratft relative position with respect to Mars at
the end of the integration of motion, R.: this term has been included in
order to reach the planet at the end of the transfer orbit. This can be
viewed as an inclusion of a constraint term in the objective function. The
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planet is considered reached when the spacecraft final position lies into
the sphere of influence of Mars.

» The magnitude of the spacecraft relative velocity with respect to Mars at
the end of the integration of motion, v : this term has been included in
order to reach the planet at the end of the transfer orbit with a low
relative velocity and to avoid the necessity of consequent impulsive

manoeuvres. Values of v. smaller than 100 m/s have been considered

as adequate.
» The propellant mass that is required by the thrusters for the

interplanetary transfer, m . Adequate values of m  have been

considered to be smaller than 200 kg.

In order to evaluate the m_ = term, typical electric propulsion systems

performances have been used. The interval of variation of the thrust level has

been chosen to be [0,0.168] N, while the specific impulse has been fixed to

3000 s. The spacecraft launch mass has been set to 1000 kg. The resulting
objective function analytical form has been taken as:

obj=a, R +a, Vg +a;-m [25]

prop

where the values of the weights «,, «, and a, have been fixed in order to

make the order of magnitude of obj, corresponding to good R., v, and m

values, equal to 10.

Note that the use of a weighted sum of several terms for the objective
function assessment has been considered in order to take into account the
features of common global optimisation algorithms (which will be used in the
second part of this work). As this concerns the constraints handling
methodologies, most of the existing global optimisation algorithms tend to
include the constraints terms in the objective function by means of penalty
terms; the weighted sum can be seen as a way of defining such penalty terms.
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4.2 Objective Function Structure

As a consequence of the mathematical models and methods used for the
objective function assessment, the search space has been characterized by the

following design variables:

Date of departure from Earth, t,

Transfer time, tt

Magnitude of the escape velocity from Earth, v, .

Thrust level, u

YV V VYV VYV VY

Thrust azimuth and elevation over the transfer trajectory

The thrust azimuth and elevation, respectively, az and el, over the transfer
trajectory have been modelled by means of a linear interpolation of their values
corresponding to six points on the trajectory, which are uniformly distributed in
the time domain (including initial and final time). The previous choices make the
number of the design variables equal to 16. All the previous design variables

have a continuous characterization over the search space.

Upper and lower bounds on the design variables are considered. The
interval of variation has been imposed in order to include a period of 4 years
starting from 1% January 2000. The upper and lower bounds for the remaining

design variables are listed in the following:

tt = [150, 300]d [26]
Voo =[0,3000]m/s [27]
u=[0.1,0.168]N [28]
az, =[-,x],i=1..6 [29]
el, =[-z/2,712],i=1,..,6 [30]
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In order to avoid the problem of high differences in the interval
dimensions corresponding to each design variables, a normalization process

has been implemented: the resulting upper and lower bounds are then [0,1] for

all of the design variables.

As for the previous cases, the objective function structure analysis for a
low thrust interplanetary transfer starts with the Reeves and Yamada
methodology: 100 local minima have been found with a random start search
(with uniformly distributed random start points) followed by an SQP optimisation
process; the mean distances of each solution from each other is then assessed
and compared to the corresponding goodness; consequently, the values of the
design variables corresponding to the best local minimum has been used in
order to analyse the convexity of the objective function. By using the Reeves
and Yamada methodology, Figure 57 shows the resulting local minima
distribution: the x-axis reports the normalized mean distance of each local

optima, while the corresponding objective function values are indicated along

the y-axis.
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Figure 57: Objective function structure analysis for a low thrust interplanetary mission.
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The objective function for a low thrust interplanetary mission shows again
a big-valley structure. The mean closeness of most local optima tends to range
between 0.3 and 0.5 times the hyper-diagonal magnitude. Before analysing the
distribution of the local minima and verifying the existence of a big valley
structure, let us consider the best local minimum found. The main features are

listed below, together with the resulting transfer trajectory, Figure 58.

Best solution

Date of departure: 12/07/2001

Transfer time: 281.5d

Escape velocity from Earth: | 2730.5 m/s

Thrust level: 0.151 N

Table 22: Search space parameters.
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Figure 58: Thrust components in the orbital reference frame.
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Objective space
obj: 6.37
R, : 3.19-10° m
Ve 0.88 m/s
M rop - 124.59 kg

Table 23: Objective space parameters.

: : : Earth !
; : ; 1120772001

1.5 '

Figure 59: Transfer trajectory of the best solution in the ecliptic plane.

Let us now the shape of the objective function over the search domain, by
considering two significant design variables at a time and fixing the values of
the remaining design variables to those of the previous best identified solution.
Figure 60 shows the resulting objective function values with respect to the date

of departure and the transfer time.
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Figure 60: Obijective function values with respect to the date of departure and the transfer time.

We can see that the objective function is non-convex in the considered search
space. Such a feature is again mainly due to the trend of the objective function
with respect to the date of departure, while convex features seems to exists with
respect to the transfer time. A better illustration of this aspect can be seen in
Figure 61, where the objective function is plotted with respect to the date of

departure by fixing the transfer time to that of the best identified solution.
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Figure 61: Objective function values with respect to the date of departure and the transfer time.

An important observation can be done by looking at the evolution of the
objective function values in Figure 62. Although we have the presence of
several basins of attraction, a certain regularity can be recognized: a quasi
periodicity feature with a period of approximately 765 days, which is again
amenable to the synodic period of the Earth-Mars transfer (780 days). Figure 60
and Figure 61 allow us to identify the existence of a big-valley structure, the
existence of which is again associable to the dependence on the date of
departure. One can object that this feature has been found by fixing the values
of the remaining design variables, but in fact it can be also identified by

analysing the distribution of the generated local minima in the t, —tt subspace

as shown in Figure 62.
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Figure 62: Distribution of the generated local minima in the t, —tt subspace.

Let us consider now the shape of each objective function term over the same
search space, as illustrated in Figure 63-65.
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Figure 63: R /5.77e7 values in the t, —tt subspace.
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The first thing to note is that, while the first two objective function terms show
similar non-convexity features as the overall objective function, the propellant
mass is in fact monotone with respect the transfer time and does not depend on

the t, values. This result can be easily justified by considering the equation of

the propellant mass consumption:

tt u
Morep = | dt [31]

0 Isp'gO

By noting that the integrand is a positive quantity, m__ can be recognized as a

prop
monotonic function of the transfer time tt and the mean value of u. In particular,
in the model we are considering, the thrust level is constant during the whole
transfer phase and coincides with its mean value; the consequence of this is

therefore that m,, is monotonic with respect to the u design variable. The

consequences of the previous results will be better addressed later, by
analysing the structure of the objective function with respect to tt and u.
Moreover, Figure 63, Figure 64 and Figure 65 show the importance of the
weights of the weighted sum which constitutes the objective function: in fact

parameters «,, a, and a, deeply affect the shape of the objective function over

the search domain and the consequent position of the global optimum, thus
influencing the global search. Note that several global optimisation processes
actually tend to have such a weighted sum in order to either handle multi-
objective optimisation problems or include constraints terms in the objective
function. As an example of such an influence, let us consider a propellant mass

term with a weight «, = 1000. The resulting objective function values over the

t, —tt subspace can be seen in Figure 66.
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Figure 66: Objective function values with respect to the date of departure and the transfer time.

Figure 66 clearly shows that the structure of the objective function changes with
respect to the weights and this has to be considered as a general result every
time a weighted sum is used in the assessment of the objective function. Let us
now consider the first term of the objective function as a constraint term:
suppose the admissible solutions to be those where the spacecraft final position
lies into the Mars sphere of influence. The resulting optimisation problem can
therefore be summarised as:
Minimize: obj = a, -V +a; -m,,, subjectto: R, <5.77-10°m

Figure 67 illustrates the consequent admissible region near the best solution,
while Figure 68 and Figure 69 show the second and third objective function

terms values.
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Figure 67: Admissible region near the best solution.
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It is worth noting that the axes intervals have been strictly reduced and the

admissible region near the best identified solution, by varying only t,and tt, is in
fact really narrow; just one day in t, and five days in tt. In the admissible region

the remaining objective function seems to show convexity features with respect

to t, and tt. Several constraints handling methodologies consider the

introduction of penalty terms in different ways in the case of non admissible
solutions. It is important to note that such methodologies deeply affect the
structure of the objective function, sometimes introducing discontinuities in
either objective function values or derivatives, corresponding to the admissible
region boundaries. Figure 70 shows the objective function values with respect

to the thrust level, u, and the escape velocity from Earth, v, ., while Figure 71,

Figure 72 and Figure 73 illustrate each objective function term.
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Figure 70: Obijective function values with respect to the escape velocity from Earth and thrust.
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Figure 72: v /10 values with respect to the escape velocity from Earth and the thrust.
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Figure 73: m___ /20 values with respect to the escape velocity from Earth and the thrust.

prop

Figure 70 shows the convexity features of the objective function with respect to
the escape velocity from Earth and the thrust level. In particular, monotonic
features are again identifiable from Figure 73 with respect to the thrust level: the
reason of such a feature is again associable to the propellant mass equation as

explaneed earlier. Figure 74 illustrates the admissible region near the best

solution as the only part of the search space where R. <5.77-10° m.
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Figure 74: Admissible region near the best solution in the ;.. —U subspace.

Similar consideration as those made in the previous cases are here still valid. In
particular the admissible region is again very narrow and has regular

boundaries.

The objective function shape with respect to the azimuth and elevation at
the first and final sample points is now analysed. The results in case of
considering the remaining sample points have been shown to be similar.
Figure75 shows the objective function values with respect to the azimuth and
elevation at the first sample point (remember that the thrust direction along the
whole transfer trajectory is given by a linear interpolation of six uniformly
distributed time sample points), while Figure 76 and Figure 77 illustrate each
objective function term. The propellant mass term has been omitted because
only dependent on the transfer time and the thrust level and then constant in

this case. Figure 78 illustrates the admissible region near the best solution as

the only part of the search space where R, <5.77-10° m.,
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Figure 79 shows the objective function values with respect to the azimuth
and elevation at the sixth sample point, while Figure 80 and Figure 81 illustrate
each objective function term. The propellant mass term has been again omitted
because only dependent on the transfer time and the thrust level and therefore

constant. Figure 82 illustrates the admissible region near the best identified

solution as the only part of the search space where R. <5.77-10° m.
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Figure 79: Objective function with respect to the azimuth and elevation at sixth sampled point.
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Figure 82: Admissible region near the best solution in the az, — el6 subspace.

We now analyse in order to better understand the shape of the third term over
the thrust level and the transfer time subspace; the only design variables that
directly affect the propellant mass. In the case of constant thrust level, Equation
31 yields:

u-tt

— [32]
I sp 90

prop

The previous equation shows that the propellant mass is monotonic with
respect to the thrust level and the transfer time. This can be seen from Figure
83 where the propellant mass is plotted as a function of u and tt. Similarly to the
previous cases, Figures 84 shows the shape of the overall objective function in
the u — tt subspace, while Figure Figures 85-87 illustrate the values of each

term.
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Figure 86: V. /10 values with respect to the thrust level and the transfer time.
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Let us now consider the final relative position with respect to Mars as a

constraint. Figure 88 illustrates the admissible region near the best identified

solution as the only part of the search space where R. <5.77-10° m, while
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/20 values with respect to the thrust level and the transfer time.

Figure 89 shows the values of the remaining objective function.
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The remaining objective function shows convexity features over the admissible
region. Now, note that this observation has a general validity as it is related to

the propellant mass term. Finally let us consider the second term of the

objective

velocity with respect to Mars equal to 50 m/s. The resulting optimisation

function as a further constraint, imposing a maximum final relative

problem is therefore summarised as:

Minimize: obj =m

Figure 90 consequently shows the resulting objective function values (that is the

oo SUbjectto: R <5.77-10°m and v, <50m/s

values of only the propellant mass) over the admissible search space.
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Note that by considering the first two objective function terms as constraints in
the optimisation process, the only design variables that affect the values of the
objective function are the thrust level, u, and the transfer time, tt, while the
remaining design variables only affect the shape and position of the admissible
region in the u — tt space. In this case the values of the remaining design
variables have been fixed to those corresponding to the best solution, however
this has not been proven to be a global optimum. By varying those values one
can completely identify the whole admissible region in the u — tt subspace.
Once solved the problem of characterizing the whole admissible region, which
is certainly a very complex problem in itself, one can find the global optimum by
analysing the boundaries of such a region, due to the monotonic features of the

remaining objective function.

Problem ) Search o ) o
_ _ Constraints Objective function T-periodicity

Dimension Space

f € R almost everywhere

Box DeR ™
N . < C?, locally discontinuous in a Yes
constraints
countable number limited sets

Table 24: Summary of problem characteristics.

Finally, note that if we can demonstrate that the A-to-B low thrust transfer with

fixed A and B is not NP-hard, meaning that the solution for the controls is
unique and easy to find, then the problem is similar to the 2-impulse direct
transfer and a polynomial time optimisation algorithm can be developed. This
possibility will be accurately analysed in the future.
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5. LUNAR WEAK STABILITY BOUNDARY TRANSFERS

The possibility of designing low energy lunar space trajectory exploiting more
than one gravitational attraction is now investigated. In particular, the framework
of the Restricted Three-Body Problem (R3BP) is here analysed and Lunar
transfers are studied which take advantage of the dynamic of the corresponding

libration points [Topputo at al., 2004].

5.1 Problem Formulation

In order to assess the objective function, the following mathematical models and

methods have been used:

Restricted three-body dynamical model
Two dimensional motion (synodic dimensionless reference frame)

Combination of invariant manifolds and Lambert’s three-body arcs

YV V V VY

Impulsive manoeuvres (i.e. instantaneous variations in velocity) for

linking the three-body arcs

The interior stable manifold associated to the libration point L1 in the Earth-

Moon system, WS, is propagated backward for an interval of time t,.

Corresponding to W, the exterior unstable manifold, W], can be evaluated.

The manifolds W3 and W/, constitute in fact a transit orbit between the
forbidden region through the corresponding thin transit region. As a
S

consequence, if a spacecraft lies on the stable manifold W, the natural

evolution of the system will bring it from the region close to the Earth to the

region close to the Moon. However, the backward integration of the manifold
W, for several Moon's periods has shown that this manifold does not reach

low distances from Earth: in particular, the minimum Earth distance seems to
be constant and almost equal to 0.35 Earth-Moon unit distances. To solve this

problem, starting from a circular orbit around the Earth, an arc resulting from
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the solution of a Lambert’s three-body problem is used for targeting a point on
the manifold W . It is worth noting that such an approach leads to a final
unstable orbit around the Moon with mean altitude equal to 21600 km, which

can be further stabilized with additional manoeuvres. Data corresponding to the
considered initial circular orbit around the Earth are reported in Table 25.

Initial circular orbit

Altitude: 200 km

Inclination: 0 deg

Table 25: Initial conditions.

As a consequence of the previously described formulation, a first impulsive
manoeuvre, AV,, is used to put the spacecraft in the Lambert’s three-body arc
from the initial circular orbit around the Earth. A second impulsive
manoeuvre, AV,, is performed to inject the spacecraft on the capture trajectory
WS . The overall AV, which is necessary for performing the Lunar transfer and

which has been considered as objective function for the optimisation processes,

can be evaluated as follows: AV = AV, + AV,

As a consequence of the mathematical models and methods used for the
objective function assessment, the search space is characterized by the
following design variables:

» The angle identifying the starting point over the initial circular orbit (0)

> The time of the backward propagation of the stable manifold W from
the libration point L1, whose final point identify the target of the Lambert’s
three-body arc (t,,)

» The transfer time corresponding to the Lambert’s three-body arc from the
initial circular orbit to the target point on the stable manifold WS

previously identified (t, )
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The previous choices make the number of the design variables equal to 3. All
the previous design variables have a continuous characterization over the

search space.

Upper and lower bounds on the design variables are considered. The

imposed intervals of variation are:

lo*® 0 |=[0,360]deg
[t® 18 |=[0.13] d [33]
[tie te |=[5.150] d

In order to avoid the problem of high differences in the interval dimensions
corresponding to each design variables, a normalization process has been

implemented which renders the search space a unit 3-dimensional hypercube.
5.2 Objective Function Structure Analysis

As for the previous mission analysis test cases, the objective function
structure analysis for a Lunar transfer using libration points starts with the
Reeves and Yamada methodology: 100 local minima have been found with a
random start search (with uniformly distributed random start points) followed by
an SQP optimization process; the mean distances of each solution to each
other is then assessed and compared to the corresponding goodness;
consequently, the values of the design variables corresponding to the best local
minimum has been used in order to analyse the convexity of the objective
function. By using the Reeves and Yamada’'s methodology, Figure 91 shows
the resulting local minima distribution: the x-axis reports the normalized mean
distance of each local optima, while the corresponding objective function values
are indicated along the y-axis.

102



=i
LUNIVLESIEY
p‘l-

Ll AL

16000 T T T r T T T T T
L o r
14000 [ e fer e brenrendrenece bbb
12000 f------ T s i s e R e
L ] e e T
E i i i | i i i i i
. .
<1 5000

B000

4000

S I T T S T SN NN R S
a 0.1 0.z 0.3 0.4 0.4 0.E 07 n.s oo 1
normalized mean distance

Figure 91: Objective function structure analysis for Lunar transfers using libration points.

As already noted in previous mission analysis classes, the objective function for
a Lunar transfer using libration points shows a big-valley structure. The mean
closeness of most local optima tends to range between 0.2 and 0.4 times the
hyper-diagonal magnitude. The features of the best found local minimum are
reported in Table 26 and Table 27, together with the illustration of the resulting
transfer trajectory in a dimensionless Earth-Moon rotating frame, Figure 92.

Search space

0: 70.835 deg
t,: 1.273d
ty : 107.670 d

Table 26: Best identified solution: search space.
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Objective space

AV : 3080.767 m/s
AV, : 3080.756 m/s
AV,: 0.011 m/s

Table 27: Best identified solution: objective function space.

y (adim., Earth-bMoon rotating frame)

I i 1 1 |
0B 04 02 a 0.2 0.4 0B 0.8 1
# [adim., Earth-Moon rotating frame)

Figure 92: Best known solution: trajectory representation in the dimensionless Earth-Moon
rotating frame.

Let us now analyse the shape of the objective function over the search domain,
by considering two significant design variables at time and fixing the values of

the remaining design variables to those of the previous best identified solution.

104



=i
LUNIVLESIEY
wi

IZFJ_-'I.b:l.il'l'f‘-'

Starting angle (8) — Lambert’s three body arc transfer time (t.)

Figure 93 shows the resulting objective function values with respect to angle
identifying the starting point over the initial circular orbit (6) and the transfer

time corresponding to the Lambert’s three-body arc from the initial circular orbit

to the target point on the stable manifold W (t,).

x10

400

200

10 theta [deg]

Figure 93: Objective function values with respect to 6 and t,.

The shape of the objective function illustrated in Figure 93 shows
important discontinuities. The reason of such irregularity is related to the
mathematical model used for the objective function evaluation. In particular, as
stated above the mathematical model here analysed involves the solution of a
Lambert’s three body problem; the solution of such a problem is carried out by
means of a shooting method which try to link the initial and final desired states
with a three-body trajectory by opportunely modifying the initial conditions
through several iterations until either a certain tolerance is satisfied or a

maximum number of iterations is reached. In case the algorithm implementing
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the shooting method does not converge to a solution within the considered
tolerance before the maximum number of iterations is reached, it returns output
values that fix the objective function value to a relatively high constant penalty
value. This is not an efficient approach, which eliminates objective function
gradients in particular regions of the search space and high discontinuities on
the boundaries of such regions. Anyway, it is worth noting that it is still quite
used in practical problem, although it could make ineffective the global and local
search. As a consequence, the red flat region in Figure 93 corresponds in fact
to such non-converging solutions. On the contrary, this situation does not hold
in case of the apparently flat blue region in the same figure: Figue 94 reports a

close up of the same function where non converging points have not been

considered.
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Figure 94: Objective function values with respect to 8 and t.: close up of Figure 93 (the red
point is the best identified solution).

Figure 94 shows that, by omitting the non converging solutions, the
objective function has quite regular structure on the 6 - t. plane, whit monotonic

feature in fact. The red point in figure represents the best identified solution.
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However, it is important to note that, the approach used for the objective
function definition make this best solution lying on the boundaries of a
discontinuity line. Such feature makes the search of the global optimum solution
quite complex, because of discontinuities in the neighbourhood of the global

optimum solution.

Starting angle (0) — backward propagation on the stable manifold (tw)

Figure 95 shows the resulting objective function values with respect to

angle identifying the starting point over the initial circular orbit (6) and the time

of the backward propagation on the stable manifold W, from the libration point

L1 (t, ).

Figure 95: Obijective function values with respect to 8 and ty,.

Figure 95 shows again the important discontinuities related to the objective
function evaluation corresponding to solutions whose associated Lambert’s
three-body problem solution do not converge. Important observations can be
highlighted now by analysing Figures 96-97 which are a close up of Figure 95

omitting the non converging solutions.
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Figure 97: Objective function values with respect to 8 and ty:

Besides the previously identified discontinuities, which are in fact related
to a particular management of penalty terms in case of missed convergence,

the objective function shows remarkable periodicity on the time spent on the
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stable manifold W . Many comparable local minima exist which lie on different
slots clearly identifiable analysing the ty design variable and which seem to be
positioned on the boundaries of the multiple discontinuity region: in particular,
the best identified solution (the red dot in Figure 97), confirms such
considerations. In order to better illustrate the periodic feature, Figure 98 plots

the objective function values with respect to t,, by fixing the value of the starting

angle 6 to that characterizing the best identified solution.

AV [mis]

i i i i I
20 40 60 80 100 120 140
by [d]

Figure 98: Objective function values with respect to ty: values of remaining design variables
fixed.

As it concerns the trend of the objective function with respect to the starting
angle 6, omitting the effects of discontinuities, a non periodic objective function
structure holds. Before investigating the reasons of such periodicity, let analyse

the remaining combination of design variables.
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Lambert’s three body arc transfer time (t.) —backward propagation time on

the stable manifold (tw)

Figure 99 shows the resulting objective function values with respect to the

transfer time corresponding to the Lambert’'s three-body arc from the initial

circular orbit to the target point on the stable manifold W, (t,) and the time of

the backward propagation on the stable manifold W3 from the libration point L1

(ty)-

Figure 99: Objective function values with respect to t, and ty,.

Important discontinuities related to the objective function evaluation
corresponding to solutions whose associated Lambert's three-body problem
solution do not converge are again identifiable in Figure 99. Let now analyse
Figure 100 and Figure 101, which, similarly to the previous cases, constitute

close ups of Figure 99 omitting the non converging solutions.
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Figure 101: Objective function values with respect to t, and ty:

As previously highlighted, omitting the identified discontinuities, the objective

function shows remarkable periodicity on the time spent on the stable manifold

W3, which causes the presence of many comparable local minima
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corresponding to different slots clearly identifiable on the ty design variable. As
it concerns the objective function profile with respect to the transfer time
corresponding to the Lambert’s three-body arc, t,, monotonic features can be
recognized. The best identified solution (the red dot in Figure 101) lies again on

the boundary of the multiple discontinuity region.

Let us now investigate the possible reasons of the objective function

periodicity with respect to the backward propagation time on the stable manifold

WS from the libration point L1 (t, ). Figure 102 is a 3-dimensional plot of the

100 local minima identified by the local optimization processes on the search

space, while Figure 103 is a projection of Figure 102 along the three axis.
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Figure 102: Local minima distribution on the 3-dimensional search space.
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Figure 103: Local minima distribution on the search space: projections of Figure 102.

We can see that the transfer times corresponding to the Lambert’s three-body
arc, t., in case of the identified local minima tend to assume relatively high
values: such an observation can be related in fact to the monotonic feature of
the objective function with respect to this design variable which has been
previously identified (see Figure 102). As it concern the backward propagation

time on the stable manifold W), a careful analysis of Figure 103 let us

recognize the presence of several set of local minima which tend to assume
similar t, values. The presence of such subgroups can be related to the
identification of the big valley structures deriving from the periodicity of the
objective function described above (see Figure 97 and Figure 100). Moreover,
let consider Figure 104, which simply plots the objective function values
corresponding to the identified local minima which are reported in ordinal way.
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Figure 104: Objective function values corresponding to the identified local minima.

By excluding the worst local minima, Figure 105 reports the identified solutions
corresponding to objective function values lower than 4000 m/s. Two different
objective function levels seems to characterize the identified local minima, the
lowest being upper bounded by a value of about 3200 m/s. By considering only
local minima included in this interval, Figure 106 reports their distribution over
the search space.
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Figure 106: Local minima distribution on the search space: solutions corresponding to objFun <

3400 m/s.

It is interesting to note that the isolated local minima, which are in fact all

comparable in terms of objective function values, gather into subgroups in the

search space. In patrticular, all local minima tend to assume the same value of
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transfer time corresponding to the Lambert’s three-body arc, t,, from the initial

circular orbit to the target point on the stable manifold W;. As it concerns the
starting angle 6, a finite set of clusters can be clearly identified (five in this case:
see the left plot in Figure 106). Corresponding to each cluster on the 6 design
variable, by analysing the central plot in Figure 106, two different subgroups can

be recognized on the t, design variable, that is the time spent on the stable

manifold W3 to L1. As a consequence, we can state that the subgroups

identifiable on the central plot in Figure 106 describe a set of different families of
Lunar transfers (where the term “family” is referred to solutions lying on different
niches on the search space, as defined by Gurfil and Kasdin in their work about
a similar systematic characterization of geocentric orbits in the 3D elliptic
restricted three-body problem [Gurfil, and Kasdin, 2002]).

Let us now analyse the details of such families. Figure 107 reports the
central plot of Figure 106 where subgroups have been numerated from 1 to 10
following an increasing t, value. Corresponding to each number in Figure 107
and randomly selecting one solution from each subgroup, Figures 108-117
illustrate the resulting Lunar transfer. Moreover, the minimum objective function

value related to each subgroup is indicated in brackets in Figure 117.
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Figure 107: Local minima distribution on the search space: central plot of Figure 106 identifying
the set of local minima subgroups.
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Figure 108: Local minima: subgroup 1.
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Figure 109: Local minima: subgroup 2.
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Figure 110: Local minima: subgroup 3.
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Figure 111: Local minima: subgroup 4.
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Figure 112: Local minima: subgroup 5.
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Figure 113: Local minima: subgroup 6.
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Figure 114: Local minima: subgroup 7.
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Figure 115: Local minima: subgroup 8.
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Figure 116: Local minima: subgroup 9.
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Figure 117: Local minima: subgroup 10.

Figure 117 shows that all the identified local minima are in fact comparable, with
little variance on the objective function values. The best identified solution
belong to subgroup 8, as can be seen by the corresponding transfer trajectory
illustrated in Figure 98. By carefully analysing the transfer trajectories related to
the comparable local minima, a common feature can be recognized: in all

cases, the injection on the stable manifold W3 from the Lambert’s three body

arc occurs in a point near the farthest five points clearly identifiable in the Earth-
Moon rotating frame (see for example Figure 117) on the incoming line to them.
Moreover, starting from Figure 108, once all the farthest five points have been
described, similar solutions seem to occur again in a perturbed orbit with
respect to the previous one. The trajectories in Figures 108-117 are
represented in the rotating reference frame. However, if viewed in the usual
Earth-centered inertial frame, the previous trajectories appears as a conic-like
perturbed orbit, with the farthest points corresponding to the apogees and the
closest ones to the perigees. As a consequence, in the Earth centred inertial

reference frame, the previously identified injections occur in points close to the
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apogee of the conic-like perturbed orbit on the incoming line to it. Note that,
when the Earth-Moon line occurs near the apogee of the conic-like orbit, the
Moon "pumps" up the apogee until it captures the orbit that breaks and become
non-elliptic. Such a consideration let us understand that the transfer in Figure
108 corresponds in fact to the injection on the conic-like orbit in a time which
corresponds to the phase between the apogee line and the Earth-Moon line
directly leading to the capture by the moon, while the subsequent figures are
related to injections that occur in antecedent revolutions on the same conic-like
perturbed orbit. In particular, it is interesting to note that solution represented in
Figure 97 corresponds to an injection on a favourable phase between the
apogee line and the Earth-Moon line (where the Moon "pumps" up the apogee),
but which constitute a missed Moon capture, thus confirming that the trajectory
is in fact a perturbed conic-like orbit. The previous considerations recognize the
reason of comparability of the many distinct identified local minima and the
periodicity features of the objective function on the time spent on the stable

manifold W}, which can be related to injections on the conic-like perturbed orbit

in the Earth-centred inertial reference frame corresponding to different points of
the orbit and different revolutions around the Earth. Moreover note that,
although the local minima are in fact comparable (the mean value being
3111.697 m/s with a standard deviation of 29.129 m/s) high differences on the
time spent to reach the libration point L1 (t, +t, ) obviously characterize them,
as shown in Table 27, where features of the best member of each subgroup are
reported. Each transfer family is then characterized by different features
resulting from the different niches occupied by the design variables on the

search space.
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Subgroup # AV [m/s] tL + tw [d]
Subgroup 1 3081.598 16.434
Subgroup 2 3082.544 27.501
Subgroup 3 3082.326 38.251
Subgroup 4 3096.143 49.002
Subgroup 5 3090.616 60.062
Subgroup 6 3098.311 87.135
Subgroup 7 3116.886 98.174
Subgroup 8 3080.767 108.943
Subgroup 9 3091.788 119.679
Subgroup 10 3088.030 130.782

Table 27: Subgroups characterization on AV and time spent to get L1.

Finally, Table 28 reports a summary of the previously performed objective

function structure analysis.

Problem . Search o . o
_ _ Constraints Objective function Periodicity
Dimension Space
f e discontinuous
Yes, and related
on the boundaries of a :
5 to the time
OX 3 . . .
3 o DeR finite set of regions spent on  the
constraints :
over the search space; stable manifold
C® in the remaining _
W, to L1.
points.

Table 28: Summary of Problem Characteristics.
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6. GLOBAL OPTIMISATION TOOLS

In this section, a brief introduction to the global optimisation tools that have
been used in the present work is outlined. The main principles and features of
each algorithm scheme is presented and corresponding references to dedicated
literature are indicated for specific and more detailed information. Then, general
considerations are finally highlighted regarding the choice of some algorithm
parameters. Algorithms for global optimisation can be mainly classified in three
classes (see Figure 118, where the tested global optimisation tools are

presented in tree outline form):

» Stochastic algorithms, which involve at a suitably chosen random sample
of points and subsequent manipulation of the sample to find good local
minima.

» Guaranteed algorithms, which are deterministic algorithms which
guarantee to find a global optimum with a required accuracy.

» Algorithms exploiting the construction of metamodels, which do not
perform the global search on the real objective function, but on a

metamodel of it.

Further, stochastic algorithms two main subclasses have been analysed:

» Evolutionary Algorithms (EAs), which globally search the solution
space by simulating the self-optimising natural process of evolution:
the fittest individuals tend to reproduce and survive in the next
generation, improving the fitness in successive generations; however,
also individuals with a lower fitness level can survive and reproduce.

» Simulated Annealing (SA), which performs the global search based on
successive update steps, where the update step length is proportional
to an arbitrarily set parameter which can play the role of a
temperature. In analogy with the annealing of metals, the temperature
is increased in the early stages of the process for faster optimisation,

and then reduced for greater stability.
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In particular, as stated by Yao [Yao, 1997], the general subclass of Evolutionary

Algorithms (EAs) can be divided in three main branches:

» Genetic Algorithms (GAs), where a wide exploration of the search space
and the exploitation of promising area are ensured by means of the
mutation, crossover and selection operators which are applied to the
individuals in the population (for a careful description of such operators
see [Michalewicz, 1994]).

» Evolutionary Programming (EP), whose classical scheme makes use of
the only mutation operator and, unlike GAs, they simulate the natural
evolution at phenotypic level; moreover, as it concerns the selection
process, it is based on a tournament selection carried out on a
population including both parents and offspring.

» Evolutionary Strategies (ESs), which, similarly to EP, simulate the natural
evolution at a phenotypic level, but, unlike EP, make use of

recombination operators.

The most important class of methods belonging to the class of guaranteed
algorithms are in fact the branch and bounds methods, whose basic idea is that
of splitting recursively the configuration space by branching into smaller and
smaller parts; the way the branching procedure is performed depends on the
bounding procedures, which aim at evaluating lower bounds of the objective
function over the generated portions of the configuration space. However,
glbSolve and MCS algorithms, which have been tested in this work, have been
indicated by the authors as “branching without bounding” methods (see the
dedicated references). Anyway, proofs of deterministic convergence to the
global optimum with a desired accuracy exist; as a consequence, they have
been included in the set of guaranteed algorithms. Finally, an important family
of algorithms exploiting the construction of metamodels is that of response
surface based optimisation algorithms, which use the objective function
evaluations at a set of points for fitting response surfaces constituting fast
surrogates of the objective function that can be used for optimisation purposes.
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Global Optimization Algorithms

/’1\1

Stochastic Guaranteed Metamodel

glbSolve, MCS

Evolutionary Simulated
Algorithms Annealing

Il

¥
Genetic Evolutionary Evolutionary
Algorithms Programming Strategies

o U S

Figure 118: Tested global optimisation tools: a tree outline form.

GAQOT, GAQOT-shared,
GATEX, GATEX-migr

) 6

The test phase, which will be presented in the following chapters, has been
performed following the scheme reported in Figure 119.
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solver problem
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L S
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Complexity metamode| Complexity
Fa Pfr,i

Figure 119: Test scheme.

A problem of computational complexity P, which involves the optimisation of
an objective function f;;, modelling the real problem is submitted to a solver A
which has a complexity Pa. As stated above, the application of the solver A
might shift (but not necessarily) the submission of the real objective function f;;
by facing a metamodel of it, f,, which can reduce the computational complexity
of the real objective function, P ; (direction 2 in Figure 119). By facing the test
problems with this scheme, if a global solver A could solve an optimisation
problem of complexity Pxi, we might state that (although no rigorous
demonstrations exist) all global solvers with a computational complexity Pa
should be able to solve the problem of optimising the objective function f;;. On
the other hand, if the solver A which could solve the problem of minimizing f;;
turns out not to be able to solve the further problem of optimising an objective
function f; (with f# f.;), we might state that (although no rigorous
demonstrations exist) the corresponding computational complexity Pg; must be
higher than the complexity of the problem f.; (P«; > P#,). Before starting the
description of the tested tools, as it concerns the termination condition, note
that, as stated by Huyer and Neumaier [Huyer and Neumaier, 1999], in practical
global optimisation problems as those analysed in this work, one does not know
the solution in advance and needs a criterion that tells the program when to
stop searching for a better local optimum. This criterion should accomplish a
trade-off between avoiding wasting too many objective function evaluations
after the global minimum has been found and ensuring that the algorithm does

not terminate before the global optimum has been found. Some of the global
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optimisation tools which have been tested in this work have been already
supplied by a suitable termination condition; for those algorithms where such a
criterion was not included, a common stopping rule has been implemented, as
described in the following, which, after an exhaustive practice phase, seemed to

be suitable and robust.

6.1 Genetic Algorithm for Optimisation Toolbox (GAOT)

Genetic Algorithm for Optimisation Toolbox (GAOT) implements a global search
based on a genetic algorithm scheme. The fundamentals issues which must be
identified before using a genetic algorithm can be resumed as follows: the
identification of the chromosome representation, the management of the
selection function, the choice of the genetic operators for the reproduction, the
termination criteria and the evaluation function. A complete description of the
features and the options offered by GAOT to the user is available at reference
[Houck et al, 1995]. The code is freely available at:
http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/. As it concerns the pre-set
configurations in all tests performed in this work, default options have been
maintained: in particular, the real coded version of the genetic algorithm has
been used. Moreover, note that GAOT can handle upper-lower bounds
constraints by itself. One modification was necessary for implementing a new
termination condition. The set offered by GAOT in the standard version includes
in fact two termination rules: one based on a fixed number of generations and
the other based on the achievement of either a predefined optimal objective
function value or a maximum number of generations. The previous rules are not
suitable for applications where no a priori information are available on the global
optimum, as in the cases here analysed. As a consequence a new termination
condition has been implemented which stops the evolutionary process when the
absolute improvement of the best objective function value corresponding to the

best solution, AobjFun, over a number of successive generations equal to 5-n,

where n is the number of design variables, is less than 107°:

129



=i
LUNIVLESIEY
wi

IZFJ_-'I.b:l.il'l'f‘-'

Stop when:  AobjFun, <107

6.2 GAOToolbox with sharing operator (GAOT-shared)

In order to assess the theoretical advantages offered by the use of niching
methods in evolutionary global searches, GAOT scheme presented in Section
6.1 has been modified by the authors for including such techniques. Traditional
genetic algorithms with elitist selection usually converge to a single global
optimum on the search space. As stated by Sareni and Krahenbuhl [Sareni and
Kréahenbuhl, 1998], real optimisation problems often lead to multimodal domain,
where the identification of multiple optima, either global or local, is required.
Niching methods are then used to promote the formation of stable
subpopulations in the neighbourhood of optimal solutions. In particular, sharing
methods have been considered, which are in fact the most used among the
available niching techniques. The operation of fithess sharing modify the search

landscape by typically modifying the fitness f, of an individual i as follows:

fro— 1 [34]

where m, is the niche count which measure the approximate number of
individuals with whom the fitness f, is shared and f'; is the shared fitness. The

niche count is calculated by summing a sharing function over all members of

the population:

Mz

m. =

sh(d, ) [35]

1

where N is the number of individuals in the population and d;; is the distance

between individuals i and j. The sharing function sh measures the similarity
level between two population elements and it usually has two main feature: its

value is one if the two solutions are identical and zero in case their distance is
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higher than a threshold of dissimilarity. The most widely used sharing function,

which has been used in the present work, is defined as follows:

1-(d; /o, )", if d<o
hid,. )= e ° 36
; ( ”) {0, otherwise 196]

where o, is the threshold of dissimilarity (distance cut-off of the niche radius)

and o is a constant parameter which regulates the shape of the sharing
function. The value of o is commonly set to one, resulting in the so-called
triangular sharing function. Moreover, a phenotype similarity for defining the

distance between two individuals has been considered by evaluating d;; as the

Euclidean distance measured on the search space. Set values for a and o

parameters will be indicated corresponding to the performed tests.
6.3 Genetic Algorithm Toolbox (GATBX)

Genetic Algorithm Toolbox (GATBX) implements again a global search based
on a genetic algorithm scheme. The main features are then similar to those
presented in case of GAOT tool, especially concerning the fundamentals issues
which must be identified before using it. However, some differences can be
identified: they mainly concern with the way selection, mutation and crossover
operations are performed. A detailed description of the features and the options
offered by GATBX to the user is included in references [Chipperfield, Fleming,
and Fonseca, 1994] and [Chipperfield, and Fleming, 1995]. The whole source
code is freely available at: http://www.shef.ac.uk/cgi-bin/cgiwrap/~gaipp/gatbx-
download. The GATBX configuration used in all tests performed in this work
makes use of default options: in particular, the real coded version of the genetic
algorithm has been considered and discrete recombination operator has been
used instead of crossover. GATBX can handle upper-lower bounds constraints
by itself. Due to the absence of termination conditions suitable for tests
performed, the termination condition described in case of GAOT tool has been

implemented again, which can be resumed by the following rule:
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Stop when:  AobjFun, <107

6.4 Genetic Algorithm Toolbox with migration operator (GATBX-migr)

Options offered by the previously described GATBX tool have been exploited in
order to assess the variation of performances in solving the global optimisation
problem which are associated to the use of the migration operator. In such case
the whole population is gathered into subpopulations, which independently
evolve searching for the global optimum solution. The number of
subpopulations can be defined by the user: its value has been suitably set in
each performed test. Information can be exchanged between the various
subpopulation during the optimisation process at predefined intervals of
generations with a fixed migration rate: the default values of such parameters
have been considered. GATBX can handle upper-lower bounds constraints by
itself. As stated above, GATBX algorithm has been supplied by a suitable

termination condition, which can be resumed as follows:

Stop when:  AobjFun, <107

6.5 Fast Evolutionary Programming (FEP)

The mutation operator associated to classical Evolutionary Programming is
based on the generation of random numbers with a normal distribution.
However, Yao, Liu and Lin [Yao, Liu, and Lin, 1999] showed that the classical
Evolutionary Programming suffers from low convergence rate in some single-
objective multimodal optimization problems and proposed the use of a mutation
operator based on Cauchy random numbers to solve this problem, developing
the Fast Evolutionary Programming (FEP). FEP scheme has been implemented
by the authors for solving generally constrained multiobjective optimization of
space mission design [Di Lizia, Lavagna and Finzi, 2004]. By considering that,
as stated by Zitzler [Zitzler, 2002], single-objective optimisation problems can

be seen as particular cases of multiobjective optimisation problems (and not
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vice versa), the algorithm has been easily modified for performing the single
objective optimisation test presented in this work. However, note that the
implemented code is not optimised and runtime performances could be quite
improved in the future. In particular, the implemented FEP tool can deal with
generally constrained optimisation problems thanks to the use of an efficient
constraint handling methodology proposed by Deb [Deb, 2000], which makes
use of suitable comparison criteria for opportunely defining the fitness function.
It is worth noting that, thanks to the use of a tournament selection approach,
Fast Evolutionary Programming code can be easily parallellized. As it concerns
the termination condition implemented in the tests performed in this work, FEP
algorithm has been supplied by the termination condition previously described:

Stop when:  AobjFun, <107

6.6 Differential Evolution (DE)

Differential Evolution (DE) is a heuristic approach for solving the minimization
problem of possibly nonlinear and non differentiable continuous space functions
[Storn and Price, 1995]. It can be included in the set of Evolutionary Strategies
based algorithms described above. The main idea driving DE search is a
peculiar scheme for generating vectors of design variables: in particular, new
vectors are generated by adding the weighted difference vector between two
population members to a third member. The resulting scheme turns out to be
easily parallelizable. A complete description of DE features is available at
reference [Storn and Price, 1995]. As it concerns the code used in this work, the
version “devec3” has been investigated, which is freely available at:
http://lwww.icsi.berkeley.edu/~storn/code.html. Default DE options for the
evolutionary parameters have been kept. It is worth noting that the codes
available at the previous web page can’'t handle upper-lower bounds constraints
by itself. As a consequence, the code has been modified by introducing a
constraint handling methodology proposed by Deb [Deb, 2000]. Moreover, due
again to the lack of a suitable termination condition for the investigated

optimisation problems, the termination condition described in case of GAOT tool

133



=i
LUNIVLESIEY
wi

IZFJ_-'I.b:l.il'l'f‘-'

has been implemented in DE code, thus stopping the evolutionary process by
analysing the improvement of the objective function value over a certain interval

of generations:

Stop when:  AobjFun, <107

6.7 Adaptive Simulated Annealing (ASA)

Adaptive Simulated Annealing (ASA) is a global optimisation tool based on
Simulated Annealing (SA), which has been proven to outperform the simple SA
scheme [Ingber, 2000]. The origin of the standard Simulated Anealing is dated
back to the inclusion of a temperature schedule for efficient searching carried
out by Kirkpatrick [Kirkpatrick ,1983] on the Monte Carlo integration algorithm by
Metropolis [Metropolis, 1953]. However, classical implementation of the SA
scheme does not consider that, in case of a D-dimensional search space,
different design variables can have different finite ranges and different
sensitivities; Adaptive Simulated Annealing takes advantage of such
considerations for improving the performances of the simple SA scheme. It is
worth noting that the direct parallelization of an SA algorithm has been shown to
be quite difficult [Ingberg, 1993]. A complete description of the features and the
options offered by ASA to the user is available at reference [Ingber, 2000]. The
code is freely available at: http://www.ingber.com/#ASA-CODE. Default options
have been retained in all tests performed in this work: in particular, note that
limits of generated and accepted solutions have been opportunely imposed for
each problem. ASA can handle upper-lower bounds constraints by itself and
has a default termination condition which is useful for problems whose global

optimum solutions are not known a priori.
6.8 Global Solver (glbSolve) and Multilevel Coordinate Search (MCS)

The global solver (glbSolve) and the Multilevel Coordinate Search (MCS) are
algorithms based on a combination of purely heuristic methods and methods

that guarantee to find a global optimum with a required accuracy. They are both
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inspired by the DIRECT method for global optimisation by Jones et al. [Jones et
al., 1993], of which glbSolve constitutes a more classical implementation.
Moreover, as stated by Huyer and Neumaier [Huyer, and Neumaier, 1999], both
methods are guaranteed to converge if the objective function is continuous in
the neighbourhood of a global minimiser, without any additional smoothness
properties. As it concerns the differences between MCS algorithm and the
DIRECT one (which can be also related to differences between MCS and
glbSolve), it is worth noting that DIRECT method partitions a normalized search
space into smaller boxes, which are characterized by their midpoint. The main
disadvantages of DIRECT are related to two aspects: it cannot handle infinite
box bounds and it converges unnecessarily slowly if the global minimum lies on
the boundary of the box, because its structure makes it unable to reach such

regions.

The above described drawbacks are solved by Multilevel Coordinate
Search algorithm by allowing a more irregular splitting procedure. Moreover,
unlike many stochastic methods, MCS allows operating and searching at a local
level also, leading to accurate quick convergence once the global part of the
algorithm has found a point in the basin of attraction of a global minimizer.
Complete descriptions of the features and the options offered by glbSolve and
MCS to the user are available at reference [Jones et al., 1993] and [Huyer, and
Meumaier, 1999] respectively. The commercial version of glbSolve code is
available at: http://www.tomlab.biz/. The MCS tool is freely available at:
http://www.mat.univie.ac.at/~neum/software/mcs/. Default options have been
held in all tests performed in this work. However, as it concerns the termination
condition, the criterion already described in GAOT case and adopted in some of
the previous tools has been implemented in case of glbSolve due to the lack of
presence of good stopping criteria:

Stop when:  AobjFun, <107

Default termination condition has been used in case of MCS algorithm instead,

which stops the optimisation process when no improvement of the objective
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function value is gained after m consecutive sweeps, where m is set to be equal

to 5:n, with n indicating again the number of design variables.

6.9 Radial Basis Function Solver (rbfSolve)

Radial basis function solver (rbfSolve) is a global optimisation tool based on the
generation of response surfaces using radial basis functions. As stated by
Jones [Jones, 2001], the main advantage of such an approach is related to the
fact that, by running simulations or objective function evaluations at a set of
points and fitting response surfaces based on this data, fast surrogates of the
objective function are generated which can be used for optimisation purposes.
However, due to the high computational time required to fit the generated data,
response surface based global optimisation algorithms seem to be suitable for
costly global optimisation problems, where runtime for evaluating the objective
function is too high for allowing a pure stochastic search, thus promoting the
use of smart techniques for exploiting information gained by previous
evaluations, trying to reduce the required number of objective function
evaluations. Moreover, it is worth noting that the runs used to fit the surfaces
can be done in parallel, so allowing saving further time. The available
approaches that use response surfaces to solve global optimisation problems
can be classified by distinguishing the type of response surface and the method
used to select search points. Response surfaces can be differentiated in non-
interpolating and interpolating, although the interpolating ones, which are based
on interpolation of data via linear combination of “basis functions”, have shown
to be the most reliable. As it concerns the implemented method, rbfSolve
belongs to the class of the so-called two stage methods. Such methods involve
a first stage, where a response surface is fitted, and a second stage, where the
generated surface is exploited to compute new promising search points. Such a
scheme might present drawbacks related to the initial sampling procedure,
which can leads to misleading shape of the function to be optimised. A
description of the main principles used by rbfSolve tool is available at reference
[Jones, 2001]. A commercial version of the tool is available at:

http://www.tomlab.biz/. The rbfSolve configuration used in all tests performed in
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this work makes use of default options. However, it is worth noting that no
suitable termination conditions have been found on the tested code. Moreover,
because rbfSolve is not a freely available code, no modifications have been
performed on it. As a consequence, this forced us to stop the optimisation
process when a maximum number of objective function evaluations was
reached. The maximum value of such parameters has been set in each case by
looking at the performances of the other optimization tools.

6.10 Evolutionary Predictive Interval Computation (EPIC)

EPIC, is based on a hybrid deterministic-stochastic approach to the solution and
characterisation of constrained and unconstrained multimodal, multivariate
nonlinear programming problems with mixed integer-real variables and
discontinuous quantities. The EB approach is based on the following principal
ideas:

» An evolutionary strategy is used to explore globally and locally the
solution space D. Then a branching scheme, dependent on the findings
of the evolutionary step, is used to partition the solution domain in
subdomains. On each subdomain a new evolutionary search is
performed. The process continues until a number of good minima and
eventually the global one are found.

» The search is performed by a number of agents (explorers): each
solution y is associated to an agent. and is represented by a string, of
length n, containing in the first m components integer values and in the
remaining s components real values. This particular encoding allows the
treatment of problems with a mixed integer-real data structure. A
hypercube S enclosing a region of the solution space surrounding each
agent, is then associated to y. The solution space is then explored locally
by acquiring information about the landscape within each region S and
globally by a portion of the population, which is continuously regenerated
forming a pool of potential explorers.

» Each agent can communicate its findings to the others in order to evolve

the entire population towards a better status.
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» During the evolutionary step a discoveries-resources balance is
maintained: a level of resources is associated to each agent and is
reduced or increased depending of the number of good findings of the
agent.

> If many agents are intersecting their S regions and their reciprocal
distance falls down below a given threshold, a repelling mechanism is
activated.

This novel and very promising global optimisation algorithm is currently
being developed by Dr Massimiliano Vasile of the Dipartimento di Ingegneria
Aerospaziale at Politecnico di Milano, who has kindly agreed to allows us to test

the performances within our dynamical models.

6.11 General Considerations

As stated in the previous sections, default values of algorithm parameters have
been used. Note that, as widely known, the performance of a specific solver can
be even significantly improved by opportunely tuning proper parameters.
However, as already done in many comparative studies for global optimisation
tools, due to the comparative purposes of this work, the tuning effects have not
been investigated here. However, some algorithm parameters had to be
changed based on the complexity of the faced problem: examples of such
parameters are the number of individuals and the maximum number of
generations for evolutionary based optimisation tools, the maximum number of
solutions generated in case of ASA and MCS and the maximum number of
iterations in case of glbSolve. Such parameters have been mainly set based on
information that has been found in the dedicated literature, on the experience
gained by the authors during previous works on this subject and, of course, on a
tuning process performed after a suitable practice period. The final configuration
adopted in the test phase corresponding to each problem seems to authors to
constitute an effective choice. As a final remark, it is worth noting that all the
tested tools work in a Matlab environment, except the Adaptive Simulated
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Annealing tool, for which a MEX Matlab file has been generated for use it in the

same environment.

7. 2-IMPULSE DIRECT PLANET-TO-PLANET TRANSFER

Problem class statement:

Objective function assessment

Objective function: AV = AV, + AV,

where:

« AV, is the magnitude of the relative velocity at the

beginning of the nterplanetary transfer phase.

e AV, is the magnitude of the relative velocity at the

end of the interplanetary transfer phase.

Mathematical models: Restricted 2-body dynamical model (C? in the whole

solution space except in the origin)

e Three dimensional motion

e Analytical ephemeris model (generated by time
polynomial series of the orbital elements)

« Impulsive manoeuvres (i.e. instantaneous variations
in velocity)

e Lambert’s problem formulation (Battin’s algorithm for

the problem solution)
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Search space characterization

Number of design 2
variables:
Design Variables: « Date of departure from Earth, t,

o Transfer time from Earth to Mars, tt

Topology: Continuous variables

Constraints

Constraints typology:  Box constraints

Box intervals: . [t'®,t%]=[01/01/200331/12/2017]
. tte[100,300] d

General considerations

Objective function The objective function is almost everywhere C?, locally

analysis: discontinuous in a countable number limited set

Problem complexity: Low

Number of global optima: A priori unknown

A systematic analysis of the objective function over the search space, followed
by local optimization processes starting from 100 random first guess solutions
uniformly distributed over the search space (each local search requiring a

number of objective function evaluations of the order of 10?) led to the following
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best known solution, that seems to be the global one over the considered
search space (although no rigorous mathematical demonstration has been

provided).

Search space

Date of departure: 06/06/2003

Transfer time: 203.541d

Objective space

AV : 5678.904 m/s
AV, : 2999.464 m/s
AV : 2679.439 m/s

Number of local optima: A priori unknown.

A systematic analysis of the objective function over the search space, together
with a local optimization process led to 17 solutions (see Figure 120, where the
17 local minima are represented by the black dots; the red dot indicates instead
the best known solution), which seem to represent the complete set of local
optima over the considered search space (although no rigorous mathematical

demonstration has been provided).
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Figure 120:Distribution of the local minima.

Hardware platform:
Intel Pentium 4 — 3.06GHz laptop.

Operating system:
Microsoft Windows XP
Home edition

Version 2002

Service Pack 1

Timings:

The Standard Unit Time (see Dixon & Szeg0, 1978) has been measured.
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Performances:

In the following pages, the performances of each global optimization tool in
solving the 2-impulse direct planet-to-planet transfer are reported. The
evaluation criteria will be mainly based on the analysis of the optimal solution
reached and the number of the required model function evaluations. Due to the
presence of not optimized codes among the tested ones, timing will not be

considered as a main evaluation criterion.

GAOT

As GAOT implements a genetic algorithm, we report the statistical
characteristic, typically considered in case of randomized solution methods. Ten
run have been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used in all
the runs: note that by tuning the algorithm parameters one may improve the
performance of the solvers, but, due to the comparative purposes of this work,
the tuning effects have not been considered. As the 2-impulse direct planet-to-
planet transfer has low complexity features, we used 50 individuals evolving for

a maximum number of generations equal to 100.

Algorithm parameters

Number of individuals: 50

Maximum number of
. 100
generations:

Tables 29-30 report the best identified solution compared with the best known
solution (note that the best solution is here measured by considering the
minimum objective function value reached and is different from the Pareto

optimal solution described below).
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Search space

Design variable Best identified solution Best known solution
Date of departure [d]: 1253.508 1253.510
Transfer time [d]: 203.542 203.541

Table 29: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5678.904 5678.904
AV, [m/s]: 2999.463 2999.464
AVE [m/s]: 2679.441 2679.439

Table 30: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution coincides in fact with
the best known one. Let us now consider the statistical characteristics of the
identified solution set. Table 31 reports the mean value and the standard
deviation of the performances which will be used for comparisons with the other

optimization algorithms.

_ o Standard
Evaluation criterion Mean value o
deviation
AV [m/s]: 5741.524 163.525
Model function evaluations: 1270.5 345.683
Runtime [STU]: 8.198-10°3 3.306-107

Table 31: Statistical characteristics of the identified solutions.
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Tabe 31 shows that the mean value of the optimal objective function values
reached at the end of each optimization process is quite different from the best
identified one and is characterized by a high standard deviation. Such a result
let us suppose that no all the performed optimization processes have been able
to identify the basin of attraction of the best known solution. Figure 121 reports
the final solutions corresponding to each optimization run in the nFunc-AV plane
(where nFunc is the number of objective function evaluations), while Figure 122

illustrates their distribution over the search space.
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Figure 121: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 122 - Distribution of the final solutions corresponding to each optimization run on the
search space.

Figure 121 and Figure 122 fairly illustrates that the presence of comparable
local minima over the analysed search space hindered the effectiveness of
GAOT algorithm at reaching the basin of attraction of the best known solution.
In particular, by investigating the normalized search space, Table 32 reports the

Euclidean distance of each final solution form the best known one.

Run Euclidean distance
run 1 6.334-10°

run 2 0.487

run 3 1.083-10°

run 4 0.598

run 5 0.402
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run 6 0.598
run 7/ 0.598
run 8 1.425-10°
run 9 2.719-10°
run 10 0.487

Table 32: Euclidean distance of each final solution form the best known one in the normalized
search space.

By considering two solutions as identical when their Euclidean distance is less
then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in
this case), only 4/10 GAOT runs were able to get the best known solution.
Further interesting observations can be pointed out by analysing the main
features of the final population: Figure 123 shows the distribution of the
population over the search space at the end of the optimization process

corresponding to the best identified solution.
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Figure 123: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.
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The previous figures show that the individuals in the final population mainly
concentrated in a narrow neighbourhood of the global optimum. This results
held in all runs on average, including the cases where a non global optimum
has been identified. As an example, Figure 124 shows the distribution of the
final population corresponding to the worst identified solution: the final

population of a typical GAOT run mainly concentrates in a neighbourhood of the

identified minimum.
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Figure 124: Distribution of the population over the search space at the end of the optimization
process corresponding to the worst identified solution.

Figure 125 shows the trace of the best solution during the optimization run
corresponding to the best identified solution: GAOT search process typically
investigates the basin of attraction of different local minima before converging to

the final solution.
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Figure 125: Trace of the best solution during the optimization run corresponding to the best
identified solution.

GAOT-shared
As GAOT-shared implements a genetic algorithm including a niching technique,

we report again the statistical characteristics. Ten run have been processed in
order to solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. The threshold of

dissimilarity, o, for the sharing method and the shape parameter of the sharing

function, «, have been set respectively to:

We used again a population of 50 individuals, evolving for a maximum number

of generations equal to 100.
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Algorithm parameters

Number of individuals: 50

Maximum number of
_ 100
generations:

Tables 34-35 report the best identified solution compared with the best known

solution.

Search space

Design variable Best identified solution Best known solution

Date of departure
[d]:
Transfer time [d]: 212.302 203.541

1251.761 1253.510

Table 34: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5720.530 5678.904
AV, [m/s]: 3017.740 2999.464
AVE [m/s]: 2702.790 2679.439

Table 35: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution seems to lie into the

basin of attraction of the best known solution, as Figure 126 fairly illustrates.
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Figure 126: GAOT-shared best identified solution (black point) compared with the best known
solution (red point).

However, as shown in Figure 126, the niching technique avoids a concentration
of the individuals near the global optimum as evident as in the case of the
simple GAOT algorith: as we will state later, this can decrease the accuracy in
finding the global optimum solution. Let now consider the statistical
characteristics of the identified solution set. Table 36 reports the mean value
and the standard deviation of the performances which will be used for

comparisons with the other optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 6420.207 574.220
Model function evaluations: 590.4 320.350
Runtime [STU]: 4.907-10°3 2.776-10°

Table 36: Statistical characteristics of the identified solutions.
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As already noted in case of GAOT algorithm, the mean value of the optimal
objective function values and the high standard deviation reported in Table 36
let us suppose that no all the performed optimization processes have been able
to identify the basin of attraction of the best known solution. Figure 127 reports
the final solutions corresponding to each optimization run in the nFunc-AV

plane, while Figure 128 illustrates their distribution over the search space.
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Figure 127: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 128: Distribution of the final solutions corresponding to each optimization run on the
search space.
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Figure 128 fairly illustrates that some GAOT-shared algorithm runs failed at
reaching the basin of attraction of the best known solution. In particular, by
investigating the normalized search space, Table 37 reports the Euclidean

distance of each final solution form the best known one.

run Euclidean distance
run 1 4.756-102
run 2 5.936-10"
run 3 4.101-10%
run 4 7.216.10"
run 5 1.752:10%
run 6 2.626:10"
run 7 4.188-10"
run 8 5.844.10"
run 9 3.043-10
run 10 7.128.10™

Table 37: Euclidean distance of each final solution form the best known one in the normalized
search space.

By analysing Figure 128 and by considering two solutions as identical when
their Euclidean distance is less then 5% of the hyper-diagonal of the normalized
search space (that is 0.071 in this case), only 3/10 GAOT-shared runs were
able to get the best known solution. Let us now analyse the main features of the
final population: Figure 129 shows the distribution of the population over the
search space at the end of the optimization process corresponding to the best
identified solution.
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Figure 129: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.

Figure 129 fairly illustrates again the effects of the sharing operator on the
distribution of the final population: the niching technique avoids a concentration
of the individuals near the global optimum as evident as in the case of the
simple GAOT algorithm (see Figul23), as will be clearly illustrated later. This
results held in all runs on average, including the cases where a non global
optimum has been identified. Figure 130 shows the trace of the best solution
during the optimization run corresponding to the best identified solution: GAOT-
shared search process immediately gained the basin of attraction of the best

known solution.
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Figure 130: Trace of the best solution during the optimization run corresponding to the best
identified solution.

It is interesting to analyse the effects of the sharing operator on the GAOT
performances: in fact, by promoting the diversity of the individuals in the
population, the GAOT — shared algorithm doesn’t allow the concentration of the
individuals around every point in the solution space and then also around the
optimal solution. But this concentration process is typically recognizable in the
convergence phase: suppose we have an individual close to the optimal
solution and let it participate to the reproduction process; the presence of
individuals similar to the previously identified one is promoted in the new
generation and this may lead to another individual close to the optimal solution;
by processing the sharing operator both the good individuals will be then

penalized due to their closeness; this has two important consequences:

» The accuracy at finding the optimum solution is penalized,;
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» Improvements in the objective function value are more difficult as the
closeness to the optimal solution increase and the stopping criteria easily

become active.

These consequences can obviously be applied to the interpretation of the
results in the previous figures: algorithms supplied by a sharing operator are
penalized in terms of effectiveness in identifying the basin of attraction of the
global optimum in case of presence of several local minima comparable with the
global one, because, due to the low accuracy, little differences on the objective
function values corresponding to comparable local minima can’t be detected
and exploited. On the other hand, it is well-known that the promotion of diversity
in the population allow to maintain subpopulations and to avoid premature
convergence to local optima. The previous considerations suggest the
possibility of improving the performance of GAOT-shared algorithm by
exploiting the advantages of the sharing operator during the first phases of the
global search and by decreasing its action along the optimization process in
order to gain more accuracy in describing the reached local minimum: this could

lead to better results even in presence of several comparable local minima.

GATBX

As GATBX implements a genetic algorithm, we report the statistical
characteristics. Ten run have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. A population of 50 individuals evolving for a maximum

number of generations equal to 100 has been processed again.

Algorithm parameters

Number of individuals: 50

Maximum number of
_ 100
generations:
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Table 37 reports the best identified solution and the best known solution.

Search space

Design variable Best identified solution Best known solution

Date of departure
[d]:
Transfer time [d]: 203.536 203.541

1253.511 1253.510

Table 37: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5678.904 5678.904
AV, [m/s]: 2999.462 2999.464
AVE [m/s]: 2679.442 2679.439

Table 38: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution coincides in fact with
the best known one. As it concerns the statistical characteristics of the identified
solution set. Table 39 reports the mean value and the standard deviation of the

performances which will be used for comparisons with the other optimization

algorithms.
Evaluation criterion Mean value Standard deviation
AV [m/s]: 5740.887 177.082
Model function evaluations: 2322 424.075
Runtime [STU]: 1.037-10% 4.405-10°3

Table 39: Statistical characteristics of the identified solutions.
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Table 39 shows that the mean value of the optimal objective function values
reached at the end of each optimization process is quite different from the best
identified one and is characterized by a high standard deviation. Again, such a
result let us suppose that no all the performed optimization processes have
been able to identify the basin of attraction of the best known solution. Figure
131 reports the final solutions corresponding to each optimization run in the
nFunc-AV, while Figure 132 illustrates their distribution over the search space.
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Figure 131: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 132: Distribution of the final solutions corresponding to each optimization run on the

search space.

Figure 131 and Figure 132 illustrate that GATBX algorithm could not reach the
basin of attraction of the best known solution corresponding to all the
optimization runs. In particular, by investigating the normalized search space,

Table 40 reports the Euclidean distance of each final solution form the best

known one.

t, [dl]

6000

Run Euclidean distance
Run 1 4.870-10™
Run 2 4.870-10™
Run 3 4.871-10"
Run 4 5.818-10°
Run 5 5.981-10"
Run 6 4.870-10™
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Run 7 4.870-10™
Run 8 1.195-10"
Run 9 1.042-10°
run 10 7.234.10"

Table 40: Euclidean distance of each final solution form the best known one in the normalized
search space.

By considering two solutions as identical when their Euclidean distance is less
then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in
this case), only 3/10 GATBX runs were able to get the best known solution. Let
now investigate the main features of the final population: Figure 133 shows the
distribution of the population over the search space at the end of the

optimization process corresponding to the best identified solution.
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Figure 133: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.
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Figure 133 shows that the individuals in the final population mainly concentrated
in a narrow neighbourhood of the global optimum, in a more evident manner
than in case of GAOT algorithm. This results held in all runs on average,
including the cases where a non global optimum has been identified. Figure 134
shows the trace of the best solution during the optimization run corresponding
to the best identified solution: GATBX search process typically investigates the
basin of attraction of different local minima before converging to the final

solution.
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Figure 134: Trace of the best solution during the optimization run corresponding to the best
identified solution.

GATBX-migr

As GATBX-migr implements a genetic algorithm including a migration operator
applied among a predefined set of subpopulations, we report the statistical
characteristics. Ten run have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have

been used in all the runs. A population of 50 individuals evolving for a maximum

161



LUNIVLESIEY
wi

L J_’Ib:l.i o

number of generations equal to 100 has been processed again. The population

has been divided in 5 subpopulations, each one including 10 individuals.

Algorithm parameters

Number of individuals: 50
Maximum number of generations: 100
Number of subpopulations: 5

Number of individuals per 10

subpopulation:

Tables 41-42 report the best identified solution compared with the best known

solution.

Search space

Design variable Best identified solution  Best known solution

Date of departure

[d]:
Transfer time [d]: 203.537 203.541

1253.519 1253.510

Table 41: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5678.904 5678.904
AV, [m/s]: 2999.472 2999.464
AVE [m/s]: 2679.432 2679.439

Table 42: Comparison between the best identified solution and the best known solution:
objective function space.
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The previous tables show that the best identified solution coincides in fact with
the best known one. Let now consider the statistical characteristics of the
identified solution set. Table 43 reports the mean value and the standard
deviation of the performances which will be used for comparisons with the other

optimization algorithms.

Evaluation criterion Mean value  Standard deviation
AV [m/s]: 5679.957 2.191
Model function evaluations: 2650 909.799
Runtime [STU]: 1.646-10% 6.529.10°

Table 43: Statistical characteristics of the identified solutions.

Although the little standard deviation identified in case of GATBX-migr
algorithm, the mean value of the optimal objective function values lets us
suppose that no all the performed optimization processes have been able to
identify the basin of attraction of the best known solution. Figure 135 reports the
final solutions corresponding to each optimization run in the nFunc-AV plane,
while Figure 136 illustrates their distribution over the search space.
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Figure 135: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 136: Distribution of the final solutions corresponding to each optimization run on the
search space.
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Results illustrated in Figure 135 and Figure 136 are quite impressive: most
GATBX-migr runs effectively and accurately reached the best known solution.
Only few runs, as showed in the following, got stuck in a different local
minimum, which is in fact totally comparable with the best known one in terms
of objective function value. In particular, by investigating the normalized search
space, Table 44 reports the Euclidean distance of each final solution form the

best known one.

Run Euclidean distance
run 1 2.668-10™
run 2 7.691-10™
run 3 8.619-10°
run 4 4.822.10°
run 5 2.949.10°
run 6 3.793-10°
run 7 2.777-10°
run 8 4.871-10"
run 9 3.502-10°
run 10 4.871-10™

Table 44 - Euclidean distance of each final solution form the best known one in the normalized
search space.

By considering two solutions as identical when their Euclidean distance is less
then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in
this case), 8/10 GATBX-migr runs were able to get the best known solution. Let
now analyse the main features of the final population: Figure 137 shows the
distribution of the population over the search space at the end of the

optimization process corresponding to the best identified solution.
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Figure 137: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.

Figure 137 shows that the individuals in the final population mainly concentrated
in a narrow neighbourhood of the global optimum: although the GATBX-migr
performs independent evolutions of subpopulation, the mutation operator finally
forces the convergence to the same local optimum. However, the benefits of
such evolutionary scheme are quite evident: GATBX-migr effectively avoids the
premature convergence to local optima, thanks to a better coverage of the
search space. This results held in all runs on average, including the cases
where a non global optimum has been identified. Figure 138 shows the trace of
the best solution during the optimization run corresponding to the best identified
solution: after few iteration, GATBX-migr search process immediately gained

the basin of attraction of the best known solution.
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Figure 138: Trace of the best solution during the optimization run corresponding to the best
identified solution.

FEP

As FEP implements an evolutionary programming algorithm, we report, as
already done for genetic algorithms, the statistical characteristics. Ten run have
been processed in order to solve the previously defined problem. Default
options suggested by the providers of the code have been used in all the runs.
As the 2-impulse direct planet-to-planet transfer has low complexity features,
we used 50 individuals evolving for a maximum number of generations equal to
100.

Algorithm parameters

Number of individuals: 50

Maximum number of generations: 100
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Table 45 and Table 46 report the best identified solution compared with the best

known solution.

Search space

Design variable Best identified solution  Best known solution

Date of departure
[d]:
Transfer time [d]: 203.540 203.541

1253.509 1253.510

Table 45: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5678.904 5678.904
AV, [m/s]: 2999.463 2999.464
AVE [m/s]: 2679.441 2679.439

Table 46: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution coincides in fact with
the best known one. As it concerns the statistical characteristics of the identified
solution set, Table 47 reports the mean value and the standard deviation of the

performances which will be used for comparisons with the other optimization

algorithms.
Evaluation criterion Mean value Standard deviation
AV [m/s]: 5711.337 95.130
Model function evaluations: 2478.9 953.829
Runtime [STU]: 2.463-1072 9.004-107°

Table 47: Statistical characteristics of the identified solutions.
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Although the presence, similarly to GATBX-migr algorithm, of a little standard
deviation identified, the mean value of the optimal objective function values lets
us suppose that no all the performed optimization processes have been able to
identify the basin of attraction of the best known solution. Figure 139 reports the
final solutions corresponding to each optimization run in the nFunc-AV plane,

while Figure 140 illustrates their distribution over the search space.
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Figure 139: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 140: Distribution of the final solutions corresponding to each optimization run on the
search space.
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Results illustrated in Figure 139 and Figure 140 are quite similar to those
gained in case of GATBX-migr algorithm: most FEP runs effectively and
accurately reached the best known solution. Only few runs, as showed in the
following, got stuck in a different local minimum, which is in fact totally
comparable with the best known one in terms of objective function value. By
investigating the normalized search space, Table 49 reports the Euclidean
distance of each final solution form the best known one.

run Euclidean distance
run 1 9.651-10°7
run 2 2.471-10°
run 3 3.914.10°
run 4 4.871-10"
run 5 5.672-10™
run 6 4.864-10™
run 7 2.060-10
run 8 1.441-10™
run 9 3.614-10°
run 10 4.871-10™

Table 49: Euclidean distance of each final solution form the best known one in the normalized
search space.

By considering two solutions as identical when their Euclidean distance is less
then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in
this case), 7/10 FEP runs were able to get the best known solution. Further
interesting observations can be pointed out by analysing the main features of
the final population: Figure 141 shows the distribution of the population over the
search space at the end of the optimization process corresponding to the best

identified solution.
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Figure 141: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.

The final population of the run identifying the best solution is strongly
concentrated around the best known solution and is characterized by quite
similar individuals. Such result could be though as negative, as diversity in the
population generally promotes a better coverage of the search space; however,
the use of self-adaptive evolutionary parameters based on Cauchy random
numbers generation seem to tune in a proper way the search step, effectively
avoiding the premature convergence to local minima. This results held in all
runs on average, including the cases where a non global optimum has been

identified, as shown in Figure 142.
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Figure 142 - Distribution of the population over the search space at the end of an optimization
process corresponding to a local optimum solution.

Figure 143 shows the trace of the best solution during the optimization run
corresponding to the best identified solution: FEP search process immediately
converged to the basin of attraction of the best identified solution, thanks to a
good trade-off between exploration and exploitation via the self-adaptivity of the

evolutionary parameters tuning the search step.
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Figure 143: Trace of the best solution during the optimization run corresponding to the best
identified solution.

DE

As DE implements a Differential Evolution algorithm, we report the statistical
characteristics. Ten run have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. Again, due to the low complexity of the 2-impulse
direct planet-to-planet transfer problem, we used 50 individuals evolving for a

maximum number of iterations equal to 100.

Algorithm parameters

Number of individuals: 50

Maximum number of generations: 100

Table 50 and Table 51 report the best identified solution compared with the best

known solution.
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Search space

Design variable Best identified solution  Best known solution
Date of departure [d]: 4330.221 1253.510
Transfer time [d]: 307.746 203.541

Table 50: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5708.130 5678.904
AV, [m/s]: 3029.958 2999.464
AVE [m/s]: 2678.171 2679.439

Table 51: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution doesn’t coincide in
fact with the best known one, as illustrated in Figure 144, where the best
solution identified by DE (black dot) is compared with the best known one (red

dot) on the search space.
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Figure 144: Comparison between the best solution identified by DE (black dot) and the best
known one (red dot).

Statistical characteristics of the identified solution set are reported in Table 52:
the mean value and the standard deviation of the performances which will be

used for comparisons with the other optimization algorithms are highlighted.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 5986.674 408.679
Model function evaluations: 828.3 319.692
Runtime [STU]: 3.019-10°3 1.098-10°

Table 52: Statistical characteristics of the identified solutions.

Table 52 shows that the set of identified solutions is characterized by a high
standard deviation. Such a result let us suppose that no all the performed

optimization processes have been able to identify the basin of attraction of the
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best known solution. Figure 145 reports the final solutions corresponding to
each optimization run in the nFunc-AV, while Figure 146 illustrates their

distribution over the search space.
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Figure 145: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 146: Distribution of the final solutions corresponding to each optimization run on the
search space.
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Figure 145 and Figure 146 illustrate that DE algorithm couldn’t reach the basin
of attraction of the best known solution corresponding to all the optimization
runs. It is worth noting that, although the best identified solution doesn't lie into
the basin of attraction of the best known one, other runs were able to identify it;
however, the low accuracy demonstrated by DE algorithm in such cases in
describing the corresponding minimum led to objective function values higher
than the best identified one. As a consequence, one can state that the
performances of DE algorithm are strongly affected by a low accuracy. Let now
analyse the normalized search space in order to identify the number of
successful runs in identifying the basin of attraction of the best known solution:
Table 53 reports the Euclidean distance of each final solution form the best

known one.

run Euclidean distance
Run 1 6.045-10™
Run 2 2.218-10
Run 3 8.062-10°
Run 4 4562107
Run 5 2.244.10
Run 6 5.307-10"
Run 7 4.744-10"
Run 8 5.990-10"
Run 9 4.807-10™
run 10 4.698-10™

Table 53: Euclidean distance of each final solution form the best known one in the normalized
search space.

By considering two solutions as identical when their Euclidean distance is less
then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in
this case), only 3/10 DE runs were able to get the best known solution.
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However, by analysing Figure 147, we can see that solution corresponding to
run 3 (the red dot in figure), although quite different from the best known one,
lies in fact in the basin of attraction of the best known solution. As a
consequence, we can state that 4/10 DE runs were able to get the basin
attraction of the best known solution. Let now investigate the main features of
the final population: Figure 147 shows the distribution of the population over the
search space at the end of the optimization process corresponding to the best

identified solution.
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Figure 147: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.

Figure 147 shows that the individuals in the final population are widely
distributed on the search space. This results held in all runs on average,
including the cases where the basin of attraction of the global optimum has

been identified, as shown in Figure 148.

178



LUNIVLESIEY
uf

Ll AL

600
550
500
450 -
400

tt [dl] 350+

AVImM/s]

300

250

200

150

100 = : : : : :
1000 2000 3000 4000 5000 6000 7000

to Il

Figure 148: Distribution of the population over the search space at the end of the optimization
process corresponding to an identified solution lying on the basin of attraction of the best known
one.

In particular it is quite interesting observing that the basin of attraction of several
local minima are kept at the end of the optimization process. Such result could
be effectively used by performing local optimization processes at the end of DE
run in order to accurately identify the local minimum corresponding to each
basin: in this way, although the low accuracy, DE algorithm is able to recognize
different space trajectory families corresponding to different basin of attraction
and to keep information about them during the whole optimization process.
Consequences of such DE feature are highlighted in Figures 149-150, which
show the trace of the best solution during the optimization runs corresponding
to the best identified solution and to an identified solution lying on the basin of
attraction of the best known one respectively: DE search processes typically
investigates the basin of attraction of different local minima before converging to

the final solution.
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Figure 149: Trace of the best solution during the optimization run corresponding to the best
identified solution.
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Figure 150 - Trace of the best solution during the optimization run corresponding to an
identified solution lying on the basin of attraction of the best known one.
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ASA

As ASA implements an Adaptive Simulated Annealing algorithm, we report the
statistical performance characteristics. Ten runs have been processed in order
to solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. Note that, unlike the
previous cases, the adaptive simulated annealing needs a starting solution,
which strongly affects the optimal solution reached. Due to the comparative
purposes of this work, we decided to use ten different random starting solutions,
uniformly distributed in the search box. Table 54 and Table report the best

identified solution compared with the best known solution.

Search space

Design variable Best identified solution Best known solution

Date of departure
[d]:
Transfer time [d]: 203.542 203.541

1253.509 1253.510

Table 54: Comparison between the best identified solution and the best known solution: search
space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 5678.904 5678.904
AV, [m/s]: 2999.464 2999.464
AVE [m/s]: 2679.440 2679.439

Table 55: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution seems to coincide
with the best known one. Let now consider the statistical characteristics of the

identified solution set. Table 56 reports the mean value and the standard
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deviation of the performances which will be used for comparisons with the other

optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 6328.291 1330.247
Model function evaluations: 1289.7 56.555
Runtime [STU]: 3.814-10° 1.555-10™

Table 56: Statistical characteristics of the identified solutions.

The mean value of the optimal objective function values and the high standard
deviation reported in Table 56 let us suppose that no all the performed
optimization processes have been able to identify the basin of attraction of the
best known solution. Figure 151 reports the final solutions corresponding to
each optimization run in the nFunc-AV plane, while Figure 152 illustrates their

distribution over the search space.
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Figurel51: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 152: Distribution of the final solutions corresponding to each optimization run on the

search space.

Figure 151 and Figure 152 fairly illustrates that some ASA algorithm runs failed

at reaching the basin of attraction of the best known solution: in particular, ASA

got stuck in a set of local minima which is wider than in the previous cases,

even if they are comparable in terms of objective function values (except in one

case). By investigating the normalized search space, Table 57 reports the

Euclidean distance of each final solution form the best known one.

run

Euclidean distance

run 1

run 2

run 3

run 4

1.485.10*
3.856-10°
5.731-10*

1.965-10°
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run 5 7.234.107

run 6 4.871-10"
run 7 4.014-10"
run 8 2.584.10°
run 9 3.243-10°
run 10 2.188:10°

Table 57: Euclidean distance of each final solution form the best known one in the normalized
search space.

By considering two solutions as identical when their Euclidean distance is less
then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in
this case), 5/10 ASA runs were able to get the best known solution. Moreover, it
is worth noting that in such successful runs, the accuracy shown by ASA is
higher than all the previous algorithms, thanks to the local component of the
global optimization process, as the distances corresponding to runs 2, 4, 8, 9
and 10 have an order of magnitude equal to 10°®. Figure shows the history of
the solution during the optimization run corresponding to the best identified
solution. Note that, simulated annealing doesn’'t use a population based
approach, but try to explore the search space using a unique solution: then
Figure 153 fairly illustrates the global component of the search process

characterizing a simulating annealing algorithm.
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Figure 153: History of the solution during the optimization run corresponding to the best
identified solution.

glbSolve

As glbSolve algorithm implements a deterministic optimization approach,
statistical characteristics are not needed in this case. Only one run have been
processed in order to solve the previously defined problem. Default options
suggested by the providers of the code have been used. As the 2-impulse direct
planet-to-planet transfer has low complexity features, we used a maximum

number of iterations equal to 100.

Algorithm parameters

Maximum number of iterations: 100

Table 58 and Table 59 report the identified solution compared with the best

known solution.
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Search space

Design variable Identified solution Best known solution
Date of departure
5087.669 1253.510
[d]:
Transfer time [d]: 309.881 203.541

Table 58: Comparison between the identified solution and the best known solution: search
space.

Objective function space

Term Identified solution Best known solution
AV [m/s]: 6406.750 5678.904
AV, [m/s]: 3101.076 2999.464
AVE [m/s]: 3305.674 2679.439

Table 59: Comparison between the identified solution and the best known solution: objective
function space.

The previous tables show that the identified solution doesn’t coincide in fact with

the best known one, as Figure 154 fairly illustrates.
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Figure 154: Comparison between the solution identified by glbSolve (black dot) and the best
known one (red dot).
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Table 60 reports the characteristics of the identified solution, which will be used

for comparisons with the other optimization algorithms.

Evaluation criterion Criterion value
AV [m/s]: 6406.750
Model function

. 565
evaluations:
Runtime [STU]: 3.845.10°

Table 60: Characteristics of the identified solutions.

One of the output of glbSolve is the matrix of all rectangle center points
sampled during the whole optimization run. By means of this matrix one can
analyse the ability of glbSolve in exploring the whole search space: Figure 155

shows the distribution of the sampled points over the search space.
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Figure 155: Distribution of all rectangle center points sampled during the whole optimization
run.
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Figure 155 shows that, even if glbSolve algorithm explored the neighbourhood
of different local minima, it wasn’t able to identify and explore the basin of
attraction of the best known solution. The exploration of the basin of attraction
of different local minima is fairly illustrated in Figure 156, where the objective
function values corresponding to each rectangle center point are reported: the
565 sampled points are ordered along the x-axis from the first rectangle center
point sampled during the optimization process to the final one.

0 100 200 300 400 500 600
rectangle center points

Figure 156: Objective function values corresponding to each rectangle center point.

Figure 156 confirms that at the beginning of the optimization process glbSolve
algorithm could get worse local optima solution (see also Figure 157 which
reports the first 140 sampled points and Figure 158 which reports the last 425

ones).

188



UNIVLRSEEY
uf

Ll AL

x10
600 —
9
550
8
500
450 .
400 L 1
E
3
300 B
250
3
200
2
150
1
100 L | i
1000 2000 3000 4000 5000 6000 7000

to el

Figure 157: Distribution of the first 140 rectangle center points sampled during the whole
optimization run.
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Figure 158: Distribution of the last 425 rectangle center points sampled during the whole
optimization run.
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MCS

As MCS algorithm implements a deterministic optimization approach, only one
run have been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used. We

used a maximum number of objective function evaluation equal to 5000.

Algorithm parameters

Maximum number of objective function
_ 5000
evaluations:

Table 61 and Table 62 report the identified solution compared with the best

known solution.

Search space

Design variable Identified solution Best known solution
Date of departure
1253.509 1253.510
[d]:
Transfer time [d]: 203.542 203.541

Table 61: Comparison between the identified solution and the best known solution: search
space.

Objective function space

Term Identified solution Best known solution
AV [m/s]: 5678.903 5678.904
AV, [m/s]: 2999.464 2999.464
AVE [m/s]: 2679.440 2679.439

Table 62: Comparison between the identified solution and the best known solution: objective
function space.

The previous tables show that the identified solution coincides with the best
known one.
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Table 63 reports the characteristics of the identified solution, which will be used

for comparisons with the other optimization algorithms.

Evaluation criterion Criterion value
AV [m/s]: 5678.903
Model function

. 640
evaluations:
Runtime [STU]: 1.019-102

Table 63: Characteristics of the identified solutions.

Although MCS algorithm is a global optimization algorithm, it has the important
feature of keeping, in a so called “shopping basket”, good points reached during
the optimization process. Figure 159 illustrates the whole shopping basket kept
by MCS in the simple case of the two impulse direct planet-to-planet transfer

problem.

x10
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450 -
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tt [d] 350
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100 - :
1000 2000 3000 4000 5000 6000 7000

to ]

Figure 159: Shopping basket at the end of the optimization process.
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Besides the global optimum, which has been get with good performances (see
Table 63), the shopping basket contain information about the basin of attraction

of some local optima.

rbfSolve

As rbfSolve algorithm implements a deterministic optimization approach, based
on objective function response surfaces assessment and analysis suitable for
costly objective function problems, statistical features analysis do not hold here.
Only one run has been processed in order to solve the previously defined
problem. Default options suggested by the providers of the code have been
used. It is worth noting that, as already stated in the description of this
optimization tool, the termination conditions available in TOMLAB version of
rbfSolve tool (which is not freely available) do not include suitable rules for
practical problems with not a priori information about the global optimum
solution. As a consequence, a maximum number of objective function
evaluations has been fixed for terminating the optimization process; the
maximum value has been set based on the order of magnitude of the objective
function evaluations resulting from the application of the previously analysed
tools. In particular, in case of the 2-impulse direct planet-to-planet interplanetary
transfer, a maximum value of 2500 objective function evaluations has been

imposed.

Algorithm parameters

Maximum number of objective function
, 2500
evaluations:

However, a particular exit condition terminated the optimization process, which
typically happens when the approximating surface generated by the algorithm
can not improve due to the generation of successive identical solutions for
improving the interpolation surface; the maximum number of successive
identical solutions is automatically set by rbfSolve algorithm once used the

default options.
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Anyway, Table 64 and Table 65 report the identified solution compared with the
best known solution.

Search space

Design variable Identified solution Best known solution
Date of departure
3573.380 1253.510
[d]:
Transfer time [d]: 324.312 203.541

Table 64: Comparison between the identified solution and the best known solution: search
space.

Objective function space

Term Identified solution Best known solution
AV [m/s]: 5684.196 5678.904
AV, [m/s]: 3244.820 2999.464
AVE [m/s]: 2439.377 2679.439

Table 65: Comparison between the identified solution and the best known solution: objective
function space.

The previous tables show that the identified solution does not coincide with the

best known one, as Figure 160 fairly illustrates: rbfSolve could not identify the
basin of attraction of the best known solution.
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Figure 160: Comparison between the solution identified by rbfSolve (black dot) and the best
known one (red dot).

Table 66 reports the characteristics of the identified solution, which will be used

for comparisons with the other optimization algorithms.

Evaluation criterion Criterion value
AV [m/s]: 5684.196
Model function

_ 953
evaluations:
Runtime [STU]: 30.878

Table 66: Characteristics of the identified solutions.

One of the output of the optimization process is the matrix of all sampled points

in the search space, which are shown in Figure 161
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Figure 161: Distribution of all sampled points during the optimization process.

The algorithm do not accurately sample the region of the search space near the
global optimum solution. Note that the objective function model has
discontinuities in the search space: the global optimization algorithms based on
response surface methodologies have well-known difficulties in handling such
objective function structure, as confirmed in this simple test: the sampled points
made the algorithm converging to a good approximation of the objective

function structure in the neighbourhood of the identified local minimum.
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Summary of results:

Table 67 reports the summary of results for the two impulse direct planet-to-

planet transfer problem in a tabular form.

Algorithm

AV [m/s]

Fun. evaluations

Runtime [STU]

GAOT

GAOT-
shared

GATBX

GATBX-
migr
FEP

DE
ASA
GlbSolve
MCS
RbfSolve
EPIC *)

EPIC *@

5741.524 (0 = 163.525)
6420.207 (0 = 574.22)
5740.887 (0 = 177.082)
5679.957 (0 = 2.191)
5711.337 (0 = 95.13)
5986.674 (0 = 408.679)
6328.291 (0 = 1330.247)
6406.75
5678.903
5684.196
6000.190 (0 = 456.57)

5679.1 (0 = 0.579)

1270.5 (0 = 345.683)
590.4 (0 = 320.35)
2322 (0 = 424.075)
2650 (0 = 909.799)

2478.9 (0 = 953.829)
828.3 (0 = 319.692)
1289.7 (0 = 56.555)

565
640
953
315 (0 = 8.4)

2040 (o = 21)

. 107 (o = 3. 10
8.198-10"° (0 =3.306-10"°)
. 107 (o= 2. -10™
4.907-107° (0=2.776-10"°)
1.037-107 (0 = 4.405-107%)
) 107 (o = 6. 10
1.646-107 (0 =6.529-10"°)
2.463-107 (0 =9.004-107%)
3.019-107° (0 =1.098-107°%)
3.814-107° (0 = 1.555-107)
3.845-10°°
1.019-107?

30.878

Table 67: Summary of results for the two impulse direct planet-to-planet transfer problem.

Notes:

*(1) : test performed with a 10 individuals population, of which 5 converging
within 300 cycles
*(2) : test performed with a 20 individuals population, of which 10 converging
within 300 cycles

Note that the performance criteria we have measured are in fact partially

conflicting: the most evident example is the trade off between the global

optimum solution reached at the end of the optimization process and the

number of the objective function evaluations or the runtime needed to reach it.
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As proposed in earlier works [Pintér, 1995], concepts and techniques typically
adopted in multiobjective optimization problems (such as the concept of the
Pareto dominance) can be here used in order to gain valuable insights
regarding the comparative strengths and weaknesses of optimization
algorithms. As stated above, due to the presence of not optimized codes among
the tested ones and to the necessity of creating a MEX file for ASA algorithm
(which slightly affects the runtime performances), the main evaluation criteria to
be considered have been taken as the best objective function value reached,
AV, and the number of model function evaluations needed, nFunc. Figure1l62
reports such performances in a AV - nFunc plane in order to identify the Pareto
optimal solution (the red line in figure representing the best known solution).
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: E 5 o GADT
BAND Lo ACY o GADT-shared
i i : o GATER
o +  GATBH-migr
B300 fosnmmmmmne- P P . + FEF i
. : : + LE
B200 |- b s O ASA H
i i : O glbsole
0 : : i MCS
— e O I
£ B0 o thiSole
= i i : +(1]
-] i ] ! & ERIC
G000 f------ e R LRt LR EEEE T EEEEEEE FEPE R H
i ; & EPIC*D
0 0 0 —— hest known solution
8900 f---mmmmmme - Gl Gl Stk
=T 1] NSRS SO SUUUUNURNUINE RN SSSTE SR )
: Lo : oo
i ST e
SO0 ] ] i | |
1] &00 1000 1600 2000 2500 3000
nFunc

Figure 162: Algorithms performances in the AV - nFunc plane.

Note that Figure 162 reports the performances listed in Table 67, which
contains statistical performances in case of randomized optimization algorithms.

By applying the concepts of Pareto dominance, Table 68 reports for each
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algorithm, the number of algorithms which dominated (and then outperformed)

it.

# of dominating

Algorithm
algorithms
GAOT 2
GAOT-shared 1
GATBX 2
GATBX-migr 1
FEP 2
DE 1
ASA 4
glbSolve 0
MCS 0
rbfSolve 1
EPIC * 0
EPIC * 1

Table 68: Number of dominating algorithms.

Table 68 shows that the set of Pareto optimal solutions includes in fact two
solutions: the algorithms which best solved the 2-impulse direct planet-to-planet
transfer problem (in a Pareto optimal sense) are EPIC™ and MCS, the

performances of which are highlighted in Figure 163.
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Figure 163: Pareto optimal algorithms.

However, we must take care of the fact that EPIC™® could not reach in
fact the global optimum solution, but a local one in 50% of the cases. Moreover,
it is interesting to observe the improvement gained by MCS algorithm compared
with the performances of the more classic globSolve tool: MCS and globSolve
algorithms have been both inspired by DIRECT method for global optimization
[Jones et al.,, 1993]; however, unlike the globSolve algorithm, MCS uses a
branching method which allow for a more irregular splitting procedure. As can
be noted from Figure 162, the MCS approach led to evident improvements in
the effectiveness at identifying the basin of attraction of the best known solution
in the 2-impulse direct planet-to-planet transfer problem, making the algorithm
performances less dependent on the upper lower bounds, especially referring to
design variables associate to objective function periodicities. Moreover, it is
interesting to highlight again the effects of the sharing operator on the GAOT
performances: indeed, as stated above, by promoting the diversity of the

individuals in the population, the GAOT - shared algorithm hinders the
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concentration of the individuals around the optimal solutions. This can lead to
low accuracy at describing the optimum solutions and to a premature
optimization process arrest because the stopping criteria easily become active.
These consequences can obviously be applied to the interpretation of the
results in Figure 162, where GAOT-shared performances correspond to higher
mean objective function value reached at the end of the optimization process
but lower number of objective function evaluations, although both algorithms
could find the basin of attraction of the best known solution in a comparable
number of runs (4/10 for GAOT compared with 3/10 for GAOT-shared). It is
worth noting that all the achieved results are strictly affected by the stopping
criterion used: as an example, letting GAOT — shared evolving for a number of
objective function evaluations greater than the value obtained with the here
considered stopping criterion may lead to more effectiveness in finding the
global optimum. However, the effects of the stopping criteria on the algorithm
performances are not addressed here, where the algorithms are used as black-
box tools. Finally the performances of all algorithms in identifying the basin of
attraction of the best known solution are reported in Table 69 (note that for
randomized algorithms the number of successful runs over the total number of

performed runs is reported).

Algorithm Success

GAOT 4/10

GAOT-shared 3/10

GATBX 3/10

GATBX-migr 8/10

FEP 7/10

DE 3/10

ASA 5/10
glbSolve No
MCS Yes
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rbfSolve No
EPIC *® 5/10

EPIC *? 10/10

Table 69: Algorithms performance in identifying the basin of attraction of the best known
solution.

Table 69 shows that, unlike a relatively high mean number of objective function
evaluations necessary to the global optimization process, GATBX-migr turned
out to have the highest rate of success in reaching the basin of attraction of the
best known solution if compared with other randomized optimization algorithms
in case of the 2-impulse direct planet-to-planet transfer problem, thus showing a
relatively robustness in performing a global search. Similar performances have
been obtained by FEP tool, where 7/10 runs were successful and a slightly
lower mean number of objective function evaluations with respect to GATBX-
migr was required. However, note that MCS algorithm, which is based on a
deterministic approach, identified the global optimum (and non a local one, as in
glbSolve case) in a deterministic way (which corresponds to a probability of
success equal to 100%) in a lower number of objective function evaluations with
respect the other algorithms. We can then conclude that, in the simple case of
2-impulse direct planet-to-planet transfer problem, the MCS algorithm have

shown to be the best performing one.
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8. MULTIPLE GRAVITY ASSIST INTERPLANETARY TRANSFER

Problem class statement:

Interplanetary transfer description

Multiple gravity assist interplanetary transfer from Earth to Saturn via Venus-

Venus-Earth-Jupiter gravity assist manoeuvres (referred to Cassini-Huygens

space trajectory)

Objective function assessment

Objective function:

AV =AV, + AV, S+ AV,

where:

AV, is the magnitude of the relative

velocity at the beginning of the

interplanetary transfer phase.

AVghps are the magnitudes of the

minimum corrective AVs at each gravity
assist manoeuvre corresponding to planet
P, AVg,p, Which is necessary to link two
consecutive interplanetary transfer arcs
resulting from the Lambert’'s problem
formulation.

AV, is the magnitude of the velocity
variation necessary to reach the insertion

orbit at Saturn, AV, .
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Mathematical models:

Restricted 2-body dynamical model (C? in
the whole solution space except in the
origin)

Three dimensional motion

Analytical ephemeris model (generated
by time polynomial series of the orbital
elements)

Linked-conic approximation for gravity
assist manoeuvres

Impulsive corrective manoeuvres for
matching input and output velocity
conditions at each gravity assist

Impulsive manoeuvres (i.e. instantaneous
variations in velocity)

Lambert’s problem formulation (Battin's
algorithm for the problem solution:

singular for m and 2 i transfer angles)

Search space, D, characterization

Number of design variables:

Design Variables:

Topology:

6

Date of departure from Earth, t,
Transfer time from Earth to Venus, tt.
Transfer time from Venus to Venus, tt, |
Transfer time from Venus to Earth, tt, .
Transfer time from Earth to Jupiter, tt.

Transfer time from Jupiter to Saturn, tt;

Continuous variables = D c R°
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Constraints

Constraints typology:

Box intervals:

Box constraints

t, included in a 5 years period centred in

the 1% January 1999 (including the date
of departure of Cassini-Huygens mission,
15" October 1997).

tt. , €[0.1,2]- H., =[14.59,291.83]d,
where H., is the Homann transfer time
corresponding to the linking arc Earth-
Venus.

tt, , €[0.1,2]-T, =[11.23,448.92]d , where
T, is the period of Venus orbit.

tt, . [0.11]-H, . =[14.592,145.92]d ,
where H, . is the Homann transfer time
corresponding to the linking arc Venus-
Earth.

tt. ,e[0.11]- H._, =[99.65,996.54]d ,
where H__; is the Homann transfer time
corresponding to the linking arc Earth-
Jupiter.

tt,  =[0.11]- H,  =[365.02,3650.2]d,
where H, ¢ is the Homann transfer time

corresponding to the linking arc Jupiter-

Saturn.
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General considerations

Objective function analysis: The objective function is almost everywhere
C?, locally discontinuous in a countable

number limited set
Problem complexity: High

Search space normalization: The search space is normalized by means

of the upper-lower bounds in order to be an

unit hypercube = D =[0,1]°

Number of global optima: A priori unknown.

The following best known solution has been gained by means of a multi-start
search, which implement a local search process via SQP algorithm starting from
1000 random first guess solutions uniformly distributed over the search space
(each one requiring a number of objective function evaluations of the order of
103).

Search space

Date of departure: 20/11/1997
Earth-Venus transfer time: 179.14 d
Venus-Venus transfer time: 406.53 d
Venus-Earth transfer time: 53.18d
Earth-Jupiter transfer time: 758.33 d
Jupiter-Saturn transfer time: 3650.2 d
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Objective space

AV : 6368.2 m/s
AV, : 3888.0 m/s

1% AV, 2032.7 m/s
2" AV, 0.0327 m/s
AVigpe - 0.0057 m/s
AVgp ;- 0.0078 m/s
AV : 447.400 m/s

It is worth pointing out that a family of alternative solutions have been found
which, although possessing little bit higher overall AV values, require
considerable shorter transfer times. A representative solution of this family is
described in the following table.

Search space

Date of departure: 25/10/1997
Earth-Venus transfer time: 206.38d
Venus-Venus transfer time: 401.21d
Venus-Earth transfer time: 54.52d
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Earth-Jupiter transfer time:

548.84 d

Jupiter-Saturn transfer time: 174790 d
Objective space

AV : 7154.6 m/s

AV, : 5756.2 m/s

1% AVgay 883.54 m/s

2" AV, 0.0283 m/s

AVigpe - 2.3098 m/s

AVgp ;- 0.0056 m/s

AV.: 512.52 m/s

Number of local optima: A priori unknown.

Hardware platform:
Intel Pentium 4 — 3.06GHz laptop.

Operating system:
Microsoft Windows XP
Home edition

Version 2002

Service Pack 1
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Timings:

The Standard Unit Time (see Dixon & Szeg6, 1978) has been measured.

Performances:

In the following pages, the performances of each global optimization tool in
solving the Multiple Gravity Assist interplanetary transfer from Earth to Saturn
via Venus-Venus-Earth-Jupiter gravity assist manoeuvres are reported. The
evaluation criteria will be mainly based on the analysis of the optimal solution
reached and the number of the required model function evaluations. Due to the
presence of not optimized codes among the tested ones, timing will not be

considered as a main evaluation criterion.

GAOT

As GAOT implements a genetic algorithm, we report the statistical
characteristic, typically considered in case of randomized solution methods. Ten
run have been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used in all
the runs: note that by tuning the algorithm parameters one may improve the
performance of the solvers, but, due to the comparative purposes of this work,
the tuning effects have not been considered. As the Multiple Gravity Assist
interplanetary transfer shows high complexity features, we used 100 individuals

evolving for a maximum number of generations equal to 1000.

Algorithm parameters

Number of individuals: 100

Maximum number of
) 1000
generations:

Table 70 reports the best identified solution compared with the best known

solution in terms of the values of the design variables and of the objective
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function terms, while Figure 164 plots the resulting interplanetary transfer

trajectories.
Best identified Best known
solution solution
t,: -791.277d -770.686 d
tte 191.670 d 179.524 d
tt, ., : 408.6 d 406.528 d
tt, . 57.888 d 53.181 d
tt, | 753.46 d 758.334 d
tt, o 3625.9d 3650.218 d
AV : 6706.599 m/s 6367.990 m/s
AV, : 4291.287 m/s 3901.332 m/s
1% AVg,y 1712.691 m/s 2019.210 m/s
2" AVg,y 250.044m/s 0.018 m/s
AVgre 0.425 m/s 0.005 m/s
AV, 4.611 m/s 0.022 m/s
AV : 447.541 m/s 447.402 m/s

Table 70: Comparison between the best identified solution and the best known solution.
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Figure 164: GAOT: Comparison between the best identified solution and the best known

solution.

Table 70 and Figure 164 show that the best solution identified by GAOT

algorithm is close to the best known one: differences in the values of the design

variables are of the order of 10 days. This can be better illustrated as shown in

the following: as stated above, the search space has been normalized to a unit

six-dimensional hypercube for the global search process; Table

reports the

best identified solution and the best known solution in the normalized search

space.

t, ttey tt, tty ¢ tte_, tt;
Best identified
_ 0.266 0.639 0.908 0.330 0.729 0.993
solution
Best known
. 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 71:GAQOT: Comparison between the best identified solution and the best known solution
in the normalized search space.
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Differences in the values of the design variables in the normalized search space

have a maximum value of 102 The Euclidean distance between the two

solutions in the normalized search space is equal to 5.970-107%, showing their
relative closeness. Note that, although these relative little differences in the
search space, the objective function values are quite different, especially if each
single terms are compared: this highlights the high sensitivity of the objective
function with respect to the values of the design variables. The closeness of the
two solutions corresponding to the low Euclidean distance, and, in particular,
the low difference in the value of the date of departure, let us suppose that,
although GAOT algorithm couldn’'t be able to reach the best known solution
accurately, it could get its basin of attraction: actually, genetic algorithms are
known as an effective tool for fast reaching the basin of attraction of good
solutions, while showing poor converge performances in locally searching and
accurately describing the corresponding local minimum; this is the reason why
local search processes via gradient based search algorithms are often
performed after the genetic algorithm based global search phase. In fact, given
the best solution identified by GAOT (reported in Tabe 70) and considering it as
the starting point for a local search process performed by an SQP algorithm, an
improved best identified solution is identified which almost coincide with the

best known solution, as shown in Table 72.

Best identified Best known

solution + SQP solution
t,: -770.67 d -770.686 d
tt, 179.5d 179.524 d
tt, ,: 406.56 d 406.528 d
tt, . 53.175 d 53.181 d
tt. 758.35 d 758.334 d
tt, o 3650.2 d 3650.218 d
AV : 6373.258 m/s 6367.990 m/s
AV, : 3900.226 m/s 3901.332 m/s
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1% AVg,,, 2016.687 m/s 2019.210 m/s
2" AVg,y : 0.723 m/s 0.018 m/s
AViae 8.203 m/s 0.005 m/s
AV, 0.004 m/s 0.022 m/s
AV, : 447.415 m/s 447.402 m/s

Table 72: Comparison between the best solution identified by GAOT improved by a SQP based
local optimization process and the best known solution (number of function evaluations required
by the local optimization process equal to 410).

Then, Table 72 shows that GAOT algorithm was able to reach the basin of
attraction of the best known solution in one optimization run at least. Let now
analyse the statistical values of GAOT performances. Figure 165 shows the
distribution of the solutions resulting from each optimization run over the plane
of the objective function, AV, and the number of function evaluations, nFunc.,
while Table 73 reports the statistical characteristics, which will be used for

comparisons with the other optimization algorithms, as well as the

performances corresponding to the best identified solution.
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Figure 165: Distribution of the solutions resulting from each GAOT optimization run over the
nFunc — AV plane.
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Evaluation Standard Best identified

criterion Mean value deviation solution
AV : 8256.416 m/s 1555.107 m/s 6702.724 m/s
nFunc.: 8543.400 4075.382 9380
Runtime [STU]: 1.883-10 9.683-1072 1.986-10"

Table 73: Statistical characteristics of the identified solutions.

Figure 165 and Table 73 show that the resulting optimum AV values
corresponding to the ten runs are distributed over the objective function space
with a standard deviation that is in fact of the same order of magnitude of the
mean value of the distribution itself. Such result can be due to the identification
of different local minima; but it can turn out even if the optimal solutions lie in
the basin of attraction of the same local minimum, due to the high objective
function sensitivity with respect to the design variables. As a consequence,
estimating the number and features of the distinct local minima reached by
means of the ten runs would be particularly interesting. Moreover, it is worth
noting that such an analysis will allow the estimation of the number of runs
which have been able to reach the basin of attraction of the global optimum,
which in fact can be considered as a success index in performing the
optimization process. To attain such a task, the optimal solutions corresponding
to all ten runs have been used as starting solutions for ten local optimization
processes in order to accurately estimate the local minimum corresponding to
the basin of attraction each optimal solution belong to. The consequences of the
local optimization processes in the nFunc - AV plane are shown in Figure 166
where each improved solution is linked to the corresponding starting one by

means of a straight line.
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Figure 166: Comparison between solutions resulting from GAOT runs and their improvements
by means of a further local optimization process via SQP algorithm over the nFunc — AV
plane.

Figure 166 shows that different local minima corresponds to GAOT runs. In
order to estimate the number of identified solutions which lie in the basin of
attraction of the best known solutions, let investigate the solutions in the
normalized search space. Table 74 reports, corresponding to each GAOT+SQP
run, the reached objective function value and the distance (in Euclidean metric)

with respect to the best known solution.
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Mean value AV [m/s] Distance

run 1 6504.259 0.107
run 2 6396.589 0.021
run 3 6376.165 0.013
run 4 6698.965 0.160
run 5 6368.162 0.002
run 6 9271.339 0.670
run 7 7752.866 0.690
run 8 7753.058 0.690
run 9 7752.866 0.690
run 10 6369.524 0.001

Table 74: GAOT+SQP optimization runs: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

An empirical analysis suggest to define two solutions as identical when the
Euclidean distance is less than 1% of the hyper diagonal of the normalized
search space, that is 0.024. The consequence of such definition is that only
runs 2, 3, 5 and 10 were able to get the best known solution, that is only 4/10
GAOT runs successfully identified the basin of attraction of the best known

solution.

GAQOT-shared

As GAOT-shared implements a genetic algorithm including a niching technique,
we report again the statistical characteristics. Ten run have been processed in
order to solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. The threshold of

dissimilarity, o, for the sharing method and the shape parameter of the sharing
function, «, have been set respectively to:

o, =01

a=1
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We used again a population of 100 individuals, evolving for a maximum number

of generations equal to 1000.

Algorithm parameters

Number of individuals:

Maximum number of

generations:

100

1000

Tabke 75 reports the best identified solution compared with the best known

solution in terms of the values of the design variables and of the objective

function terms, while Figure 166 plots the resulting interplanetary transfer

trajectories.
Best identified Best known
solution solution
t,: -816.015 d -770.686 d
tte, 186.627 d 179.524 d
tt, 432.194 d 406.528 d
tt, . 73.904 d 53.181 d
tte | 805.177 d 758.334 d
tt, o 2194.281 d 3650.218 d
AV : 14683.328 m/s 6367.990 m/s
AV, : 3537.910 m/s 3901.332 m/s
1% AVgpy : 1419.803 m/s 2019.210 m/s
2" AV, : 198.546 m/s 0.018 m/s
AVene 5405.861 m/s 0.005 m/s
AV, 3489.323 m/s 0.022 m/s
AV, : 631.885 m/s 447.402 m/s

Table 75: Comparison between the best identified solution and the best known solution.
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Figure 166: GAOT-shared: Comparison between the best identified solution and the best
known solution.

By analysing Table 75 and Figure 166 differences in the values of the design
variables of the order of 10 days can be recognized, except for the Jupiter-
Saturn transfer time. A better evaluation of the closeness of the two solutions
can be gained again by analysing them in the normalized search space, as

shown in Table 76.

ty ey i,y LV e, ) s

Best identified
. 0.253 0.621 0.962 0.452 0.787 0.557
solution

Best known
_ 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 76: GAOT-shared: comparison between the best identified solution and the best known
solution in the normalized search space.

Differences in the values of the design variables in the normalized search space
are quite evident, as they assume a maximum value of 10™. The Euclidean

distance between the two solutions in the normalized search space is equal to
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4.783-10". In analogy with the GAOT performance analysis, a local
optimization process by means of a SQP algorithm is now performed. Given the
best solution identified by GAOT-shared (reported in Table 75) and considering
it as the starting point for the local search process, the improved best identified

solution reported in Table 77 is identified.

Best identified Best known

solution + SQP solution
t,: -771.089 d -770.686 d
tte 179.926 d 179.524 d
tt, ., : 406.532 d 406.528 d
tt, . 53.178 d 53.181 d
tte_,: 758.338 d 758.334 d
tt, o 3650.218 d 3650.218 d
AV : 6368.116 m/s 6367.990 m/s
AV, : 3915.716 m/s 3901.332 m/s
1% AVg,y 2004.478 m/s 2019.210 m/s
2" AVg,y 0.496 m/s 0.018 m/s
AVipe 0.007 m/s 0.005 m/s
AV, 0.015 m/s 0.022 m/s
AV.: 447.404 m/s 447.402 m/s

Table 77: Comparison between the best solution identified by GAOT-shared improved by a
SQP based local optimization process and the best known solution (number of function
evaluations required by the local optimization process equal to 606).

Table 77 shows that GAOT-shared algorithm was able to reach the basin of
attraction of the best known solution in the optimization run corresponding to the
best identified solution. However, it is worth pointing out that very low accuracy
characterizes the results achievable by GAOT-shared, as demonstrated by the
high number of function evaluations required to the SQP optimization process to

converge (606 objective function evaluations). This is due to the effects of
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niching techniques: indeed, niching techniques promote diversity in the
population and support the exploration of the search space; but, they avoid the
concentration of the population around any local optimum which typically arises
during the last phases of the optimization runs, when, once gained the basin of
attraction, population evolves in order to only accurately describe the local
minimum. Let now analyse the statistical values of GAOT-shared performances.
Figure 167 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc, while Table 78 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified
solution. Note that, as one can expect, the low accuracy of GAOT-shared
corresponds to a low number of function evaluations required for that the

stopping condition becomes active.
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Figure 167: Distribution of the solutions resulting from each GAOT-shared optimization run over
the nFunc — AV plane.
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Evaluation Standard Best identified
o Mean value o _
criterion deviation solution

AV : 21874.731 m/s 5741.406 m/s 14681.217 m/s
nFunc.: 1350.400 559.057 2029
Runtime [STU]: 2.700-107 1.192-1072 4.345.10°°

Table 78: Statistical characteristics of the identified solutions.

By proceeding in analogy with the GAOT case, the optimal solutions
corresponding to all ten runs have been used as starting solutions for ten local
optimization processes in order to accurately estimate the local minimum
corresponding to the basin of attraction each optimal solution belong to. Figure
168 illustrates the consequences of the local optimization processes in the

nFunc - AV plane.

I I
® GAODT-shared
¢  GAOT-shared+50P

A’ [mis]

best knnwnianlutinn

05 i i i i 1
500 1000 1500 2000 2500 3000 3500
nFunc

Figure 168: Comparison between solutions resulting from GAOT-shared runs and their
improvements by means of a further local optimization process via SQP algorithm over the

nFunc — AV plane.
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Figure 168 shows again that different local minima corresponds to GAOT-
shared runs. In order to estimate the number of identified solutions which lie in
the basin of attraction of the best known solutions, solutions are now
investigated in the normalized search space. Table 79 reports, corresponding to
each GAOT-shared+SQP run, the reached objective function value and the

distance (in Euclidean metric) with respect to the best known solution.

Mean value AV [m/s] Distance
run 1 12968.384 0.913
run 2 6824.030 0.456
run 3 7348.905 0.206
run 4 14607.801 0.582
run 5 6946.553 0.576
run 6 6372.395 0.002
run 7 15984.312 0.549
run 8 22394.289 0.833
run 9 14987.571 0.610
run 10 6368.116 0.002

Table 79: GAOT-shared+SQP optimization runs: objective function values and Euclidean
distance in the normalized search space with respect to the best known solution.

As stated above, two solutions are considered as identical when the Euclidean
distance is less than 0.024. As a consequence only runs 6 and 10 were able to

get the best known solution, that is only 2/10 GAOT-shared runs successfully

identified the basin of attraction of the best known solution.
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GATBX

As GATBX implements a genetic algorithm, we report the statistical
characteristics. Ten run have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. A population of 100 individuals evolving for a

maximum number of generations equal to 1000 has been processed again.

Algorithm parameters

Number of individuals: 100

Maximum number of
. 1000
generations:

Table 80 reports the best identified solution compared with the best known
solution in terms of the values of the design variables and of the objective

function terms, while Figue 169 plots the resulting interplanetary transfer

trajectories.
Best identified solution Best known solution

t,: -763.599 d -770.686 d
tt, 132.419 d 179.524 d
tt, ., : 434.250 d 406.528 d
tt, . 62.334 d 53.181 d
tt, | 756.626 d 758.334 d
tt; - 3650.218 d 3650.218 d
AV : 7122.878 m/s 6367.990 m/s
AV, : 4259.877 m/s 3901.332 m/s
1% AVg,, 0.099 m/s 2019.210 m/s
2" AV, : 2411.222 m/s 0.018 m/s
AVipe 0.468 m/s 0.005 m/s
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AVin 4.593 m/s 0.022 m/s

AV, : 446.619 m/s 447.402 m/s

Table 80: Comparison between the best identified solution and the best known solution.

— hest known solution
— hest identified solution

¥ AU
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Figure 169: GATBX: Comparison between the best identified solution and the best known
solution.

By analysing Table 80 and Figure 169, differences in the values of the design
variables are mainly focused in the first phases of the interplanetary transfer.
This can be better understood by analysing the two solutions in the normalized

search space, as shown in Table 81.

t, tt, tt, tt, . tt. tt,

Best identified
0.282 0.425 0.966 0.364 0.733 1.000

solution

Best known
0.278 0.594 0.903 0.294 0.734 1.000

solution

Table 81: GATBX: comparison between the best identified solution and the best known solution
in the normalized search space.
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As stated above, large differences can be noticed in the tt.,, tt,,, tt, .
design variables, reaching a maximum value of the order of 10" in case of

tt., . The Euclidean distance between the two solutions is equal to 1.931-107".

By performing a local optimization process by means of a SQP algorithm in
order to evaluate if the best identified solution lies in the basin of attraction of
the best known one, given the best solution identified by GATBX (reported in
Table 81) and considering it as the starting point for the local search process,

the improved best identified solution reported in Table 82 is gained.

Best identified solution + SQP

Best known solution

t,: -782.353 d -770.686 d
tt. ., 144.379 d 179.524 d
tt, 448.916 d 406.528 d
tt, . 56.517 d 53.181 d
tt. 757.676 d 758.334 d
tt 3650.218 d 3650.218 d
AV : 6743.989 m/s 6367.990 m/s
AV, : 3561.103 m/s 3901.332 m/s
1% AVg,y - 142.324 m/s 2019.210 m/s
2" AVg,, 2574.414 m/s 0.018 m/s
AVia e 19.360 m/s 0.005 m/s
AV, 0m/s 0.022 m/s
AV, : 446.788 m/s 447.402 m/s

Table 82: Comparison between the best solution identified by GATBX improved by a SQP
based local optimization process and the best known solution (number of function evaluations
required by the local optimization process equal to 626).

Table 82 shows that the local optimization process led to the identification of a
local minimum which is different from and worse than the best known one. The

best solution identified by GATBX algorithm doesn't lie in the basin of attraction
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of the best known solution and in fact it identifies a different and more costly

transfer (see Figure 170).
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Figure 170: GATBX: Comparison between the improved best identified solution and the best
known solution.

Let now analyse the statistical values of GATBX performances. Figure 171
shows the distribution of the solutions resulting from each optimization run over
the plane of the objective function, AV, and the number of function evaluations,
nFunc, while Table 83 reports the statistical characteristics, which will be used
for comparisons with the other optimization algorithms, as well as the

performances corresponding to the best identified solution.
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Figure 171: Distribution of the solutions resulting from each GATBX optimization run over the
nFunc — AV plane.

Evaluation Standard Best identified
Mean value
criterion deviation solution
AV : 8317.450 m/s 2339.832 m/s 7114.584 m/s
nFunc.: 39468.000 29981.5990 12580
Runtime [STUJ: 0.748 0.584 0.239

Table 83: Statistical characteristics of the identified solutions.

The optimal solutions corresponding to all ten runs are now used again as
starting solutions for ten local optimization processes in order to accurately
estimate the local minimum corresponding to the basin of attraction each
optimal solution belong to and to evaluate the number of GAOT-shared

successful runs.
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Figure 172 illustrates the consequences of the local optimization processes in

the nFunc - AV plane.
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Figure 172: Comparison between solutions resulting from GATBX runs and their improvements
by means of a further local optimization process via SQP algorithm over the nFunc — AV
plane.

Different local minima corresponds to GATBX runs. In order to estimate the
number of identified solutions which lie in the basin of attraction of the best
known solutions, solutions are now investigated in the normalized search
space. Table 84 reports, corresponding to each GATBX+SQP run, the reached
objective function value and the distance (in Euclidean metric) with respect to

the best known solution.

227



LUNIVLESIEY
wi

UL-'I.".:L:I'J'I‘-'

Mean value AV [m/s] Distance

run 1 8766.932 0.745
run 2 6368.134 0.001
run 3 6944.435 0.257
run 4 14171.978 0.626
run 5 6743.989 0.165
run 6 6948.181 0.170
run 7 6697.723 0.165
run 8 6368.128 0.001
run 9 6686.387 0.165
run 10 6784.485 0.370

Table 84: GATBX+SQP optimization runs: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.024, only runs 2 and 8 were able to get the best known solution, that is
only 2/10 GATBX runs successfully identified the basin of attraction of the best

known solution.

GATBX-migr

As GATBX-migr implements a genetic algorithm including a migration operator
applied among a predefined set of subpopulations, we report the statistical
characteristics. Ten run have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. A population of 100 individuals evolving for a
maximum number of generations equal to 1000 has been processed. The
population has been divided in 5 subpopulations, each one including 20

individuals.
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Algorithm parameters

Number of individuals:

Maximum number of generations:

Number of subpopulations:

Number of individuals per

subpopulation:

100

1000

20

Table 85 reports the best identified solution compared with the best known
solution in terms of the values of the design variables and of the objective

function terms, while Figure 173 plots the resulting interplanetary transfer

trajectories.

Best identified solution

Best known solution

t,: -770.714 d -770.686 d
., 162.659 d 179.524 d
tt, ., : 410.900 d 406.528 d
tt, .: 62.501 d 53.181 d
tt, 756.597 d 758.334 d
t, 3650.215 d 3650.218 d
AV 7219.480 m/s 6367.990 m/s
AV, : 3254.960 m/s 3901.332 m/s
1% AVg,y 2880.101 m/s 2019.210 m/s
2" AVg,y 632.632 m/s 0.018 m/s
AVepe 0.625 m/s 0.005 m/s
AV, 4573 m/s 0.022 m/s
AV, : 446.588 m/s 447.402 m/s

Table 85: Comparison between the best identified solution and the best known solution.

229



=i
LUNIVLESIEY
p‘l-

Ll AL

e

—— best known solution \_
— hbest identified solution

¥ [AU]

¥ [AU]

Figure 173: GATBX-migr: Comparison between the best identified solution and the best known
solution.

In order to better analyse the differences between the two solutions, Table 86
reports again the values of their design variables in the normalized search

space.

t, ttey tt, tty ¢ tte_, tt;

Best identified
_ 0.278 0.534 0.913 0.365 0.732 1.000
solution

Best known
. 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 86: GATBX-migr: comparison between the best identified solution and the best known
solution in the normalized search space.

Little difference exists in the values of the design variables, whose order of
magnitude is equal to 10”%. The Euclidean distance between the two solutions is
equal to 9.312-107. Given the best solution identified by GATBX-migr (reported

in Table 85) and considering it as the starting point, a local optimization process
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by means of a SQP algorithm is now performed, which leads to the improved

best identified solution reported in Table 87.

Best identified solution + SQP  Best known solution

t,: -770.850 d -770.686 d
tte 179.689 d 179.524 d
tt, 406.521 d 406.528 d
tt, 53.181d 53.181 d
tte_,: 757.902 d 758.334 d
tt, o 3650.218 d 3650.218 d
AV : 6368.087 m/s 6367.990 m/s
AV, 3905.863 m/s 3901.332 m/s
1% AVgyy 2014.042 m/s 2019.210 m/s
2" AV, : 0.002 m/s 0.018 m/s
AVine 0m/s 0.005 m/s
AV, 0m/s 0.022 m/s
AV, : 448.179 m/s 447.402 m/s

Table 87: Comparison between the best solution identified by GATBX-migr improved by a SQP
based local optimization process and the best known solution (number of function evaluations
required by the local optimization process equal to 366).

Table 87 shows that GATBX-migr algorithm was able to reach the basin of
attraction of the best known solution in the optimization run corresponding to the
best identified solution. Let now analyse the statistical values of GATBX-migr
performances. Figure 174 shows the distribution of the solutions resulting from
each optimization run over the plane of the objective function, AV, and the
number of function evaluations, nFunc, while Table 88 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 174: Distribution of the solutions resulting from each GATBX-migr optimization run over
the nFunc — AV plane.

Evaluation Standard Best identified
o Mean value o _
criterion deviation solution

AV : 8237.810 m/s 972.517 m/s 7213.020 m/s
nFunc.: 59220 27105.666 72020
Runtime [STU]: 1.272 0.722 1.196

Table 88: Statistical characteristics of the identified solutions.

In order to evaluate the number of GATBX-migr successful runs, the optimal
solutions corresponding to all ten runs are now used as starting solutions for ten
local optimization processes. Figure 175 illustrates the consequences of the

local optimization processes in the nFunc - AV plane
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Figure 175: Comparison between solutions resulting from GATBX-migr runs and their
improvements by means of a further local optimization process via SQP algorithm over the

nFunc — AV plane.

Different local minima corresponds to GATBX-migr runs. Solutions are now
investigated in the normalized search space. Table 89 reports, corresponding to
each GATBX-migr+SQP run, the reached objective function value and the

distance (in Euclidean metric) with respect to the best known solution.
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Mean value AV [m/s] Distance

run 1 7752.872 0.690
run 2 6368.087 0.001
run 3 6692.992 0.162
run 4 6498.430 0.107
run 5 6388.254 0.022
run 6 6368.262 0.001
run 7 8734.077 0.744
run 8 6368.116 0.001
run 9 7753.498 0.690
run 10 6368.104 0.001

Table 89: GATBX-migr+SQP optimization runs: objective function values and Euclidean
distance in the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.024, runs 2, 5, 6, 8 and 10 were able to get the best known solution, that
iIs 5/10 GATBX-migr runs successfully identified the basin of attraction of the

best known solution.

FEP
As FEP implements an evolutionary programming algorithm, we report, as
already done for genetic algorithms, the statistical characteristics. Ten runs
have been processed in order to solve the previously defined problem. Default
options suggested by the providers of the code have been used in all the runs.
As the Multiple Gravity Assist transfer has high complexity features, we used

100 individuals evolving for a maximum number of generations equal to 1000.
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Algorithm parameters

Number of individuals:

Maximum number of

generations:

100

1000

Table 90 reports the best identified solution compared with the best known

solution in terms of the values of the design variables and of the objective

function terms, while Figure 176 plots the resulting interplanetary transfer

trajectories.

Best identified solution

Best known solution

t,: -767.492 d -770.686 d
tte 162.957 d 179.524 d
tt, ., : 407.819 d 406.528 d
tt, . 62.167 d 53.181 d
tte 750.432 d 758.334 d
tt, o 3618.752 d 3650.218 d
AV : 7164.248 m/s 6367.990 m/s
AV, : 3365.720 m/s 3901.332 m/s
1% AVgyy - 3006.822 m/s 2019.210 m/s
2" AVguy - 298.001 m/s 0.018 m/s
AVin e 38.029 m/s 0.005 m/s
AVin,s 9.275 m/s 0.022 m/s
AV, : 446.402 m/s 447.402 m/s

Table 90: Comparison between the best identified solution and the best known solution.
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Figure 175: FEP: Comparison between the best identified solution and the best known solution.

Table 91 reports the values of their design variables in the normalized search

space.

t, ttey tt, tty ¢ tte_, tt;

Best identified
_ 0.279 0.535 0.906 0.362 0.726 0.990
solution

Best known
. 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 91: FEP: comparison between the best identified solution and the best known solution in
the normalized search space.

Although the different objective function values, the values of the design
variables in the normalized search space corresponding to the two solutions are
close to each other, showing a maximum value of the order of 102 and an
Euclidean distance equal to 9.092-107?; moreover, by analysing Figure 175, the
two corresponding transfer trajectories seems to show similar structures. This

suggest the possibility that the best identified solution lies in the basin of
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attraction of the best known solution. Given the best solution identified by FEP
and considering it as the starting, a local optimization process by means of a
SQP algorithm leads in fact to the improved best identified solution reported in

Table 91.

Best identified solution + SQP

Best known solution

t,: -770.924 d -770.686 d
tt. ., 179.763 d 179.524 d
tt, 406.523 d 406.528 d
tt, . 53.179 d 53.181 d
tt. 757.903 d 758.334 d
tt, 3650.218 d 3650.218 d
AV . 6368.128 m/s 6367.990 m/s
AV, : 3908.484 m/s 3901.332 m/s
1% AVg,y 2011.217 m/s 2019.210 m/s
2" AVgyy - 0.248 m/s 0.018 m/s
AVgpe 0 m/s 0.005 m/s
AV, , 0 m/s 0.022 m/s
AV, : 448.179 m/s 447.402 m/s

Table 91 : Comparison between the best solution identified by FEP improved by a SQP based
local optimization process and the best known solution (number of function evaluations required
by the local optimization process equal to 473).

The little differences between the two solutions reported in Table 91 show, in
fact, that the best solution identified by FEP lie in the basin of attraction of the
best known solution. Let now analyse the statistical values of FEP
performances. Figure 176 shows the distribution of the solutions resulting from
each optimization run over the plane of the objective function, AV, and the
number of function evaluations, nFunc, while Table 94 reports the statistical
characteristics, which will be used for comparisons with the other optimization
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algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 176: Distribution of the solutions resulting from each FEP optimization run over the
nFunc — AV plane.

Evaluation Standard Best identified
Mean value
criterion deviation solution
AV : 9287.112 m/s 2860.194 m/s 7168.115 m/s
nFunc.: 22238.300 16233.713 19642
Runtime [STUJ: 0.629 0.458 0.542

Table 94: Statistical characteristics of the identified solutions.

By proceeding in analogy with the previous algorithm analyses, the optimal
solutions corresponding to all ten runs have been used as starting solutions for
ten local optimization processes in order to accurately estimate the local
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minimum corresponding to the basin of attraction each optimal solution belong
to. Figure 177 illustrates the consequences of the local optimization processes

in the nFunc - AV plane.
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Figure 177: Cmparison between solutions resulting from FEP runs and their improvements by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.

Different local minima corresponds to FEP runs.Solutions are now investigated
in the normalized search space. Table 94 reports, corresponding to each
FEP+SQP run, the reached objective function value and the distance (in

Euclidean metric) with respect to the best known solution.

239



LUNIVLESIEY
wi

UL-'I.".:L:I'J'I‘-'

Mean value AV [m/s] Distance

Run 1 6381.341 0.014
Run 2 6977.111 0.496
Run 3 6370.082 0.001
run 4 6783.654 0.297
run 5 6368.128 0.001
run 6 14415.505 0.670
run 7/ 13774.873 0.791
run 8 6369.203 0.006
run 9 6368.001 0.001
run 10 6496.798 0.107

Table 94: FEP+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.024, runs 1, 3, 5, 8 and 9 were able to get the best known solution, that
is 5/10 FEP runs successfully identified the basin of attraction of the best known

solution.

DE

As DE implements a Differential Evolution algorithm, we report the statistical
characteristics. Ten run have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. Again, due to the high complexity of the Multiple
Gravity Assist interplanetary transfer problem, we used 100 individuals evolving

for a maximum number of iterations equal to 1000.

240



LUNIVLESIEY
wi

UL’I.'b:LiI'J'f‘-'

Algorithm parameters

Number of individuals:

Maximum number of

generations:

100

1000

Table 95 reports the best identified solution compared with the best known

solution in terms of the values of the design variables and of the objective

function terms, while Figure 178 plots the resulting interplanetary transfer

trajectories.
Best identified solution Best known solution

ty: -772.497 d -770.686 d
tt, ., 167.745 d 179.524 d
tt, ., : 421.400 d 406.528 d
tt, . 50.758 d 53.181d
tt 620.257 d 758.334 d
tt, . 2471.348d 3650.218 d
AV : 7513.354 m/s 6367.990 m/s
AV,: 3332.276 m/s 3901.332 m/s
1% AVg,y 1667.957 m/s 2019.210 m/s
2" AV, 1855.955 m/s 0.018 m/s
AViae 46.634 m/s 0.005 m/s
AV, 144.470 m/s 0.022 m/s
AV, : 466.061 m/s 447.402 m/s

Table 95:Comparison between the best identified solution and the best known solution.
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Figure 178: Comparison between the best identified solution and the best known solution.

Table 95 and Figure 178 show that, while the values of the first four design

variables are quite close to each other, important differences exist in the tt. |
and tt; ¢ values, which lead to evidently dissimilar last phases of the

interplanetary transfer. This can be highlighted by analysing Table 96 which

reports the two solutions in the normalized search space.

t, tte tt, tty, ¢ tte_; tt;
Best identified
. 0.277 0.552 0.937 0.275 0.580 0.641
solution
Best known
_ 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 96: DE: comparison between the best identified solution and the best known solution in
the normalized search space.

Differences between the values of the design variables in the normalized search

space attain a maximum value of 0.359 corresponding to tt,  and the
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Euclidean distance between the solutions is equal to 3.945-107", which is higher
than the corresponding value in case of the previous algorithm. In analogy with
the previous algorithm performance analysis, a local optimization process by
means of a SQP algorithm is performed by considering the best solution
identified by DE (reported in Table 96) as the starting point. The resulting
improvement of the best identified solution is reported in Table 97.

Best identified solution + SQP Best known solution

t,: -772.470 d -770.686 d
tt 182.001 d 179.524 d
t, ., : 403.715 d 406.528 d
tt, . 53.518 d 53.181 d
tt. 649.305 d 758.334 d
t, : 2819.777 d 3650.218 d
AV : 6672.195 m/s 6367.990 m/s
AV, : 4013.102 m/s 3901.332 m/s
1% AVgyy : 2200.297 m/s 2019.210 m/s
2" AVg,y 3.121 m/s 0.018 m/s
AVigpe 0.003 m/s 0.005 m/s
AV 5 0.015 m/s 0.022 m/s
AV.: 455.657 m/s 447.402 m/s

Table 97: Comparison between the best solution identified by DE improved by a SQP based
local optimization process and the best known solution (number of function evaluations required

by the local optimization process equal to 1140).
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Figure 179: DE: comparison between the improved best identified solution and the best known
solution.

As already happened in case of GATBX algorithm, the best solution identified
by DE doesn't lie in the basin of attraction of the best known solution: the results
of the local optimization process, reported in Table 97 and Figure 179 led to the
identification of a local minimum which is different from and worse than the best

known one; this solution corresponds to shorter values of the tt. ; and tt;

design variables, then identifying a different family of solutions for the
interplanetary transfer. Let now analyse the statistical values of DE
performances. Figure 180 shows the distribution of the solutions resulting from
each optimization run over the plane of the objective function, AV, and the
number of function evaluations, nFunc, while Table reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 180: Distribution of the solutions resulting from each DE optimization run over the
nFunc — AV plane.

Evaluation Standard Best identified
Mean value
criterion deviation solution
AV : 10145.388 m/s 3494.605 m/s 7510.975 m/s
nFunc.: 10250 4696.157 18600
Runtime [STU]: 0.201 0.094 0.369

Table 98: Statistical characteristics of the identified solutions.

The optimal solutions corresponding to all ten runs are now considered as
starting solutions for ten local optimization processes in order to accurately
estimate the local minimum corresponding to the basin of attraction each
optimal solution belong to. Figure 181 illustrates the consequences of the local

optimization processes in the nFunc - AV plane.
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Figure 181: Comparison between solutions resulting from DE runs and their improvements by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.

Different local minima corresponds to DE runs. In order to estimate the number
of identified solutions which lie in the basin of attraction of the best known
solutions, let investigate the solutions in the normalized search space. Table 99
reports, corresponding to each DE+SQP run, the reached objective function
value and the distance (in Euclidean metric) with respect to the best known

solution.
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Mean value AV [m/s] Distance

run 1 6372.443 0.002
run 2 6740.310 0.159
run 3 6535.352 0.111
run 4 6369.829 0.002
run 5 6994.426 0.254
run 6 6672.195 0.281
run 7 6731.933 0.350
run 8 6372.292 0.009
run 9 6582.506 0.186
run 10 6652.766 0.202

Table 99: DE+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.024, runs 1, 4 and 8 were able to get the best known solution, that is
3/10 DE runs successfully identified the basin of attraction of the best known

solution.

ASA

As ASA implements an Adaptive Simulated Annealing algorithm, we report the
statistical performance characteristics. Ten run have been processed in order to
solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. Note that, unlike the
previous cases, the adaptive simulated annealing needs a starting solution,
which strongly affects the optimal solution reached. Due to the comparative
purposes of this work, we decided to use ten different random starting solutions,
uniformly distributed in the search box. Table 100 reports the best identified

solution compared with the best known solution in terms of the values of the
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design variables and of the objective function terms, while Figure 82 plots the

resulting interplanetary transfer trajectories.

Best identified solution Best known solution

t,: -807.854 d -770.686 d
tte, 212.421 d 179.524 d
tt, 406.480 d 406.528 d
tt, . 56.343 d 53.181 d
tt 752.539 d 758.334 d
tt, o 3618.545 d 3650.218 d
AV : 6622.699 m/s 6367.990 m/s
AV, : 6164.421 m/s 3901.332 m/s
1% AVgyy : 5.166 m/s 2019.210 m/s
2" AVgyy - 0.204 m/s 0.018 m/s
AVine 0.417 m/s 0.005 m/s
AVen, 4.630 m/s 0.022 m/s
AV¢: 447.860 m/s 447.402 m/s

Table 100: Comparison between the best identified solution and the best known solution.
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Figure 182: Comparison between the best identified solution and the best known solution.

Let now consider the two solutions in the normalized search space. Table 101

reports the values of the design variables.

t, ttey tt, tty ¢ tte_, tt;

Best identified
solution
Best known

solution

0.257 0.714 0.903 0.318 0.728 0.990

0.278 0.594 0.903 0.294 0.734 1.000

Table 101: ASA: comparison between the best identified solution and the best known solution in
the normalized search space.

The differences on the values of the design variables in the normalized search

space mainly involve the value of the Earth-Venus transfer time, where they

assume a value of the order of 10™. The Euclidean distance between the two

solutions is 1.247-107'. It is worth noting that, although differences on the

design variables are similar to those encountered using the previous algorithms,

the difference on the Earth-Venus transfer make the structures of the
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interplanetary quite different, especially if we analyse the values of each
objective function terms: indeed, by considering Table 100, one can note that
the best solution identified by ASA has very little values of the minimum

corrective AVs corresponding to each gravity assist manoeuvre, AV, ., while

concentrating the major contribution to the objective function value on AV,, that
is the relative velocity with respect to Earth at the beginning of the interplanetary
transfer. The difference in the structure of the interplanetary transfer is
concentrated in the first phase of the interplanetary transfer, as highlighted in
Figure 182.

¥ AU

' ' .best known solution
i i II:uest id_entiﬁed_snlutinn

2 45 1 05 0 058 1 15 2
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Figure 183: Comparison between the best identified solution and the best known solution: close
up of the first phases of the interplanetary transfer reported in Figure 182.

In order to understand if the identified solution is in fact representative of a new
family of transfer trajectories corresponding to a local minimum different from
the best known one, a local optimization process by means of a SQP algorithm
is performed by considering the solution identified by ASA as the starting point.
The resulting improvement of the best identified solution is reported in Table
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102, while Figure 184 illustrates the first phases of the resulting interplanetary

transfer.
Best identified solution + SQP Best known solution

t,: -800.089 d -770.686 d
ttey - 208.892 d 179.524 d
tt, 406.734 d 406.528 d
tt, . 53.050 d 53.181 d
tt 757.953 d 758.334 d
tt, o 3650.218 d 3650.218 d
AV : 6500.786 m/s 6367.990 m/s
AV, : 5987.912 m/s 3901.332 m/s
1% AVg,y 38.345 m/s 2019.210 m/s
2" AV, 25.552 m/s 0.018 m/s
AVgae 0.537 m/s 0.005 m/s
AVgp 0.226 m/s 0.022 m/s
AV, : 448.213 m/s 447.402 m/s

Table 184: Comparison between the best solution identified by ASA improved by a SQP based
local optimization process and the best known solution (number of function evaluations required

by the local optimization process equal to 925).
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Figure 184: ASA: comparison between the improved best identified solution and the best
known solution: close up of the first phases of the interplanetary transfer.

Table 102 shows that the best solution identified by ASA doesn't lie in the basin
of attraction of the best known solution and it identifies in fact a new local
optimum solution which is worse than the best known one in terms of the
objective function value, but displays different and interesting features: indeed,

most of the overall AV concentrates on AV,, which is usually given by the

launcher; in this way the spacecraft must provide the corrective AVsg,, and the

final AV., which are in fact lower than in case of the previously identified
solutions; however, the high AV, which can be given by the launcher limits the
allowed maximum spacecraft launch mass (e.g. in case of using Titan IV-
Centaur launcher, the allowed launch mass is equal to 4500 kg, which is about
1000 kg smaller than the Cassini-Huygens launch mass). It is interesting to note
that the objective function value corresponding to the best solution identified by
ASA is only 132.796 m/s higher than in case of the best known solution: this
constitutes a further proof of the existence of many comparable local minima
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close to each other, which increases the possibility of converging to no global
optima. Let now analyse the statistical values of ASA performances. Figure
shows the distribution of the solutions resulting from each optimization run over
the plane of the objective function, AV , and the number of function evaluations,
nFunc, while Table 102 reports the statistical characteristics, which will be used
for comparisons with the other optimization algorithms, as well as the
performances corresponding to the best identified solution.
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Figure 185: Distribution of the solutions resulting from each ASA optimization run over the
nFunc — AV plane.

Evaluation Standard Best identified
o Mean value o _
criterion deviation solution

AV : 12712.987 m/s 6646.187 m/s 6618.027 m/s
nFunc.: 96255.800 3281.118 96250
Runtime [STU]: 1.626 0.273 1.883

Table 102: Statistical characteristics of the identified solutions.
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The optimal solutions corresponding to all ten runs are now considered as
starting solutions for ten local optimization processes in order to accurately
estimate the local minimum corresponding to the basin of attraction each
optimal solution belong to. Figure 186 illustrates the consequences of the local

optimization processes in the nFunc - AV plane.
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Figure 186: Comparison between solutions resulting from ASA runs and their improvements by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.

Different local minima correspond to ASA runs. In order to estimate the number
of identified solutions which lie in the basin of attraction of the best known
solutions, let investigate the solutions in the normalized search space. ---
reports, corresponding to each ASA+SQP run, the reached objective function
value and the distance (in Euclidean metric) with respect to the best known

solution.
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Mean value AV [m/s] Distance

run 1 14887.689 0.883
run 2 13774.208 0.791
run 3 14286.834 0.638
run 4 6500.786 0.107
run 5 8731.842 0.744
run 6 6507.752 0.108
run 7 23174.526 1.001
run 8 6368.634 0.001
run 9 23174.528 1.001
run 10 6694.102 0.162

Table 104: ASA+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.024, only run 8 was able to get the best known solution, that is 1/10 ASA
runs successfully identified the basin of attraction of the best known solution.

albSolve
As glbSolve algorithm implements a deterministic optimization approach,

statistical characteristics are not needed in this case. Only one run has been
processed in order to solve the previously defined problem. Default options
suggested by the providers of the code have been used. As the Multiple Gravity
Assist interplanetary transfer has high complexity features, we used a maximum
number of iterations equal to 1000.

Algorithm parameters

Maximum number of generations: 1000
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Table 105 reports the identified solution compared with the best known solution

in terms of the values of the design variables and of the objective function

terms, while Figure 187 plots the resulting interplanetary transfer trajectories.

Identified solution

Best known solution

t,: 244.168 d -770.686 d
tte - 250.755 d 179.524 d
tt, 418.907 d 406.528 d
tt, . 129.888 d 53.181 d
tte 536.614 d 758.334 d
tt, o 3605.070 d 3650.218 d
AV . 15354.532 m/s 6367.990 m/s
AV, : 7068.211 m/s 3901.332 m/s
1% AV, 920.974 m/s 2019.210 m/s
2" AVg,y - 222.217 m/s 0.018 m/s
AVia e 6201.130 m/s 0.005 m/s
AV, 0.484 m/s 0.022 m/s
AV, : 941.515 m/s 447.402 m/s

Table 105: Comparison between the best identified solution and the best known solution.
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Figure 187: Comparison between the identified solution and the best known solution.

Table 105 and Figure 187 show that the two solutions are evidently different.

The two solutions in the normalized search space are reported in Table 106.

t, tt., tt, ., tt, tt._, tt, o
Identified
_ 0.834 0.852 0.931 0.878 0.487 0.986
solution
Best known
_ 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 106: glbSolve: comparison between the identified solution and the best known solution in
the normalized search space.

The differences on the values of the design variables in the normalized search
space assume a maximum value of 5.841-107" corresponding to the Venus-
Earth transfer time. The Euclidean distance between the two solutions is

8.826-10"'. In order to accurately identify the local minimum reached by
glbSolve algorithm, a local optimization process by means of a SQP algorithm is

now performed. Given the solution identified by glbSolve (reported in Table 106)
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and considering it as the starting point for the local search process, the

improved identified solution reported in Table 107 is identified.

Identified solution + SQP Best known solution

t,: 242.654 d -770.686 d
tte ¢ 258.873 d 179.524 d
tt, ., : 412.968 d 406.528 d
tt, g 127.574 d 53.181 d
tt. 540.798 d 758.334 d
tt 3650.218 d 3650.218 d
AV : 14763.770 m/s 6367.990 m/s
AV, : 7927.631 m/s 3901.332 m/s
1% AVg,y 0.056 m/s 2019.210 m/s
2" AVg,y - 0.020 m/s 0.018 m/s
AVipe 5905.166 m/s 0.005 m/s
AV, 0m/s 0.022 m/s
AV : 930.896 m/s 447.402 m/s

Table 107: Comparison between the solution identified by ASA improved by a SQP based local
optimization process and the best known solution (number of function evaluations required by
the local optimization process equal to 566).

Table 108 reports the characteristics of the identified solution, which will be

used for comparisons with the other optimization algorithms.

Evaluation criterion Identified solution
AV : 15347.899 m/s
nFunc.: 4345
Runtime [STU]: 0.093

Table 108: Characteristics of the identified solutions.

258



LUNIVLESIEY
wi

UL-'I.".:L:I'J'I‘-'

MCS

As MCS algorithm implements a deterministic optimization approach, only one
run have been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used. Table
109 reports the identified solution compared with the best known solution in
terms of the values of the design variables and of the objective function terms,

while Figure 188 plots the resulting interplanetary transfer trajectories.

Best identified solution Best known solution

t,: -783.935d -770.686 d
tt, 107.476 d 179.524 d
tt, ., : 448.916 d 406.528 d
tt, . 82.520 d 53.181 d
tt, | 731.592 d 758.334 d
tt; - 3620.137d 3650.218 d
AV : 13782.954 m/s 6367.990 m/s
AV, : 3717.562 m/s 3901.332 m/s
1% AV, - 1764.630 m/s 2019.210 m/s
2" AVgay 4413.551m/s 0.018 m/s
AVip e 3221.307 m/s 0.005 m/s
AV, 229.904 m/s 0.022 m/s
AV : 436.000 m/s 447.402 m/s

Table 109 - Comparison between the identified solution and the best known solution.
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Figure 188 - Comparison between the identified solution and the best known solution.

Table 110 reports the two solutions in the normalized search space.

ty ey i,y LAV e, L
Identified
. 0.270 0.335 1.000 0.517 0.705 0.991
solution
Best known
. 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 110: MCS: comparison between the identified solution and the best known solution in the
normalized search space.

The Euclidean distance between the two solutions is 3.576-107". It is worth
noting that the differences in the design variables mainly concentrates in the
tt., and tt, . values. In fact the solution identified by MCS can be recognized

to be alternative to the best known one in terms of these two design variables:

indeed, the solution identified by MCS is characterized by a lower Earth-Venus

260



=i
LUNIVLESIEY
p‘l-

Ll AL

transfer time, while having a higher value of the Venus-Earth transfer time (see

Figure 189).
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Figure 189: Close up of th initial phase from Figure 188.

The previous results let us suppose that MCS wasn'’t able to reach the basin of
attraction of the best known solution. Such result can be confirmed by means of
a local optimization process performed using a SQP algorithm. Given the
solution identified by MCS and considering it as the starting point for the local
search process, the improved best identified solution reported in Table 111 is

identified.
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Identified solution + SQP

Best known solution

t,: -783.390 d -770.686 d
., 144.713 d 179.524 d
t, ., 448.916 d 406.528 d
tt, . 57.004 d 53.181 d
t, ,: 757.130 d 758.334 d
t, . 3650.218 d 3650.218 d
AV 6696.023 m/s 6367.990 m/s
AV, : 3648.442 m/s 3901.332 m/s
1% AVgy 8.554 m/s 2019.210 m/s
2" Vg, 2591.553 m/s 0.018 m/s
AVine 0 m/s 0.005 m/s
AV, 0.027 m/s 0.022 m/s
AV, : 447.446 m/s 447.402 m/s

Table 111: Comparison between the solution identified by MCS improved by a SQP based local
optimization process and the best known solution (number of function evaluations required by

the local optimization process equal to 812).

Table 111 shows that MCS algorithm wasn’t able to get the basin of attraction of
the best known solution. Table 112 reports the characteristics of the identified

solution, which will be used for comparisons with the other optimization

algorithms.

Evaluation criterion

Best identified solution

AV :

13782.954 m/s

nFunc.:

Runtime [STU]:

46601

1.020

Table 112: Characteristics of the identified solutions.
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rbfSolve

As rbfSolve algorithm implements a deterministic optimization approach, based
on objective function response surfaces assessment and analysis suitable for
costly objective function problems, statistical features analysis don’t hold here.
Only one run has been processed in order to solve the previously defined
problem. Default options suggested by the providers of the code have been
used. As already stated in the description of this optimization tool, the
termination conditions available in TOMLAB version of rbfSolve tool (which is
not freely available) do not include suitable rules for practical problems with not
a priori information about the global optimum solution. As a consequence, a
maximum number of objective function evaluations has been fixed for
terminating the optimization process. The maximum value in case of the 2-
impulse direct Planet-to-Planet transfer problem has been set based on the
order of magnitude of the objective function evaluations resulting from the
application of the previously analysed tools to that problem. By revising the
previous analysis, in case of Multiple Gravity Assist the number of objective
function evaluations was quite high: as an example, ASA required about 10°
objective function evaluations. However, rbfSolve is tailored for costly
optimization processes and can not dealing with so high number of objective
function evaluations due to the high required memory for handling the
interpolation process. As a consequence, such limitations forced us to fix a
maximum number of objective function evaluations of the order of 10°. Anyway,
the achieved results can be considered as indicative of the performance of such
a tool in solving the previously defined problem: response surface based global
optimization algorithms use objective function evaluations for interpolating and
then approximating the objective function shape; the generated response
surface is then investigated to identify promising regions for the global search.
The number of objective function evaluations which are usually performed using
response surface based optimization algorithms are in fact low if compared with
other global optimization tools, due to the aim of solving costly optimization
problems. As a consequence, if the response surface algorithm is not able to
identify and accurately approximate the basin of attraction of the global optimum

in a low number of objective function evaluations, it is likely the case the
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algorithm has not converged to the global optimum solution. Hence, the fixed

number of objective function evaluations has been set to 1000.

Algorithm parameters

Maximum number of objective function evaluations:

1000

Table 113 reports the identified solution compared with the best known solution

in terms of the values of the design variables and of the objective function

terms, while Figure 190 plots the resulting interplanetary transfer trajectories.

Identified solution

Best known solution

t,: 358.328 d -770.686 d
tt.,: 123.810 d 179.524 d
tt, ., : 418.089 d 406.528 d
tt, .- 145.917 d 53.181 d
tt, ,: 461.924 d 758.334 d
tt, 2390.057 d 3650.218 d
AV . 16970.001 m/s 6367.990 m/s
AV,: 3338.781 m/s 3901.332 m/s
1% AVgyy - 3644.557 mis 2019.210 m/s
2" AVg,y 25.226 m/s 0.018 m/s
AVip e 8498.370 m/s 0.005 m/s
AV, 109.569 m/s 0.022 m/s
AV : 1353.497 m/s 447.402 m/s

Table 113: Comparison between the identified solution and the best known solution.
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Figure 190: Comparison between the identified solution and the best known solution.

The two solutions seem to belong to basin of attraction of different local minima,
especially analysing the first phase of the interplanetary transfer. Such idea is
supported by Table 113, which reports the two solutions in the normalized

search space.

t, tt., tt, ., tt, tt._, tt, o
Identified
_ 0.896 0.394 0.930 1 0.404 0.616
solution
Best known
. 0.278 0.594 0.903 0.294 0.734 1.000
solution

Table 113: rbfSolve: comparison between the identified solution and the best known solution in
the normalized search space.

The Euclidean distance between the two solutions is 1.085. In order to better
investigated whether rbfSolve was able to reach the basin of attraction of the
best known solution, a local optimization process is performed using a SQP
algorithm. Given the solution identified by rbfSolve and considering it as the
starting point for the local search process, the improved best identified solution

reported in Table 116 is identified.
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Identified solution + SQP Best known solution

t,: 371.436 -770.686 d
tte - 115.158 179.524 d
tt, ., : 430.791 406.528 d
tt, . 127.931 53.181 d
tt, 538.053 758.334 d
tt; : 3650.218 3650.218 d
AV : 12968.322 6367.990 m/s
AV, : 2995.515 3901.332 m/s
1% AVg,y 1715.141 2019.210 m/s
2" AV, : 1116.794 0.018 m/s
AViae 6209.642 0.005 m/s
AV, 0 0.022 m/s
AV : 931.231 447.402 m/s

Table 115: Comparison between the solution identified by rbfSolve improved by a SQP based
local optimization process and the best known solution (number of function evaluations required
by the local optimization process equal to 377).

Table 115 shows that rbfSolve algorithm wasn't able to get the basin of
attraction of the best known solution. Table 116 reports the characteristics of
the identified solution, which will be used for comparisons with the other

optimization algorithms.

Evaluation criterion Best identified solution
AV : 16970.001 m/s
nFunc.: 1000
Runtime [STU]: 49.350

Table 116: Characteristics of the identified solutions.
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Summary of Results:

Table 117 reports the summary of results for the MGA transfer problem.

Algorithm

AV [m/s]

Fun. evaluations

Runtime [STU]

GAOT

GAOT-shared

8256.416 (0 =1555.107)

21874.731 (0 =5741.406)

8543.4 (0 =4075.382)

1350.4 (0 =559.057)

0.1883 (0 =0.09683)

0.027 (0 =0.01192)

GATBX 8317.45 (0=2339.832) 39468 (0 =29981.599) 0.748 (0 =0.584)
GATBX-migr 8237.81 (0 =972.517) 59220 (0 =27105.666) 1.272 (0 =0.722)
FEP 9287.112 (0 =2860.194) 222383 (0 0.629 (0 =0.458)
=16233.713)
DE 10145.388 (0 =3494.605) 10250 (0 =4696.157) 0.201 (0 =0.094)
ASA 12712.987 (0 =6646.187)  96255.8 (0 =3281.118) 1.626 (0 =0.273)
GlbSolve 15347.899 4345 0.093
MCS 13782.954 46601 1.02
RbfSolve 16970.001 1000 49.350
EPIC* 7133.900 (0 = 431.79) 10127 (0 =115.9) -

Table 117: Summary of results for the Multiple Gravity Assist interplanetary transfer problem (*
courtesy of Dr. Massimiliano Vasile).

Note that Table 117 also reports the performances of EPIC algorithm, which
have been supplied by Dr. Massimiliano Vasile. Unfortunately, the analysis of
EPIC results on the search space could not be accomplished and the runtime
performances were not available. As stated in the 2-impulse direct planet-to-
planet transfer algorithms test phase, the performance criteria we have
measured are in fact partially conflicting. As proposed in earlier works [Pintér,
1995], concepts and techniques typically adopted in multiobjective optimization
problems (such as the concept of the Pareto dominance) can be here used. As
stated above, due to the presence of not optimized codes among the tested

ones and to the necessity of creating a MEX file for ASA algorithm (which
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slightly affects the runtime performances), the main evaluation criteria to be

considered have been taken as the objective function value reached, AV, and

the number of model function evaluations needed, nFunc. Figure 191 reports

such performances in a AV - nFunc plane in order to identify the Pareto optimal

solution.
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Figure 191: Algorithms performances in the AV - nFunc plane.

Note that Figure 191 reports the performances listed in Table 117, which

contains statistical performances in case of randomized optimization algorithms.

By applying the concepts of Pareto dominance, Table 118 reports for each

algorithm, the number of algorithms which dominated (and then outperformed)

it.
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Algorithm # of dominating algorithms

GAOT 0
GAOT-shared 1
GATBX 2
GATBX-migr 1
FEP 2

DE 2
ASA 6
glbSolve 0
MCS 5
rbfSolve 0
EPIC 0

Table 118: Number of dominating algorithms.

Table 118 shows that the set of Pareto optimal solutions includes in fact four
solutions: the algorithms which best solved the Multiple Gravity Assist
interplanetary transfer in a Pareto optimal sense are GAOT, glbSolve, rbfSolve
and EPIC whose performances are shown in Figure 192.
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Figure 192: Pareto optimal algorithms.

It is worth noting that, the concept of Pareto optimality in multicriteria decision
problems define the optimal solution by simultaneously investigating its
performances on all considered criteria. This is the reason why, while EPIC is a
Pareto optimal solution thanks to the identification of the mean best solution in
terms of the objective function value, rbfSolve algorithm is Pareto optimal
thanks to its low number of required objective function evaluations, although, as
resulting from its previous analysis, it was not able to reach the basin of
attraction of the best known solution. Note that these results are strictly affected
by the stopping criterion used. However, the effects of the stopping criteria on
the algorithm performances are not addressed here, where the algorithms are
used as black-box tools. Let consider now the runtime performances: keeping in
mind the previously stated considerations about the reasons of choosing AV
and nFunc as main performance criteria, we want to analyze the consequences
of including the runtime performance on the identification of the Pareto optimal
algorithm. We have now three performance criteria. Figure 193 and Figure 194
report the algorithms performances in the AV -nFunc plane and in the nFunc -

runtime plane respectively, which have not been considered so far. Note that
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EPIC performances couldn’'t be reported in the following analysis, due to the

lack on required runtime information.
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Figure 193: Algorithms performances in the AV - runtime plane.
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Figure 194: Algorithms performances in the nFunc - runtime plane.
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As already noted in case of the 2-impulse direct planet-to-planet transfer
problem, the runtime corresponding to rbfSolve is quite high if compared to the
other optimization algorithms (for a better visualization of all algorithms

performances excluding rbfSolve see Figure 195 and Figure 196) due to the

time spent in interpolating the response surface.

Figure 195: Algorithms performances in the AV - runtime plane (excluding rbfSolve).

nFunc

Figure 196: Algorithms performances in the nFunc - runtime plane (excluding rbfSolve).
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By applying the concepts of Pareto dominance in this three-criteria case, Table

119 reports for each algorithm, the number of algorithms which dominated it.

Algorithm # of dominating algorithms
GAOT 0
GAOT-shared 0
GATBX 1
GATBX-migr 0
FEP 1
DE 1
ASA 5
glbSolve 0
MCS 4
rbfSolve 0

Table 119: Number of dominating algorithms in the three criteria case.

Table 119 shows that GAOT-shared and GATBX-migr joined the set of Pareto
optimal solutions. No changes occurred in the remaining algorithms
performance. Finally the performance of all algorithms in identifying the basin of
attraction of the best known solution are reported in Table 120, as resulting from
the local optimization processes performed at the end of each algorithm run
(note that for randomized algorithms the number of successful runs over the

total number of performed runs is reported).
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Algorithm Success

GAOT 4/10

GAOT-shared 2/10

GATBX 2/10

GATBX-migr 5/10

FEP 5/10

DE 3/10

ASA 1/10
GlbSolve No
MCS No
RbfSolve No

Table 120: Algorithms performance in identifying the basin of attraction of the best known
solution.

Table 120 shows that GATBX-migr and FEP algorithms turned out to have the
highest rate of success in reaching the basin of attraction of the best known
solution in case of Multiple Gravity Assist interplanetary transfers problem.
However, as reported in Table 118, they do not belong to the set of Pareto
optimal algorithm in the AV — nFunc two criteria case: indeed, EPIC tool
dominates them in terms of both mean objective function value reached and
mean objective function evaluations required (see Figure 196). Unfortunately,
no information are available to the authors regarding the success rate of EPIC.

As a consequence we can state that:

» In case of interest on only the mean objective function value reached and
mean number of objective function evaluations required as evaluation
criteria, GAOT and EPIC tools turned out to be the best performing ones.
However, due to the relatively low difference in the mean number of
objective function evaluations (1583.6 over about 10000 objective

function evaluations required by the two tools for performing the
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optimization processes) corresponding to a relatively high difference in
the mean objective function value reached (about 1000 m/s), EPIC tool
seems to be the most suitable one for practical use in a mission analysis

optimization environment.

» In case of interest on effectiveness at identifying the basin of attraction of
the global optimum solution, due to the lack of information about EPIC
success rate, GAOT, GATBX-migr and FEP can be considered the best
performing ones. However, due to the little difference on success rate
between GAOT (4/10), and GATBX-migr and FEP (5/10) corresponding to
relatively high difference in the mean number of objective function
evaluations (about 8543.4 for GAOT compared with 22238.3 for FEP and
even 59220 for GATBX-migr), GAOT tool seems to be the most advisable

one for practical use.

Note that low values of mean objective function value reached do not
necessarily correspond to high success rate in identifying the basin of attraction
of the best known solution. An evident example is GATBX tool: although the
resulting good mean objective function value reached (which is comparable with
GAOT and GATBX-migr performances), the corresponding success rate is quite
low (2/10). This result can be related to the presence of several comparable
local minima over the search space: indeed, most GATBX runs got trapped in
local minima which are in fact comparable with the best known one in term of

objective function value.
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9. LOW THRUST DIRECT PLANET-TO-PLANET TRANSFER

Problem class statement:

Interplanetary transfer description

Low thrust direct planet-to-planet transfer from Earth to Mars

Objective function assessment

Objective function: ObjFun=¢a, R +a, Vg +a;-m

prop

where:

R- is the magnitude of the spacecraft
relative position with respect to Mars at
the end of the integration of motion (good
values: Mars sphere of influence radius,
5.77-10°m).

v. is the magnitude of the spacecraft
relative velocity with respect to Mars at
the end of the integration of motion (good
values: 100 m/s).

m,, IS the propellant mass that is

required by the thrusters for the
interplanetary transfer (good values: 200

kg).
a,, a, and «a, are weights which have

been fixed in order to make the order of
magnitude of ObjFun equal to 10,

corresponding to good R., v and m
values.

prop
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Mathematical models:

« Restricted 2-body dynamical model (C? in

the whole solution space except in the
origin)

e Three dimensional motion
e Analytical ephemeris model (generated

by time polynomial series of the orbital
elements)

e Low thrust interplanetary transfer

(constant thrust level and variable
direction)

o Parameterization of the control law on

thrust azimuth and elevation in six points
of interpolation over the transfer time

e Forward propagation of initial conditions

and thrust control law in equinoctial
elements

Search space, D, characterization

Number of design variables:

Design Variables:

16

« Date of departure from Earth, t,
« Transfer time, tt

e Thrustlevel, u
e Magnitude of the escape velocity from
Earth, v, (tangential to Earth absolute

velocity)

e Thrust azimuth and elevation over the
transfer trajectory corresponding to the
SiX parameterization points, az, and el

i=1..6
Topology: Continuous variables = D c R*®
Constraints
Constraints typology: Box constraints

Box intervals:

e t, included in a 4 years period starting

from the 1% January 2000
. tte[150,300] d

« uef0.1,0.168] N
e Ve, €[0,3000] m/s
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e az,e[-z,z|rad, i=1..6
e el e[-7/2,z12]rad, i=1..6

General considerations

Objective function analysis:  The objective function is almost everywhere
C?, locally discontinuous in a countable
number limited set

Problem complexity: High

Search space normalization: The search space is normalized by means
of the upper-lower bounds in order to be an

unit hypercube = D =[0,1]*°

Number of global optima: A priori unknown.

The following best known solution has been gained by means of a multi-start
search, which implement a local search process via SQP algorithm starting from
100 random first guess solutions uniformly distributed over the search space
(each one requiring a number of objective function evaluations of the order of
10%).

Search space

Date of departure: 553.253 d
Transfer time: 299.462 d
Thrust level: 0.130N
Escape velocity from Earth: 2676.327 m/s
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az, el [rad]

—
i

0 50 100 150 200 250 300
tt [d]

Figure 197: Thrust azimuth and elevation over the transfer trajectory corresponding to the best
known solution.

Objective space

ObjFun: 5.750
Re /Reot wars 0.002
Ve 0.086 m/s
M prop - 114.433 kg
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Figure 198: Low-thrust transfer trajectory corresponding to the best known solution.

Number of local optima: A priori unknown.

Hardware platform:
Intel Pentium 4 — 3.06GHz laptop.

Operating system:
Microsoft Windows XP
Home edition

Version 2002

Service Pack 1

Timings:
The Standard Unit Time (see Dixon & Szeg0, 1978) has been measured.
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Performances:

In the following, the performances of each global optimization tool in solving the
low-thrust direct planet-to-planet transfer are reported. The evaluation criteria
will be mainly based on the analysis of the optimal solution reached and the
number of the required model function evaluations. Due to the presence of not
optimized codes among the tested ones, timing will not be considered as a main

evaluation criterion

GAOT

As GAOT implements a genetic algorithm, we report the statistical
characteristic, typically considered in case of randomized solution methods. Ten
runs have been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used in all
the runs: note that by tuning the algorithm parameters one may improve the
performance of the solvers, but, due to the comparative purposes of this work,
the tuning effects have not been considered. As the low thrust direct planet-to-
planet transfer is characterized by high complexity features and a high number
of design variables, we used 100 individuals evolving for a maximum number of

generations equal to 10000.

Algorithm parameters

Number of individuals: 100

Maximum number of generations: 10000

Table 121, Table 122 and Figure 199 report the best identified solution
compared with the best known solution in terms of the values of the design
variables and of the objective function terms, while Figure plots the resulting

interplanetary transfer trajectories.
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Search space

Design variable Best identified solution  Best know solution
Date of departure [d]: 1207.858 553.253
Transfer time [d]: 257.886 299.462
Thrust level [N]: 0.168 0.130

Escape velocity from
Earth [m/s]:

2097.126 2676.327

Table 121: Comparison between the best identified solution and the best known solution:
search space.

345

=
pd
o
g
143
------------ r\\ az (best known solution)
/ : : / v | — el thest known solution)
A e bemmmeee \ ........... i.] —  az (best identified solution)
D — el (best identified solution)
15 | | | | |
0 a0 100 150 200 250 300
tt [d]
Figure 199: Comparison between the best identified solution and the best known solution:

thrust azimuth and elevation over the transfer trajectory.
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Objective function space
Term Best identified solution Best know solution
ObjFun: 154.274 5.750
Re /Roi s - 0.104 0.002
Ve [m/s]: 1468.719 0.086
My (KL 127.192 114.433

Table 122:Comparison between the best identified solution and the best known solution:
objective function space.

! ! ! !
(1) SR - - CEE. T ; joemnones .

I e N S 4

2 : . ! :
S FR Earihiamit ¥ I 7
B Rt T T e S F PR e L SRR PP =
R e R R e e -—

L Marsiorbit” : I :

! ! — best known solution

-1.5 '. --------- . . -------- .. ----- —— best identified solution ._

-2 -1.48 -1 045 a 0.5 1 1.5 2

* AU

Figure 200: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 201 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc., while Table 123 reports the statistical

characteristics, which will be used for comparisons with the other optimization
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algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 201: Distribution of the solutions resulting from each GAOT optimization run over the
nFunc — AV plane.

_ o Standard Best identified
Evaluation criterion Mean value o .
deviation solution
ObjFun: 269.198 71.416 154.274
nFunc: 14919.300 5121.398 16410
Runtime [STU]: 3.564 1.564 4.238

Table 123: Statistical characteristics of the identified solutions.

By proceeding in analogy with the previously investigated mission analysis

classes, the estimation of the number and features of the distinct local minima

reached by means of the ten runs is performed; such an analysis will allow the

estimation of the number of runs which have been able to reach the basin of

attraction of the global optimum, which in fact can be considered as a success
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index in performing the optimization process. To attain such a task, the optimal
solutions corresponding to all ten runs have been used as starting solutions for
ten local optimization processes in order to accurately estimate the local
minimum corresponding to the basin of attraction each optimal solution belong
to. The consequences of the local optimization processes in the nFunc - AV
plane are shown in Figure 202, where each improved solution is linked to the
corresponding starting one by means of a straight line.

340

I
SADT
GADT+3OF

300

250

ChiFun

] G ATt S St SR R SN S
hestiknnwn §IEI|LItiEIr'I
0 i i i i i i i i
0.a 1 1.2 1.4 1.6 1.8 2 2.2 2.4 26

nFunc - 1EI4

Figure 202: Comparison between solutions resulting from GAQOT runs and their improvements
by means of a further local optimization process via SQP algorithm over the nFunc — AV
plane.

Figure 202 shows that different local minima corresponds to GAOT runs. By
considering the objective function values reached at the end of the optimization
processes, no solution seems to correspond to the best known one. In fact, let
investigate the solutions in the normalized search space. Table 124 reports,
corresponding to each GAOT+SQP run, the reached objective function value

and the distance (in Euclidean metric) with respect to the best known solution.
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ObjFun Distance

run 1 121.376 1.2268
run 2 289.680 1.8419
run 3 190.407 1.0597
run 4 129.321 0.92134
run 5 285.754 1.523

run 6 269.552 1.4895
run 7 267.177 1.6412
run 8 131.933 1.0891
run 9 243.598 1.3223
run 10 233.039 1.2251

Table 124: GAOT+SQP optimization runs: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

An empirical analysis suggest to define two solutions as identical when the
Euclidean distance is less than 1% of the hyper diagonal of the normalized
search space, that is 0.040 in a 16-dimensional space. The consequence of
such definition is that no run has been able to get the best known solution, that
is 0/10 GAOT runs successfully identified the basin of attraction of the best

known solution.

GAQOT-shared

As GAOT-shared implements a genetic algorithm including a niching technique,
we report again the statistical characteristics. Ten runs have been processed in
order to solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. The threshold of

dissimilarity, o, for the sharing method and the shape parameter of the sharing

function, «, have been set respectively to:
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We used again a population of 100 individuals, evolving for a maximum number

of generations equal to 10000.

Algorithm parameters

Number of individuals: 100

Maximum number of
_ 10000
generations:

Table 125, Table 126 and Figure 203 report the best identified solution
compared with the best known solution in terms of the values of the design
variables and of the objective function terms, while Figure 204 plots the

resulting interplanetary transfer trajectories.

Search space

Design variable Best identified solution Best know solution
Date of departure [d]: 1225.439 553.253
Transfer time [d]: 226.995 299.462
Thrust level [N]: 0.162 0.130

Escape velocity from Earth
1661.833 2676.327
[m/s]:

Table 125: Comparison between the best identified solution and the best known solution:
search space.
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Figure 203: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Best identified Best know
Term . )
solution solution
ObjFun: 257.807 5.750
Re /Regt wars - 8.296 0.002
v [m/s]: 1694.607 0.086
Mrop [KOI: 107.713 114.433

Table 126: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 204: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 205 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc, while Table 126 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified
solution. Note that, as one can expect, the low accuracy of GAOT-shared
corresponds to a low number of function evaluations required for that the

stopping condition becomes active.
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Figure 205: Distribution of the solutions resulting from each GAOT-shared optimization run over
the nFunc — AV plane.

Standard Best identified
Evaluation criterion Mean value o _
deviation solution
Objective function: 343.238 49.457 257.807
nFunc.: 3109.500 1099.448 3384
Runtime [STU]: 0.621 0.217 0.870

Table 126: Statistical characteristics of the identified solutions.

By proceeding in analogy with the GAOT case, the optimal solutions

corresponding to all ten runs have been used as starting solutions for ten local

optimization processes in order to accurately estimate the local minimum

corresponding to the basin of attraction each optimal solution belong to. Figure

206 illustrates the consequences of the local optimization processes in the

nFunc - AV plane.
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Figure 206: Comparison between solutions resulting from GAOT-shared runs and their
improvements by means of a further local optimization process via SQP algorithm over the
nFunc — AV plane.

Figure 206 shows again that different local minima corresponds to GAOT-
shared runs. In order to estimate the number of identified solutions which lie in
the basin of attraction of the best known solutions, solutions are now
investigated in the normalized search space. Table 127 reports, corresponding
to each GAOT-shared+SQP run, the reached objective function value and the

distance (in Euclidean metric) with respect to the best known solution.
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ObjFun Distance

run 1 158.217 1.007
run 2 157.833 0.981
run 3 158.935 1.007
run 4 172.207 1.167
run 5 152.208 1.151
run 6 150.717 1.251
run 7 177.606 1.181
run 8 159.181 1.026
run 9 264.712 1.469
run 10 132.966 0.982

Table 127: GAOT-shared+SQP optimization runs: objective function values and Euclidean
distance in the normalized search space with respect to the best known solution.

As stated above, two solutions are considered as identical when the Euclidean
distance is less than 0.040. As a consequence no run has been able to get the
best known solution, that is only 0/10 GAOT-shared runs successfully identified

the basin of attraction of the best known solution.

GATBX

As GATBX implements a genetic algorithm, we report the statistical
characteristics. Ten runs have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. A population of 100 individuals evolving for a
maximum number of generations equal to 10000 has been processed again.

Algorithm parameters

Number of individuals: 100

Maximum number of generations: 10000
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Table 128, Table 129 and Figure 207 reports the best identified solution
compared with the best known solution in terms of the values of the design
variables and of the objective function terms, while Figure 208 plots the

resulting interplanetary transfer trajectories.

Search space

Design variable Best identified solution  Best know solution
Date of departure [d]: 522.649 553.253
Transfer time [d]: 276.645 299.462
Thrust level [N]: 0.161 0.130

Escape velocity from

2531.142 2676.327
Earth [m/s]:

Table 128: Comparison between the best identified solution and the best known solution:
search space.

3.8 T T T I 1
| — az (best known solution)
e coeeeobeei i) — el (best known salution]
' ' ‘| — &z (best identified salution)
; ; | — el (best identified solution
25 : : ; : , :

az, el [rad]

0 50 100 150 200 250 300
it [d]

Figure 207: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.
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Objective function space
Term Best identified solution  Best know solution
ObjFun: 7.603 5.750
Re/ Reor mars - 0.086 0.002
Ve [m/s]: 2.099 0.086
Mo [KQL: 130.617 114.433

Table 129: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 208: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 209 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc, while Table 130 reports the statistical

characteristics, which will be used for comparisons with the other optimization
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algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 209:Distribution of the solutions resulting from each GATBX optimization run over the
nFunc — AV plane.

_ o Standard Best identified
Evaluation criterion Mean value o .
deviation solution
Objective function: 172.559 92.517 7.603
nFunc.: 30036 15485.451 49380
Runtime [STU]: 7.105 4.068 15.146

Table 130: Statistical characteristics of the identified solutions.

The optimal solutions corresponding to all ten runs are now used again as
starting solutions for ten local optimization processes in order to accurately
estimate the local minimum corresponding to the basin of attraction each

optimal solution belong to and to evaluate the number of GATBX successful
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runs. Figure 210 illustrates the consequences of the local optimization

processes in the nFunc - AV plane.
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Figure 210: Comparison between solutions resulting from GATBX runs and their improvements
by means of a further local optimization process via SQP algorithm over the nFunc — AV
plane.

Different local minima corresponds to GATBX runs. In order to estimate the
number of identified solutions which lie in the basin of attraction of the best
known solutions, solutions are now investigated in the normalized search
space. Table 131 reports, corresponding to each GATBX+SQP run, the
reached objective function value and the distance (in Euclidean metric) with

respect to the best known solution.
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ObjFun Distance

run 1 189.994 1.141
run 2 287.531 1.568
run 3 121.513 1.056
run 4 121.762 1.117
run 5 179.497 1.116
run 6 139.253 1.134
run 7 120.167 1.181
run 8 5.870 0.776
run 9 133.503 1.381
run 10 6.461 0.723

Table 131: GATBX+SQP optimization runs: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.040, no runs were able to get the best known solution, that is only 0/10
GATBX runs successfully identified the basin of attraction of the best known
solution. It is worth noting that, although GATBX was not able to reach the basin
of attraction of the best known solution (according to the definition of identical
solutions given above), it could achieve the basin of attraction of two solutions
which are in fact quite comparable with the best known one in terms of objective
function values (see runs 8 and 10). Figure 211 shows the trajectories

corresponding to such solutions compared with the best known one.
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Figure 211: Comparison between the best known solution and solutions corresponding to run 8
and run 10.

It is worth noting that, although the objective function values are comparable,
the identified local minima are different, paticularly in the date of departure,

whose values in case of the three analysed solutions are reported in Table 132.

Best identified solution run 8 run 10

Date of departure [d]: 553.253 560.291 522.644

Table 132: Date of departure corresponding to the best known solution and solutions run 8 and
run 10.

Note that differences in the date of departure are quite little but significant.
However the comparable objective function values let us suppose that all the
three analysed local minima belong to a big valley structure, that is a “corridor”
or a line in the search space along which objective function values are
comparable, confirming the results gained in the objective function structure
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analysis. Such results are supported by the relative closeness of the three
solutions in the search space (see Figure 212, where solutions are reported in
the normalized search space corresponding to the date of departure-transfer

time plane).
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Figure 212: Best known solution, run 8 solution and run 10 solution in the in the normalized
search space corresponding to the date of departure-transfer time plane.

It is important noting that the identification of such big valley structures in the
search space is quite advantageous in designing transfer trajectories: in fact
such structures give us a continuous set of comparable optimal solutions
distributed over the date of departure design variable, which is fundamental in
identifying the width of the optimal launch windows. The development of tools

facing such task should be promoted in future works.
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GATBX-migr

As GATBX-migr implements a genetic algorithm including a migration operator
applied among a predefined set of subpopulations, we report the statistical
characteristics. Ten runs have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. A population of 100 individuals evolving for a
maximum number of generations equal to 10000 has been processed. The

population has been divided in 5 subpopulations, each one including 20

individuals.
Algorithm parameters
Number of individuals: 100
Maximum number of generations: 10000
Number of subpopulations: 5

Number of individuals per 20
subpopulation:

Table 133, Table 134 and Figure 213 reports the best identified solution
compared with the best known solution in terms of the values of the design
variables and of the objective function terms, while Figure 214 plots the
resulting interplanetary transfer trajectories.

Search space

Design variable Best identified solution  Best know solution
Date of departure [d]: 526.149 553.253
Transfer time [d]: 266.741 299.462
Thrust level [N]: 0.168 0.130
Escape velocity from Earth [m/s]: 2416.231 2676.327

Table 133: Comparison between the best identified solution and the best known solution:
search space.
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Figure 213: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Best identified solution Best know solution
ObjFun: 10.279 5.750
Re/ Rso mars - 0.074 0.002
v [mis]: 29.609 0.086
Mo [KQL: 131.560 114.433

Table 134: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 214: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 215 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc, while Table 135 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 215: Distribution of the solutions resulting from each GATBX-migr optimization run over
the nFunc — AV plane.

. o o Best identified
Evaluation criterion Mean value Standard deviation

solution
Objective function: 153.807 87.043 10.279
nFunc.: 48436 21584.383 56260
Runtime [STU]: 9.511 4.140 8.495

Table 135: Statistical characteristics of the identified solutions.

By proceeding in analogy with the previous algorithm performance analyses,
the optimal solutions corresponding to all ten runs have been used as starting
solutions for ten local optimization processes in order to accurately estimate the
local minimum corresponding to the basin of attraction each optimal solution

belong to.
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Figure 216 illustrates the consequences of the local optimization processes in

the nFunc - AV plane.
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Figure 216: Comparison between solutions resulting from GATBX-migr runs and their
improvements by means of a further local optimization process via SQP algorithm over the

nFunc — AV plane.

Figure 216 shows again that different local minima corresponds to GATBX-migr
runs. In order to estimate the number of identified solutions which lie in the
basin of attraction of the best known solutions, solutions are now investigated in
the normalized search space. Table 136 reports, corresponding to each
GATBX-migr+SQP run, the reached objective function value and the distance

(in Euclidean metric) with respect to the best known solution.
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ObjFun Distance
run 1 141.757 0.917
run 2 125.117 1.350
run 3 6.451 0.739
run 4 280.545 1.377
run 5 144.582 1.118
run 6 131.604 0.925
run 7/ 119.263 1.079
run 8 151.281 1.088
run 9 6.325 0.913
run 10 128.991 1.170

Table 136: GATBX-migr+SQP optimization runs: objective function values and Euclidean
distance in the normalized search space with respect to the best known solution.

As stated above, two solutions are considered as identical when the Euclidean
distance is less than 0.040. As a consequence no GATBX-run has been able to
get the best known solution, that is only 0/10 GATBX-migr runs successfully
identified the basin of attraction of the best known solution. However, as already
noted in case of GATBX-migr algorithm, two solutions have been reached which
have objective function values comparable with that achieved by the best
known solution, that is runs 3 and 9. Such solutions are reported in Figure 217.

305



=i
LUNIVLESIEY
p‘l-

Gl
' ! '
1.5 -—— best known solution =
— rtun 3 solution
1 | —— run 9 solution
-} S SN 5 U S SV P s O WS I, V. | S 8
= | | -
N [ — e e e R s Sne e es x
e i i
: : +y  Earth orbit : . :
RIE-N i TRRRRRR N i s R b i akr AL ELEELE x
e Tl ITPTTRI A ST A S -
Mar:a orbit : :
B i s e i s o s |
2 -1.5 1 0.5 ] 0.5 1 1.5 2

Figure 217: Comparison between the best known solution and solutions corresponding to run 3
and run 9.

The identified local minima are different, as the consideration of the date of
departure values can show (see Table 137).

Best identified solution run 3 run 9

Date of departure [d]: 553.253 557.451 527.145

Table 137: Date of departure corresponding to the best known solution and solutions run 3 and
run 9.

FEP
As FEP implements an evolutionary programming algorithm, we report, as
already done for genetic algorithms, the statistical characteristics. Ten runs
have been processed in order to solve the previously defined problem. Default

options suggested by the providers of the code have been used in all the runs.
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We used again a population of 100 individuals evolving for a maximum number

of generations equal to 10000.

Algorithm parameters

Number of individuals: 100

Maximum number of generations: 10000

Table 138, Table 139 and Figure 218 report the best identified solution
compared with the best known solution in terms of the values of the design
variables and of the objective function terms, while Figure 219 plots the

resulting interplanetary transfer trajectories.

Search space

Design variable Best identified solution Best know solution
Date of departure [d]: 553.354 553.253
Transfer time [d]: 299.394 299.462
Thrust level [N]: 0.131 0.130
Escape velocity from Earth [m/s]: 2663.050 2676.327

Table 138: Comparison between the best identified solution and the best known solution:
search space.
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Figure 218: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Best identified solution Best know solution
ObjFun: 14.169 5.750
Re /Reor mars - 0.009 0.002
Ve [m/s]: 83.297 0.086
Mo [KAL: 115.060 114.433

Table 139: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 219: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 220 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc., while Table 140 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 220: Distribution of the solutions resulting from each FEP optimization run over the
nFunc — AV plane.

Evaluation criterion Mean value Standard deviation Best identified solution

Objective function: 157.191 76.266 14.169
nFunc.: 89013.900 68704.199 95585
Runtime [STU]: 14.996 9.551 16.487

Table 140: Statistical characteristics of the identified solutions.

The estimation of the number and features of the distinct local minima reached
by means of the ten runs is performed. The optimal solutions corresponding to
all ten runs have been used as starting solutions for ten local optimization
processes in order to accurately estimate the local minimum corresponding to
the basin of attraction each optimal solution belong to. The consequences of the

local optimization processes in the nFunc - AV plane are shown in Figure 221,
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where each improved solution is linked to the corresponding starting one by

means of a straight line.
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Figure 221: Comparison between solutions resulting from FEP runs and their improvements by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.

Figure 221 shows that different local minima corresponds to FEP runs. By
considering the objective function values reached at the end of the optimization
processes, two solutions seem to correspond to the best known one. Let us
investigate the solutions in the normalized search space. Table 141 reports,
corresponding to each FEP+SQP run, the reached objective function value and

the distance (in Euclidean metric) with respect to the best known solution.
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ObjFun Distance
run 1 144.831 1.014
run 2 129.172 0.954
run 3 5.656 0.513
run 4 118.967 1.238
run 5 184.309 1.128
run 6 124.500 1.193
run 7/ 134.372 1.012
run 8 143.076 1.276
run 9 5.705 0.011
run 10 121.917 1.291

Table 141: FEP+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 1% of the hyper diagonal of the normalized search space, that is 0.040 in a
16-dimensional space, one run has been able to get the best known solution,
that is 1/10 FEP runs successfully identified the basin of attraction of the best
known solution. Moreover, FEP identified an alternative solution which is in fact
comparable with the best known solution in terms of the objective function
value, that is run 3 solution. Figure 222 compares the trajectory corresponding

to such solution with the best known one.
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Figure 222:Comparison between the best known solution and solutions corresponding to run 3.

Table 142 reports the date of departure corresponding to the two analysed

solutions.

Best identified solution run 3 solution

Date of departure [d]: 553.253 512.841

Table 142: Date of departure corresponding to the best known solution and run 3 solution.

DE

As DE implements a Differential Evolution algorithm, we report the statistical
characteristics. Ten runs have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. Again, due to the high complexity of low thrust direct

planet-to-planet interplanetary transfer problem and the high number of design
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variables, we used 100 individuals evolving for a maximum number of iterations
equal to 10000.

Algorithm parameters

Number of individuals: 100

Maximum number of generations: 10000

Table 143, Table 144 and Figure 223 report the best identified solution
compared with the best known solution in terms of the values of the design
variables and of the objective function terms, while Figure 224 plots the

resulting interplanetary transfer trajectories.

Search space

Design variable Best identified solution Best know solution
Date of departure [d]: 528.585 553.253
Transfer time [d]: 293.142 299.462
Thrust level [N]: 0.162 0.130
Escape velocity from Earth [m/s]: 2331.437 2676.327

Table 143: Comparison between the best identified solution and the best known solution:
search space.
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Figure 223: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Best identified solution Best know solution
ObjFun: 224.672 5.750
Re /Reor mars - 6.561 0.002
Ve [m/s]: 1520.989 0.086
M [KQI: 139.320 114.433

Table 144: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 224: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 225 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc., while Table 145 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified

solution.
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Figure 225: Distribution of the solutions resulting from each DE optimization run over the
nFunc — AV plane.

Evaluation criterion Mean value Standard deviation Best identified solution

Objective function: 310.233 66.478 224.672
nFunc.: 2625.000 1081.359 4151
Runtime [STU]: 0.437 0.177 0.689

Table 145: Statistical characteristics of the identified solutions.

The estimation of the number and features of the distinct local minima reached
by means of the ten runs is now performed. To attain such a task, the optimal
solutions corresponding to all ten runs have been used as starting solutions for
ten local optimization processes in order to accurately estimate the local
minimum corresponding to the basin of attraction each optimal solution belong

to. The consequences of the local optimization processes in the nFunc - AV
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plane are shown in Figure 226, where each improved solution is linked to the

corresponding starting one by means of a straight line.

450
400

350

----------------------------------------

best krjnwn snlutip

I
e [E
e DE+50F |

___________________________

I:I 1 1 1
a 1000 2000 3000

nFunc

4000 s000 kOO0 7aoo

Figure 226: Comparison between solutions resulting from DE runs and their improvements by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.

Figure 226 shows that different local minima corresponds to DE runs. Let us

investigate the solutions in the normalized search space. Table 146 reports,
corresponding to each DE+SQP run, the reached objective function value and

the distance (in Euclidean metric) with respect to the best known solution.
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ObjFun Distance

run 1 121.389 1.198
run 2 166.862 1.124
run 3 6.076 0.666
run 4 101.114 1.645
run 5 6.060 0.767
run 6 140.131 1.388
run 7/ 41.376 1.394
run 8 6.097 0.673
run 9 142.843 1.108
run 10 121.596 1.286

Table 146: DE+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

An empirical analysis suggest to define two solutions as identical when the
Euclidean distance is less than 1% of the hyper diagonal of the normalized
search space, that is 0.040 in a 16-dimensional space. The consequence of
such definition is that no run has been able to get the best known solution, that
is 0/10 DE runs successfully identified the basin of attraction of the best known
solution. However, three solutions have been reached which have objective
function values comparable with that achieved by the best known solution, that

is runs 3, 5 and 8. Such solutions are reported in Figure 227.
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Figure 227: Comparison between the best known solution and solutions corresponding to run 3
and run 9.

The identified local minima are different, as the consideration of the date of

departure values can show (see Table 147).

Best identified
_ run 3 run 5 run 8
solution

Date of departure [d]: 553.253 523.430 566.859 560.769

Table 147: Date of departure corresponding to the best known solution and run 3, run 5 and run
9 solutions.

ASA

As ASA implements an Adaptive Simulated Annealing algorithm, we report the

statistical performance characteristics. Ten runs have been processed in order

to solve the previously defined problem. Default options suggested by the

providers of the code have been used in all the runs. Note that, unlike the

previous cases, the adaptive simulated annealing needs a starting solution,
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which strongly affects the optimal solution reached. Due to the comparative
purposes of this work, we decided to use ten different random starting solutions,
uniformly distributed in the search box. Table 148, Table 149 and Figure 228
report the best identified solution compared with the best known solution in
terms of the values of the design variables and of the objective function terms,

while Figure 229 plots the resulting interplanetary transfer trajectories.

Search space

Design variable Best identified solution  Best know solution
Date of departure [d]: 516.549 553.253
Transfer time [d]: 291.885 299.462
Thrust level [N]: 0.141 0.130

Escape velocity from Earth
2545.910 2676.327

[m/s]:

Table 148: Comparison between the best identified solution and the best known solution:
search space.
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Figure 228: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Best identified solution Best know solution
ObjFun: 10.272 5.750
Re 7 Reo ars - 0.234 0.002
Ve [m/s]: 18.842 0.086
Mo [KAL: 120.992 114.433

Table 149: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 229: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Figure 230 shows the distribution of the solutions resulting from each
optimization run over the plane of the objective function, AV , and the number of
function evaluations, nFunc, while Table 150 reports the statistical
characteristics, which will be used for comparisons with the other optimization
algorithms, as well as the performances corresponding to the best identified

solution.

323



LUNIVLESIEY
u! I

Lol AL
el 1 7 .f T ! .f
e 1 1 1 E 1 1
! ! ! E ! L e
250 [-emeees roneenees o oo froneenees oo s :
e : : i : :
e
200 fmmmmee dmmmmmmeees o i rRRRRR R o pemmmeees u
: . : : :
= 1 E 1 E E 1
= 1 1 1 1 1 1
e 180 pmremeeee HE o roTotTTs H ommmnees Pommes m
o L ' : : '
100 - b oo oo b o e
e
., : : : : :
0 t | | | | |
0.4 0k 08 1 1.2 1.4 16 1.8
nFunc }{1E|5

Figure 230: Distribution of the solutions resulting from each ASA optimization run over the
nFunc — AV plane.

Evaluation criterion Mean value Standard deviation Best identified solution

Objective function: 176.977 102.314 10.272
nFunc.: 78783.8 35239.439 60000
Runtime [STU]: 12.985 5.856 10.533

Table 150: Statistical characteristics of the identified solutions.

The optimal solutions corresponding to all ten runs are now used again as
starting solutions for ten local optimization processes in order to accurately
estimate the local minimum corresponding to the basin of attraction each
optimal solution belong to and to evaluate the number of ASA successful runs.
Figure 231 illustrates the consequences of the local optimization processes in

the nFunc - AV plane.
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Figure 231: Comparison between solutions resulting from ASA runs and their improvements by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.

Different local minima corresponds to ASA runs. In order to estimate the
number of identified solutions which lie in the basin of attraction of the best
known solutions, solutions are now investigated in the normalized search
space. Tale 151 reports, corresponding to each ASA+SQP run, the reached
objective function value and the distance (in Euclidean metric) with respect to

the best known solution.
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ObjFun Distance

run 1 242.950 1.093
run 2 120.547 1.086
run 3 253.604 1.596
run 4 208.814 1.129
run 5 153.765 0.974
run 6 6.487 0.786
run 7 200.014 1.422
run 8 6.273 0.761
run 9 120.364 1.013
run 10 194.330 1.222

Table 151: ASA+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.040, no runs were able to get the best known solution, that is 0/10 ASA
runs successfully identified the basin of attraction of the best known solution. It
is worth noting that, although ASA wasn't able to reach the basin of attraction of
the best known solution (according to the definition of identical solutions given
above), it could achieve the basin of attraction of two solutions which are in fact
quite comparable with the best known one in terms of objective function values
(see runs 6 and 8). Figure 232 shows the trajectories corresponding to such

solutions compared with the best known one.

326



=i
LUNIVLESIEY
p‘l-

Ll AL

16 e
—— best known solution

—— run B solution
run 8 solution ------ ; e Sn - .

Y AU

Figure 232: Comparison between the best known solution and solutions corresponding to run 6
and run 8.

It is worth noting that, although the objective function values are comparable,
the identified local minima are different, as the analysis of the date of departure
values shows, whose values in case of the three analysed solutions are

reported in Table 152.

Best identified solution run 6 run 8

Date of departure [d]: 553.253 547.964 517.339

Table 152: Date of departure corresponding to the best known solution and solutions run 6 and
run 8.
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albSolve
As glbSolve algorithm implements a deterministic optimization approach,

statistical characteristics are not needed in this case. Only one run has been
processed in order to solve the previously defined problem. Default options
suggested by the providers of the code have been used. As the low thrust direct
planet-to-planet interplanetary transfer problem has high complexity features
and a high number of design variables, we used a maximum number of

iterations equal to 10000.

Algorithm parameters

Maximum number of generations: 10000

Table 153, Table 154 and Figure 233 report the identified solution compared
with the best known solution in terms of the values of the design variables and
of the objective function terms, while Figure 234 plots the resulting

interplanetary transfer trajectories.

Search space

Design variable Best identified solution Best know solution
Date of departure [d]: 1217.500 553.253
Transfer time [d]: 225.000 299.462
Thrust level [N]: 0.165 0.130
Escape velocity from Earth [m/s]: 2500 2676.327

Table 153: Comparison between the best identified solution and the best known solution:
search space.
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Figure 233: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Best identified solution Best know solution
ObjFun: 158.571 5.750
Re /Reor mars - 0.152 0.002
Ve [m/s]: 1515.863 0.086
Mooy [KQI: 109.305 114.433

Table 154: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 234: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Table 155 reports the characteristics of the identified solution, which will be

used for comparisons with the other optimization algorithms.

Evaluation criterion ldentified solution
ObjFun: 158.571
nFunc.: 29003

Runtime [STUJ: 5.477

Table 155: Characteristics of the identified solutions.

In order to accurately identify the local minimum reached by glbSolve algorithm,
a local optimization process by means of a SQP algorithm is now performed,
where the solution identified by glbSolve is considered as the starting point for

the local search process. The starting solution and the improved one are
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reported in Figure 235 on the nFunc-ObjFun plane, while Figure 236 compares

the improved solution with the best known one in terms of transfer trajectory.
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Figure 235: Comparison between solution resulting from glbSolve run and its improvement by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.
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Figure 236:Comparison between solution resulting from glbSolve+SQP run and thebest known
solution in terms of transfer trajectory.

The solution is now investigated in the normalized search space. Table 156
reports, corresponding to the glbSolve+SQP run, the reached objective function
value and the distance (in Euclidean metric) with respect to the best known

solution.

ObjFun Distance

glbSolve+SQP run 120.713 1.314

Table 156: glbSolve+SQP optimization runs: objective function values and Euclidean distance
in the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.040, the run wasn'’t able to get the best known solution, that is glbSolve

run failed in identifying the basin of attraction of the best known solution.
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MCS

As MCS algorithm implements a deterministic optimization approach, only one

run has been processed in order to solve the previously defined problem.

Default options suggested by the providers of the code have been used.Table

157, Table 158 and Figure 236 report the identified solution compared with the

best known solution in terms of the values of the design variables and of the

objective function terms, while Figure 237 plots the resulting interplanetary

transfer trajectories.

Search space

Design variable Best identified solution  Best know solution
Date of departure [d]: 1195.711 553.253
Transfer time [d]: 193.957 299.462
Thrust level [N]: 0.168 0.130
Escape velocity from Earth [m/s]: 2160.898 2676.327

Table 156: Comparison between the best identified solution and the best known solution:

search space.
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Figure 236: Comparison between the best identified solution and the best known solution:
thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Best identified solution Best know solution
ObjFun: 319.497 5.750
Re /Reor mars - 0.029 0.002
Ve [m/s]: 3144.205 0.086
Morop [KOI: 95.662 114.433

Table 157: Comparison between the best identified solution and the best known solution:
objective function space.
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Figure 237: Comparison between the trajectories corresponding to the best identified solution
and the best known solution.

Table 158 reports the characteristics of the identified solution, which will be

used for comparisons with the other optimization algorithms.

Evaluation criterion Identified solution
ObjFun: 319.497
nFunc.: 19183

Runtime [STU]: 2.960

Table 158: Characteristics of the identified solutions.

A local optimization process by means of a SQP algorithm is now performed,
where the solution identified by MCS is considered as the starting point for the

local search process. The starting solution and the improved one are reported in
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Figure 238 on the nFunc-ObjFun plane, while Figure 239 compares the
improved solution with the best known one in terms of transfer trajectory.
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Figure 238: Comparison between solution resulting from MCS run and its improvement by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.
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Figure 239: Comparison between solution resulting from MCS+SQP run and the best known
solution in terms of transfer trajectory.
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The solution is now investigated in the normalized search space. Table 159
reports, corresponding to the MCS+SQP run, the reached objective function
value and the distance (in Euclidean metric) with respect to the best known

solution.

ObjFun Distance

MCS+SQP run 319.497 1.512

Table 159: MCS+SQP optimization run: objective function values and Euclidean distance in the

normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.040, the run wasn’t able to get the best known solution, that is MCS run

failed in identifying the basin of attraction of the best known solution.

rbfSolve

As rbfSolve algorithm implements a deterministic optimization approach, based
on objective function response surface assessment and analysis suitable for
costly objective function problems, statistical features analysis don’t hold here.
Only one run have been processed in order to solve the previously defined
problem. Default options suggested by the providers of the code have been
used. As already stated in the other mission analysis test problems, the
termination conditions available in TOMLAB version of rbfSolve tool (which is
not freely available) do not include suitable rules for practical problems with not
a priori information about the global optimum solution. As a consequence, a
maximum number of objective function evaluations has been fixed for
terminating the optimization process. By revising the previous analysis, in case
of low thrust direct planet-to-planet transfer, the number of objective function
evaluations was quite high: FEP required about 10° objective function
evaluations. However, as already noted in Multiple Gravity Assist analysis,
rbfSolve is tailored for costly optimization processes and can not dealing with so
high number of objective function evaluations due to the high required memory
for handling the interpolation process. As a consequence, such limitations
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forced us to fix a maximum number of objective function evaluations of the
order of 10%. As it concerns the validity of the achieved results, considerations
similar to those highlighted in case of Multiple Gravity Assist hold in this case
also: in particular, if the response surface algorithm is not able to identify and
accurately approximate the basin of attraction of the global optimum in a low
number of objective function evaluations, it is likely the case the response
surface based algorithm has not converged to the global optimum solution.

Hence, the fixed number of objective function evaluations has been set to 1000.

Algorithm parameters

Maximum number of objective function evaluations: 1000

Table 160, table 161 and Figure 240 report the identified solution compared
with the best known solution in terms of the values of the design variables and
of the objective function terms, while Figure 241 plots the resulting

interplanetary transfer trajectories.

Search space

Design variable Identified solution  Best know solution
Date of departure [d]: 526.526 553.253
Transfer time [d]: 235.040 299.462
Thrust level [N]: 0.122 0.130
Escape velocity from Earth [m/s]: 2639.289 2676.327

Table 160: Comparison between the identified solution and the best known solution: search
space.
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Figure 240: Comparison between the identified solution and the best known solution: thrust
azimuth and elevation over the transfer trajectory.

Objective function space

Term Identified solution Best know solution
ObjFun: 352.787 5.750
Re /Reor mars - 23.191 0.002
ve [m/s]: 1166.648 0.086
Mo [KQI: 84.241 114.433

Table 161: Comparison between the identified solution and the best known solution: objective
function space.
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Figure 241: Comparison between the trajectories corresponding to the identified solution and
the best known solution.

Table 162 reports the characteristics of the identified solution, which will be

used for comparisons with the other optimization algorithms.

Evaluation criterion ldentified solution
ObjFun: 352.787
nFunc.: 1000

Runtime [STU]: 77.754

Table 162: Characteristics of the identified solutions.

A local optimization process by means of a SQP algorithm is now performed,
where the solution identified by rbfSolve is considered as the starting point for

the local search process. The starting solution and the improved one are
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reported in Figure 242 on the nFunc-ObjFun plane, while Figure 243 compares

the improved solution with the best known one in terms of transfer trajectory.
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Figure 242: Comparison between solution resulting from rbfSolve run and its improvement by
means of a further local optimization process via SQP algorithm over the nFunc — AV plane.
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Figure 243: Comparison between solution resulting from rbfSolve+SQP run and the best known
solution in terms of transfer trajectory.
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The solution is now investigated in the normalized search space. Table 163
reports, corresponding to the rbfSolve+SQP run, the reached objective function
value and the distance (in Euclidean metric) with respect to the best known

solution.

ObjFun Distance

rbfSolve+SQP run 133.213 1.261

Table 163: rbfSolve+SQP optimization run: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 0.040, the run wasn't able to get the best known solution, that is rbfSolve
run failed in identifying the basin of attraction of the best known solution.
Anyway, it is interesting to analyse the feature of the identified solution, which is
in fact quite different from the previously reported ones. Table 164, Table 165
and Figure 244 report the identified solution compared with the best known
solution in terms of the values of the design variables and of the objective

function terms.

Search space

Design variable Identified solution + SQP  Best know solution
Date of departure [d]: 539.724 553.253
Transfer time [d]: 178.174 299.462
Thrust level [N]: 0.168 0.130
Escape velocity from Earth [m/s]: 2637.871 2676.327

Table 164: Comparison between the solution resulting from rbfSolve+SQP run and the best
known solution: search space.
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Figure 244: Comparison between the solution resulting from rbfSolve+SQP run and the best
known solution: thrust azimuth and elevation over the transfer trajectory.

Objective function space

Term Identified solution + SQP Best know solution
ObjFun: 133.212 5.750
Re/ Reor wars - 0.014 0.002
Ve [m/s]: 1286.746 0.086
M [KQI: 87.878 114.433

Table 165: Comparison between the solution resulting from rbfSolve+SQP run and the best
known solution: objective function space.

The local minimum corresponding to the basin of attraction identified by
rbfSolve corresponds to an interplanetary transfer with considerable lower
transfer time and propellant consumption for the electric engine. However, a

final relative velocity of 1286.746 m/s characterizes the arrival at Mars, which

343



LUNIVLESIEY
wi

UL-'I.".:L:I'J'I‘-'

might force the further use of chemical propulsion system, making hybrid the

resulting propulsion system.

Summary of results:

Table 166 reports the summary of results for the low-thrust direct planet-to-

planet transfer problem in a tabular form.

Algorithm

Objective function

Fun. evaluations

Runtime [STU]

GAOT
GAOT-

shared
GATBX
GATBX-

migr
FEP

DE
ASA
glbSolve
MCS
RbfSolve

EPIC*

269.198 (0 = 71.416)
343.238 (0 = 49.457)
172.559 (0 = 92.517)

153.807 (0 = 87.043)

157.191 (0 = 76.266)

310.233 (0 = 66.478)
176.977 (0 = 102.31)
158.571
319.497
352.787

10.24 (0 = 11.33)

14919.3 (0 = 5121.398)

3109.5 (0 = 1099.448)
30036 (0 = 15485)

48436 (0 = 21584)

89013.9 (0 =
68704.199)

2625 (0 = 1081.359)
78783.8 (0 = 35239)
29003
19183
1000

80799 (0 = 16952)

3.564 (0 = 1.564)
0.621 (0 = 0.217)
7.105 (0 = 4.068)

9.511 (0 = 4.140)

14.996 (0 = 9.551)

0.437 (0= 0.177)
12.985 (0 = 5.856)
5.477
2.960

77.754

Table 166: Summary of results for the low-thrust direct planet-to-planet transfer problem
transfer problem (* courtesy of Dr. Massimilano Vasile).

Note that Table 166 also reports the performances of EPIC algorithm, which

have been supplied by Dr. Massimiliano Vasile. Unfortunately, the analysis of

EPIC results on the search space couldn’t be accomplished and the runtime

performances were not available. Due to the partially conflicting performance
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criteria considered in this work and by proceeding in analogy with the 2-impulse
direct planet-to-planet and multiple gravity assist transfer problem analysis,
concepts and techniques typically adopted in multiobjective optimization
problems (such as the concept of the Pareto dominance) are here used in order
to assess the optimization algorithms performances. Due to the presence of not
optimized codes among the tested ones and to the necessity of creating a MEX
file for ASA algorithm, the main evaluation criteria to be considered have been
taken as the objective function value reached, objFun, and the number of model
function evaluations needed, nFunc. Figure 245 reports such performances in a

objFun - nFunc plane in order to identify the Pareto optimal solutions.
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Figure 245: Algorithms performances in the objFun- nFunc plane.

Note that Figure 245 reports the performances listed in Table 166, which
contains statistical performances in case of randomized optimization algorithms.
By applying the concepts of Pareto dominance, Table 167 reports for each
algorithm, the number of algorithms which dominated, and then outperformed it.
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Algorithm # of dominating algorithms

GAOT 0
GAOT-shared 1
GATBX 1
GATBX-migr 0
FEP 2

DE 0
ASA 3
GlbSolve 0
MCS 2
RbfSolve 0
EPIC 0

Table 167: Number of dominating algorithms.

Table 167 shows that the set of Pareto optimal solutions includes six solutions:
the algorithms which best solved the low-thrust direct planet-to-planet transfer
problem in a Pareto optimal sense are GAOT, GATBX-migr, DE, glbSolve,
rbfSolve and EPIC. Their performances are shown in Figure 246
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Figure 246: Pareto optimal algorithms.

For the sake of completeness, let consider now the runtime performances. We
have now three performance criteria. Figure 247 and Figure 248 report the
algorithms performances in the objFun - nFunc plane and in the nFunc - runtime
plane respectively, which have not been considered so far. Note that EPIC
performances couldn’t be reported in the following analysis, due to the lack on

required runtime information.
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Figure 248: Algorithms performances in the nFunc - runtime plane.
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By applying again the concepts of Pareto dominance in this three-criteria case,
Table 168 reports for each algorithm, the number of algorithms which
dominated it.

Algorithm # of dominating algorithms
GAOT 0
GAOT-shared 1
GATBX 1
GATBX-migr 0
FEP 1
DE 0
ASA 3
glbSolve 0
MCS 1
rbfSolve 0

Table 168: Number of dominating algorithms in the three criteria case.

Table 168 shows that no changes in the Pareto optimal set members occurred
in analysing the three criteria case. Finally the performance of all algorithms in
identifying the basin of attraction of good solution are analysed, as resulting
from the local optimization processes performed at the end of each algorithm
run. Indeed, as stated above, only FEP algorithm were able to get the basin of
attraction of the best known solution; however other algorithms succeeded in
reaching basin of attraction of good solutions, which are in fact comparable with
the best known one in terms of objective function values. As a consequence,
such successful runs are considered as representative of good algorithm
performances and are included in Table 169 (note that for randomized
algorithms the number of successful runs over the total number of performed

runs is reported).
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Algorithm Success

GAOT 0/10

GAOT-shared 0/10

GATBX 2/10

GATBX-migr 2/10

FEP 2/10

DE 3/10

ASA 2/10
glbSolve No
MCS No
rbfSolve No

Table 169: Algorithms performance in identifying the basin of attraction of good solutions.

Table 169 shows that DE algorithms turned out to have the highest rate of
success at reaching the basin of attraction of good solutions in case of low-
thrust direct planet-to-planet interplanetary transfers problem. This is a quite
interesting result: as shown in Figure 245, DE resulted in quite high mean
objective function values; however, the global search performed by means of
differential evolution seemed to be effective at finding good basin of attraction.
Anyway, it is worth noting that little differences in rate of success with respect to
GATBX, GATBX-migr, FEP and ASA exist. Moreover, an impressive
consideration can be highlighted: all algorithms resulted in very low rate of
success. Actually, we must consider that information about the success rate of
EPIC couldn’t be included in the previous table, because of not availability to
the authors. Nevertheless, by looking at the mean objective function value
obtained by EPIC (10.24) and by considering the objective function value
corresponding to the best known solution (5.75), it is likely the case that most
EPIC runs could reach the basin of attraction of good solutions, which are
comparable in fact with the best known one. As a consequence, in order to

identify the best performing algorithm in case of low-thrust direct planet-to-
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planet transfer problem, by combining information coming up from Pareto
optimality analysis carried out on the obj — nFunc two criteria case and rate of
success investigation, whose results are reported inTable 169, we can state
that:

e GAOT and GAOT-shared tools, as well as the non randomized algorithms
glbSolve, MCS and rbfSolve are not suitable for global optimization of low-
thrust direct planet-to-planet transfer problems using the mathematical

models here employed.

« Among the remaining tools, DE, GATBX-migr and EPIC showed good
performances in a Pareto optimal sense: in particular, DE and GATBX-migr
resulted in similar, even if low, rate of success; however, by considering that
the rate of success is evaluated by performing local optimization processes
requiring similar further objective function evaluations and by noting that DE
meanly required considerable fewer objective function evaluations for
performing the global search, DE tool seems to be preferable with respect to
GATBX-migr; as a consequence DE and EPIC seem to be the most
promising tools.

e As stated above, no information are available about the rate of success of
EPIC. However the impressive results of the global search in terms of mean
objective function value reached seem to be indicative of performances
particularly high even in this sense, especially if compared with the scarce
results of the other tools. As a consequence, in spite of a higher mean
number of objective function evaluations required to perform the global
search, the authors believe that EPIC should be considered as the best
performing algorithm for solving the low-thrust direct planet-to-planet transfer

problem using the mathematical models here applied.

351



LUNIVLESIEY
wi

UL-'I.".:L:I'J'I‘-'

10. LUNAR WEAK STABILITY BOUNDARY TRANSFER

Problem class statement:

Objective function assessment

Objective function: AV = AV, + AV,

where:

e AV, is the impulsive manoeuvre required

to put the spacecraft in the Lambert’s
three-body arc starting from the initial
circular orbit around the Earth

e AV, is the impulsive manoeuvre
necessary to inject the spacecraft on the

capture trajectory W}

Mathematical models: e Restricted three-body dynamical

model

e Two dimensional motion (synodic
dimensionless reference frame)

e Combination of invariant manifolds
and Lambert’'s three-body arcs

e Impulsive manoeuvres (i.e.
instantaneous variations in velocity)

for linking the three-body arcs

Search space characterization

Number of design variables: 3

Design Variables: _ o _ _
e Angle identifying the starting point
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over the initial circular orbit (6)

e Time of the backward propagation of
the stable manifold WS from the
libration point L1, whose final point
identify the target of the Lambert's
three-body arc (t,,)

e Transfer time corresponding to the
Lambert's three-body arc from the

initial circular orbit to the target point

on the stable manifold W3 previously

identified (t,)

Topology: Continuous variables

Constraints

Constraints typology: Box constraints

Box intervals: . [e R b ] = [0,360]deg
[t® 18 |=[0.13] d
o [t te|=[5.150] d

General considerations

Objective function analysis: Discontinuous on the boundaries of a finite
set of regions over the search space; C?in

the remaining points.

Problem complexity: High
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Number of global optima: A priori unknown.

A systematic analysis of the objective function over the search space, followed
by local optimization processes starting from 100 random first guess solutions
uniformly distributed over the search space (each local search requiring a
number of objective function evaluations of the order of 0.5:107%) led to the
following best known solution, that seems to be the global one over the
considered search space (although no rigorous mathematical demonstration

has been provided).

Search space

0: 70.835 deg
t : 1.273d
ty : 107.670 d

Objective space

AV : 3080.767 m/s
AV, : 3080.756 m/s
AV,: 0.011 m/s
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Figure 249: Best known solution: trajectory representation in the dimensionless Earth-Moon
rotating frame.

Number of local optima: A priori unknown.

Hardware platform:
Two platforms have been used, whose main hardware features are reported in

the following table.

Platform number Hardware features
Platform 1.: Intel Pentium 4 — 3.06GHz laptop
Platform 2: AMD Athlon™ XP 2600 desktop
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Operating system:
Two different operating systems correspond to the two used platforms, whose
main data are reported in the following table.

Platform number Hardware features
Platform 1: Microsoft Windows XP
Home edition

Version 2002

Service Pack 1

Platform 2: Microsoft Windows 2000
Professional edition
5.00.2195

Service Pack 4

Timings:

The Standard Unit Time (see Dixon & Szeg0, 1978) has been measured.

Performances:

In the following, the performances of each global optimization tool in solving the
problem of Lunar transfers using libration points are reported. The evaluation
criteria will be mainly based on the analysis of the optimal solution reached and
the number of the required model function evaluations. Due to the presence of
not optimized codes among the tested ones, timing will not be considered as a

main evaluation criterion.

GAOT

As GAOT implements a genetic algorithm, we report the statistical
characteristic, typically considered in case of randomized solution methods. Ten
run have been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used in all
the runs: note that by tuning the algorithm parameters one may improve the

performance of the solvers, but, due to the comparative purposes of this work,
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the tuning effects have not been considered. As the model used for designing
Lunar transfers using libration points has high complexity features and a low
number of design variables, we used 50 individuals evolving for a maximum

number of generations equal to 1000.

Algorithm parameters

Number of individuals: 50

Maximum number of generations: 1000

Table 170 and Table 171 report the best identified solution compared with the
best known solution (note that the best solution is here measured by
considering the minimum objective function value reached and is different from

the Pareto optimal solution described below).

Search space

Design variable Best identified solution Best known solution

0 [deq]: 286.417 70.835
t, [d]: 1.275 1.273
t, [d]: 26.226 107.670

Table 170: Comparison between the best identified solution and the best known solution:
search space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 3082.940 3080.767
AV, [m/s]: 3080.914 3080.756
AVE [m/s]: 2.026 0.011

Table 171:Comparison between the best identified solution and the best known solution:
objective function space.
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The previous tables show that the, although the two solutions are in fact
comparable in terms of the objective function value, they seem to identify quite
different solutions in the search space. Such a consideration is confirmed by the
trajectory representation (see Figure): the best solution identified by GAOT
belong to a different family of solutions which is comparable to the best known
one in terms of objective function value, but are characterized by a considerable
lower transfer time to L1 (27.501 d instead of 108.943 d corresponding to the

best known solution).

0.8 ! !
0.6( 4 ; ‘ o

0.2+

y (adim., Earth-Moon rotating frame)
(=]
T

04l i : : ‘ il

-06| : ' : : : ~ .

-0.8 | | | | | | | | |
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12

X (adim., Earth-Moon rotating frame)

Figure 250: Best identified solution: trajectory representation.

By revising the objective function structure analysis of the problem of lunar
transfer using libration points, the best solution identified by GAOT can be
clearly related to the family of solutions corresponding to subgroup 2, which is
not the best identified one (subgroup 8). Let us now consider the statistical
characteristics of the identified solution set. Table 12 reports the mean value
and the standard deviation of the performances which will be used for

comparisons with the other optimization algorithms.
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Evaluation criterion Mean value Standard deviation
AV [m/s]: 3292.300 194.112
Model function evaluations: 2089.3 1592.775
Runtime [STU]: 8.327 6.252

Table 172: Statistical characteristics of the identified solutions.

Table 172 shows that the mean value of the optimal objective function values
reached at the end of each optimization process is quite different from the best
identified one and is characterized by a high standard deviation. Such a result
let us suppose that no all the performed optimization processes have been able
to identify the basin of attraction of the same solution. Figure 251 reports the
final solutions corresponding to each optimization run in the nFunc-AV plane
(where nFunc is the number of objective function evaluations), while Figure 252
illustrates their distribution over the search space (the best identified solution is

highlighted by a green dot) compared with the best known solution (red dot).

3600 T ®

3500 - : » -

3400

AV [m/s]

3300 |- , : ' : .

3200|- .

° best known solution
3100 5 |

3000
0

1 | | 1 1
1000 2000 3000 4000 5000 6000

nFunc

Figure 251: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 252: Distribution of the final solutions corresponding to each optimization run on the
search space.

Figure 251 and Figure 252 fairly illustrates that the presence of comparable
local minima which has been highlighted in the analysis of the objective function
structure, hindered the effectiveness of GAOT algorithm at reaching the basin of
attraction of the best known solution. In particular, the figures seem to confirm
that no GAOT solution was able to get the basin of attraction of the best known
solution. In order to better analyse such a matter, the ten identified solutions
have been used as starting points for ten local optimization processes

performed by means of a SQP algorithm. Figure 253 reports the improved
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Figure 253: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

By investigating the improved solutions in the normalized search space, Table
173 reports, corresponding to each GAOT+SQP run, the reached objective
function value and the distance (in Euclidean metric) with respect to the best

known solution.
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AV [m/s] Distance

run 1 3286.695 0.799
run 2 3355.121 0.770
run 3 3499.922 0.618
run 4 3088.938 0.248
run 5 3223.252 0.676
run 6 3083.992 0.869
run 7 3082.174 0.865
run 8 3085.618 0.607
run 9 3082.795 0.821
run 10 3595.060 0.418

Table 173: GAOT+SQP optimization runs: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

An empirical analysis suggest to define two solutions as identical when the
Euclidean distance is less than 1% of the hyper diagonal of the normalized
search space, that is 0.017 in a 3-dimensional space. As a consequence, the
previous analysis confirms that 0/10 GAOT runs were able to identify the basin
of attraction of the best known solution. However, it should be noted that the
5/10 runs could reach the basin of attraction of local minima comparable to the
best known one. A careful analysis showed that such comparable local minima
are in fact related to a subset of the ten transfer families identified in the
objective function structure analysis; in particular, no one corresponds in fact to
the best identified one (subgroup 8). Let us now analyse the main features of
the final population: to do that, the final population corresponding to the best
identified solution is investigated. Figure 254 shows the distribution of the

population over the search space at the end of the optimization process.
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Figure 254: Distribution of the population over the search space at the end of the optimization

process corresponding to the best identified solution.

The previous figures show that the individuals in the final population are widely
distributed over the search space. Figure 255 reports the objective function

values corresponding to each individual.
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Figure 255: Objective function values of individuals in the final population corresponding to the
best identified solution.

Figure 255 shows that some individuals in the final population corresponds to
region of the search space where the algorithm for Lambert's three-body
problem solution couldn’t converge to an admissible solution. A careful analysis
of the search space shows that other individuals are quite concentrated around
the best identified solution: indeed, the final population of GAOT algorithm
concentrates around a unique optimum solution, without keeping information of
other local optima solutions; the wide distribution of the highlighted in Figure

255 corresponds in fact to the effects of the crossover and mutation operators.

GAOT-shared

As GAOT-shared implements a genetic algorithm including a niching technique,

we report again the statistical characteristics. Ten runs have been processed in
order to solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. The threshold of
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dissimilarity, o, for the sharing method and the shape parameter of the sharing

function, «, have been set respectively to:

o; =01 and a=1

We used again a population of 50 individuals, evolving for a maximum number

of generations equal to 100.

Algorithm parameters

Number of individuals: 50

Maximum number of generations: 100

Table 174 and Table 175 report the best identified solution compared with the

best known solution.

Search space

Design variable Best identified solution Best known solution

0 [deq]: 355.901 70.835
t, [d]: 1.313 1.273
t, [d]: 129.706 107.670

Table 174: Comparison between the best identified solution and the best known solution:
search space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 3337.437 3080.767
AV, [m/s]: 3102.607 3080.756
AVE [m/s]: 234.830 0.011

Table 175: Comparison between the best identified solution and the best known solution:
objective function space.
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The previous tables show that the two solutions identify in fact quite different
Lunar transfer in the search space. Such a consideration is confirmed by the
trajectory representation (see Figure 256): the best solution identified by GAOT-

shared belong to a different family of solutions.

y (adim., Earth-Moon rotating frame)

i I
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X (adim., Earth-Moon rotating frame)

Figure 256: Best identified solution: trajectory representation.

By revising again the objective function structure analysis of the problem of
lunar transfer using libration points, the best solution identified by GAOT-shared
can be related to the family of solutions corresponding to subgroup 10, which is
different from the best identified one (subgroup 8). Let now consider the
statistical characteristics of the identified solution set. Table 176 reports the
mean value and the standard deviation of the performances which will be used

for comparisons with the other optimization algorithms.
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Evaluation criterion Mean value Standard deviation
AV [m/s]: 3597.104 216.418
Model function evaluations: 606.2 151.610
Runtime [STU]: 1.836 0.545

Table 176: Statistical characteristics of the identified solutions.

Table 176 shows that the mean value of the optimal objective function values

reached at the end of each optimization process is quite different from the best

identified. Such a result let us suppose that no all the performed optimization

processes have been able to identify the basin of attraction of the same

solution. Figure 257 reports the final solutions corresponding to each

optimization run in the nFunc-AV plane, while Figure 258 illustrates their

distribution over the search space (the best identified solution is highlighted by a

green dot) compared with the best known solution (red dot).
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Figure 257: Distribution of the final solutions corresponding to each optimization run on the

nFunc-AV plane.
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Figure 258: Distribution of the final solutions corresponding to each optimization run on the
search space.

Figure 257 and Figure 258 show that no GAOT-shared runs were able to reach
the best known solution. Then, ten local optimization processes have been
performed by means of a SQP algorithm, using the identified solutions as
starting points in order to confirm this result. Figure 259 reports the improved

solutions over the nFunc-AV plane.
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Figure 259: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

By investigating the improved solutions in the normalized search space. Table
177 reports, corresponding to each GAOT-shared+SQP run, the reached
objective function value and the distance (in Euclidean metric) with respect to

the best known solution.
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AV [m/s] Distance

Run1 3083.167 0.811
Run 2 3182.232 0.665
Run 3 3191.104 0.723
Run 4 3496.193 0.589
Run 5 3857.829 0.290
Run 6 3204.485 0.674
Run 7 3261.598 0.655
Run 8 3083.079 0.606
Run 9 3294.944 0.789
run 10 3198.760 0.726

Table 177: GAOT-shared+SQP optimization runs: objective function values and Euclidean
distance in the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a
3-dimensional space, the previous analysis confirms that 0/10 GAOT-shared
runs were able to identify the basin of attraction of the best known solution.
Anyway, 2/10 runs could reach the basin of attraction of local minima
comparable to the best known one (runs 1 and 8). Such comparable local
minima are in fact both related to the transfer family identified in the objective
function structure analysis corresponding to subgroup 10, which is not the best
identified one. Let us now analyse the main features of the final population: to
do that, the final population corresponding to the best identified solution is
investigated. Figure 260 shows the distribution of the population over the search

space at the end of the optimization process.
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Figure 260: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.

The previous figures show that the individuals in the final population are widely
distributed over the search space; the effects of the sharing operator can be
highlighted again: concentration of individuals and then accurate identification of
the local optimum are voided. Figure 261 reports the objective function values

corresponding to each individual.
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Figure 261: Objective function values of individuals in the final population corresponding to the
best identified solution.

Figure 261 shows again that some individuals in the final population
corresponds to region of the search space where the algorithm for Lambert’s
three-body problem solution couldn’t converge to an admissible solution. By
analysing the search space we can see that the all remaining individuals identify
in fact the best identified solution: indeed, the final population of GAOT-shared
algorithm concentrates around a unique optimum solution, without keeping

information of other local optima solutions.

GATBX

As GATBX implements a genetic algorithm, we report the statistical
characteristics. Ten runs have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. In analogy with the previous genetic algorithms, we
used again a population of 50 individuals evolving for a maximum number of

generations equal to 1000.
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Algorithm parameters

Number of individuals: 50

Maximum number of generations: 1000

Table 178 and Table 179 report the best identified solution compared with the

best known solution.

Search space

Design variable Best identified solution  Best known solution

0 [deg]: 70.434 70.835
t, [d]: 1.273 1.273
t, [d]: 36.976 107.670

Table 178: Comparison between the best identified solution and the best known solution:
search space.

Objective function space

Term Best identified solution  Best known solution
AV [m/s]: 3082.470 3080.767
AV, [m/s]: 3080.774 3080.756
AVE [m/s]: 1.696 0.011

Table 179: Comparison between the best identified solution and the best known solution:
objective function space.

The two solutions are comparable in terms of the objective function value,
letting us suppose that GATBX best identified solution belong to one of the
transfer families identified in the objective function structure analysis. However,
differences in the search space, particularly referring to t, values, indicate that
the two solutions belong to two different families. Such a consideration is

confirmed by the trajectory representation (see Figure 262).
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Figure 262: Best identified solution: trajectory representation.

By revising the objective function structure analysis, the best solution identified
by GATBX can be clearly related to the family of solutions corresponding to
subgroup 3, which is not the best identified one. Let now consider the statistical
characteristics of the identified solution set. Table 180 reports the mean value
and the standard deviation of the performances which will be used for

comparisons with the other optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 3208.216 162.882
Model function evaluations: 5710 2999.096
Runtime [STU]: 38.668 19.305

Table 180: Statistical characteristics of the identified solutions.
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As reported in Table 180, the mean value of the optimal objective function
values reached at the end of each optimization process is quite different from
the best identified one and is characterized by a high standard deviation, letting
us suppose that no all the performed optimization processes have been able to
identify the basin of attraction of the same solution. Figure 263 reports the final
solutions corresponding to each optimization run in the nFunc-AV plane, while
Figure 264 illustrates their distribution over the search space (the best identified
solution is highlighted by a green dot) compared with the best known solution
(red dot).
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Figure 263: Distribution of the final solutions corresponding to each optimization run on the
nFunc-AV plane.
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Figure 264: Distribution of the final solutions corresponding to each optimization run on the
search space.

Figure 263 and Figure 264 illustrate that, although the coincidence of the best
identified solution with the best known one in the 6 - t. subspace, no one
solution could reach the best known one; this confirms the important effects of
the presence of several comparable local minima on the effectiveness of the
global search. In order to better identify the reached basins of attraction, the ten
identified solutions have been used as starting points for ten local optimization
processes performed by means of a SQP algorithm. Figure 265 reports the

improved solutions over the nFunc-AV plane.
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Figure 265: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

The improved solutions are now analysed in the normalized search space.
Table 181 reports, corresponding to each GATBX+SQP run, the reached
objective function value and the distance (in Euclidean metric) with respect to
the best known solution.
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AV [m/s] Distance

run 1 3082.309 0.488
run 2 3083.238 0.406
run 3 3177.197 0.833
run 4 3297.694 0.620
run 5 3327.673 0.569
run 6 3086.674 0.487
run 7 3090.202 0.248
run 8 3162.470 0.517
run 9 3086.758 0.006
run 10 3082.102 0.576

Table 181: GATBX+SQP optimization runs: objective function values and Euclidean distance in
the normalized search space with respect to the best known solution.

Table 181 shows that, by defining two solutions as identical when the Euclidean
distance is less than 1% of the hyper diagonal of the normalized search space,
that is 0.017 in a 3-dimensional space, 1/10 GATBX runs were able to identify
the basin of attraction of the best known solution, as Figure 266 confirms. Note
that, due to the accuracy of the local optimization algorithms and to the
sensitivity of the objective function, the objective function values corresponding
to run 9 is slightly higher than the best identified one.
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Figure 266: Transfer trajectory corresponding to run 9.

Moreover, it is worth noting that further 5/10 runs could reach the basin of
attraction of local minima comparable to the best known one (runs 1, 2, 6, 7 and
10). A careful analysis showed that such comparable local minima are in fact
related to a subset of the ten transfer families identified in the objective function
structure analysis; in particular, again no one corresponds in fact to the best
identified one (subgroup 8). The main features of the final population are now
investigate: to do that, the final population corresponding to the best identified
solution is studied. Figure 267 shows the distribution of the population over the
search space at the end of the optimization process. Figure 268 reports the

objective function values corresponding to each individual.
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Figure 267: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.
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Figure 268: Objective function values of individuals in the final population corresponding to the
best identified solution.
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Figure 268 shows that individuals are quite concentrated around the best
identified solution: indeed, the final population of GATBX algorithm concentrates
around a unique optimum solution, without keeping information of other local

optima solutions.

GATBX - migr
As GATBX-migr implements a genetic algorithm including a migration operator

applied among a predefined set of subpopulations, we report the statistical
characteristics. Ten runs have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. A population of 50 individuals evolving for a maximum
number of generations equal to 1000 has been processed. The population has

been divided in 5 subpopulations, each one including 10 individuals.

Algorithm parameters

Number of individuals: 50
Maximum number of generations: 1000
Number of subpopulations: 5
Number of individuals per subpopulation: 10

Table 182 and Table 183 report the best identified solution compared with the

best known solution.

Search space

Design variable Best identified solution  Best known solution

0 [deg]: 139.544 70.835
t,_ [d]: 1.307 1.273
t, [d]: 85.825 107.670

Table 182: Comparison between the best identified solution and the best known solution:
search space.
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Objective function space
Term Best identified solution  Best known solution
AV [m/s]: 3088.672 3080.767
AV, [m/s]: 3081.123 3080.756
AVE [m/s]: 7.549 0.011

Table 183: Comparison between the best identified solution and the best known solution:
objective function space.

The two solutions are comparable in terms of the objective function value, thus
indicating the possible belonging of the best identified solution to one of the
transfer families identified in the objective function structure analysis. However,
the design variables show evident differences, letting us suppose that they
identify different local minima. Such a consideration is confirmed by the

trajectory representation; see Figure 269.

y (adim., Earth-Moon rotating frame)

I i
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 1
x (adim., Earth-Moon rotating frame)

Figure 269: Best identified solution: trajectory representation.
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The best solution identified by GATBX-migr can be related in fact to the family
of solutions identified in the objective function structure analysis corresponding
to subgroup 6, which is not the best identified one. As it concerns the statistical
characteristics of the identified solution set, Table 184 reports the mean value
and the standard deviation of the performances which will be used for

comparisons with the other optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 3203.474 111.245
Model function evaluations: 7050 2144.968
Runtime [STU]: 53.471 14.408

Table 184: Statistical characteristics of the identified solutions.

The mean value of the optimal objective function values reached at the end of
each optimization process reported in Table 184 is quite different from the best
identified one and is characterized by a high standard deviation. This lets us
suppose that no all the performed optimization processes identified the basin of
attraction of the same solution. To better analyse this point, Figure 270 reports
the final solutions corresponding to each optimization run in the nFunc-AV
plane, while Figure 271 illustrates their distribution over the search space (the
best identified solution is highlighted by a green dot) compared with the best
known solution (red dot).
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Figure 270: Distribution of the final solutions corresponding to each optimization run on the
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Figure 271: Distribution of the final solutions corresponding to each optimization run on the
search space.
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Figure 270 and Figure 271 show that, although the best identified solution is
different from the best known one, one of the remaining local minima seems to
lie in the neighbourhood of it. Actually, by investigating the remaining identified
solutions, one solution could be recognized as belonging to the transfer family
of subgroup 8 (see Table 185, Table 186 and Figure 272, where this solution

has been indicated as “alternative solution”).

Search space

Design variable Alternative solution Best known solution
0 [deq]: 71.695 70.835
t, [d]: 1.295 1.273
t, [d]: 107.630 107.670

Table 185: Comparison between the alternative identified solution and the best known solution:
search space.

Objective function space

Term Alternative solution Best known solution
AV [m/s]: 3104.864 3080.767
AV, [m/s]: 3082.724 3080.756
AVE [m/s]: 22.141 0.011

Table 186: Comparison between the alternative identified solution and the best known solution:
objective function space.
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y (adim., Earth-Moon rotating frame)
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Figure 272: Alternative identified solution: trajectory representation.

As can be seen from Table 185, Table 186 and Figure 272, GATBX-migr
identified the basin of attraction of the best known solution in at least one run;
however, the accuracy in finding such solution, although quite good (the
Euclidean distance in the normalized search space being 7.926-10), is not
good enough to detect the very small differences in the objective function
values corresponding to the compared local minima. Again, this confirms the
important effects of the presence of several comparable local minima on the
effectiveness of the global search. In order to better identify the reached basins
of attraction corresponding to each run, the ten identified solutions have been
used as starting points for ten local optimization processes performed by means
of a SQP algorithm. Figure 273 reports the improved solutions over the nFunc-

AV plane.
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Figure 273: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

In analogy with the previous cases, the improved solutions are now studied in
the normalized search space. Table 187 reports, corresponding to each
GATBX-migr+SQP run, the reached objective function value and the distance

(in Euclidean metric) with respect to the best known solution.
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AV [m/s] Distance

run 1 3181.315 0.8709
run 2 3082.343 0.243
run 3 3335.858 0.577
run 4 3247.075 0.709
run 5 3157.891 0.872
run 6 3372.239 0.780
run 7 3267.985 0.524
run 8 3122.526 0.403
run 9 3081.312 0.001
run 10 3093.880 0.391

Table 187: GATBX-migr+SQP optimization runs: objective function values and Euclidean
distance in the normalized search space with respect to the best known solution.

By defining two solutions as identical when the Euclidean distance is less than
1% of the hyper diagonal of the normalized search space, that is 0.017 in a 3-
dimensional space, we can conclude that 1/10 GATBX-migr runs were able to
identify the basin of attraction of the best known solution. However, as already
highlighted in the previous cases, it is interesting to identify the number of runs
which could identify local optima comparable to the best known one, which can
be related to transfer families identified in the objective function structure
analysis: in particular, a careful analysis of the solutions showed that 3/10
further runs could reach the basin of attraction of comparable local minima (runs
2, 8, and 10). Such comparable local minima, which are related in fact to a
subset of the ten transfer families identified in the objective function structure
analysis, do not correspond to the best identified solution (subgroup 8). Let us
now investigate the main features of the final population: to do that, the final
population corresponding to the best identified solution is again studied. Figure
274 shows the distribution of the population over the search space at the end of
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the optimization process, while Figure 275 reports the objective function values

corresponding to each individual.
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Figure 274: Distribution of the population over the search space at the end of the optimization

process corresponding to the best identified solution.
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Figure 275: Objective function values of individuals in the final population corresponding to the

best identified solution.
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Although Figure 275 shows that the final population includes individuals not
concentrated around the identified local minimum, a careful analysis showed
that no local minima correspond to them, which should be related to the effects

of the genetic operators on the members of each subpopulation.

FEP

As FEP implements an evolutionary programming algorithm, we report, as
already done for genetic algorithms, the statistical characteristics. Ten runs
have been processed in order to solve the previously defined problem. Default
options suggested by the providers of the code have been used in all the runs.
We used again a population of 50 individuals, evolving for a maximum number

of generations equal to 100.

Algorithm parameters

Number of individuals: 50

Maximum number of generations: 100

Table 188 and Table 189 report the best identified solution compared with the

best known solution.

Search space

Design variable Best identified solution  Best known solution

0 [deg]: 71.318 70.835
t, [d]: 1.273 1.273
t, [d]: 107.670 107.670

Table 188: Comparison between the best identified solution and the best known solution:
search space.

390



LUNIVLESIEY
u! I

Objective function space
Term Best identified solution  Best known solution
AV [m/s]: 3083.427 3080.767
AV, [m/s]: 3083.091 3080.756
AVE [m/s]: 0.336 0.011

Table 189: Comparison between the best identified solution and the best known solution:
objective function space.

The previous tables show that the best identified solution coincides in fact with
the best known solution, as confirmed by the trajectory representation, Figure
276.

y (adim., Earth-Moon rctating frame)

I i I i - I i i
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
¥ (adim., Earth-Moon rotating frame)

Figure 276: Best identified solution: trajectory representation.

From the objective function structure analysis of the problem of lunar transfer
using libration points, the best solution identified by FEP can be recognized as

related to the family of solutions corresponding to subgroup 8, which coincides
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with the best identified one. Let now consider the statistical characteristics of
the identified solution set. Table 190 reports the mean value and the standard
deviation of the performances which will be used for comparisons with the other

optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 3274.490 154.361
Model function evaluations: 2369.5 1575.070
Runtime [STU]: 14.089 15.007

Table 190: Statistical characteristics of the identified solutions.

Table 190 shows that the mean value of the optimal objective function values
reached at the end of each optimization process is quite different from the best
known one with a high standard deviation. Such a result let us suppose that no
all the performed optimization processes have been able to identify the basin of
attraction of the same solution. Figure 277 reports the final solutions
corresponding to each optimization run in the nFunc-AV plane, while Figure 278
illustrates their distribution over the search space (the best identified solution is

highlighted by a green dot) compared with the best known solution (red dot).
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Figure 277 and Figure 278 show that, although the best identified solution
coincides with the best known one, no further FEP runs could directly reach it.
Anyway, in order to accurately characterize the basins of attraction
corresponding to each identified solution, ten local optimization processes have
been performed by means of a SQP algorithm, using the identified solutions as
starting points. Figure 279 reports the improved solutions over the nFunc-AV

plane.
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Figure 279: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

By investigating the improved solutions in the normalized search space, Table
191 reports, corresponding to each FEP+SQP run, the reached objective
function value and the distance (in Euclidean metric) with respect to the best

known solution.
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AV [m/s] Distance

run 1 3147.936 0.718
run 2 3081.820 0.001
run 3 3164.208 0.697
run 4 3082.932 0.604
run 5 3152.141 0.682
run 6 3092.418 0.246
run 7 3081.053 0.666
run 8 3247.172 0.414
run 9 3167.237 0.546
run 10 3507.449 0.458

Table 191: FEP+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a
3-dimensional space, the previous analysis confirms that 1/10 FEP runs were
able to identify the basin of attraction of the best known solution. Anyway, a
careful analysis of the improved solutions showed that 3/10 runs could reach
the basin of attraction of local minima comparable to the best known one (runs
4, 6 and 7), which can be related to transfer families identified in the objective
function structure analysis. Let us now analyse the main features of the final
population: to do that, the final population corresponding to the best identified
solution is investigated. Figure 280 shows the distribution of the population over
the search space at the end of the optimization process, while Figure 281

reports the objective function values corresponding to each individual.
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Figure 280 - Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.
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Figure 281: Obijective function values of individuals in the final population corresponding to the
best identified solution.
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Figure 280 and Figure 281 show that the individuals in the final population are
concentrated over the search space in a narrow neighbourhood of the best
identified solution; however, relatively low accuracy and sensitivity of the
objective function lead to relatively higher objective function values
corresponding to some individuals. Anyway, the final population of FEP
algorithm concentrates around a unique optimum solution, without keeping

information of other local optima solutions.

DE

As DE implements a Differential Evolution algorithm, we report the statistical
characteristics. Ten runs have been processed in order to solve the previously
defined problem. Default options suggested by the providers of the code have
been used in all the runs. In analogy with the previous genetic algorithms, we
used again a population of 50 individuals evolving for a maximum number of

generations equal to 1000.

Algorithm parameters

Number of individuals: 50

Maximum number of generations: 1000

Table 192 and Table 193 report the best identified solution compared with the

best known solution.

Search space

Design variable Best identified solution  Best known solution

0 [deg]: 32.101 70.835
t, [d]: 2.764 1.273
t, [d]: 121.690 107.670

Table 192: Comparison between the best identified solution and the best known solution:
search space.
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Objective function space
Term Best identified solution  Best known solution
AV [m/s]: 3193.673 3080.767
AV, [m/s]: 3162.143 3080.756
AVE [m/s]: 31.530 0.011

Table 193: Comparison between the best identified solution and the best known solution:
objective function space.

The two solutions are in fact quite different in terms of objective function values,
letting us suppose that DE best identified solution does not belong to one of the
transfer families identified in the objective function structure analysis. Such a
consideration is confirmed by the trajectory representation, see Figure 182.

y (adim., Earth-Moon rotating frame)

| |
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
¥ (adim., Earth-Moon rotating frame)

Figure 282: Best identified solution: trajectory representation.
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The best solution identified by DE is not related to any family of solutions
identified in the objective function structure analysis. Actually, it is typically
related to a new set of families of lunar transfers, which differ from the previous
identified one only for the Lambert’s three-body arc: the conic-like orbit in the
Earth-centred reference frame corresponding to the stable manifold is the same
as in the previous case, but the Lambert's arc inject the spacecraft in this
manifold corresponding to points near the apogee on the line coming out from it.
A systematic analysis showed that similar transfers are identifiable, which are
related to the insertion in the stable manifold in similar points, corresponding to
the each revolution around the Earth. Let us now consider the statistical
characteristics of the identified solution set. Table 194 reports the mean value
and the standard deviation of the performances which will be used for

comparisons with the other optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 3432.502 184.870
Model function evaluations: 1096.2 322.346
Runtime [STU]: 2.945 1.029

Table 194: Statistical characteristics of the identified solutions.

As reported in Table 194, the mean value of the optimal objective function
values reached at the end of each optimization process is quite different from
the best identified one and is characterized by a high standard deviation, letting
us suppose that no all the performed optimization processes have been able to
identify the basin of attraction of the same solution. Figure 283 reports the final
solutions corresponding to each optimization run in the nFunc-AV plane, while
igure 284 illustrates their distribution over the search space (the best identified
solution is highlighted by a green dot) compared with the best known solution
(red dot).
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Figure 283 and Figure 284 show that no solutions could reach the best known
one. In order to better identify the reached basins of attraction, similarly to the
previous cases, the ten identified solutions have been used as starting points
for ten local optimization processes performed by means of a SQP algorithm.

Figure 285 reports the improved solutions over the nFunc-AV plane.
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Figure 285: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

The improved solutions are now analysed in the normalized search space.
Table 195 reports, corresponding to each DE+SQP run, the reached objective

function value and the distance (in Euclidean metric) with respect to the best
known solution.
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AV [m/s] Distance

run 1 3189.665 0.534
run 2 3276.178 0.848
run 3 3099.697 0.578
run 4 3414.689 0.215
run 5 3187.481 0.638
run 6 3163.848 0.676
run 7 3237.658 0.810
run 8 3094.371 0.578
run 9 3119.811 0.244
run 10 3178.252 0.645

Table 195: DE+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

Figiure 285 and Table 195 let us determine that no runs were able to get the
basin of attraction of the best known solution and, moreover, no runs identified
basin attraction of local minima belonging to the set of transfer families
characterized in the objective function structure analysis. Such considerations
are confirmed by a systematic analysis of the resulting lunar transfer as well as
by the fact that, by considering two solutions as identical when the Euclidean
distance is less than 1% of the hyper diagonal of the normalized search space
(that is 0.017 in a 3-dimensional space) 0/10 DE runs were able to identify the
basin of attraction of the best known solution. The main features of the final
population are now investigate: to do that, the final population corresponding to
the best identified solution is studied. Figure 286 shows the distribution of the
population over the search space at the end of the optimization process, while
Figure 287 reports the objective function values corresponding to each

individual.
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Figure 286: Distribution of the population over the search space at the end of the

process corresponding to the best identified solution.
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Figure 287: Obijective function values of individuals in the final population corresponding to the

best identified solution.
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An impressive wide distribution of the final population over the search space
can be recognized in Figure 286. However, Figure 287 seems to highlight that
no niches on the objective function value are present, which indicates that the
wide distribution of individuals over the search space does not necessarily
corresponds to the detection of several local minima over the search space, as
a systematic analysis of the resulting transfer trajectories confirmed. Actually,
the wide distribution of individuals should be related to the effects of the

differential operators used by DE for the global search.

ASA

As ASA implements an Adaptive Simulated Annealing algorithm, we report the
statistical performance characteristics. Ten runs have been processed in order
to solve the previously defined problem. Default options suggested by the
providers of the code have been used in all the runs. Note that, unlike the
previous cases, the adaptive simulated annealing needs a starting solution,
which strongly affects the optimal solution reached. Due to the comparative
purposes of this work, we decided to use ten different random starting solutions,
uniformly distributed in the search box. Table 196 and Table 197 report the best
identified solution compared with the best known solution.

Search space

Design variable Best identified solution  Best known solution

0 [deg]: 139.282 70.835
t, [d]: 1.29642 1.273
t, [d]: 15.137 107.670

Table 196: Comparison between the best identified solution and the best known solution:
search space.
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Objective function space
Term Best identified solution  Best known solution
AV [m/s]: 3080.823 3080.767
AV, [m/s]: 3080.623 3080.756
AVE [m/s]: 0.200 0.011

Table 197: Comparison between the best identified solution and the best known solution:
objective function space.

The two solutions are comparable in terms of the objective function value, thus
indicating that the best identified solution belongs in fact to one of the transfer
families identified in the objective function structure analysis. However, the
design variables show evident differences, letting us suppose that they identify
different local minima. Such a consideration is confirmed by the trajectory

representation, see Figure 288.
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Figure 288: Best identified solution: trajectory representation.
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The best solution identified by ASA can be related in fact to the family of
solutions identified in the objective function structure analysis corresponding to
subgroup 1, which is not the best identified one. As it concerns the statistical
characteristics of the identified solution set, Table 198 reports the mean value
and the standard deviation of the performances which will be used for

comparisons with the other optimization algorithms.

Evaluation criterion Mean value Standard deviation
AV [m/s]: 3162.392 131.859
Model function evaluations: 4825.1 82.108
Runtime [STUJ: 31.361 3.894

Table 198: Statistical characteristics of the identified solutions.

The mean value of the optimal objective function values reached at the end of
each optimization process reported in Table 198 is different from the best
identified one and is characterized by a high standard deviation. This lets us
suppose again that no all the performed optimization processes identified the
basin of attraction of the same solution. To better analyse this point, Figure 289
reports the final solutions corresponding to each optimization run in the nFunc-
AV plane, while Figure 290 illustrates their distribution over the search space
(the best identified solution is highlighted by a green dot) compared with the
best known solution (red dot).
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Figure 289 and Figure 290 show that, although ASA seems to have identified
several local minima comparable with the best known one, no run was able to
identify its basin of attraction. Such result should be related again to the
important effects of the presence of several comparable local minima on the
effectiveness of the global search. In order to better identify the reached basins
of attraction corresponding to each run, the ten identified solutions have been
used as starting points for ten local optimization processes performed by means
of a SQP algorithm. Figure 291 reports the improved solutions over the nFunc-

AV plane.

3450 ! . . . .
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Figure 291: Distribution of the improved solutions at the end of a local optimization process on
the nFunc-AV plane.

Figure 291 shows that low improvements have been gained by means of the
SQP search, which highlights the effectiveness of the local component of the
ASA search at accurately identifying the local minimum corresponding to the
detected basin of attraction. In analogy with the previous cases, the improved
solutions are now studied in the normalized search space. Table 189 reports,
corresponding to each ASA+SQP run, the reached objective function value and

the distance (in Euclidean metric) with respect to the best known solution.
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AV [m/s] Distance

run 1 3080.815 0.406
run 2 3081.170 0.488
run 3 3080.766 0.666
run 4 3328.015 0.521
run 5 3227.446 0.599
run 6 3080.703 0.243
run 7 3096.411 0.248
run 8 3080.708 0.666
run 9 3081.245 0.666
run 10 3257.415 0.538

Table 189: ASA+SQP optimization runs: objective function values and Euclidean distance in the
normalized search space with respect to the best known solution.

By defining two solutions as identical when the Euclidean distance is less than
1% of the hyper diagonal of the normalized search space, that is 0.017 in a 3-
dimensional space, we can conclude in fact that 0/10 ASA runs were able to
identify the basin of attraction of the best known solution. However, as already
highlighted in the previous cases, it is interesting to identify the number of runs
corresponding to local optima comparable to the best known one, related to
transfer families identified in the objective function structure analysis: in
particular, a careful analysis of the solutions via a systematic study of the
corresponding lunar transfers showed that 7/10 runs could reach the basin of
attraction of comparable local minima (runs 1, 2, 3, 6, 7, 8, and 9). Such
comparable local minima, which are related in fact to a subset of the ten
transfer families identified in the objective function structure analysis, do not

correspond to the best identified solution (subgroup 8).
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albSolve
As glbSolve algorithm implements a deterministic optimization approach,

statistical characteristics are not needed in this case. Only one run has been
processed in order to solve the previously defined problem. Default options
suggested by the providers of the code have been used. We used a maximum

number of iterations equal to 1000.

Algorithm parameters

Maximum number of iterations: 1000

Table 190 and Table 191 report the identified solution compared with the best

known solution.

Search space

Design variable Identified solution Best known solution
0 [deg]: 120.082 70.835
t,_ [d]: 2.147 1.273
ty, [d]: 29.167 107.670

Table 190: Comparison between the identified solution and the best known solution: search
space.

Objective function space

Term Identified solution Best known solution
AV [m/s]: 3359.190 3080.767
AV, [m/s]: 3109.076 3080.756
AVE [m/s]: 250.114 0.011

Table 191: Comparison between the identified solution and the best known solution: objective
function space.
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The previous tables show that the identified solution does not coincide in fact
with the best known solution, as confirmed by the trajectory representation, see
Figure 292.
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Figure 292: Identified solution: trajectory representation.

Similarly to the results gained in case of DE tool application to the problem of
lunar transfer using libration points, the best solution identified by glbSolve is
not related to any family of solutions identified in the objective function structure
analysis. Actually, as the DE best identified solution, it is typically related to the
set of families of lunar transfers characterized by a Lambert’'s three-body arc
injecting the spacecraft in the stable manifold corresponding to points near the
apogee of the conic-like orbit in the Earth-centred inertial frame on the line
coming out from it. Table 192 reports the characteristics of the identified
solution, which will be used for performance comparisons with the other

optimization algorithms.
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Evaluation criterion ldentified solution
AV [m/s]: 3359.190
Model function evaluations: 1311
Runtime [STU]: 5.240

Table 192: Characteristics of the identified solution.

In order to accurately identify the local minimum reached by glbSolve algorithm,
a SQP based algorithm is now used to perform a local optimization process,
where the solution identified by glbSolve is considered as the starting point for
the local search process. The starting solution and the improved one are
reported in Figure 293 on the nFunc-AV plane, while Figure 294 plots the

transfer trajectory corresponding to the improved solution.
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Figure 293: Distribution of the improved solution at the end of a local optimization process on
the nFunc-AV plane.

412



LUNIVLESIEY
u! I

Ll AL

B2 it Rt ST TP R R (TR 1 e
il i ! Moon

0.2 i o \-t

0.4

y (adim., Earth-Moon rotating frame)
Q
ot
e

-06

1 1 1 1 1 1 1 1 |
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 12
¥ (adim., Earth-Maoon rotating frame)

Figure 294: Improved solution via local optimization process: transfer trajectory.

The local optimization process confirms that the solution identified by glbSolve
does not lie in the basin of attraction of the best known one and does not belong
to any of the families of lunar transfers characterized in the objective function
structure analysis, as confirmed by Table 193, which reports, corresponding to
the glbSolve+SQP run, the reached objective function value and the distance

(in Euclidean metric) with respect to the best known solution.

AV [m/s] Distance

glbSolve+SQP

run

3273.594 0.678

Table 193: glbSolve+SQP optimization run: objective function value and Euclidean distance in
the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a

3-dimensional space, glbSolve run was not able to identify the basin of
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attraction of the best known solution. As already noted in previous analyses,
one of the output of glbSolve is the matrix of all rectangle center points sampled
during the whole optimization run. By means of this matrix one can analyse the
ability of glbSolve in exploring the whole search space: Figure 295 shows the
distribution of the sampled points over the search space (the identified solution

is highlighted by a green dot) compared with the best known solution (red dot).
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Figure 295: Distribution of the population over the search space at the end of the optimization
process corresponding to the best identified solution.

Figure 295 shows that, after exploring different promising regions of the search
space, glbSolve finally converges to the identified local minimum. The detection
of several promising regions before convergence is highlighted in Figure 296
and Figure 297, which plots the objective function values corresponding to each
rectangle center point: the 1311 sampled points are ordered along the x-axis
from the first rectangle center point sampled during the optimization process to

the final one.
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Figure 297: Objective function values corresponding to each rectangle center point (close up of
Figure 296).
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The center points corresponding to the highest objective function values in
Figure 296 corresponds to regions where the algorithm for the solution of the
Lambert’s three-body problem couldn’t converge. By omitting such solutions,
Figure 297 shows that, after analysing worse solutions at the beginning of the
optimization process, glbSolve algorithm finally got the identified local optimum

solution.

MCS

As MCS algorithm implements a deterministic optimization approach, only one

run has been processed in order to solve the previously defined problem.
Default options suggested by the providers of the code have been used. We

used a maximum number of objective function evaluation equal to 10000.

Algorithm parameters

Maximum number of iterations: 10000

Table 194 and Table 195 report the identified solution compared with the best

known solution.

Search space

Design variable Identified solution Best known solution
0 [deq]: 148.121 70.835
t, [d]: 1.882 1.273
t, [d]: 150 107.670

Table 194: Comparison between the identified solution and the best known solution: search
space.
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Objective function space

Term Identified solution Best known solution
AV [m/s]: 3594.321 3080.767
AV, [m/s]: 3112.293 3080.756
AVE [m/s]: 482.028 0.011

Table 195: Comparison between the identified solution and the best known solution: objective
function space.

The previous tables show that the identified solution does not coincide in fact
with the best known solution, as confirmed by the trajectory representation,
Figure 298.
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Figure 298: Identified solution: trajectory representation.

It is interesting to note that the transfer trajectory corresponding to the solution
identified by MCS seems to belong to the family of solutions indicated in the
objective function structure analysis as subgroup 6. However, the time spent on

the stable manifold is higher than in subgroup 6: subgroup 6 corresponds to
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values of ty of about 85 d, while the solution identified by MCS has a value of ty
equal to 150 d, that is the upper limit for such variable. This observation let us
understand that the identified solution corresponds to a transfer configuration
similar to that of subgroup 6, but occurring in a different revolution of the
spacecraft around the Earth on the conic-like orbit in the Earth-centred inertial
frame. The characteristics of the identified solution, which will be used for
performance comparisons with the other optimization algorithms, are reported in
Table 196.

Evaluation criterion ldentified solution
AV [m/s]: 3594.321
Model function evaluations: 585
Runtime [STU]: 3.719

Table 196: Characteristics of the identified solution.

In order to better analyse the previous consideration about the identified
solution, a local optimization process is now performed by means of a SQP
based algorithm to accurately identify the local minimum corresponding to the
reached basin of attraction. The solution identified by MCS is considered as the
starting point for the local search process. The starting solution and the
improved one are reported in Figure 299 on the nFunc-AV plane, while Figure
300 plots the transfer trajectory corresponding to the improved solution.
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Figure 299: Distribution of the improved solution at the end of a local optimization process on
the nFunc-AV plane.
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Figure 300: Improved solution via local optimization process: transfer trajectory.
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Figure 299 and Figure 300 show that the local optimization process only slightly
improves the solution identified by MCS. This is due to the fact that such
solution lies on the upper limit admissible value of the time spent on the stable
manifold to L1: a further improvement could be allowed by increasing this limit.
Anyway, the local optimization process confirms that the solution identified by
MCS does not lie in the basin of attraction of the best known one and does not
belong to any of the families of lunar transfers characterized in the objective
function structure analysis. Similarly to the previous cases, such result is
evident by analysing Table 197, which reports, corresponding to the MCS+SQP
run, the reached objective function value and the distance (in Euclidean metric)
with respect to the best known solution.

AV [m/s] Distance

MCS+SQP run 3594.315 0.419

Table 197: MCS+SQP optimization run: objective function value and Euclidean distance in the
normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a
3-dimensional space, MCS run was not able to identify the basin of attraction of
the best known solution. As already stated for previous analyses, although MCS
algorithm is a global optimization algorithm, it has the important feature of
keeping, in a so called “shopping basket”, good points reached during the
optimization process. Figure 301 illustrates the whole shopping basket kept by

MCS during the performed optimization process.

420



LUNIVLESIEY
u! I

Ll AL

140 | ; : 140
250 . ,
120 | ; 120
® ®
L] £
2 . 100} : 100
L]
=) TBOL i id T BOE- : R, 4
=15 1 = i =
® : :
GOF - ; R R . BOL 2 : 4
1
40}....:. e Ty [ SN MR | (S R
{0 3| . L IO— .
20 . 20 b
0 100 200 3200 0 100 200 300 1 = 3
theta [deg] theta [deg] t, [d

Figure 301: Shopping basket at the end of the optimization process.

Figure 301 shows that MCS shopping basket got trapped in the boundary
region of the search space lying on the upper limit of the time spent on the
stable manifold, without keeping information of other promising regions of the

search space.

rbfSolve

As rbfSolve algorithm implements a deterministic optimization approach, based
on objective function response surface assessment and analysis suitable for
costly objective function problems, statistical features analysis don’t hold here.
Only one run have been processed in order to solve the previously defined
problem. Default options suggested by the providers of the code have been
used. As already stated in the other mission analysis test problems, the
termination conditions available in TOMLAB version of rbfSolve tool (which is
not freely available) do not include suitable rules for practical problems with not
a priori information about the global optimum solution. As a consequence, a
maximum number of objective function evaluations has been fixed for
terminating the optimization process. The previous analysis showed that, in
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case of the problem of lunar transfers using libration points, the number of
objective function evaluations was high: GATBX-migr required about 7000
objective function evaluations. However, as already noted in Multiple Gravity
Assist and Low Thrust direct planet-to-planet transfers analyses, rbfSolve is
tailored for costly optimization processes and can not dealing with a high
number of objective function evaluations due to the high required memory for
handling the interpolation process. As a consequence, a maximum number of
objective function evaluations of the order of 10° had to be fixed. As it concerns
the validity of the achieved results, considerations similar to those highlighted in
case of Multiple Gravity Assist hold in this case also: in particular, if the
response surface algorithm is not able to identify and accurately approximate
the basin of attraction of the global optimum in a low number of objective
function evaluations, it is likely the case the response surface based algorithm
has not converged to the global optimum solution. Hence, the fixed number of

objective function evaluations has been set again to 1000.

Algorithm parameters

Maximum number of objective function
. 1000
evaluations:

However, as already occurred in the 2-impulse direct planet-to-planet transfer
problem, a particular exit condition terminated the optimization process, which
typically happens when the approximating surface generated by the algorithm
can not improve due to the generation of successive identical solutions for
improving the interpolation surface; the maximum number of successive
identical solutions is automatically set by rbfSolve algorithm once used the
default options. Table 198 and Table 199 report the identified solution

compared with the best known solution.
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Search space

Design variable Identified solution Best known solution
0 [deg]: 128.096 70.835
t, [d]: 2.094 1.273
ty [d]: 99.959 107.670

Table 198: Comparison between the identified solution and the best known solution: search
space.

Objective function space

Term Identified solution Best known solution
AV [m/s]: 3579.249 3080.767
AV, [m/s]: 3320.974 3080.756
AV [m/s]: 258.274 0.011

Table 199: Comparison between the identified solution and the best known solution: objective
function space.

The previous tables show that the solution identified by rbfSolve does not

coincide in fact with the best known solution, as confirmed by the trajectory

representation; this can be see in Figure 302.
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Figure 302: Identified solution: trajectory representation.

Similarly to the results gained in case of DE and glbSolve tools application to
the problem of lunar transfer using libration points, the best solution identified by
rbfSolve is not related to any family of solutions identified in the objective
function structure analysis. Actually, it seems to be related to the previously
identified set of families of lunar transfers characterized by a Lambert’s three-
body arc injecting the spacecraft in the stable manifold corresponding to points
near the apogee of the conic-like orbit in the Earth-centred inertial frame on the
line coming out from it. Table 200 reports the characteristics of the identified
solution, which will be used for performance comparisons with the other

optimization algorithms.

Evaluation criterion ldentified solution
AV [m/s]: 3579.249
Model function evaluations: 474
Runtime [STU]: 6.128

Table 200: Characteristics of the identified solution.
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In order to accurately identify the local minimum reached by rbfSolve algorithm,
a SQP based algorithm is now used to perform a local optimization process,
where the solution identified by rbfSolve is considered as the starting point for
the local search process. The starting solution and the improved one are
reported in Figire 303 on the nFunc-AV plane, while Figure 304 plots the

transfer trajectory corresponding to the improved solution.

3600 T T T T T
L] * rbfSolve
N ® rbfSolve+SQP

3500 - 3 N —

3400 - N A

AV [mis]

3300 - L% : -

3200+ 4 4

best known solution
3100 /-

2000 L 1 | | 1 | | L 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

nFunc

Figure 303: Distribution of the improved solution at the end of a local optimization process on
the nFunc-AV plane.
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Figure 304: Improved solution via local optimization process: transfer trajectory.
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The local optimization process does not change the feature of the transfer
trajectory, which confirms to not belong to any of the families of lunar transfers
characterized in the objective function structure analysis. Such a result is
showed Table 201, which reports, corresponding to the rbfSolve+SQP run, the
reached objective function value and the distance (in Euclidean metric) with

respect to the best known solution.

AV [m/s] Distance

rbfSolve+SQP

run

3292.968 0.394

Table 201: rbfSolve+SQP optimization run: objective function value and Euclidean distance in
the normalized search space with respect to the best known solution.

By considering two solutions as identical when the Euclidean distance is less
than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a
3-dimensional space, rbfSolve run was not able to identify the basin of attraction
of the best known solution. One of the output of the optimization process is the
matrix of all sampled points in the search space, which are shown in Figure 305
(the identified solution is highlighted by a green dot, compared with the best

known one which is indicated by a red dot).
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Figure 305: Distribution of all sampled points during the optimization process.

Figure 305 shows that the algorithm do not accurately sampled the region of the
search space near the global optimum solution. Note that the objective function
model has discontinuities in the search space and, as stated in previous
analyses, global optimization algorithms based on response surface
methodologies have well-known difficulties in handling such objective function

structure.

Summary of results:

Table 202 reports the summary of results for the problem of lunar transfer using

libration points in a tabular form.
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Algorithm AV [m/s] Fun. evaluations Runtime [STU]

GAOT 3292.3 (0=194.112)  2089.3 (0= 1592.775)  8.327 (0 = 6.252)
GAOT-

3597.104 (0 = 216.418) 606.2 (0 = 151.610) 1.836 (0 = 0.545)
shared

GATBX 3208.216 (0 = 162.882) 5710 (o = 2999.096) 38.668 (o = 19.305)

GATBX-migr  3203.474 (0= 111.245) 7050 (0 = 2144.968)  53.471 (0 = 14.408)

FEP 3274.49 (0= 154.361)  2369.5 (0= 1575.07)  14.089 (0 = 15.007)
DE 3432.502 (0= 184.87)  1096.2 (0 = 322.346) 2.945 (0 = 1.029)
ASA 3162.392 (0 = 131.859)  4825.1 (0 = 82.108) 31.361 (0 = 3.894)
glbSolve 3359.19 1311 5.24
MCS 3594.321 585 3.719
rbfSolve 3579.249 474 6.128

Table 202: Summary of results for the problem of lunar transfers using libration points.

By proceeding in analogy with the previous mission analysis classes, due to the
partially conflicting performance criteria considered in this work, concepts and
techniques typically adopted in multiobjective optimization problems (such as
the concept of the Pareto dominance) are here used in order to assess the
optimization algorithms performances. As already stated, due to the presence of
not optimized codes among the tested ones and to the necessity of creating a
MEX file for ASA algorithm (which slightly affects the runtime performances),
the main evaluation criteria to be considered have been taken as the best
objective function value reached, AV, and the number of model function
evaluations needed, nFunc. Figure 306 reports such performances in a AV -
nFunc plane in order to identify the Pareto optimal solution (the red line in figure
representing the best known solution).
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Figure 306: Algorithms performances in the AV - nFunc plane.

Note that Figure 306 reports the performances listed in Table 202, which
contains statistical performances in case of randomized optimization algorithms.
By applying the concepts of Pareto dominance, Table 203 reports for each

algorithm, the number of algorithms which dominated, and then outperformed it.
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# of dominating

Algorithm algorithms
GAOT 0
GAOT-shared 2
GATBX 1
GATBX-migr 1
FEP 0
DE 0
ASA 0
glbSolve 0
MCS 1
rbfSolve 0

Table 203: Number of dominating algorithms.

Table 203 shows that a wide set of Pareto optimal solutions can be identified:
the algorithms which best solved the problem of lunar transfer using libration
points (in a Pareto optimal sense) are GAOT, FEP, DE, ASA, glbSolve, and
rbfSolve, whose performances are highlighted in Figure 307.
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Figure 307: Pareto optimal algorithms.

In particular, it is worth noting that GATBX and GATBX-migr algorithms, which
in fact are based on the same genetic operators (although the migration
operator is involved in GATBX-migr), where completely dominated by ASA
algorithm, which could reach a better objective function value in a lower number
of objective function evaluations. This is not the case if compared with the
remaining optimization tools, where a Pareto equivalence holds. However, we
must take care of the results gained: as noted in the previous analysis and as
will be reported later, most optimization tool couldn’t identify the basin of
attraction of the best known solution and only few optimization runs could reach
local optima solutions comparable with the best known one. As a consequence,
the results presented in Table 202, Table 203 and Figure 306 should be simply
related to the use of the algorithms as black box tools for solving mission
analysis related optimization problems and they indicate the mean
performances of the tools in case of the randomized algorithms or the right

performance in case of the deterministic ones. For the sake of completeness, in
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analogy with the previous mission analysis classes, consider now the runtime
performances and let analyze the consequences of including the runtime
performance on the identification of the Pareto optimal algorithm. We have now
three performance criteria. Figure 308 and Figure 309 report the algorithms
performances in the AV -runtime plane and in the nFunc -runtime plane

respectively, which have not been considered so far.
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Figure 308: Algorithms performances in the nFunc - runtime plane.
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Figure 309: Algorithms performances in the nFunc - runtime plane.
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By applying again the concepts of Pareto dominance in this three-criteria case,
Table 204 reports for each algorithm, the number of algorithms which
dominated it.

Algorithm # of dominating
algorithms

GAOT 0
GAOT-shared 0
GATBX 1
GATBX-migr 1
FEP 0
DE 0
ASA 0
glbSolve 0
MCS 0
EGO 0

Table 204: Number of dominating algorithms in the three criteria case.

Table 204 shows that the set of Pareto optimal algorithms now includes also
GAOT-shared and MCS algorithms. Finally the goodness of the basin of
attraction identified by the various algorithms is analysed, as resulting from the
local optimization processes performed at the end of each algorithm run. First of
all, Table 205 reports the successful runs corresponding to the optimization
algorithms which were able to identify the basin of attraction of the best known
solution (note that for randomized algorithms the number of successful runs

over the total number of performed runs is reported).
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Algorithm Success

GAOT 0/10

GAOT-shared 0/10

GATBX 1/10

GATBX-migr 1/10

FEP 1/10

DE 0/10

ASA 0/10
glbSolve No
MCS No
EGO No

Table 205: Algorithms performance in identifying the basin of attraction of the best known
solution.

Table 205 shows that the rate of success of all algorithms was really low: this is
mainly related to the stiffness of the analysed optimization problem which is
associated to the presence of several comparable local minima. However, by
revising the achieved results and by referring to the objective function structure
analysis, it is worth noting that most algorithms could have more success in the
identification of local minima belonging to the identified set of lunar transfer
families comparable to the best known one in terms of objective function values.
This led to the decision of reporting such successful runs together with those
which identified the basin of attraction of the best known solution (see Table
205), by considering them as representative of good algorithm performances
and included in Table 206.
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Algorithm Success

GAOT 5/10

GAOT-shared 2/10

GATBX 6/10

GATBX-migr 4/10

FEP 4/10

DE 0/10

ASA 7/10
glbSolve No
MCS No
rbfSolve No

Table 206: Algorithms performance in identifying the basin of attraction of the best known
solution.

Table 206 shows that ASA algorithm turned out to have the highest rate of
success in reaching the basin of attraction of good solutions. As a
consequence, in order to identify the best performing algorithm in case of the
problem of lunar transfer using libration points, by combining information
coming up from Pareto optimality analysis, carried out on the AV — nFunc two
criteria case, and rate of success investigation, whose results are reported in

Table 206, we can state that:

e The non randomized codes glbSolve, MCS and rbfSolve, due to their inability
to identify basin of attractions corresponding to neither the best known
solution nor the comparable ones characterized in the objective function
structure analysis, can not be considered as suitable for solving the

previously identified problem.

« GATBX and GATBX-migr algorithms have been outperformed by ASA tool in

both Pareto optimality and effectiveness at identifying the basin of attraction
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of good solutions. In fact, one can observe that they were the only ones
which were able to identify the basin of attraction of the best known solution;
however, such a result was reached only corresponding to 1/10 runs, which
seems to the authors a too low percentage for justifying the use of this

success for preferring them to remaining algorithms.

« Due to the relatively low rate of success at identifying basin of attractions of
good solutions in comparison with the remaining algorithms, DE and GAOT-
shared are not included in the set of well performing optimization tools for the

problem here analysed.

As a consequence, GAOT, FEP and ASA turned out to be the best performing
tools for the problem of lunar transfer using libration points. Their performances
are highlighted in Figure 310, which reports the corresponding results in the AV
— nFunc plane, and Table 207, which reports their rate of success at identifying

the basin of attraction of good solutions.
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Figure 310: GAOT, FEP and ASA performances in the AV - nFunc plane.
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Algorithm Success
GAOT 5/10
FEP 4/10
ASA 7/10

Table 207: GAOT, FEP and ASA performances in identifying the basin of attraction of the best
known solution.

Figire 310 and Table 207 show that ASA could reach a better mean objective
function value with more effectiveness at identifying the basin of attraction of
solutions comparable to the best known one (which belong to the set of lunar
transfer families identified in the objective function structure analysis); however,
it meanly required a number of objective function evaluations which is about
twice the number necessary to GAOT and FEP, which anyway turned out to

have good values of the rate of success (see Table 207).
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11. CONCLUSIONS AND RECOMMENDATIONS

This work has been carried out under an European Space Agency
contract in the context of the Ariadna program during the six months period
April-October 2004. The aim of this study was an investigation of the
effectiveness of some global optimisation techniques at solving practical
problems related to space trajectory design. Four mission analysis classes have
been investigated: the two impulse direct planet-to-planet transfer problem
(referring to an Earth-Mars transfer), the Multiple Gravity Assist interplanetary
transfer problem (referring to an Earth-Saturn transfer), the low thrust direct
planet-to-planet transfer problem (referring again to an Earth-Mars transfer) and
the problem of lunar transfer using the interior libration point L1 in a Restricted
Three Body Problem environment. In the framework of each corresponding
optimisation problem, a suitable objective function has been defined for
performing single objective optimisation processes. Hence, proper
mathematical models have been used for the evaluation of relevant quantities
for the objective function assessment and, consequently, appropriate design
variables have been selected, defining the search space. Box-constrained
optimisation problems have been taken into account by defining proper upper
and lower bounds for each design variable, while possible inequality constraints
have been treated using the classical approach of defining the objective
function as a suitable weighted sum of several terms, including the constraints
violation. Once the optimisation problem has been fully defined, an exhaustive
and systematic analysis of the resulting objective function structure has been
performed in order to identify typical features which would mostly affect the
global search; discontinuity as well as non-differentiability regions have been
identified over the search space and particular care has been taken to
characterize the objective function in the neighbourhood of the best known
solution, as this constitutes a remarkable feature strongly affecting the
effectiveness of some global optimisation algorithms at identifying it. The use of
a multi-start search using local optimisation processes starting from initial
guesses randomly distributed over the search space assisted the systematic

analysis and allowed the identification of big valley structures. Such structures
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turned out to be mainly related to the periodicity of all the investigated objective
functions with respect to particular design variables, as the time spent on the
stable manifold to L1 in case of lunar transfer using the interior libration point L1

and the date of departure from Earth in the remaining test cases.

Following this complete and comprehensive objective function structure
analyses have been carried out, and a set of global optimisation tools has been
selected for testing purposes. The set embraced classical genetic algorithms
including different genetic operators for performing the global search (GAOT
and GATBX), genetic algorithms with sharing and migration operators (GAOT-
shared and GATBX-migr respectively), evolutionary programming (Fast
Evolutionary Programming, FEP), differential evolution (DE), an improved
simulated annealing (Adaptive Simulated Annealing, ASA), branching methods
(glbSolve and MCS), response surface based optimisation algorithms (rbfSolve)
and, in some cases, an innovative hybrid systematic-heuristic method combing
branching techniques and evolutionary programming (EPIC). The previously
described optimisation problems corresponding to the four different mission
analysis classes have been submitted to the whole set of global optimisation
tools and an extensive study has been carried out in order to recognize suitable
problem-method relation corresponding to the identification of the best
performing algorithms for each mission analysis problem. By considering the
objective function value reached at the end of the optimisation process, the
number of objective function evaluations performed required and the
effectiveness at identifying the basin of attraction of the best known solution as
well as of good solutions comparable to the best known one, results of the test

phase can be resumed as follows:

> Two impulse direct planet-to-planet transfer problem: due to its

deterministic features, the success at reaching the best known
solution and the corresponding relatively low number of required
objective function evaluations, Multilevel Coordinate Search (MCS)
turned out to outperform all the remaining algorithms, thus resulting

as the best performing one.
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Multiple Gravity Assist interplanetary transfer problem: in case of

interest on the only mean objective function value reached and mean
number of objective function evaluations required as main evaluation
criteria, EPIC turned out to be the most advisable one for practical
use in space trajectory design optimization; however, due to lack of
information about the effectiveness of EPIC at identifying the basin of
attraction of the best known solution (not necessarily related to better
mean objective function values, because of the presence of several
comparable local optima), GAOT resulted to have the highest rate of

success in solving the global search problem;

Low thrust direct planet-to-planet transfer problem: low rate of

success characterized all the tested algorithms at identifying the
basins of attraction of both the best known solution and solutions
comparable to it. In such an environment Differential Evolution (DE)
and EPIC turned out to constitute the best compromises based on the
previously described performance criteria. Anyway, it should be noted
that no information is available about the EPIC rate of success;
however, the impressive results of its global search in terms of mean
objective function value seem to be indicative of particularly good
performances even in this sense, especially if compared with the
scarce results of the other tools. As a consequence the authors think
that more comprehensive analyses should be performed on EPIC,
which seems to represent the most promising global optimization tool

for solving the low thrust direct planet to planet transfer problem;

Problem of Lunar transfer using the interior libration point L1: GAOT,

FEP and ASA turned out to be the best performing ones. In particular,
ASA could reach a better mean objective function value with more
effectiveness at identifying the basin of attraction of solutions
comparable to the best known one if compared with GAOT and FEP,
which performed in a similar way in fact; however, it meanly required

a number of objective function evaluations which is about twice the
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number necessary to GAOT and FEP, which anyway turned out to

have good rates of success.

Moreover, general considerations can be stated about the test results for some
global optimisation tools. The effects of the sharing operator on the GAOT
scheme can be highlighted: by promoting the diversity of the individuals in the
population, the sharing operator hinders the concentration of the individuals
around the optimal solutions; this led to low accuracy at describing the optimum
solutions and to a premature optimisation process arrest because the stopping
criteria easily became active. It is worth noting that, as stated above, no tuning
procedures have been performed on the available tools and so GAOT default
options have used even using the sharing operator. However, as reported in
[Sareni, and Krahenbuhl, 1998], sharing should use low recombination
operators to promote stability of generated subpopulation and to avoid the
formation of poor individuals. As a consequence, future works must address
such a matter, by deeply investigating the effects of tuning processes on GAOT-
shared scheme to enhance the global search and to promote the preservation
of subpopulations, even allowing the simultaneous identification of distinct
optimal niches over the search space. Moreover, it is interesting to note how the
migration operator always led to improvements on the mean value of objective
function reached at the end of the optimisation processes: as a consequence, it
can be stated that the migration operator allowed evident improvements in the
effectiveness of the global search. However, it should be noted that such
improvements always resulted in corresponding higher values of number of
objective function evaluations performed. Moreover, interesting analyses could
be performed in future works for comparing performances gained by sharing
and migration operators: indeed, such techniques aim to promote both a broad
global search over the search space and the maintenance of subpopulations for
identifying several local optima corresponding to each algorithm run. Then,
comparative studies should be performed for recognizing the most suitable
technique for this purpose; however, as stated above, a tuning procedure on
recombination operators should be carried out first in case of using sharing

operators. Furthermore, it is quite impressive to note how the deterministic
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glbSolve and, in particular MCS, tools lost their good performances in passing
from the two impulse direct planet-to-planet transfer problem to the remaining
ones: the high multimodality and the fragmentation of the big valley structures
associated to Multiple Gravity Assist interplanetary transfers with a high number
of gravity assist manoeuvres could be investigated as the main reason of such
behaviour in this problem; as it concerns the problem of lunar transfer using the
interior libration point L1, because of the highlighted important difficulties of
glbSolve and MCS, the presence of discontinuities in the neighbourhood of the
best known solution identified in the objective function structure analysis
certainly affected the performances of such tools in this second mission
analysis problem; however, no clear explanations could be identified of the
scarce performances showed by these deterministic tools in solving the low
thrust direct planet-to-planet transfer problem. Finally, performances showed by
rbfSolve, which could not identify the basin of attraction of good solutions in
none of the performed tests, seem to be associable to the well known difficulties
of response surface based global optimisation algorithm at handling
optimisation processes on discontinuous and non-differentiable objective
functions. However, it should be noted again that no clear insights have been
identified on the scarce performances in case of the low thrust direct planet-to-

planet transfer problem.

It is worth noting that, off course, limitations affects the achieved results.
First of all, each mission analysis class has been investigated by selecting a
particular transfer problem and by facing it with proper, but anyway particular,
mathematical models. The authors believe that the decisions taken about such
a matter in this work can be considered as representative of practical interesting
problems in space trajectory design. However, further analyses should be
performed, including additional transfer problems, alternative mathematical
models and search space definitions for getting a more complete insight in the
broad field of mission analysis. Secondly, it is widely known in the global
optimisation community that optimisation algorithms can be suitably tuned to
enhance their performances. However, as already occurred in remarkable

existing comparative studies (Neumaier et al., 2004), due to the comparative
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purposes of this work, the large scale of comparisons performed, the available
devices and the high time required by some optimisation case, it was
impossible to do such tuning. Finally, regarding the termination condition, note
that, as stated by Huyer and Neumaier [Huyer and Neumaier, 1999] and
already described in previous chapters, in practical global optimisation problems
such as those analysed in this work, one does not know the solution in advance
and needs a criterion that tells the program when to stop searching for a better
local optimum. For those algorithms where such a criterion was not included, a
common stopping rule has been developed and implemented, which appeared
to be suitable and robust. However, the achieved results are necessarily strictly
affected by the employed stopping criterion. Nevertheless, the effects of the
stopping criteria on the algorithm performances were not addressed here,

where most algorithms have been used as black-box tools.

As a final remark, the authors would like to recommend future extensive
works on assessing the sure benefits of a better management of the
mathematical techniques used for the objective function evaluation in the
problem of lunar transfer using the interior libration point L1, particularly
referring to the penalty terms employed in case of non convergence of the
shooting algorithm for the solution of the Lambert’'s three-body problem.
Moreover, a better investigation of EPIC performances should be accomplished:
thanks to its combination of systematic and evolutionary techniques, EPIC tool
seemed to handle the global search in a more effective way. Finally, this work
could be considered as a contribution to the complex identification of the most
promising global optimisation techniques for solving practical problems in space
trajectory design optimisation; further extensive studies are necessary to
address such a matter and the development of tailored global optimisation tools
for mission analysis should be promoted, as they certainly will lead to better
results if compared to those achieved by the classical black-box tools here

investigated.
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APPENDIX 1: NOTES ON NP-COMPLEXITY

It has been stated that convex quadratic programming is solvable in polynomial
time with the ellipsoid method or an interior point method [Vavassis, 1995].

However a quadratic function:
1 4 T
f( )= 5 H +c [37]

is convex if H is positive semidefinite, i.e., if all the eigenvalues of H are
nonnegative. Even if only one eigenvalue is negative, the problem turns out to
be NP-hard [Pardalos and Vavasis, 1991].

The mission analysis problems analysed in this report are not quadratic,
but they can be locally approximated with a quadratic function. This suggest the
following question: if it is possible to show that the objective function is locally
non-convex, meaning that at least one of the eigenvalues of the locally defined
H is negative, could one state that the global search is then NP-hard? The
answer to this important question will constitute an important subject for future

developments.
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