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EXECUTIVE SUMMARY 
 

A study of global optimisation methods in the field of interplanetary trajectory 

has been performed. The idea was to understand why and how a particular 

approach is more suited than others in optimising the trajectory for a certain 

type of interplanetary transfer. From the No Free Lunch Theorem (NFLT) it is 

impossible that an algorithm outperforms all others in all the possible 

applications, therefore the aim of this work was two fold: to identify a suitable 

global optimisation algorithm that outperforms all others in a particular transfer 

typology; to identify a suitable global optimisation algorithm family that 

outperforms all others in all mission analysis transfer problems. 

 

At first a characterisation of the different transfer families, depending on 

propulsion system (impulsive and low thrust) and number of planetary bodies 

(planet-to-planet, multiple gravity assist, weak stability boundary) was 

conducted. The model characterisation was performed within the search space 

to describe the morphological features of the objective function, and within the 

objective function to identify to evaluate continuity and convexity. Box-

constrained optimisation problems have been taken into account by defining 

proper upper and lower bounds for each design variable, while possible 

inequality constraints have been treated using the classical approach of defining 

the objective function as a suitable weighted sum of several terms, including the 

constraints violation. 

 

Once the optimisation problem has been fully defined, an exhaustive and 

systematic analysis of the resulting objective function structure has been 

performed in order to identify typical features which would mostly affect the 

global search; discontinuity as well as non-differentiability regions have been 

identified over the search space and particular care has been taken to 

characterize the objective function in the neighbourhood of the best known 

solution, as this constitutes a remarkable feature strongly affecting the 

effectiveness of some global optimisation algorithms at identifying it. The use of 

a multi-start search using local optimisation processes starting from initial 
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guesses randomly distributed over the search space assisted the systematic 

analysis and allowed the identification of big valley structures. Such structures 

turned out to be mainly related to the periodicity of all the investigated objective 

functions with respect to particular design variables 

 

Global optimisation algorithms can be classified into three main classes: 

stochastic, deterministic and metmodels. A particular type of stochastic 

approach, evolutionary algorithms can be further divided into genetic 

algorithms, evolutionary programming and evolutionary strategies. In total 

eleven algorithms, taken from the three main classes mentioned above, were 

tested and their performances in identifying global optimal solutions evaluated. 

The previously described optimisation problems corresponding to the four 

different mission analysis classes were submitted to the whole set of global 

optimisation tools and an extensive study carried out in order to recognize 

suitable problem-method relations corresponding to the identification of the best 

performing algorithms for each mission analysis problem. 
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1. INTRODUCTION  
 

In the last two decades, global optimisation approaches have been 

extensively used towards the solution of complex interplanetary trajectory 

transfers. As operational costs have been increasingly reduced, space systems 

engineers have been facing the challenging task of maximising the payload-

launch mass ratio while still achieving the primary mission goals. Methods 

ranging from genetic algorithms [Hughes and McInnes, 2001] to 

neurocontrollers [Dachwald, 2004], from shooting methods [Wirthman et al., 

1995] to collocation methods [Betts and Erb, 2003] have been used with varying 

effectiveness. Unfortunately the efficiency, both computational and 

performance-wise, of these approaches are strongly linked to the type of 

problem that has to be solved. It would therefore be hugely beneficial if mission 

designers could rely on a limited number of global optimisation methods 

depending on the type of trajectory design, which has to be accomplished.  

 

 To achieve this ambitious goal, initially, a thorough identification and 

modelling of the main types of orbital transfers has to be performed. The orbital 

transfer typologies will be identified both on the basis of the propulsive system 

(impulsive or low thrust) and on the number of planetary bodies contributing to 

the dynamics of the system. The aim therefore is to achieve the characterisation 

of interplanetary transfers based upon: 

 

 2-Impulse Transfers 

 Multiple Gravity Assist Transfers 

 Weak Stability Boundary Transfers 

 Low Thrust Spiral Transfers 

 

This classification, ranging from simple two body transfers to more complex 

interplanetary trajectories, encompasses the current and future requirements of 

mission analysis and design problems. 
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 The models identified previously will then have to be characterised, in 

order to hopefully identify some common features. Also, considering the future 

requirement of this study for trajectory optimisation, the characterisation 

performed will be two-fold: 

 

 Within the search space, by means of a topological analysis aiming to 

identify variables which are useful in the description of the morphological 

structure of the objective function. 

 Within the objective function aiming to identify its structure and 

evaluating its continuity and convexity characteristics. 

  

The characterisation will be performed using systematic and/or probabilistic 

methodologies. The aim is to identify different transfer families within the same 

transfer typology as a function of the parameters of the problem: mass 

parameters of the planets in an MGA transfer, parameters of the low thrust 

propulsion system, etc. 

 

The attempt here is to assess if commonly encountered problems in 

mission analysis are solvable in polynomial time or, if a solution is available, if 

the global optimality of this solution can be verified in polynomial time. 

 

We try to asses if, for a given global optimisation problem in mission 

analysis Π: 

 

 An algorithm AΠ exists such that in polynomial time, given a domain D 

and a function f: mnDxxf ℜ→ℜ⊆∈:)(  a solution x* can be computed. 

 An algorithm BΠ that, given D, f and x* is able to compute in polynomial 

time f*; 

 An algorithm CΠ, that given D, f and x*, either produces a new solution 

x∈D with f(x) < f(x*) (assuming a minimization problem) or else concludes 

that no such solution exists and x* is a global optimum. 
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To do this we first proceed by analysing the main characteristics of common 

trajectory design problems in mission analysis. From this analysis, we will try to 

infer if the aforementioned algorithm exists or can be derived from problem 

characteristics. In doing this we make use of two simple and basic algorithms: 

 

 A random start search with SQP local optimisation 

 A grid search with regular sampling of f 

 

The inferred complexity of the problem under study will be done by similarity 

with NP-hard problems or associating the solution of the problem Π to the 

solution of an equivalent reduced problem Π r. This analysis will contain the 

seed for the development of the appropriate solution algorithm since the 

complexity of the problem is intrinsically associated to the solving algorithm. 

 

In the following sections we will look at: 

 

 Two impulse direct planet-to-planet transfer 

 Multiple gravity assist planet-to-planet transfer 

 Low-thrust direct planet-to-planet transfer 

 Weak Stability Boundary Transfer 

 

Note that we see the planet-to-planet transfer problem as a generalisation of the 

orbit-to-orbit transfer problem since in the former case the phase of the 

departure and arrival point must also be considered. 
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2. 2-IMPULSE DIRECT PLANET-TO-PLANET TRANSFER 
 

As an example of a 2-impulse transfer, let us consider a direct transfer 

from Earth to Mars. We have taken the Mars Express mission as our reference 

mission. 

 

2.1 Problem Formulation 
 

Let us suppose the objective function as the overall impulsive V∆ ; the 

sum of the magnitudes of the relative velocities at the beginning, IV∆ , and the 

end, FV∆ , of the interplanetary transfer phase: 

 

FI VVVf ∆+∆=∆=               [1] 

 

In order to evaluate the previous objective function, the following mathematical 

models and methods have been used: 

 

 Restricted 2-body dynamical model (C2 in the whole solution space 

except in the origin) 

 Three dimensional motion 

 Analytical ephemeris model (generated by time polynomial series of the 

orbital elements) 

 Impulsive manoeuvres (i.e. instantaneous variations in velocity) 

 Lambert’s problem formulation (Battin’s algorithm for the problem 

solution) 

 

As a consequence of the mathematical models and methods used for the 

objective function assessment, the search space is characterized by two design 

variables: 

 

 Date of departure from Earth, 0t  

 Transfer time from Earth to Mars, tt  
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Both the previous design variables continuously vary above the set of real 

numbers. 

 

2
0 ],[

ℜ⊆

∈=

D

Dtttx
 

ℜ→ℜ⊆∈ 2:)( Dxxf              [2] 

ℜ∈f  

T-periodicity: )()( 00 tfTtf ≅+  

 

Upper and lower bounds on the design variables are considered. As the 

date of departure from Earth coincides with the lower bound, the interval of 

variation has been imposed in order to include the date of departure of Mars 

Express mission (2 June 2003) and seven synodic period of the Earth-Mars 

system (780 days). The resulting intervals of variation are: 

 

[ ] [ ]2017/12/31 , 2003/01/01 , 00 =UBLB tt            [3] 

[ ] [ ]600 ,100 , =UB
tt

LB
tt tt  days             [4] 

 

Note that, when describing the date of departure by means of the Julian date in 

days, the dimension of the search space with respect to this design variable is 8 

times wider than the other. 

 
2.2 Objective Function Structure Analysis 
 

As the search space has only two dimensions, a visual representation of 

the objective function over the whole search space is possible, as illustrated in 

Figure 1 and Figure 2. 
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Figure 1: Total V∆ for a direct impulsive Earth-Mars transfer as a function of the date of 
departure and the transfer time 

 
Figure 2: Total V∆  for a direct impulsive Earth-Mars transfer as a function of the date of 
departure and the transfer time (projection on t0-tt plane) 
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Note that the date of departure in Figure 1 has been indicated as the 

modified Julian date, starting from 1st January 2000. As can be seen from 

Figure 1, the objective function is a non-convex function over the considered 

search space, mainly due to its quasi-periodical feature on the date of departure 

values. This result is illustrated in Figure 3, which shows the variation of the 

objective function with respect to the date of departure corresponding to a 200 

days interplanetary transfer phase: from Figure 3 a period of approximately 780 

days can be identified, which obviously corresponds to the synodic period of the 

Earth-Mars system. This suggests the possibility of exploiting the quasi-

periodicity information of the objective function, and consequently the synodic 

period values, in the global optimisation process. The global optimisation 

algorithms can use such information in several ways such as: 

 

 Typical step sizes for global search in the direction of the date of 

departure values can be assessed in order to evaluate the goodness of 

the various basins of attraction, effectively escaping from convergence 

to local optima. 

 

 Smart dimensions of subintervals in case of Branch & Bound algorithms 

and global optimisation algorithms using interval analysis can be 

evaluated. Note that, in case of using interval analysis, the problem of 

programmability must be considered: e.g. the ephemeris model, due to 

the use of polynomial time series, can be effectively applied for the 

interval evaluation of planetary orbital elements, while the conversion in 

Cartesian coordinates must be accurately analysed. 

 

 Smart clustering techniques can be developed in multi-start search 

algorithm.  
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Figure 3: Periodicity of the objective function with respect to the date of departure for a 200 
days long interplanetary transfer phase 
 

In order to further analyse the structure of the objective function, the 

distribution of the local minima over the whole search domain has been studied. 

Reeves and Yamada [Reeves and Yamada, 1998] proposed to assess the 

objective function structure in a flow-shop scheduling environment by firstly 

identifying as many local minima as possible and then by computing for each 

local optimum its average distance from all the other local optima, since the 

global optima for the problem are a priori unknown. Not only does this allow us 

to identify the best solutions, but also: 

 

 to evaluate the closeness of the local optima to each other 

 to analyse the structure of the objective function near the global optima, 

by assessing the density and goodness of the nearby local optima  

 to identify the presence and features of similar local optima  
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Due to these attractive features and the important results it led to in the 

Flow-Shop Scheduling environment, this objective function structure analysis 

methodology has been applied in this work to space mission design. In order to 

generate the local minima, 100 randomly distributed points on the overall 

search space have been used as starting points for a local search, based on a 

Sequential Quadratic Programming algorithm. Figure 4 shows the resulting local 

minima distribution over the search domain (black dots plus the red one), where 

level curves of the objective function are also illustrated. 

 
Figure 4: Distribution of the generated local minima. 

 
Figure 4 also highlight the best identified local minimum (red dot), whose 

main features are presented in the following pages; Table 1 and Table 2 report 

the values of the design variables and of the objective function terms 

respectively, while Figure 5 reports the corresponding transfer trajectory. 
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Search space 

Design variable Best identified solution 

Date of departure [d]: 1253.510 

Transfer time [d]: 203.541 

Table 1: Best identified solution: search space 

 
 
 

Objective function space 

Term Best identified solution 

∆V  [m/s]: 5678.904 

∆VI  [m/s]: 2999.464 

∆VF [m/s]: 2679.439 

Table 2: Best identified solution: objective function space 

 
Figure 5: Best identified solution: transfer trajectory. 
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Note that in the case of the real Mars Express mission, the interplanetary 

transfer solution corresponds exactly to the solution here identified: in particular, 

besides the dates of departure and arrival and the transfer time, the best 

identified solution has a velocity, relative to the Earth, at the beginning of the 

transfer phase, IV∆ , equal to 2679.439 m/s. This corresponds to a 3C  

performance for the launcher of about 7.179 km2/s2; referring to the launcher 

adopted in the real mission (Soyuz-Fregat), the performance curve is illustrated 

in Figure 6. 

 

 
Figure 6: Soyuz-Fregat launcher: performance for Escape Missions. 

 

The maximum launch mass for the spacecraft can then be evaluated 

from Figure 6, that is about 1350 kg (the launch mass of Mars Express was 

equal to 1120 kg). This result can be seen as a confirmation of the validity of the 

used mathematical models and methods. Another important feature can be 

highlighted on the objective function structure by means of the identified 

minima, concerning the comparability of the various local minima. Figure  

reports the identified local minima gathered in three subgroups, corresponding 

to different level of the objective function value, as described in Table 3. 
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Level of the Objective 
Function Value [m/s] Dots Colour 

6000<∆V  red 

70006000 ≤∆≤ V  green 

7000>∆V  black 

Table 3 – Objective function levels and corresponding colours in Figure . 

 
Figure 7: Local minima comparability in terms of objective function value. 

 
Figure 7 shows that local minima exist which can be considered quite 

comparable. In particular, by analysing the red dotted and the green dotted local 

minima, the corresponding objective function value are characterized by a mean 

value of 5952.538 m/s and a standard deviation of  328.778 m/s. Such features 

make the 2-impulse direct planet-to-planet transfer problem over the considered 

intervals of date of departures an interesting means for evaluating the 

effectiveness and robustness of a global solver. Once generated the local 

minima, it is possible to analyze the structure of the objective function by using 

the Reeves and Yamada methodology. The mean distances of the distinct local 
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optima from each other have been evaluated: for a clearer interpretation, the 

mean distances have been normalized to the length of the iper-diagonal of the 

search space. Figure 8 shows the resulting structure: the x-axis reports the 

mean distances of each local optima, while the corresponding objective function 

values are indicated along the y-axis. 

 
Figure 8: Objective function structure analysis for a direct 2-impulse Earth-Mars transfer. 

 
Figure 8 shows that the mean distance of most local minima from the 

others is bounded in the interval [0.2, 0.4] times the typical dimension of the 

search space. As a consequence, the distribution of the local minima turns out 

to be quite uniform, as Figure 8 fairly illustrates. Table 4 summarizes the 

problem characteristics for a direct two-impulse transfer. 

 
Problem 

Dimension Constraints Search 
Space Objective function T-periodicity

2 Box 
constraints 

2ℜ∈D  
ℜ∈f  almost everywhere C2, 

locally discontinuous in a 
countable number limited sets 

Yes 

Table 4: Summary of problem characteristics. 
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3. MULTIPLE GRAVITY ASSIST TRANSFERS  
 

As an example of a multiple gravity assist (MGA) interplanetary mission, 

let us consider a transfer from Earth to Saturn, taking Cassini as the reference 

mission. 

 

3.1 Problem Formulation 
 

Let us suppose the objective function as the overall impulsive TOTV∆ . In 

order to evaluate it, the following mathematical models and methods have been 

used: 

 

 Restricted 2-body dynamic model 

 Three dimensional motion 

 Analytical ephemeris model  

 Linked-conic approximation for gravity assist manoeuvres  

 Impulsive manoeuvres, i.e. instantaneous variations in velocity 

 Lambert’s problem formulation (Battin’s algorithm for the problem 

solution) 

 

The objective function is assumed to be the sum of several terms:  

 

 The magnitude of the velocity, relative to Earth, at the beginning of the 

interplanetary transfer phase, IV∆ . 

 The magnitude of the velocity variation required to the reach the 

insertion orbit at Saturn, FV∆ . 

 The magnitudes of the minimum corrective ∆V at each gravity assist 

manoeuvre, PGAV ,∆ (where the subscript “P” will be substituted with the 

initial letter of the name of the planet that contributes to the gravity assist 

manoeuvre), which is necessary to link two consecutive interplanetary 

transfer arcs resulting from the formulation of Lambert’s problem. 
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For the evaluation of PGAV ,∆ , given the input relative velocity vector Iv  and 

the output relative velocity vector Ov , an hyperbolic orbit around the planet is 

considered as lying on the plane identified by the two vectors Iv  and Ov . The 

pericentre of the hyperbole is selected in order to have the minimum 

misalignment between the final asymptotic velocity and Ov , always imposing 

the minimum radius necessary to avoid interferences with the planet. For the 

evaluation of FV∆ , the insertion orbit has been taken from the Cassini-Huygens 

mission, with the following features: 

 

Pericentre radius: 1.0895 810⋅  m 

Eccentricity: 0.98 

Table 5: Saturn insertion orbit parameters. 

 

The FV∆  manoeuvre is applied at the pericentre of the hyperbolic entrance 

orbit, tangentially to the velocity vector. 

 

As a consequence of the mathematical models and methods used for the 

objective function assessment, the search space is characterized by the 

following design variables: 

 

 Date of departure from the Earth, 0t  

 Sequence of planets, { }nPPPP ,...,, 21=
r

 (where 1P  is the departure planet 

– in our case the Earth – and nP  is the arrival planet). Note that a planet 

iP  can appear more than once in the sequence. 

 n-1 transfer times (that is the transfer times of the linking arcs) 

 

Note that the number of design variables is not a priori fixable in this case and 

depends on the dimension of the vector P
r

. To evaluate the value of the 

objective function, one has to analyse the discrete variable P
r

 at first, looking for 

its dimension and the sequence of planets it leads to. Supposing an n-
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dimensional P
r

 vector, then the number of linking arcs (and the associated 

transfer times) is n-1. By indicating with dim the operator which evaluates the 

dimension of a vector, then the dimension of the whole search space, DIM, is 

calculated as follows: 

 

( )PdimDIM
r

=               [5] 

 

The more ( )Pdim
r

 is large, the more the design variables there are and the more 

the complex the global search is. In this case the vector P
r

 is defined in the 

natural numbers set, that is the sequence of planets, while the others are 

continuous. No Deep Space Manoeuvre (DSM) is considered in the previous 

search space. Should m Deep Space Manoeuvres be performed, the following 

design variables would then have to be considered: 

 

 The allocation of the m Deep Space Manoeuvres over the sequence of 

planets. 

 The m additional transfer times that are related to the m additional 

linking arcs. 

 

While the transfer times have a continuous characterization, the allocation of 

the m DSMs is a discrete variable and affects the dimension of the search 

space in a similar way as the previous vector P
r

. 

 

Upper and lower bounds on the design variables are considered. As the 

date of departure from Earth coincides with the lower bound, the interval of 

variation has been imposed in order to include a period of 5 years centred 

around 1st January 1999. This includes the date of departure of Cassini-

Huygens mission, 15th October 1997. The upper and lower bounds for the 

transfer times will be specified for each case in the objective function structure 

analysis. 
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3.2 Objective function structure analysis 
 

In order to analyse the structure of the objective function over the search 

space, a distinction between discrete and continuous variables has been 

considered: a fixed number of sequence of planets has been chosen for the 

evaluation of the effects of the discrete variable on the local minima distribution 

and consequently on the objective function structure. 

 

Considering the interplanetary transfer from Earth to Saturn and referring to 

the Cassini-Huygens mission, the following sequences of planets have been 

probed: 

 

1. Earth – Jupiter – Saturn (EJS) 

2. Earth – Mars – Jupiter – Saturn (EMJS) 

3. Earth – Venus – Earth – Jupiter – Saturn (EVEJS) 

4. Earth – Venus – Venus – Earth – Jupiter – Saturn (EVVEJS) 

 

As for the case of the 2-impulse transfer, the objective function structure 

analysis for a multiple gravity assist has been based on the Reeves and 

Yamada methodology: for each of the previous sequences of planets, 1000 

local minima have been found with a random start search (with uniformly 

distributed random start points) followed by an SQP optimisation process; the 

mean distances of each solution from each other is then assessed and 

compared to the corresponding goodness. 

 

For the sake of a clearer analysis, the case of no deep space 

manoeuvres is considered at first. The effects of such manoeuvres on the 

objective function structure will be assessed later. 
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3.3 Earth – Jupiter – Saturn (EJS) 
 

Once fixed the value of the discrete variable “sequence of planets” to 

EJS, the number of continuous variables which complete the search space is 

three: the date of departure from Earth, 0t , and the transfer times Earth – 

Jupiter and Jupiter – Saturn, EJtt  and JStt  respectively. The upper and lower 

bounds for the transfer time associated to the two linking arcs E-J and J-S have 

been posed equal to 0.1 and 2 times the associated Homann transfer time 

respectively. The resulting intervals are: 

 

[ ] [ ]dtttt U
EJ

L
EJ  1993.1  ,65.99 , =              [6] 

[ ] [ ]dtttt U
JS

L
JS  7300.4 ,02.365 , =             [7] 

 

Figure 9 compares the widths of the interval of variation associated to the three 

design variables: Earth departure, Earth-Jupiter transfer time and Jupiter-Saturn 

transfer time. 
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Figure 9: Comparison between the widths of the intervals of variation in the search space. 
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After generating the 1000 local minima, the mean distances of each 

solution to the others have been evaluated. By using the Reeves and Yamada’s 

methodology, Figure 10 shows the resulting structure of the objective function: 

the x-axis reports the normalized mean distance of each local optima (for the 

definition of the normalized mean distance see the 2-impulse transfer case), 

while the corresponding objective function values are indicated along the y-axis. 

 

Figure 10: Objective function structure analysis for an EJS transfer. 

 

An important observation can be made by analysing Figure 10: the objective 

function for an EJS transfer display a big-valley problem structure. A big-valley 

structure has the following features: 

 

1. Local optima tend to be relatively close to other local optima 

2. Better local optima tend to be closer to global optima 

3. Local optima near one another have similar evaluations 
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As a consequence, the global optima tend to have good local optima as 

neighbourhoods. The mean closeness of most local optima tends to range 

between 0.18 and 0.3 times the hyper-diagonal magnitude, that is between 

1350 d and 2250 d. In order to analyse the distribution of the local minima and 

verify the existence of a big valley structure, the search space is probed further. 

Figure 11 shows the dates of departure (x-axis) and the objective function 

values (y-axis) corresponding to the identified local optima. 

 

 

Figure 11:  Local optima distribution over the date of departure design variable. 

 

The local optima tend to gather in groups near fixed date of departure 

values. The interval between two of these fixed dates is almost constant and 

equal to approximately 400 days. This result can be intuitively explaneed by 

means of the quasi-periodicity of the objective function with respect to the date 

of departure; that is caused by the synodic periods of the planetary systems. 

The synodic period of the Earth-Jupiter system is equal to 398 days associable 

to the intervals identified in Figure 11. The synodic period of the Jupiter–Saturn 
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system is equal to 7254 days, and is not included in the considered interval of 

variation due to being one order of magnitude larger. 

 

The local optima corresponding to a fixed date tend to have similar 

objective function evaluations. Let us consider now the remaining design 

variables. The x-axis of Figure 12 shows the Earth-Jupiter local minima transfer 

times, while the Jupiter-Saturn local minima transfer times are reported on the 

y-axis. 

 

Figure 12: Local minima distribution over transfer times design variables. 

 

The local minima tend to distribute themselves in clearly identifiable structures 

over the transfer times subspace: these structures look like curves on this 

subspace. A more important consequence can be highlighted by noting that 

each identified structure is in fact associable to a well defined date of departure: 

consider, for example, the subgroup of local minima associated with values of 

the dates of departure close to -200 d; the corresponding transfer times values 

are shown in red in Figure 13, together with the remaining local minima. 
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Figure 13: The structures associated to the subgroup of local minima corresponding to dates of 
departure values close to  -200 d. 

 
The previous results show the existence of structures where local optima tend 

to be relatively close to other local optima and local optima near one another 

have similar evaluations: these are in fact big valley structures in the JSEJ tttt −  

subspace. A three dimensional illustration of the local minima in the search 

space is showed in Figure 14. 
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Figure 14: Three dimensional illustration of the local minima in the search space. 

 

Figure 14 shows that, besides the presence of the previously identified big-

valley structure in the JSEJ tttt −  subspace, a similar structure can be also 

identified in EJttt −0  and JSttt −0  subspaces. These results have been observed 

in all mission analysis classes analysed so far and can be associated to the 

date of departure design variable and its quasi-periodicity features due to the 

planetary geometry. To better understand the reasons for the presence of the 

big-valley structures in the JSEJ tttt −  space, a thorough analysis is performed by 

fixing the value of the date of departure and plotting the objective function with 

respect to the other design variables. The date of departure is set to -180 d and 

the analysis to the intervals on the Earth-Jupiter transfer time is restricted 

to [ ]1000 ,600 d and on the Jupiter-Saturn transfer time to [ ]7300 ,1000  d. The 

resulting objective function values are showed in Figure 15. 
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Figure 15: The V∆  as a function of the transfer times at a fixed date of departure (-180 d). 

 

Figure 15 also shows 100 local minima generated with a random start search 

and a consequent local optimisation process by a SQP algorithm: there is 

evidence of the existence of a structure that is associable to a big valley. For 

the sake of completeness, note that the two lines of discontinuity, easily 

identifiable in Figure 15, correspond to the case when the Earth-Jupiter and 

Jupiter-Saturn transfer angles are at 180 degrees. In this case the orbital plane 

is ambiguous (an infinite number of transfer orbits exist) and Battin’s algorithm 

here is singular. An important observation can be made by considering the 

trend of each term in the objective function, that is IV∆  at Earth, FV∆  at Saturn 

and the corrective JGAV ,∆  at Jupiter. Figure 16 and Figure 17 respectively show 

the ( IV∆ + FV∆ ) and JGAV ,∆  as functions of the Earth-Jupiter and Jupiter-Saturn 

transfer times. 
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Figure 16: FI VV ∆+∆  as a function of the transfer times at a fixed date of departure (-180 d). 

 

Figure 17: JGAV ,∆  as a function of the transfer times at a fixed date of departure (-180 d). 
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Figure 16 and Figure 17 show that, while the sum FI VV ∆+∆  has a monotonic 

trend with respect to the transfer times in the considered search space by fixing 

the date of departure, the JGAV ,∆  can be considered as the principal reason of 

existence of the big-valley structures above identified in the JSEJ tttt −  subspace. 

As a confirmation of this observation let us concentrate on the values of each 

objective function term along the big-valley structure, highlighted in red in Figure 

18. 

 

Figure 18: Big-valley structure analysis. 

 

Figure 19 shows the transfer trajectories for solutions 1, 2, 3 and 4 highlighted 

in Figure 18, along the big-valley structure, while Table 6 shows the 

corresponding values of the objective function terms. 
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Figure 19: Transfer trajectories for solutions 1, 2, 3 and 4. 

 

Solution IV∆  [m/s] JGAV ,∆  [m/s] FV∆  [m/s] 

Solution 1: 9131.2 14.28 437.31 

Solution 2: 9001.3 4.84 430.63 

Solution 3: 8977.4 0.0057 431.33 

Solution 4: 9214.3 6.68 434.85 

Table 6: Values of the objective function terms for solutions 1, 2, 3 and 4. 

 

Table 6 shows that the big-valley structure corresponds to low values of the 

corrective JGAV ,∆ . Moreover, similar structures can be identified even in case of 

simpler mathematical models: as an example a circular and coplanar planetary 

orbital model has been investigated. After assuming medium values for 

planetary orbital parameters and imposing Earth, Jupiter and Saturn positions at 

the date of departure as the projections on the ecliptic plane of their real 

position vector in a three dimensional analytical ephemeris model at the 
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previously fixed date of departure (-180 d), the trend of the corresponding 

objective function has been analysed.  

 

Figure 20 shows the objective function values with respect to the transfer 

times, while Figure 21 compares the objective function structure with respect to 

the three dimensional case, by showing the differences in the position of the 

big-valley structure. 

 

 

Figure 20: Objective function values with respect to the transfer times in a circular and coplanar 
planetary mathematical model. 
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Figure 21: The objective function structure in the circular and coplanar planetary orbital model. 
Comparison with respect to the three dimensional case (big valley structure is shown in red). 

 

A big-valley structure can be easily identified also in the coplanar and circular 

case and the position of such a structure is quite different with respect to the 

three dimensional case, especially in the Jupiter-Saturn transfer time. 

 

Note that, in case of interest in solutions corresponding to the big-valley 

structure, the objective function structures are quite similar in the two 

dimensional and three dimensional case. Using as a first guess solution for a 

deterministic local optimisation process in the three dimensional model an 

optimal solution of the two dimensional model, we can easily converge to the 

optima of the corresponding structure in the three dimensional case. This 

suggests the possibility of firstly executing a global optimisation process in the 

two dimensional model, which is far simpler and faster due to the lower 

computational costs, and then searching for the global optimum in the three 

dimensional case using a local optimisation process, which could be run in the 

convex big-valley structure and then solved with a polynomial time algorithm. 
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Moreover, note that the principal reason of the presence of the big-valley 

structure in the JSEJ tttt −  subspace is again the JGAV ,∆ . Figure 22 and Figure 23 

respectively show the FI VV ∆+∆  and the JGAV ,∆  trend over the transfer times 

search space in the two dimensional case. 

 

 

Figure 22: ( FI VV ∆+∆ ) values over the transfer times search space in two dimensional case. 
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Figure 23: JGAV ,∆  values over the transfer times search space in the two dimensional case. 

 

The big valley structure corresponds again to low values of the JGAV ,∆  

term. This leads to the intuition that other mathematical models for multiple 

gravity assist interplanetary missions which don’t make use of JGAV ,∆  corrective 

terms will show a different objective function structure. In order to analyse this 

important aspect, the consequence of using deep space manoeuvres instead of 

JGAV ,∆  corrective terms will be addressed at the end of this section. Finally, the 

transfer trajectory and the V∆  features corresponding to the best solution 

identified are now presented in Tables 7-8 and Figure 24. 
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Date of departure: 06/07/1999 

Earth–Jupiter transfer time: 910.11 d 

Jupiter–Saturn transfer time: 4416.7 d 

 
Table 7: search space parameters. 

 

 

Overall V∆ : 9391.2 m/s 

IV∆ : 8959.3 m/s 

JGAV ,∆ : 4.83 410−⋅ m/s 

FV∆ : 431.94 m/s 

 
Table 8: Objective space parameters. 

 

 

Figure 24: Transfer trajectory corresponding to the best solution found 
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3.4 Earth – Mars – Jupiter – Saturn (EMJS) 
 

Once fixed the value of the discrete variable “sequence of planets” to EMJS, the 

number of continuous variables which complete the search space is four: the 

date of departure from Earth, 0t , and the transfer times Earth–Mars, Mars–

Jupiter and Jupiter–Saturn, EMtt , MJtt and JStt  respectively. The upper and lower 

bounds for the transfer time associated to the three linking arcs E-M, M-J and J-

S have been posed equal to 0.1 and 2 times the associated Homann transfer 

time respectively. The resulting intervals are: 

 

[ ] [ ]dtttt U
EM

L
EM  517.17  ,86.25 , =             [8] 

[ ] [ ]dtttt U
MJ

L
MJ  2250.7  ,54.112 , =             [9] 

[ ] [ ]dtttt U
JS

L
JS  7300.4 ,02.365 , =           [10] 

 

Figure 25 compares the widths of the interval of variation associated to the 

design variables. 
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Figure 25: Comparison between the widths of the intervals of variation in the search space. 
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After generating the 1000 local minima, the mean distances of each solution to 

the others have been evaluated. By using the Reeves and Yamada 

methodology, Figure 26 shows the resulting structure of the objective function: 

the x-axis reports the normalized mean distance of each local optima, while the 

corresponding objective function values are indicated along the y-axis. 

 

 

Figure 26: Objective function structure analysis for an EMJS transfer 

 

By analysing Figure 26, a big-valley structure of the objective function for an 

EMJS transfer can once again be identified. The mean closeness of most local 

optima tends to range between 0.2 and 0.4 times the hyper-diagonal 

magnitude, corresponding to an interval between 1500 d and 2250 d. In order to 

analyse the distribution of the local minima and verify the existence of a big 

valley structure, the search space is probed in the following. Figure 27 shows 

the dates of departure (x-axis) and the objective function values (y-axis) 

corresponding to the identified local optima. 
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Figure 27: Local optima distribution over the date of departure design variable. 

 

Even in the EMJS case, the local optima tend to gather in groups near 

fixed date of departure values; however, compared to the previous case, the 

interval between two of this fixed dates is not constant. This result can be 

intuitively explaneed by means of the synodic periods of the planetary systems: 

in fact, note that the synodic period of the Earth-Mars system is equal to 780 

days and that of the Mars-Jupiter system is equal to 815 days; this leads to two 

comparable frequencies on the quasi-periodicity of the objective function with 

respect to the design variables that interact with each other (note that the 

synodic period of the Jupiter – Saturn system is equal to 7254 days, 

corresponding to a frequency that is one order of magnitude bigger). Moreover, 

the local optima corresponding to a fixed date tend to have similar objective 

function evaluations. Consider now the remaining design variables. Figure 28 

shows the local minima distribution over the three dimensional transfer times 

subspace, while Figure 29, Figure 30 and Figure 31 plot the projection along the 

three z, y and x axis respectively. 
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Figure 28: Three dimensional illustration of the local minima in the transfer times subspace. 

 

Figure 29: Local minima distribution in the EMtt - MJtt  subspace. 
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Figure 30: Local minima distribution in the EMtt - JStt  subspace. 

 

Figure 31: Local minima distribution in the MJtt - JStt  subspace. 
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One again big valley structures are easily identifiable. The previous figures also 

show (in red) the local optima corresponding to date of departure values close 

to -400 d: these local optima tend to distribute themselves over three 

dimensional curves on the transfer times subspace with similar objective 

function evaluation. Finally, the transfer trajectory and the V∆  features 

corresponding to the best solution found are now presented. 

 

Date of departure: 11/11/1996 

Earth–Mars transfer time: 257.87 d 

Mars-Jupiter transfer time: 906.93 d 

Jupiter-Saturn transfer time: 2918.8 d 

Table 9: Search space parameters. 

 

Overall V∆ : 8866.5 m/s 

IV∆ : 3282.5 m/s 

MGAV ,∆ : 5309.6 m/s 

JGAV ,∆  0.0043 m/s 

FV∆ : 274.41 m/s 

Table 10: Objective space parameters. 

 

Figure 32: Transfer trajectory corresponding to the best solution found. 
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3.5 Earth – Venus – Earth – Jupiter – Saturn (EVEJS) 
 

Once fixed the value of the discrete variable “sequence of planets” to 

EVEJS, the number of continuous variables which complete the search space is 

five: the date of departure from Earth, 0t , and the transfer times Earth–Venus, 

Venus– Earth, Earth–Jupiter and Jupiter–Saturn ( EVtt , VEtt , EJtt  and JStt  

respectively). The upper and lower bounds for the transfer time associated to 

the four linking arcs E-V, V-E, E-J and J-S have been set equal to 0.1 and 2 

times the associated Homann transfer time respectively. The resulting intervals 

are: 

 

[ ] [ ]dtttt U
EV

L
EV  291.83 ,59.14, =           [11] 

[ ] [ ]dtttttttt U
EV

L
EV

U
VE

L
VE   , , =            [12] 

[ ] [ ]dtttt U
EJ

L
EJ  1993.1 ,65.99 , =            [13] 

[ ] [ ]dtttt U
JS

L
JS  7300.4 ,02.365 , =           [14] 

 

Figure 33 compares the widths of the interval of variation associated with the 

five design variables. 
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Figure 33: Comparison between the widths of the intervals of variation in the search space. 

 

After generating the 1000 local minima, the mean distances of each 

solution to the others have been evaluated. By using the Reeves and Yamada 

methodology, Figure 34 shows the resulting structure of the objective function: 

the x-axis reports the normalized mean distance of each local optima, while the 

corresponding objective function values are indicated along the y-axis. 
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Figure 34: Objective function structure analysis for an EVEJS transfer. 

 

By analysing Figure 34, the objective function for an EVEJS transfer presents a 

big-valley structure. The mean closeness of most local optima tends to range 

between 0.22 and 0.4 times the hyper-diagonal magnitude that is between 

1634.1 d and 2971 d. In order to analyse the distribution of the local minima and 

verify the existence of a big valley structure, the search space is probed in more 

detail. Figure 35 shows the dates of departure (x-axis) and the objective 

function values (y-axis) corresponding to the identified local optima. 
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Figure 35: Local optima distribution over the date of departure design variable. 

 

In the EVEJS case, the tendency of local optima to gather in groups near 

fixed date of departure values is less recognizable. By analysing the synodic 

periods of the planetary systems, one can note that the synodic period of the 

Earth-Venus system (583 days) and that of the Earth-Jupiter system (398 days) 

are comparable, leading to frequencies on the quasi-periodicity of the objective 

function with respect to the design variables that interact with each other (note 

that in this case there are two transfer phase that involve the Earth-Venus 

system). However, the local optima near a fixed date tend to have similar 

objective function evaluations. Consider now the remaining design variables. 

Figures 36-39 show the local minima distribution over the four dimensional 

transfer times subspace, by mean of the four projections along the four axes. 
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Figure 36: Local minima distribution in the VEtt - EJtt - JStt  subspace. 

 

Figure 37: Local minima distribution in the EVtt - EJtt - JStt  subspace. 
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Figure 38: Local minima distribution in the EVtt - VEtt - JStt  subspace. 

 

Figure 39: Local minima distribution in the EVtt - VEtt - EJtt  subspace. 
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Big valley structures are again identifiable: the local optima corresponding to 

date of departure values near -200 d are shown (in red) in the previous figures; 

they tend to distribute themselves over three dimensional curves with similar 

objective function evaluations. The transfer trajectory and the V∆  features 

corresponding to the best solution found are now shown. 

 

Date of departure: 12/06/1999 

Earth–Venus transfer time: 160.07 d 

Venus-Earth transfer time: 278.59 d 

Earth-Jupiter transfer time: 1071.4 d 

Jupiter-Saturn transfer time: 5999.7 d 

Table 11: Search space parameters. 

 

 

Overall V∆ : 6245.2 m/s 

IV∆ : 3069.7 m/s 

VGAV ,∆ : 0.0208 m/s 

EGAV ,∆ : 2708.4 m/s 

JGAV ,∆ : 0.0398 m/s 

FV∆ : 467.00 m/s 

Table 12: Objective space parameters. 
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Figure 40: Transfer trajectory corresponding to the best solution found. 

 

Figure 40 shows the best solution, by measuring the goodness with respect to 

the objective function, corresponding to the overall V∆ . In fact this could lead to 

the identification of a long transfer time solution as in this case (approximately 

19 years travel). A careful analysis of the identified solutions however 

demonstrates that some of the local minima correspond to solutions with 

present shorter transfer times but more expensive energy requirements. For a 

better description and understanding of this phenomenon and its 

consequences, the next transfer case is presented. 
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3.6 Earth – Venus – Venus – Earth – Jupiter – Saturn (EVVEJS) 
 

Once fixed the value of the discrete variable “sequence of planets” to 

EVVEJS, the number of continuous variables which complete the search space 

is six: the date of departure from Earth, 0t , and the transfer times Earth–Venus, 

Venus–Venus, Venus–Earth, Earth–Jupiter and Jupiter–Saturn ( EVtt , VVtt , 

VEtt , EJtt  and JStt  respectively). By indicating H as the Homann transfer time 

corresponding to the four linking arcs E-V, V-E, E-J and J-S and as T the period 

of Venus’ orbit, the upper and lower bounds for the transfer times variables 

have been set to: 

 

[ ] [ ] [ ]dHtttt U
EV

L
EV  291.83 ,59.142 ,1.0 , ==          [15] 

[ ] [ ] [ ]dTtttt U
VV

L
VV  92.448 ,23.112 ,1.0 , ==          [16] 

[ ] [ ] [ ]dHtttt U
VE

L
VE  92.145 ,592.141 ,1.0 , ==          [17] 

[ ] [ ] [ ]dHtttt U
EJ

L
EJ  996.54 ,65.991 ,1.0 , ==          [18] 

[ ] [ ] [ ]dHtttt U
JS

L
JS  3650.2 ,02.3651 ,1.0 , ==          [19] 

 

Figure 41 compares the widths of the interval of variation associated to the six 

design variables. 
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Figure 41: Comparison between the widths of the intervals of variation in the search space. 

 

After generating the 1000 local minima, the mean distances of each solution to 

the others have been evaluated. By using the Reeves and Yamada 

methodology, Figure 42 shows the resulting structure of the objective function: 

the x-axis reports the normalized mean distance of each local optima, while the 

corresponding objective function values are indicated along the y-axis. 
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Figure 42: Objective function structure analysis for an EVVEJS transfer. 

 

The objective function for an EVVEJS transfer holds again a big-valley 

structure. The mean closeness of most local optima tends to range between 

0.25 and 0.4 times the hyper-diagonal magnitude, corresponding to a value 

between 975.1 d and 1560.2 d. In order to analyse the distribution of the local 

minima and verify the existence of a big valley structure, the search space is 

probed further. The local minima distribution over the search space is now 

difficult to show, due to the six dimensions and the search space homogeneity 

with respect to the design variables. Figure 43 shows the dates of departure (x-

axis) and the objective function values (y-axis) corresponding to the identified 

local optima, while Figure 44-46 illustrate the local minima distribution over the 

transfer times subspace. 
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Figure 43: Local optima distribution over the date of departure design variable. 

 

Figure 44: Local minima distribution in the EVtt - VVtt - VEtt  subspace. 
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Figure 45: Local minima distribution in the VVtt - VEtt - EJtt  subspace. 

 

Figure 46: Local minima distribution in the VEtt - EJtt - JStt  subspace. 
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Big valley structures are now identifiable with difficulty (we hypothesize that 

more than 1000 local minima are necessary to find such a structure in this six 

dimensional case), but nonetheless exist. These structures have been found in 

this case particularly at the boundaries of the search space. The transfer 

trajectory and the V∆  features corresponding to the best solution found are 

presented now in Figure 47. 

 

Best solution 

 

Date of departure: 20/11/1997 

Earth–Venus transfer time: 179.14 d 

Venus–Venus transfer time : 406.53 d 

Venus–Earth transfer time: 53.18 d 

Earth–Jupiter transfer time: 758.33 d 

Jupiter–Saturn transfer time: 3650.2 d 

 
Table 13: Search space parameters. 

 

Overall V∆ : 6368.2 m/s 

IV∆ : 3888.0 m/s 

1st VGAV ,∆ : 2032.7 m/s 

2nd VGAV ,∆ : 0.0327 m/s 

EGAV ,∆ : 0.0057 m/s 

JGAV ,∆  0.0078 m/s 

FV∆ : 447.40 m/s 

 
Table 14: Objective space parameters. 
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Figure 47: Transfer trajectory corresponding to the best solution found. 

 

The best solution is obtained by measuring the goodness with respect to the 

objective function, the overall V∆ . In fact this could lead to the identification of 

long transfer time solution, as in this case. Let us consider now an alternative 

solution that has been found between the identified local minima.  

 

Alternative solution 
 

Date of departure: 25/10/1997 

Earth–Venus transfer time: 206.38 d 

Venus–Venus transfer time: 401.21 d 

Venus–Earth transfer time: 54.52 d 

Earth–Jupiter transfer time: 548.84 d 

Jupiter–Saturn transfer time: 1747.90 d 

Table 16: Solution space parameters. 
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Overall V∆ : 7154.6 m/s 

IV∆ : 5756.2 m/s 

1st VGAV ,∆ : 883.54 m/s 

2nd VGAV ,∆ : 0.0283 m/s 

EGAV ,∆ : 2.3098 m/s 

JGAV ,∆  0.0056 m/s 

FV∆ : 512.52 m/s 

Table 17: Objective space parameters. 

 

Figure 48: Transfer trajectory corresponding to the alternative solution. 

 

A comparison of the best solution with respect to this alternative solution 

shows that, although there are little differences in the transfer times E-V, V-V, 

V-E and E-J, the J-S transfer time of the best solution is twice that of the 

alternative solution. This leads to an alternative solution that is just a little bit 

more energetically expensive than the best solution (about 800 m/s) but with a 

much shorter travel time of approximately 5.7 years, thus identifying a different 
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solution family. In fact, a solution similar to the alternative one has been 

adopted in the Cassini-Huygens mission. This is due to the fact that in real 

problems the overall V∆  often is not the unique criterion used for the choice of 

the transfer trajectory: the transfer time is, for example an important parameter. 

The previous consideration leads to an important observation: in order to avoid 

the loss of good solutions one alternatively has to: 

 

 Use global multi-objective optimisation techniques (pareto optimality). 

 Build a proper objective function mathematical model, by including as 

many terms as the number of the objective function to be considered. 

 Use global optimisation techniques that allow maintaining subgroups of 

local minima solutions, each one having different characteristics and then 

identifying different solution families. 

 

Note that, while in the first two cases one has to clearly know all the objective 

functions to be optimised before starting the optimisation process, the last case 

has the advantage of identifying different solution families with different 

features, so permitting a more flexible choice on the solution to be adopted. 

This constitutes an important subject for further studies. Similar results have 

been obtained [Gurfil and Kasdin, 2002] in case of orbits characterization in 3D 

elliptic restricted three-body problem. 

 

Finally let us consider the comparison between the alternative solution 

and the Cassini-Huygens transfer solution. Figure 49 shows the Cassini-

Huygens transfer trajectory. 
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Figure 49: Cassini-Huygens transfer trajectory. 

 

The alternative solution trajectory shown in Figure 49, can be seen to be very 

similar to the Cassini-Huygens trajectory. By analysing the V∆  requirements 

and by excluding the IV∆ , the following table compares the two solutions. 

 

 Alternative solution Cassini-Huygens 

(Overall V∆ ) - IV∆  1398.4 m/s about 2000 m/s 

Table 18: Solution comparision. 

 

The V∆  requirements can be seen to be quite different: the alternative solution 

resulting to be close to 600 m/s cheaper than the Cassini-Huygens mission. But 

one has also to compare the IV∆  requirements. The IV∆  requirement 

corresponding to the alternative solution is equal to 5756.2 m/s. By considering 

the same launcher as the Cassini-Huygens mission, Figure 0 shows the C3 

performance of the Titan IV / Centaur. 
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Figure 50: Titan IV-Centaur launcher: performance for Escape Missions. 

 

The C3 requirement, corresponding to a IV∆  of 5756.2 m/s, is 33.13 km2/s2, 

which leads to a maximum launch mass of about 4655 kg. However the 

Cassini-Huygens launch mass was approximately 5600 kg; consequently the 

alternative solution would not be admissible for such a spacecraft. It is also 

worth noting that no Deep Space Manoeuvres have been considered here, 

while the Cassini-Huygens mission executed a 500 m/s DSM Venus targeting 

manoeuvre on the 3rd December 1998: this could lead to a better solution than 

the here analysed alternative one. 

 

Table 19 summarizes the problem characteristics for multiple gravity 

assist interplanetary missions. 
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Problem  
Dimension 

Constraints Search Space 
Objective  
Function 

T-periodicity

Yes 
Box 

constraints 

nD ℜ∈ (fixed P
r

) 
 or 

nnD ℵ×ℜ∈  

ℜ∈f  almost 

everywhere C2, 

locally discontinuous 

in a countable 

number limited sets 

or pf ℜ∈  in case of 

multiobjective 

optimisation. 

 

Table 19: Problem characteristics for MGA missions. 

 

Note that analogies of multiple gravity assist interplanetary missions with 

either the Hamiltonian circuit problem or the Travelling Salesman problems 

could be stated: in fact the optimisation of MGA interplanetary missions can be 

associated to the search of an optimum path which links two planets by visiting 

a finite set of other planets where the gravity assist manoeuvres are performed. 

The planets could be then considered as analogous to the cities in the 

Travelling Salesman problem. However, the positions of the cities, or rather 

planets, in the case of MGA interplanetary missions are not fixed and the costs 

of each link will vary depending on those positions. By highlighting that both 

Hamiltonian circuit problem and Travelling Salesman problem have been 

demonstrated to be NP-Hard, this analogy could assist in demonstrating that 

the MGA interplanetary mission problem is also NP-Hard. This could lead to 

better analysis in the future following this proof. 
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3.7 MGA With Deep Space Manoeuvres 
 

The consequences of using deep space manoeuvres instead of GAV∆  

corrective terms on the objective function structure are here analysed. For the 

sake of a clearer analysis, the case of an Earth-Saturn transfer trajectory with a 

Jupiter gravity assist manoeuvre has been considered. The GAV∆  corrective 

term has been removed and a deep space manoeuvre inserted during the 

Jupiter-Saturn transfer phase. As a consequence of such a decision, the Earth-

Jupiter transfer trajectory is propagated through the hyperbolic gravity assist 

manoeuvre into the Jupiter-Saturn transfer phase until the application of the 

deep space manoeuvre, which puts the spacecraft in the final Lambert’s 

transfer trajectory to Saturn. The plane of the gravity assist manoeuvre and the 

pericentre of the hyperbole constitute new design variables. The resulting 

design variables are: 

 

 The date of departure from Earth, 0t  

 The transfer time from Earth to Jupiter, EJtt  

 The plane of the hyperbole (defined by an angular variable ϑ  around the 

input relative velocity to Jupiter) 

 The pericentre of the hyperbole, pr  

 The transfer time from Jupiter to Saturn, JStt  

 The percentage of JStt  that is spent from Jupiter until the deep space 

manoeuvre, α . 

 

Note that in the previous case the number of the design variables was three. 

The inclusion of a deep space manoeuvre increases the design variables to six. 

The interval of variation has been set equal to that of the previous cases. The 

upper and lower bounds for the transfer times associated to the two linking arcs 

E-J and J-S have set equal again to 0.1 and 2 times the associated Homann 

transfer time respectively. The resulting intervals being: 
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[ ] [ ]dtttt U
EJ

L
EJ  1993.1 ,65.99 , =            [20] 

[ ] [ ]dtttttt JS
U
JS

L
JS  7300.4 ,02.365 , =           [21] 

 

The minimum and maximum values for the pericentre of the hyperbole have 

been set to 1.1 the Jupiter mean radius and the Jupiter sphere of influence 

radius respectively, are: 

 

[ ] [ ]mrr U
p

L
p  104.82 ,1069.7 , 107 ⋅⋅=           [22] 

 

While the upper and lower bounds for the remaining design variables are: 

 

[ ] [ ]radUL   , , ππϑϑ −=            [23] 

[ ] [ ]radUL  1 ,0 , =αα             [24] 

 

In order to avoid the problem of high differences in the interval dimensions 

corresponding to each design variables, a normalization process has been 

implemented: the resulting upper and lower bounds are therefore [ ]1 ,0  for all of 

the design variables. After generating the 100 local minima, the mean distances 

of each solution from each other have been evaluated. By using the Reeves 

and Yamada methodology, Figure 51 shows the resulting objective function 

structure, while Figure 52 presents the distribution of the local optima. 
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Figure 51: Objective function structure for an EJS transfer with a deep space manoeuvre. 

 

Figure 52: Local optima distribution over the date of departure design variable. 
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The big valley structure is here less identifiable: the most important difference 

with respect to the previous case can be seen in the diversification of the local 

minima over the objective function values. This feature is better illustrated in 

Figure 53, which shows that, although the local minima gather in groups near 

fixed values of the date of departure at regular intervals, which are again 

associable to the synodic period of the Earth-Jupiter planetary system, the 

objective function evaluations are not similar in each group. In order to analyse 

the reasons for such a result, let us consider the best identified solution. 

 

Date of departure: 02/07/1999 (-181 d [MJD]) 

Earth–Jupiter transfer time: 911.65 d 

ϑ : 0.074 rad  

pr : 1.7029 910⋅  m 

Jupiter-Saturn transfer time: 4429.2 d 

α : 0.36 

Table 20: Search space parameters. 

 

Overall V∆ : 9441.1 m/s 

IV∆ : 9009.8 m/s 

DSMV∆ : 0.888 m/s 

FV∆ : 430.41 m/s 

Table 21: Objective space parameters. 
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Figure 53: Transfer trajectory corresponding to the best solution found. 

 

We now fix the value of the date of departure, as well as the values of ϑ , Pr  

and α , to that of the best solution. The objective function is plotted with respect 

to the other design variables, setting the intervals on the Earth-Jupiter transfer 

time equal to [ ]1000 ,600 d and on the Jupiter-Saturn transfer time equal to 

[ ]7300 ,1000  d. The resulting objective function values are showed in Figure 54. 
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Figure 54: The overall V∆  as a function of the transfer times at a fixed date of departure. 

 

The comparison of Figure 54 with Figure 18 shows that the big valley structure 

in the JSEJ tttt −  subspace is absent in this case. This result is also illustrated in 

Figure 55 and Figure 56, which shows the ( IV∆ + FV∆ ) and the DSMV∆  objective 

function terms respectively. 

 



  

 69

 

Figure 55: ( FI VV ∆+∆ )as a function of the transfer times at a fixed date of departure. 

 

Figure 56: DSMV∆  as a function of the transfer times at a fixed date of departure. 
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Another important observation comes from the comparison of Figure 54 with 

Figure 18: the application of the deep space manoeuvre in the Jupiter-Saturn 

transfer phase allows the mathematical model to avoid the singularities of 

Battin’s algorithm, which is here used for the Lambert’s problem solution, 

corresponding to 180 degrees Jupiter-Saturn transfer angles. 
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4. LOW THRUST TRANSFERS 
 

As an example of a low thrust interplanetary mission, let us consider a transfer 

from Earth to Mars. 

 
4.1 Problem Formulation 

 

In order to assess the objective function, the following mathematical models and 

methods have been used: 

 

 Restricted 2-bodies dynamical model 

 Three dimensional motion 

 Analytical ephemeris model (generated by time polynomial series of the 

orbital elements) 

 Low thrust interplanetary transfer (constant thrust level and variable 

direction) 

 Forward propagation of initial conditions and thrust control law  

 

The thrust level has been supposed to be constant throughout the whole 

transfer and bounded in intervals corresponding to real thrusters values. The 

thrust direction during the transfer trajectory is however a design variable and is 

evaluated by means of azimuth and elevation angles defined in the local 

horizontal plane. To avoid singularities, the integration of motion has been 

processed by means of equinoctial elements. The spacecraft initial position 

coincides with that of the Earth at the date of departure, while the escape 

velocity from Earth has been imposed to have the same direction as the Earth 

velocity vector (its magnitude has been considered as a design variable). 

The objective function is assumed to be the sum of several terms:  

 

 The magnitude of the spacecraft relative position with respect to Mars at 

the end of the integration of motion, FR : this term has been included in 

order to reach the planet at the end of the transfer orbit. This can be 

viewed as an inclusion of a constraint term in the objective function. The 
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planet is considered reached when the spacecraft final position lies into 

the sphere of influence of Mars. 

 The magnitude of the spacecraft relative velocity with respect to Mars at 

the end of the integration of motion, Fv : this term has been included in 

order to reach the planet at the end of the transfer orbit with a low 

relative velocity and to avoid the necessity of consequent impulsive 

manoeuvres. Values of Fv  smaller than 100 m/s have been considered 

as adequate. 

 The propellant mass that is required by the thrusters for the 

interplanetary transfer, propm . Adequate values of propm  have been 

considered to be smaller than 200 kg. 

 

In order to evaluate the propm  term, typical electric propulsion systems 

performances have been used. The interval of variation of the thrust level has 

been chosen to be [ ]168.0 ,0  N, while the specific impulse has been fixed to 

3000 s. The spacecraft launch mass has been set to 1000 kg. The resulting 

objective function analytical form has been taken as: 

 

propFF mvRobj ⋅+⋅+⋅= 321 ααα           [25] 

 

where the values of the weights 1α , 2α  and 3α  have been fixed in order to 

make the order of magnitude of obj , corresponding to good FR , Fv  and propm  

values, equal to 10. 

 

Note that the use of a weighted sum of several terms for the objective 

function assessment has been considered in order to take into account the 

features of common global optimisation algorithms (which will be used in the 

second part of this work). As this concerns the constraints handling 

methodologies, most of the existing global optimisation algorithms tend to 

include the constraints terms in the objective function by means of penalty 

terms; the weighted sum can be seen as a way of defining such penalty terms. 
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4.2 Objective Function Structure 
 

As a consequence of the mathematical models and methods used for the 

objective function assessment, the search space has been characterized by the 

following design variables: 

 

 Date of departure from Earth, 0t  

 Transfer time, tt  

 Magnitude of the escape velocity from Earth, Ev ,∞  

 Thrust level, u  

 Thrust azimuth and elevation over the transfer trajectory 

 

The thrust azimuth and elevation, respectively, az  and el, over the transfer 

trajectory have been modelled by means of a linear interpolation of their values 

corresponding to six points on the trajectory, which are uniformly distributed in 

the time domain (including initial and final time). The previous choices make the 

number of the design variables equal to 16. All the previous design variables 

have a continuous characterization over the search space. 

 

Upper and lower bounds on the design variables are considered. The 

interval of variation has been imposed in order to include a period of 4 years 

starting from 1st January 2000. The upper and lower bounds for the remaining 

design variables are listed in the following: 

 

[ ]dtt  300 ,150=             [26] 

[ ] smv E / 3000 ,0, =∞                 [27] 

[ ]Nu  168.0 ,1.0=             [28] 

[ ]ππ ,−=iaz , 6,...,1=i            [29] 

[ ]2/,2/ ππ−=iel , 6,...,1=i            [30] 
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In order to avoid the problem of high differences in the interval 

dimensions corresponding to each design variables, a normalization process 

has been implemented: the resulting upper and lower bounds are then [ ]1 ,0  for 

all of the design variables. 

 

As for the previous cases, the objective function structure analysis for a 

low thrust interplanetary transfer starts with the Reeves and Yamada 

methodology: 100 local minima have been found with a random start search 

(with uniformly distributed random start points) followed by an SQP optimisation 

process; the mean distances of each solution from each other is then assessed 

and compared to the corresponding goodness; consequently, the values of the 

design variables corresponding to the best local minimum has been used in 

order to analyse the convexity of the objective function. By using the Reeves 

and Yamada methodology, Figure 57 shows the resulting local minima 

distribution: the x-axis reports the normalized mean distance of each local 

optima, while the corresponding objective function values are indicated along 

the y-axis. 

 

Figure 57: Objective function structure analysis for a low thrust interplanetary mission. 
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The objective function for a low thrust interplanetary mission shows again 

a big-valley structure. The mean closeness of most local optima tends to range 

between 0.3 and 0.5 times the hyper-diagonal magnitude.  Before analysing the 

distribution of the local minima and verifying the existence of a big valley 

structure, let us consider the best local minimum found. The main features are 

listed below, together with the resulting transfer trajectory, Figure 58. 

 

Best solution 

 

Date of departure: 12/07/2001 

Transfer time: 281.5 d 

Escape velocity from Earth: 2730.5 m/s 

Thrust level: 0.151 N 

Table 22: Search space parameters. 

 

 

Figure 58: Thrust components in the orbital reference frame. 
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Objective space 

obj: 6.37 

FR : 3.19 610⋅  m 

Fv : 0.88 m/s 

propm : 124.59 kg 

Table 23: Objective space parameters. 

 

 

Figure 59: Transfer trajectory of the best solution in the ecliptic plane. 

 

Let us now the shape of the objective function over the search domain, by 

considering two significant design variables at a time and fixing the values of 

the remaining design variables to those of the previous best identified solution. 

Figure 60 shows the resulting objective function values with respect to the date 

of departure and the transfer time. 
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Figure 60: Objective function values with respect to the date of departure and the transfer time. 

 

We can see that the objective function is non-convex in the considered search 

space. Such a feature is again mainly due to the trend of the objective function 

with respect to the date of departure, while convex features seems to exists with 

respect to the transfer time. A better illustration of this aspect can be seen in 

Figure 61, where the objective function is plotted with respect to the date of 

departure by fixing the transfer time to that of the best identified solution. 
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Figure 61: Objective function values with respect to the date of departure and the transfer time. 

 

An important observation can be done by looking at the evolution of the 

objective function values in Figure 62. Although we have the presence of 

several basins of attraction, a certain regularity can be recognized: a quasi 

periodicity feature with a period of approximately 765 days, which is again 

amenable to the synodic period of the Earth-Mars transfer (780 days). Figure 60 

and Figure 61 allow us to identify the existence of a big-valley structure, the 

existence of which is again associable to the dependence on the date of 

departure. One can object that this feature has been found by fixing the values 

of the remaining design variables, but in fact it can be also identified by 

analysing the distribution of the generated local minima in the ttt −0  subspace 

as shown in Figure 62. 
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Figure 62: Distribution of the generated local minima in the ttt −0  subspace. 

 

Let us consider now the shape of each objective function term over the same 

search space, as illustrated in Figure 63-65. 

 

Figure 63: 777.5/ eRF  values in the ttt −0  subspace. 
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Figure 64: 10/Fv  values in the ttt −0  subspace. 

 

Figure 65: 20/propm  values in the ttt −0  subspace. 
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The first thing to note is that, while the first two objective function terms show 

similar non-convexity features as the overall objective function, the propellant 

mass is in fact monotone with respect the transfer time and does not depend on 

the 0t  values. This result can be easily justified by considering the equation of 

the propellant mass consumption: 

 

∫ ⋅
=

tt

sp
prop dt

gI
um

0 0

            [31] 

 

By noting that the integrand is a positive quantity, propm  can be recognized as a 

monotonic function of the transfer time tt and the mean value of u. In particular, 

in the model we are considering, the thrust level is constant during the whole 

transfer phase and coincides with its mean value; the consequence of this is 

therefore that propm  is monotonic with respect to the u design variable. The 

consequences of the previous results will be better addressed later, by 

analysing the structure of the objective function with respect to tt and u. 

Moreover, Figure 63, Figure 64 and Figure 65 show the importance of the 

weights of the weighted sum which constitutes the objective function: in fact 

parameters 1α , 2α  and 3α  deeply affect the shape of the objective function over 

the search domain and the consequent position of the global optimum, thus 

influencing the global search. Note that several global optimisation processes 

actually tend to have such a weighted sum in order to either handle multi-

objective optimisation problems or include constraints terms in the objective 

function. As an example of such an influence, let us consider a propellant mass 

term with a weight 3α  = 1000. The resulting objective function values over the 

ttt −0  subspace can be seen in Figure 66. 
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Figure 66: Objective function values with respect to the date of departure and the transfer time. 

 

Figure 66 clearly shows that the structure of the objective function changes with 

respect to the weights and this has to be considered as a general result every 

time a weighted sum is used in the assessment of the objective function. Let us 

now consider the first term of the objective function as a constraint term: 

suppose the admissible solutions to be those where the spacecraft final position 

lies into the Mars sphere of influence. The resulting optimisation problem can 

therefore be summarised as: 

 

Minimize: propF mvobj ⋅+⋅= 32 αα  subject to: mRF
81077.5 ⋅<  

 

Figure 67 illustrates the consequent admissible region near the best solution, 

while Figure 68 and Figure 69 show the second and third objective function 

terms values. 
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Figure 67: Admissible region near the best solution. 
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Figure 68: 10/Fv  values over the admissible region near the best solution. 

 

Figure 69: 20/propm  values over the admissible region near the best solution. 
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It is worth noting that the axes intervals have been strictly reduced and the 

admissible region near the best identified solution, by varying only 0t and tt, is in 

fact really narrow; just one day in 0t  and five days in tt. In the admissible region 

the remaining objective function seems to show convexity features with respect 

to 0t  and tt. Several constraints handling methodologies consider the 

introduction of penalty terms in different ways in the case of non admissible 

solutions. It is important to note that such methodologies deeply affect the 

structure of the objective function, sometimes introducing discontinuities in 

either objective function values or derivatives, corresponding to the admissible 

region boundaries. Figure 70 shows the objective function values with respect 

to the thrust level, u, and the escape velocity from Earth, Ev ,∞ , while Figure 71, 

Figure 72 and Figure 73 illustrate each objective function term. 

 

Figure 70: Objective function values with respect to the escape velocity from Earth and thrust. 
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Figure 71: 777.5/ eRF  values with respect to the escape velocity from Earth and the thrust . 

 

Figure 72: 10/Fv  values with respect to the escape velocity from Earth and the thrust. 
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Figure 73: 20/propm  values with respect to the escape velocity from Earth and the thrust. 

 

Figure 70 shows the convexity features of the objective function with respect to 

the escape velocity from Earth and the thrust level. In particular, monotonic 

features are again identifiable from Figure 73 with respect to the thrust level: the 

reason of such a feature is again associable to the propellant mass equation as 

explaneed earlier. Figure 74 illustrates the admissible region near the best 

solution as the only part of the search space where mRF  1077.5 8⋅< . 

 



  

 88

 

Figure 74: Admissible region near the best solution in the uv E −inf,  subspace. 

 

Similar consideration as those made in the previous cases are here still valid. In 

particular the admissible region is again very narrow and has regular 

boundaries. 

 

The objective function shape with respect to the azimuth and elevation at 

the first and final sample points is now analysed. The results in case of 

considering the remaining sample points have been shown to be similar. 

Figure75 shows the objective function values with respect to the azimuth and 

elevation at the first sample point (remember that the thrust direction along the 

whole transfer trajectory is given by a linear interpolation of six uniformly 

distributed time sample points), while Figure 76 and Figure 77 illustrate each 

objective function term. The propellant mass term has been omitted because 

only dependent on the transfer time and the thrust level and then constant in 

this case. Figure 78 illustrates the admissible region near the best solution as 

the only part of the search space where mRF  1077.5 8⋅< . 
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Figure 75: Objective function with respect to the azimuth and elevation at first sampled point. 

 

Figure 76: 777.5/ eRF  values with respect to the azimuth and elevation at first sampled point. 



  

 90

 

Figure 77: 10/Fv  values with respect to the azimuth and elevation at first sampled point. 

 

Figure 78: Admissible region near the best solution in the 11 elaz −  subspace. 
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Figure 79 shows the objective function values with respect to the azimuth 

and elevation at the sixth sample point, while Figure 80 and Figure 81 illustrate 

each objective function term. The propellant mass term has been again omitted 

because only dependent on the transfer time and the thrust level and therefore 

constant. Figure 82 illustrates the admissible region near the best identified 

solution as the only part of the search space where mRF  1077.5 8⋅< . 

 

 

Figure 79: Objective function with respect to the azimuth and elevation at sixth sampled point. 
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Figure 80: 777.5/ eRF  values with respect to the azimuth and elevation at sixth sampled point. 

 

Figure 81: 10/Fv  values with respect to the azimuth and elevation at the sixth sampled point. 



  

 93

 

Figure 82: Admissible region near the best solution in the 66 elaz −  subspace. 

 

We now analyse in order to better understand the shape of the third term over 

the thrust level and the transfer time subspace; the only design variables that 

directly affect the propellant mass. In the case of constant thrust level, Equation 

31 yields: 

 

0gI
ttum

sp
prop ⋅

⋅
=             [32] 

 

The previous equation shows that the propellant mass is monotonic with 

respect to the thrust level and the transfer time. This can be seen from Figure 

83 where the propellant mass is plotted as a function of u and tt. Similarly to the 

previous cases, Figures 84 shows the shape of the overall objective function in 

the u – tt subspace, while Figure Figures 85-87 illustrate the values of each 

term. 
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Figure 83: Propellant mass in the u – tt subspace. 

 

Figure 84: Objective function values with respect to the thrust level and the transfer time. 
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Figure 85: 777.5/ eRF  values with respect to the thrust level and the transfer time. 

 
Figure 86: 10/Fv  values with respect to the thrust level and the transfer time. 
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Figure 87: 20/propm  values with respect to the thrust level and the transfer time. 

 

Let us now consider the final relative position with respect to Mars as a 

constraint. Figure 88 illustrates the admissible region near the best identified 

solution as the only part of the search space where mRF  1077.5 8⋅< , while 

Figure 89 shows the values of the remaining objective function. 
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Figure 88: mRF
81077.5 ⋅−  and the admissible region. 

 

Figure 89: 20/10/ propF mv +  over the admissible region. 
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The remaining objective function shows convexity features over the admissible 

region. Now, note that this observation has a general validity as it is related to 

the propellant mass term. Finally let us consider the second term of the 

objective function as a further constraint, imposing a maximum final relative 

velocity with respect to Mars equal to 50 m/s. The resulting optimisation 

problem is therefore summarised as: 

 

Minimize: propmobj =  subject to: mRF
81077.5 ⋅<  and smvF / 50<  

 

Figure 90 consequently shows the resulting objective function values (that is the 

values of only the propellant mass) over the admissible search space. 

 

 

Figure 90: propm  in the admissible region. 
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Note that by considering the first two objective function terms as constraints in 

the optimisation process, the only design variables that affect the values of the 

objective function are the thrust level, u, and the transfer time, tt, while the 

remaining design variables only affect the shape and position of the admissible 

region in the u – tt space. In this case the values of the remaining design 

variables have been fixed to those corresponding to the best solution, however 

this has not been proven to be a global optimum. By varying those values one 

can completely identify the whole admissible region in the u – tt subspace. 

Once solved the problem of characterizing the whole admissible region, which 

is certainly a very complex problem in itself, one can find the global optimum by 

analysing the boundaries of such a region, due to the monotonic features of the 

remaining objective function. 

 

Problem 

Dimension 
Constraints 

Search 

Space 
Objective function T-periodicity 

N 
Box 

constraints 
nD ℜ∈  

ℜ∈f  almost everywhere 

C2, locally discontinuous in a 

countable number limited sets 

Yes 

Table 24: Summary of problem characteristics. 

 

 Finally, note that if we can demonstrate that the A-to-B low thrust transfer with 

fixed A and B is not NP-hard, meaning that the solution for the controls is 

unique and easy to find, then the problem is similar to the 2-impulse direct 

transfer and a polynomial time optimisation algorithm can be developed. This 

possibility will be accurately analysed in the future. 
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5. LUNAR WEAK STABILITY BOUNDARY TRANSFERS 
 
 

The possibility of designing low energy lunar space trajectory exploiting more 

than one gravitational attraction is now investigated. In particular, the framework 

of the Restricted Three-Body Problem (R3BP) is here analysed and Lunar 

transfers are studied which take advantage of the dynamic of the corresponding 

libration points [Topputo at al., 2004]. 

 

5.1 Problem Formulation 
 

In order to assess the objective function, the following mathematical models and 

methods have been used: 

 

 Restricted three-body dynamical model 

 Two dimensional motion (synodic dimensionless reference frame) 

 Combination of invariant manifolds and Lambert’s three-body arcs 

 Impulsive manoeuvres (i.e. instantaneous variations in velocity) for 

linking the three-body arcs 

 

The interior stable manifold associated to the libration point L1 in the Earth-

Moon system, S
LW 1 , is propagated backward for an interval of time Wt . 

Corresponding to S
LW 1 , the exterior unstable manifold, U

LW 1 , can be evaluated. 

The manifolds S
LW 1  and U

LW 1  constitute in fact a transit orbit between the 

forbidden region through the corresponding thin transit region. As a 

consequence, if a spacecraft lies on the stable manifold S
LW 1 , the natural 

evolution of the system will bring it from the region close to the Earth to the 

region close to the Moon. However, the backward integration of the manifold 
S

LW 1  for several Moon’s periods has shown that this manifold does not reach 

low distances from Earth: in particular, the minimum Earth distance seems to 

be constant and almost equal to 0.35 Earth-Moon unit distances. To solve this 

problem, starting from a circular orbit around the Earth, an arc resulting from 
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the solution of a Lambert’s three-body problem is used for targeting a point on 

the manifold S
LW 1 . It is worth noting that such an approach leads to a final 

unstable orbit around the Moon with mean altitude equal to 21600 km, which 

can be further stabilized with additional manoeuvres. Data corresponding to the 

considered initial circular orbit around the Earth are reported in Table 25. 

 

Initial circular orbit 

Altitude: 200 km 

Inclination: 0 deg 

Table 25: Initial conditions. 

 

As a consequence of the previously described formulation, a first impulsive 

manoeuvre, 1V∆ , is used to put the spacecraft in the Lambert’s three-body arc 

from the initial circular orbit around the Earth. A second impulsive 

manoeuvre, 2V∆ , is performed to inject the spacecraft on the capture trajectory 
S

LW 1 . The overall V∆ , which is necessary for performing the Lunar transfer and 

which has been considered as objective function for the optimisation processes, 

can be evaluated as follows: 21 VVV ∆+∆=∆  

 
As a consequence of the mathematical models and methods used for the 

objective function assessment, the search space is characterized by the 

following design variables: 

 

 The angle identifying the starting point over the initial circular orbit (θ ) 

 The time of the backward propagation of the stable manifold S
LW 1  from 

the libration point L1, whose final point identify the target of the Lambert’s 

three-body arc ( Wt ) 

 The transfer time corresponding to the Lambert’s three-body arc from the 

initial circular orbit to the target point on the stable manifold S
LW 1  

previously identified ( Lt ) 
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The previous choices make the number of the design variables equal to 3. All 

the previous design variables have a continuous characterization over the 

search space. 

 
Upper and lower bounds on the design variables are considered. The 

imposed intervals of variation are: 

 

[ ] [ ]deg,, UBLB 3600=θθ  

[ ] [ ]3,1.0, =UB
L

LB
L tt  d            [33] 

[ ] [ ]150,5, =UB
W

LB
W tt  d 

 

In order to avoid the problem of high differences in the interval dimensions 

corresponding to each design variables, a normalization process has been 

implemented which renders the search space a unit 3-dimensional hypercube. 

 

5.2 Objective Function Structure Analysis 
 

As for the previous mission analysis test cases, the objective function 

structure analysis for a Lunar transfer using libration points starts with the 

Reeves and Yamada methodology: 100 local minima have been found with a 

random start search (with uniformly distributed random start points) followed by 

an SQP optimization process; the mean distances of each solution to each 

other is then assessed and compared to the corresponding goodness; 

consequently, the values of the design variables corresponding to the best local 

minimum has been used in order to analyse the convexity of the objective 

function. By using the Reeves and Yamada’s methodology, Figure 91 shows 

the resulting local minima distribution: the x-axis reports the normalized mean 

distance of each local optima, while the corresponding objective function values 

are indicated along the y-axis. 
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Figure 91: Objective function structure analysis for Lunar transfers using libration points. 

 

As already noted in previous mission analysis classes, the objective function for 

a Lunar transfer using libration points shows a big-valley structure. The mean 

closeness of most local optima tends to range between 0.2 and 0.4 times the 

hyper-diagonal magnitude. The features of the best found local minimum are 

reported in Table 26 and Table 27, together with the illustration of the resulting 

transfer trajectory in a dimensionless Earth-Moon rotating frame, Figure 92. 

 

Search space 

θ : 70.835 deg 

Lt : 1.273 d 

Wt : 107.670 d 

Table 26: Best identified solution: search space. 
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Objective space 

V∆ : 3080.767 m/s 

1V∆ : 3080.756 m/s 

2V∆ : 0.011 m/s 

Table 27: Best identified solution: objective function space. 

 

Figure 92: Best known solution: trajectory representation in the dimensionless Earth-Moon 
rotating frame. 

 

Let us now analyse the shape of the objective function over the search domain, 

by considering two significant design variables at time and fixing the values of 

the remaining design variables to those of the previous best identified solution. 

 

 

 

 

 



  

 105

Starting angle (θ) – Lambert’s three body arc transfer time (tL) 
 

Figure 93 shows the resulting objective function values with respect to angle 

identifying the starting point over the initial circular orbit (θ ) and the transfer 

time corresponding to the Lambert’s three-body arc from the initial circular orbit 

to the target point on the stable manifold S
LW 1  ( Lt ). 

 

Figure 93: Objective function values with respect to θ and tL. 

 

The shape of the objective function illustrated in Figure 93 shows 

important discontinuities. The reason of such irregularity is related to the 

mathematical model used for the objective function evaluation. In particular, as 

stated above the mathematical model here analysed involves the solution of a 

Lambert’s three body problem; the solution of such a problem is carried out by 

means of a shooting method which try to link the initial and final desired states 

with a three-body trajectory by opportunely modifying the initial conditions 

through several iterations until either a certain tolerance is satisfied or a 

maximum number of iterations is reached. In case the algorithm implementing 
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the shooting method does not converge to a solution within the considered 

tolerance before the maximum number of iterations is reached, it returns output 

values that fix the objective function value to a relatively high constant penalty 

value. This is not an efficient approach, which eliminates objective function 

gradients in particular regions of the search space and high discontinuities on 

the boundaries of such regions. Anyway, it is worth noting that it is still quite 

used in practical problem, although it could make ineffective the global and local 

search. As a consequence, the red flat region in Figure 93 corresponds in fact 

to such non-converging solutions. On the contrary, this situation does not hold 

in case of the apparently flat blue region in the same figure: Figue 94 reports a 

close up of the same function where non converging points have not been 

considered. 

 

Figure 94: Objective function values with respect to θ and tL: close up of Figure 93 (the red 
point is the best identified solution). 

 

Figure 94 shows that, by omitting the non converging solutions, the 

objective function has quite regular structure on the θ - tL plane, whit monotonic 

feature in fact. The red point in figure represents the best identified solution. 
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However, it is important to note that, the approach used for the objective 

function definition make this best solution lying on the boundaries of a 

discontinuity line. Such feature makes the search of the global optimum solution 

quite complex, because of discontinuities in the neighbourhood of the global 

optimum solution. 

 

Starting angle (θ) – backward propagation on the stable manifold (tW) 
 

Figure 95 shows the resulting objective function values with respect to 

angle identifying the starting point over the initial circular orbit (θ ) and the time 

of the backward propagation on the stable manifold S
LW 1  from the libration point 

L1 ( Wt ). 

 

Figure 95: Objective function values with respect to θ and tW. 

 

Figure 95 shows again the important discontinuities related to the objective 

function evaluation corresponding to solutions whose associated Lambert’s 

three-body problem solution do not converge. Important observations can be 

highlighted now by analysing Figures 96-97 which are a close up of Figure 95 

omitting the non converging solutions. 
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Figure 96: Objective function values with respect to θ and tW:. 

 

Figure 97: Objective function values with respect to θ and tW: 

 

Besides the previously identified discontinuities, which are in fact related 

to a particular management of penalty terms in case of missed convergence, 

the objective function shows remarkable periodicity on the time spent on the 
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stable manifold S
LW 1 . Many comparable local minima exist which lie on different 

slots clearly identifiable analysing the tW design variable and which seem to be 

positioned on the boundaries of the multiple discontinuity region: in particular, 

the best identified solution (the red dot in Figure 97), confirms such 

considerations. In order to better illustrate the periodic feature, Figure 98 plots 

the objective function values with respect to Wt  by fixing the value of the starting 

angle θ to that characterizing the best identified solution. 

 

 

Figure 98: Objective function values with respect to tW: values of remaining design variables 
fixed. 

 

As it concerns the trend of the objective function with respect to the starting 

angle θ, omitting the effects of discontinuities, a non periodic objective function 

structure holds. Before investigating the reasons of such periodicity, let analyse 

the remaining combination of design variables. 
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Lambert’s three body arc transfer time (tL) –backward propagation time on 
the stable manifold (tW) 

 

Figure 99 shows the resulting objective function values with respect to the 

transfer time corresponding to the Lambert’s three-body arc from the initial 

circular orbit to the target point on the stable manifold S
LW 1  ( Lt ) and the time of 

the backward propagation on the stable manifold S
LW 1  from the libration point L1 

( Wt ). 

 

Figure 99: Objective function values with respect to tL and tW. 

 

Important discontinuities related to the objective function evaluation 

corresponding to solutions whose associated Lambert’s three-body problem 

solution do not converge are again identifiable in Figure 99. Let now analyse 

Figure 100 and Figure 101, which, similarly to the previous cases, constitute 

close ups of Figure 99 omitting the non converging solutions. 
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Figure 100: Objective function values with respect to tL and tW: close up of  Figure 99. 

 

Figure 101: Objective function values with respect to tL and tW: 

 
As previously highlighted, omitting the identified discontinuities, the objective 

function shows remarkable periodicity on the time spent on the stable manifold 
S

LW 1 , which causes the presence of many comparable local minima 
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corresponding to different slots clearly identifiable on the tW design variable. As 

it concerns the objective function profile with respect to the transfer time 

corresponding to the Lambert’s three-body arc, tL, monotonic features can be 

recognized. The best identified solution (the red dot in Figure 101) lies again on 

the boundary of the multiple discontinuity region. 

 

Let us now investigate the possible reasons of the objective function 

periodicity with respect to the backward propagation time on the stable manifold 
S

LW 1  from the libration point L1 ( Wt ). Figure 102 is a 3-dimensional plot of the 

100 local minima identified by the local optimization processes on the search 

space, while Figure 103 is a projection of Figure 102 along the three axis. 

 

Figure 102: Local minima distribution on the 3-dimensional search space. 
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Figure 103: Local minima distribution on the search space: projections of Figure 102. 

 

We can see that the transfer times corresponding to the Lambert’s three-body 

arc, tL, in case of the identified local minima tend to assume relatively high 

values: such an observation can be related in fact to the monotonic feature of 

the objective function with respect to this design variable which has been 

previously identified (see Figure 102). As it concern the backward propagation 

time on the stable manifold S
LW 1 , a careful analysis of Figure 103 let us 

recognize the presence of several set of local minima which tend to assume 

similar Wt  values. The presence of such subgroups can be related to the 

identification of the big valley structures deriving from the periodicity of the 

objective function described above (see Figure 97 and Figure 100). Moreover, 

let consider Figure 104, which simply plots the objective function values 

corresponding to the identified local minima which are reported in ordinal way. 
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Figure 104: Objective function values corresponding to the identified local minima. 

 

By excluding the worst local minima, Figure 105 reports the identified solutions 

corresponding to objective function values lower than 4000 m/s. Two different 

objective function levels seems to characterize the identified local minima, the 

lowest being upper bounded by a value of about 3200 m/s. By considering only 

local minima included in this interval, Figure 106 reports their distribution over 

the search space. 
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Figure 105: Objective function values corresponding to the identified local minima: close up of 
Figure 104. 

 

 

Figure 106: Local minima distribution on the search space: solutions corresponding to objFun < 
3400 m/s. 
 

It is interesting to note that the isolated local minima, which are in fact all 

comparable in terms of objective function values, gather into subgroups in the 

search space. In particular, all local minima tend to assume the same value of 
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transfer time corresponding to the Lambert’s three-body arc, Lt , from the initial 

circular orbit to the target point on the stable manifold S
LW 1 . As it concerns the 

starting angle θ, a finite set of clusters can be clearly identified (five in this case: 

see the left plot in Figure 106). Corresponding to each cluster on the θ design 

variable, by analysing the central plot in Figure 106, two different subgroups can 

be recognized on the Wt  design variable, that is the time spent on the stable 

manifold S
LW 1  to L1. As a consequence, we can state that the subgroups 

identifiable on the central plot in Figure 106 describe a set of different families of 

Lunar transfers (where the term “family” is referred to solutions lying on different 

niches on the search space, as defined by Gurfil and Kasdin in their work about 

a similar systematic characterization of geocentric orbits in the 3D elliptic 

restricted three-body problem [Gurfil, and Kasdin, 2002]). 

 

Let us now analyse the details of such families. Figure 107 reports the 

central plot of Figure 106 where subgroups have been numerated from 1 to 10 

following an increasing Wt  value. Corresponding to each number in Figure 107 

and randomly selecting one solution from each subgroup, Figures 108-117 

illustrate the resulting Lunar transfer. Moreover, the minimum objective function 

value related to each subgroup is indicated in brackets in Figure 117. 
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Figure 107: Local minima distribution on the search space: central plot of Figure 106 identifying 
the set of local minima subgroups. 

 

 

Figure 108: Local minima: subgroup 1. 
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Figure 109: Local minima: subgroup 2. 

 

Figure 110: Local minima: subgroup 3. 
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Figure 111: Local minima: subgroup 4. 

 

Figure 112: Local minima: subgroup 5. 
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Figure 113: Local minima: subgroup 6. 

 

Figure 114: Local minima: subgroup 7. 
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Figure 115: Local minima: subgroup 8. 

 

Figure 116: Local minima: subgroup 9. 
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Figure 117: Local minima: subgroup 10. 

 

Figure 117 shows that all the identified local minima are in fact comparable, with 

little variance on the objective function values. The best identified solution 

belong to subgroup 8, as can be seen by the corresponding transfer trajectory 

illustrated in Figure 98. By carefully analysing the transfer trajectories related to 

the comparable local minima, a common feature can be recognized: in all 

cases, the injection on the stable manifold S
LW 1  from the Lambert’s three body 

arc occurs in a point near the farthest five points clearly identifiable in the Earth-

Moon rotating frame (see for example Figure 117) on the incoming line to them. 

Moreover, starting from Figure 108, once all the farthest five points have been 

described, similar solutions seem to occur again in a perturbed orbit with 

respect to the previous one. The trajectories in Figures 108-117 are 

represented in the rotating reference frame. However, if viewed in the usual 

Earth-centered inertial frame, the previous trajectories appears as a conic-like 

perturbed orbit, with the farthest points corresponding to the apogees and the 

closest ones to the perigees. As a consequence, in the Earth centred inertial 

reference frame, the previously identified injections occur in points close to the 
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apogee of the conic-like perturbed orbit on the incoming line to it. Note that, 

when the Earth-Moon line occurs near the apogee of the conic-like orbit, the 

Moon "pumps" up the apogee until it captures the orbit that breaks and become 

non-elliptic. Such a consideration let us understand that the transfer in Figure 

108 corresponds in fact to the injection on the conic-like orbit in a time which 

corresponds to the phase between the apogee line and the Earth-Moon line 

directly leading to the capture by the moon, while the subsequent figures are 

related to injections that occur in antecedent revolutions on the same conic-like 

perturbed orbit. In particular, it is interesting to note that solution represented in 

Figure 97 corresponds to an injection on a favourable phase between the 

apogee line and the Earth-Moon line (where the Moon "pumps" up the apogee), 

but which constitute a missed Moon capture, thus confirming that the trajectory 

is in fact a perturbed conic-like orbit. The previous considerations recognize the 

reason of comparability of the many distinct identified local minima and the 

periodicity features of the objective function on the time spent on the stable 

manifold S
LW 1 , which can be related to injections on the conic-like perturbed orbit 

in the Earth-centred inertial reference frame corresponding to different points of 

the orbit and different revolutions around the Earth. Moreover note that, 

although the local minima are in fact comparable (the mean value being 

3111.697 m/s with a standard deviation of 29.129 m/s) high differences on the 

time spent to reach the libration point L1 ( WL tt + ) obviously characterize them, 

as shown in Table 27, where features of the best member of each subgroup are 

reported. Each transfer family is then characterized by different features 

resulting from the different niches occupied by the design variables on the 

search space. 
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Subgroup # ∆V [m/s] tL + tW [d] 

Subgroup 1 3081.598 16.434 

Subgroup 2 3082.544 27.501 

Subgroup 3 3082.326 38.251 

Subgroup 4 3096.143 49.002 

Subgroup 5 3090.616 60.062 

Subgroup 6 3098.311 87.135 

Subgroup 7 3116.886 98.174 

Subgroup 8 3080.767 108.943 

Subgroup 9 3091.788 119.679 

Subgroup 10 3088.030 130.782 

Table 27: Subgroups characterization on ∆V and time spent to get L1.  

 

Finally, Table 28 reports a summary of the previously performed objective 

function structure analysis. 

 

Problem 

Dimension 
Constraints 

Search 

Space 
Objective function Periodicity 

3 
Box 

constraints 
3ℜ∈D  

ℜ∈f  discontinuous 

on the boundaries of a 

finite set of regions 

over the search space; 

C2 in the remaining 

points. 

Yes, and related 

to the time 

spent on the 

stable manifold 
S

LW 1  to L1. 

Table 28: Summary of Problem Characteristics. 

 

 

 



  

 125

6. GLOBAL OPTIMISATION TOOLS 
 

In this section, a brief introduction to the global optimisation tools that have 

been used in the present work is outlined. The main principles and features of 

each algorithm scheme is presented and corresponding references to dedicated 

literature are indicated for specific and more detailed information. Then, general 

considerations are finally highlighted regarding the choice of some algorithm 

parameters. Algorithms for global optimisation can be mainly classified in three 

classes (see Figure 118, where the tested global optimisation tools are 

presented in tree outline form): 

 

 Stochastic algorithms, which involve at a suitably chosen random sample 

of points and subsequent manipulation of the sample to find good local 

minima. 

 Guaranteed algorithms, which are deterministic algorithms which 

guarantee to find a global optimum with a required accuracy. 

 Algorithms exploiting the construction of metamodels, which do not 

perform the global search on the real objective function, but on a 

metamodel of it. 

 

Further, stochastic algorithms two main subclasses have been analysed: 

 

 Evolutionary Algorithms (EAs), which globally search the solution 

space by simulating the self-optimising natural process of evolution: 

the fittest individuals tend to reproduce and survive in the next 

generation, improving the fitness in successive generations; however, 

also individuals with a lower fitness level can survive and reproduce. 

 Simulated Annealing (SA), which performs the global search based on 

successive update steps, where the update step length is proportional 

to an arbitrarily set parameter which can play the role of a 

temperature. In analogy with the annealing of metals, the temperature 

is increased in the early stages of the process for faster optimisation, 

and then reduced for greater stability. 
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In particular, as stated by Yao [Yao, 1997], the general subclass of Evolutionary 

Algorithms (EAs) can be divided in three main branches: 

 

 Genetic Algorithms (GAs), where a wide exploration of the search space 

and the exploitation of promising area are ensured by means of the 

mutation, crossover and selection operators which are applied to the 

individuals in the population (for a careful description of such operators 

see [Michalewicz, 1994]). 

 Evolutionary Programming (EP), whose classical scheme makes use of 

the only mutation operator and, unlike GAs, they simulate the natural 

evolution at phenotypic level; moreover, as it concerns the selection 

process, it is based on a tournament selection carried out on a 

population including both parents and offspring. 

 Evolutionary Strategies (ESs), which, similarly to EP, simulate the natural 

evolution at a phenotypic level, but, unlike EP, make use of 

recombination operators. 

 

The most important class of methods belonging to the class of guaranteed 

algorithms are in fact the branch and bounds methods, whose basic idea is that 

of splitting recursively the configuration space by branching into smaller and 

smaller parts; the way the branching procedure is performed depends on the 

bounding procedures, which aim at evaluating lower bounds of the objective 

function over the generated portions of the configuration space. However, 

glbSolve and MCS algorithms, which have been tested in this work, have been 

indicated by the authors as “branching without bounding” methods (see the 

dedicated references). Anyway, proofs of deterministic convergence to the 

global optimum with a desired accuracy exist; as a consequence, they have 

been included in the set of guaranteed algorithms. Finally, an important family 

of algorithms exploiting the construction of metamodels is that of response 

surface based optimisation algorithms, which use the objective function 

evaluations at a set of points for fitting response surfaces constituting fast 

surrogates of the objective function that can be used for optimisation purposes. 
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Figure 118: Tested global optimisation tools: a tree outline form. 

 

The test phase, which will be presented in the following chapters, has been 

performed following the scheme reported in Figure 119. 
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Figure 119: Test scheme. 

 

A problem of computational complexity Pfr,i, which involves the optimisation of 

an objective function fr,i, modelling the real problem is submitted to a solver A 

which has a complexity PA. As stated above, the application of the solver A 

might shift (but not necessarily) the submission of the real objective function fr,i 

by facing a metamodel of it,  fm, which can reduce the computational complexity 

of the real objective function, Pfr,i (direction 2 in Figure 119). By facing the test 

problems with this scheme, if a global solver A could solve an optimisation 

problem of complexity Pfr,i, we might state that (although no rigorous 

demonstrations exist) all global solvers with a computational complexity PA 

should be able to solve the problem of optimising the objective function fr,i. On 

the other hand, if the solver A which could solve the problem of minimizing fr,i 

turns out not to be able to solve the further problem of optimising an objective 

function fr,j (with fr,j≠ fr,i), we might state that (although no rigorous 

demonstrations exist) the corresponding computational complexity Pfr,j must be 

higher than the complexity of the problem fr,i (Pfr,j > Pfr,i). Before starting the 

description of the tested tools, as it concerns the termination condition, note 

that, as stated by Huyer and Neumaier [Huyer and Neumaier, 1999], in practical 

global optimisation problems as those analysed in this work, one does not know 

the solution in advance and needs a criterion that tells the program when to 

stop searching for a better local optimum. This criterion should accomplish a 

trade-off between avoiding wasting too many objective function evaluations 

after the global minimum has been found and ensuring that the algorithm does 

not terminate before the global optimum has been found. Some of the global 
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optimisation tools which have been tested in this work have been already 

supplied by a suitable termination condition; for those algorithms where such a 

criterion was not included, a common stopping rule has been implemented, as 

described in the following, which, after an exhaustive practice phase, seemed to 

be suitable and robust. 

 

6.1 Genetic Algorithm for Optimisation Toolbox (GAOT) 
 

Genetic Algorithm for Optimisation Toolbox (GAOT) implements a global search 

based on a genetic algorithm scheme. The fundamentals issues which must be 

identified before using a genetic algorithm can be resumed as follows: the 

identification of the chromosome representation, the management of the 

selection function, the choice of the genetic operators for the reproduction, the 

termination criteria and the evaluation function. A complete description of the 

features and the options offered by GAOT to the user is available at reference 

[Houck et al., 1995]. The code is freely available at: 

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/. As it concerns the pre-set 

configurations in all tests performed in this work, default options have been 

maintained: in particular, the real coded version of the genetic algorithm has 

been used. Moreover, note that GAOT can handle upper-lower bounds 

constraints by itself. One modification was necessary for implementing a new 

termination condition. The set offered by GAOT in the standard version includes 

in fact two termination rules: one based on a fixed number of generations and 

the other based on the achievement of either a predefined optimal objective 

function value or a maximum number of generations. The previous rules are not 

suitable for applications where no a priori information are available on the global 

optimum, as in the cases here analysed. As a consequence a new termination 

condition has been implemented which stops the evolutionary process when the 

absolute improvement of the best objective function value corresponding to the 

best solution, objFun∆ , over a number of successive generations equal to n⋅5 , 

where n is the number of design variables, is less than 310− : 
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Stop when:   [ ]
3

5 10−<∆ nobjFun  

6.2 GAOToolbox with sharing operator (GAOT-shared) 
 

In order to assess the theoretical advantages offered by the use of niching 

methods in evolutionary global searches, GAOT scheme presented in Section 

6.1 has been modified by the authors for including such techniques. Traditional 

genetic algorithms with elitist selection usually converge to a single global 

optimum on the search space. As stated by Sareni and Krähenbühl [Sareni and 

Krähenbuhl, 1998], real optimisation problems often lead to multimodal domain, 

where the identification of multiple optima, either global or local, is required. 

Niching methods are then used to promote the formation of stable 

subpopulations in the neighbourhood of optimal solutions. In particular, sharing 

methods have been considered, which are in fact the most used among the 

available niching techniques. The operation of fitness sharing modify the search 

landscape by typically modifying the fitness if  of an individual i as follows: 

 

i

i
i m

f
'f =                        [34] 

 

where im  is the niche count which measure the approximate number of 

individuals with whom the fitness if  is shared and i'f  is the shared fitness. The 

niche count is calculated by summing a sharing function over all members of 

the population: 

 

( )∑=
=

N

j
j ii dshm

1
            [35] 

 

where N is the number of individuals in the population and j id  is the distance 

between individuals i and j. The sharing function sh measures the similarity 

level between two population elements and it usually has two main feature: its 

value is one if the two solutions are identical and zero in case their distance is 
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higher than a threshold of dissimilarity. The most widely used sharing function, 

which has been used in the present work, is defined as follows: 

 

( ) ( )
⎪⎩

⎪
⎨
⎧ σ<σ−

=
α

otherwise                      ,

d if  ,/d
dsh SSj i

j i
0
1

          [36] 

 

where Sσ  is the threshold of dissimilarity (distance cut-off of the niche radius) 

and α  is a constant parameter which regulates the shape of the sharing 

function. The value of α  is commonly set to one, resulting in the so-called 

triangular sharing function. Moreover, a phenotype similarity for defining the 

distance between two individuals has been considered by evaluating j id  as the 

Euclidean distance measured on the search space. Set values for α  and Sσ  

parameters will be indicated corresponding to the performed tests. 

 

6.3 Genetic Algorithm Toolbox (GATBX) 
 

Genetic Algorithm Toolbox (GATBX) implements again a global search based 

on a genetic algorithm scheme. The main features are then similar to those 

presented in case of GAOT tool, especially concerning the fundamentals issues 

which must be identified before using it. However, some differences can be 

identified: they mainly concern with the way selection, mutation and crossover 

operations are performed. A detailed description of the features and the options 

offered by GATBX to the user is included in references [Chipperfield, Fleming, 

and Fonseca, 1994] and [Chipperfield, and Fleming, 1995]. The whole source 

code is freely available at: http://www.shef.ac.uk/cgi-bin/cgiwrap/~gaipp/gatbx-

download. The GATBX configuration used in all tests performed in this work 

makes use of default options: in particular, the real coded version of the genetic 

algorithm has been considered and discrete recombination operator has been 

used instead of crossover. GATBX can handle upper-lower bounds constraints 

by itself. Due to the absence of termination conditions suitable for tests 

performed, the termination condition described in case of GAOT tool has been 

implemented again, which can be resumed by the following rule: 
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Stop when:   [ ]
3

5 10−<∆ nobjFun  

6.4 Genetic Algorithm Toolbox with migration operator (GATBX-migr) 
 

Options offered by the previously described GATBX tool have been exploited in 

order to assess the variation of performances in solving the global optimisation 

problem which are associated to the use of the migration operator. In such case 

the whole population is gathered into subpopulations, which independently 

evolve searching for the global optimum solution. The number of 

subpopulations can be defined by the user: its value has been suitably set in 

each performed test.  Information can be exchanged between the various 

subpopulation during the optimisation process at predefined intervals of 

generations with a fixed migration rate: the default values of such parameters 

have been considered.  GATBX can handle upper-lower bounds constraints by 

itself. As stated above, GATBX algorithm has been supplied by a suitable 

termination condition, which can be resumed as follows: 

 

Stop when:   [ ]
3

5 10−<∆ nobjFun  

 

6.5 Fast Evolutionary Programming (FEP) 
 

The mutation operator associated to classical Evolutionary Programming is 

based on the generation of random numbers with a normal distribution. 

However, Yao, Liu and Lin [Yao, Liu, and Lin, 1999] showed that the classical 

Evolutionary Programming suffers from low convergence rate in some single-

objective multimodal optimization problems and proposed the use of a mutation 

operator based on Cauchy random numbers to solve this problem, developing 

the Fast Evolutionary Programming (FEP). FEP scheme has been implemented 

by the authors for solving generally constrained multiobjective optimization of 

space mission design [Di Lizia, Lavagna and Finzi, 2004]. By considering that, 

as stated by Zitzler [Zitzler, 2002], single-objective optimisation problems can 

be seen as particular cases of multiobjective optimisation problems (and not 
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vice versa), the algorithm has been easily modified for performing the single 

objective optimisation test presented in this work. However, note that the 

implemented code is not optimised and runtime performances could be quite 

improved in the future. In particular, the implemented FEP tool can deal with 

generally constrained optimisation problems thanks to the use of an efficient 

constraint handling methodology proposed by Deb [Deb, 2000], which makes 

use of suitable comparison criteria for opportunely defining the fitness function. 

It is worth noting that, thanks to the use of a tournament selection approach, 

Fast Evolutionary Programming code can be easily parallellized. As it concerns 

the termination condition implemented in the tests performed in this work, FEP 

algorithm has been supplied by the termination condition previously described: 

 

Stop when:   [ ]
3

5 10−<∆ nobjFun  

 

6.6 Differential Evolution (DE) 
 

Differential Evolution (DE) is a heuristic approach for solving the minimization 

problem of possibly nonlinear and non differentiable continuous space functions 

[Storn and Price, 1995]. It can be included in the set of Evolutionary Strategies 

based algorithms described above. The main idea driving DE search is a 

peculiar scheme for generating vectors of design variables: in particular, new 

vectors are generated by adding the weighted difference vector between two 

population members to a third member. The resulting scheme turns out to be 

easily parallelizable. A complete description of DE features is available at 

reference [Storn and Price, 1995]. As it concerns the code used in this work, the 

version “devec3” has been investigated, which is freely available at: 

http://www.icsi.berkeley.edu/~storn/code.html. Default DE options for the 

evolutionary parameters have been kept. It is worth noting that the codes 

available at the previous web page can’t handle upper-lower bounds constraints 

by itself. As a consequence, the code has been modified by introducing a 

constraint handling methodology proposed by Deb [Deb, 2000]. Moreover, due 

again to the lack of a suitable termination condition for the investigated 

optimisation problems, the termination condition described in case of GAOT tool 
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has been implemented in DE code, thus stopping the evolutionary process by 

analysing the improvement of the objective function value over a certain interval 

of generations: 

 

Stop when:   [ ]
3

5 10−<∆ nobjFun  

 

6.7 Adaptive Simulated Annealing (ASA) 
 

Adaptive Simulated Annealing (ASA) is a global optimisation tool based on 

Simulated Annealing (SA), which has been proven to outperform the simple SA 

scheme [Ingber, 2000]. The origin of the standard Simulated Anealing is dated 

back to the inclusion of a temperature schedule for efficient searching carried 

out by Kirkpatrick [Kirkpatrick ,1983] on the Monte Carlo integration algorithm by 

Metropolis [Metropolis, 1953]. However, classical implementation of the SA 

scheme does not consider that, in case of a D-dimensional search space, 

different design variables can have different finite ranges and different 

sensitivities; Adaptive Simulated Annealing takes advantage of such 

considerations for improving the performances of the simple SA scheme. It is 

worth noting that the direct parallelization of an SA algorithm has been shown to 

be quite difficult [Ingberg, 1993]. A complete description of the features and the 

options offered by ASA to the user is available at reference [Ingber, 2000]. The 

code is freely available at: http://www.ingber.com/#ASA-CODE. Default options 

have been retained in all tests performed in this work: in particular, note that 

limits of generated and accepted solutions have been opportunely imposed for 

each problem. ASA can handle upper-lower bounds constraints by itself and 

has a default termination condition which is useful for problems whose global 

optimum solutions are not known a priori. 

 

6.8 Global Solver (glbSolve) and Multilevel Coordinate Search (MCS) 
 
The global solver (glbSolve) and the Multilevel Coordinate Search (MCS) are 

algorithms based on a combination of purely heuristic methods and methods 

that guarantee to find a global optimum with a required accuracy. They are both 
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inspired by the DIRECT method for global optimisation by Jones et al. [Jones et 

al., 1993], of which glbSolve constitutes a more classical implementation. 

Moreover, as stated by Huyer and Neumaier [Huyer, and Neumaier, 1999], both 

methods are guaranteed to converge if the objective function is continuous in 

the neighbourhood of a global minimiser, without any additional smoothness 

properties. As it concerns the differences between MCS algorithm and the 

DIRECT one (which can be also related to differences between MCS and 

glbSolve), it is worth noting that DIRECT method partitions a normalized search 

space into smaller boxes, which are characterized by their midpoint. The main 

disadvantages of DIRECT are related to two aspects: it cannot handle infinite 

box bounds and it converges unnecessarily slowly if the global minimum lies on 

the boundary of the box, because its structure makes it unable to reach such 

regions. 

 

The above described drawbacks are solved by Multilevel Coordinate 

Search algorithm by allowing a more irregular splitting procedure. Moreover, 

unlike many stochastic methods, MCS allows operating and searching at a local 

level also, leading to accurate quick convergence once the global part of the 

algorithm has found a point in the basin of attraction of a global minimizer. 

Complete descriptions of the features and the options offered by glbSolve and 

MCS to the user are available at reference [Jones et al., 1993] and [Huyer, and 

Meumaier, 1999] respectively.  The commercial version of glbSolve code is 

available at: http://www.tomlab.biz/. The MCS tool is freely available at: 

http://www.mat.univie.ac.at/~neum/software/mcs/. Default options have been 

held in all tests performed in this work. However, as it concerns the termination 

condition, the criterion already described in GAOT case and adopted in some of 

the previous tools has been implemented in case of glbSolve due to the lack of 

presence of good stopping criteria: 

 

Stop when:   [ ]
3

5 10−<∆ nobjFun  

 

Default termination condition has been used in case of MCS algorithm instead, 

which stops the optimisation process when no improvement of the objective 



  

 136

function value is gained after m consecutive sweeps, where m is set to be equal 

to 5·n, with n indicating again the number of design variables. 

 

6.9 Radial Basis Function Solver (rbfSolve) 
 

Radial basis function solver (rbfSolve) is a global optimisation tool based on the 

generation of response surfaces using radial basis functions. As stated by 

Jones [Jones, 2001], the main advantage of such an approach is related to the 

fact that, by running simulations or objective function evaluations at a set of 

points and fitting response surfaces based on this data, fast surrogates of the 

objective function are generated which can be used for optimisation purposes. 

However, due to the high computational time required to fit the generated data, 

response surface based global optimisation algorithms seem to be suitable for 

costly global optimisation problems, where runtime for evaluating the objective 

function is too high for allowing a pure stochastic search, thus promoting the 

use of smart techniques for exploiting information gained by previous 

evaluations, trying to reduce the required number of objective function 

evaluations. Moreover, it is worth noting that the runs used to fit the surfaces 

can be done in parallel, so allowing saving further time. The available 

approaches that use response surfaces to solve global optimisation problems 

can be classified by distinguishing the type of response surface and the method 

used to select search points. Response surfaces can be differentiated in non-

interpolating and interpolating, although the interpolating ones, which are based 

on interpolation of data via linear combination of “basis functions”, have shown 

to be the most reliable. As it concerns the implemented method, rbfSolve 

belongs to the class of the so-called two stage methods. Such methods involve 

a first stage, where a response surface is fitted, and a second stage, where the 

generated surface is exploited to compute new promising search points. Such a 

scheme might present drawbacks related to the initial sampling procedure, 

which can leads to misleading shape of the function to be optimised. A 

description of the main principles used by rbfSolve tool is available at reference 

[Jones, 2001]. A commercial version of the tool is available at: 

http://www.tomlab.biz/. The rbfSolve configuration used in all tests performed in 



  

 137

this work makes use of default options. However, it is worth noting that no 

suitable termination conditions have been found on the tested code. Moreover, 

because rbfSolve is not a freely available code, no modifications have been 

performed on it. As a consequence, this forced us to stop the optimisation 

process when a maximum number of objective function evaluations was 

reached. The maximum value of such parameters has been set in each case by 

looking at the performances of the other optimization tools. 

 

6.10 Evolutionary Predictive Interval Computation (EPIC) 
 
EPIC, is based on a hybrid deterministic-stochastic approach to the solution and 

characterisation of constrained and unconstrained multimodal, multivariate 

nonlinear programming problems with mixed integer-real variables and 

discontinuous quantities. The EB approach is based on the following principal 

ideas: 

 An evolutionary strategy is used to explore globally and locally the 

solution space D. Then a branching scheme, dependent on the findings 

of the evolutionary step, is used to partition the solution domain in 

subdomains. On each subdomain a new evolutionary search is 

performed. The process continues until a number of good minima and 

eventually the global one are found. 

 The search is performed by a number of agents (explorers): each 

solution y is associated to an agent. and is represented by a string, of 

length n, containing in the first m components integer values and in the 

remaining s components real values. This particular encoding allows the 

treatment of problems with a mixed integer-real data structure. A 

hypercube S enclosing a region of the solution space surrounding each 

agent, is then associated to y. The solution space is then explored locally 

by acquiring information about the landscape within each region S and 

globally by a portion of the population, which is continuously regenerated 

forming a pool of potential explorers.  

 Each agent can communicate its findings to the others in order to evolve 

the entire population towards a better status. 
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 During the evolutionary step a discoveries-resources balance is 

maintained: a level of resources is associated to each agent and is 

reduced or increased depending of the number of good findings of the 

agent. 

 If many agents are intersecting their S regions and their reciprocal 

distance falls down below a given threshold, a repelling mechanism is 

activated. 
 

This novel and very promising global optimisation algorithm is currently 

being developed by Dr Massimiliano Vasile of the Dipartimento di Ingegneria 

Aerospaziale at Politecnico di Milano, who has kindly agreed to allows us to test 

the performances within our dynamical models. 

 

6.11 General Considerations 
 

As stated in the previous sections, default values of algorithm parameters have 

been used. Note that, as widely known, the performance of a specific solver can 

be even significantly improved by opportunely tuning proper parameters. 

However, as already done in many comparative studies for global optimisation 

tools, due to the comparative purposes of this work, the tuning effects have not 

been investigated here. However, some algorithm parameters had to be 

changed based on the complexity of the faced problem: examples of such 

parameters are the number of individuals and the maximum number of 

generations for evolutionary based optimisation tools, the maximum number of 

solutions generated in case of ASA and MCS and the maximum number of 

iterations in case of glbSolve. Such parameters have been mainly set based on 

information that has been found in the dedicated literature, on the experience 

gained by the authors during previous works on this subject and, of course, on a 

tuning process performed after a suitable practice period. The final configuration 

adopted in the test phase corresponding to each problem seems to authors to 

constitute an effective choice. As a final remark, it is worth noting that all the 

tested tools work in a Matlab environment, except the Adaptive Simulated 
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Annealing tool, for which a MEX Matlab file has been generated for use it in the 

same environment. 

 

7. 2-IMPULSE DIRECT PLANET-TO-PLANET TRANSFER 
 

Problem class statement: 

 

Objective function assessment 

Objective function: FI VVV ∆+∆=∆  

where: 

• IV∆  is the magnitude of the relative velocity at the 

beginning of the nterplanetary transfer phase. 

• FV∆  is the magnitude of the relative velocity at the 

end of the interplanetary transfer phase. 

Mathematical models: • Restricted 2-body dynamical model (C2 in the whole 

solution space except in the origin) 

• Three dimensional motion 

• Analytical ephemeris model (generated by time 

polynomial series of the orbital elements) 

• Impulsive manoeuvres (i.e. instantaneous variations 

in velocity) 

• Lambert’s problem formulation (Battin’s algorithm for 

the problem solution) 
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Search space characterization 

Number of design 

variables: 

2 

Design Variables: • Date of departure from Earth, 0t  

• Transfer time from Earth to Mars, tt  

Topology: Continuous variables 

Constraints 

Constraints typology: Box constraints 

Box intervals: • [ ] [ ]2017/12/31,2003/01/01, 00 =UBLB tt  

• [ ]300,100∈tt  d 

General considerations 

Objective function 

analysis: 

The objective function is almost everywhere C2, locally 

discontinuous in a countable number limited set 

Problem complexity: Low 

 

Number of global optima: A priori unknown 
A systematic analysis of the objective function over the search space, followed 

by local optimization processes starting from 100 random first guess solutions 

uniformly distributed over the search space (each local search requiring a 

number of objective function evaluations of the order of 102) led to the following 
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best known solution, that seems to be the global one over the considered 

search space (although no rigorous mathematical demonstration has been 

provided). 

Search space 

Date of departure: 06/06/2003 

Transfer time: 203.541 d 

Objective space 

V∆ : 5678.904 m/s 

IV∆ : 2999.464 m/s 

FV∆ : 2679.439 m/s 

 

Number of local optima: A priori unknown. 
 

A systematic analysis of the objective function over the search space, together 

with a local optimization process led to 17 solutions (see Figure 120, where the 

17 local minima are represented by the black dots; the red dot indicates instead 

the best known solution), which seem to represent the complete set of local 

optima over the considered search space (although no rigorous mathematical 

demonstration has been provided). 
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Figure 120:Distribution of the local minima. 

 

Hardware platform: 
Intel Pentium 4 – 3.06GHz laptop. 

 

Operating system: 
Microsoft Windows XP 

Home edition 

Version 2002 

Service Pack 1 

 

Timings: 

The Standard Unit Time (see Dixon & Szegö, 1978) has been measured. 
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Performances: 

 

In the following pages, the performances of each global optimization tool in 

solving the 2-impulse direct planet-to-planet transfer are reported. The 

evaluation criteria will be mainly based on the analysis of the optimal solution 

reached and the number of the required model function evaluations. Due to the 

presence of not optimized codes among the tested ones, timing will not be 

considered as a main evaluation criterion. 

 

GAOT 

As GAOT implements a genetic algorithm, we report the statistical 

characteristic, typically considered in case of randomized solution methods. Ten 

run have been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used in all 

the runs: note that by tuning the algorithm parameters one may improve the 

performance of the solvers, but, due to the comparative purposes of this work, 

the tuning effects have not been considered. As the 2-impulse direct planet-to-

planet transfer has low complexity features, we used 50 individuals evolving for 

a maximum number of generations equal to 100. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of 

generations: 
100 

 

Tables 29-30 report the best identified solution compared with the best known 

solution (note that the best solution is here measured by considering the 

minimum objective function value reached and is different from the Pareto 

optimal solution described below). 
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Search space 

Design variable Best identified solution Best known solution 

Date of departure [d]: 1253.508 1253.510 

Transfer time [d]: 203.542 203.541 

Table 29: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5678.904 5678.904 

∆VI  [m/s]: 2999.463 2999.464 

∆VF [m/s]: 2679.441 2679.439 

Table 30: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The previous tables show that the best identified solution coincides in fact with 

the best known one. Let us now consider the statistical characteristics of the 

identified solution set. Table 31 reports the mean value and the standard 

deviation of the performances which will be used for comparisons with the other 

optimization algorithms.  

 

Evaluation criterion Mean value 
Standard 
deviation 

V∆ [m/s]: 5741.524 163.525 

Model function evaluations: 1270.5 345.683 

Runtime [STU]: 8.198·10-3 3.306·10-3 

Table 31: Statistical characteristics of the identified solutions. 
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Tabe 31 shows that the mean value of the optimal objective function values 

reached at the end of each optimization process is quite different from the best 

identified one and is characterized by a high standard deviation. Such a result 

let us suppose that no all the performed optimization processes have been able 

to identify the basin of attraction of the best known solution. Figure 121 reports 

the final solutions corresponding to each optimization run in the nFunc-∆V plane 

(where nFunc is the number of objective function evaluations), while Figure 122 

illustrates their distribution over the search space. 

 

Figure 121: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 
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Figure 122 - Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 

Figure 121 and Figure 122 fairly illustrates that the presence of comparable 

local minima over the analysed search space hindered the effectiveness of 

GAOT algorithm at reaching the basin of attraction of the best known solution. 

In particular, by investigating the normalized search space, Table 32 reports the 

Euclidean distance of each final solution form the best known one. 

 

Run Euclidean distance 

run 1 6.334·10-5 

run 2 0.487 

run 3 1.083·10-5 

run 4 0.598 

run 5 0.402 
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run 6 0.598 

run 7 0.598 

run 8 1.425·10-5 

run 9 2.719·10-6 

run 10 0.487 

Table 32: Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By considering two solutions as identical when their Euclidean distance is less 

then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in 

this case), only 4/10 GAOT runs were able to get the best known solution. 

Further interesting observations can be pointed out by analysing the main 

features of the final population: Figure 123 shows the distribution of the 

population over the search space at the end of the optimization process 

corresponding to the best identified solution. 

 

Figure 123: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 



  

 148

The previous figures show that the individuals in the final population mainly 

concentrated in a narrow neighbourhood of the global optimum. This results 

held in all runs on average, including the cases where a non global optimum 

has been identified. As an example, Figure 124 shows the distribution of the 

final population corresponding to the worst identified solution: the final 

population of a typical GAOT run mainly concentrates in a neighbourhood of the 

identified minimum. 

 

Figure 124: Distribution of the population over the search space at the end of the optimization 
process corresponding to the worst identified solution. 

 
Figure 125 shows the trace of the best solution during the optimization run 

corresponding to the best identified solution: GAOT search process typically 

investigates the basin of attraction of different local minima before converging to 

the final solution. 
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Figure 125: Trace of the best solution during the optimization run corresponding to the best 
identified solution. 

 

GAOT-shared 

As GAOT-shared implements a genetic algorithm including a niching technique, 

we report again the statistical characteristics. Ten run have been processed in 

order to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. The threshold of 

dissimilarity, Sσ , for the sharing method and the shape parameter of the sharing 

function, α , have been set respectively to: 

 

1.0=Sσ  

1=α  

 

We used again a population of 50 individuals, evolving for a maximum number 

of generations equal to 100. 
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Algorithm parameters 

Number of individuals: 50 

Maximum number of 

generations: 
100 

 

Tables 34-35 report the best identified solution compared with the best known 

solution. 

 

Search space 

Design variable Best identified solution Best known solution 

Date of departure 

[d]: 
1251.761 1253.510 

Transfer time [d]: 212.302 203.541 

Table 34: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5720.530 5678.904 

∆VI  [m/s]: 3017.740 2999.464 

∆VF [m/s]: 2702.790 2679.439 

Table 35: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

 

The previous tables show that the best identified solution seems to lie into the 

basin of attraction of the best known solution, as Figure 126 fairly illustrates. 
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Figure 126: GAOT-shared best identified solution (black point) compared with the best known 
solution (red point). 

 

However, as shown in Figure 126, the niching technique avoids a concentration 

of the individuals near the global optimum as evident as in the case of the 

simple GAOT algorith: as we will state later, this can decrease the accuracy in 

finding the global optimum solution. Let now consider the statistical 

characteristics of the identified solution set. Table 36 reports the mean value 

and the standard deviation of the performances which will be used for 

comparisons with the other optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 6420.207 574.220 

Model function evaluations: 590.4 320.350 

Runtime [STU]: 4.907·10-3 2.776·10-3 

Table 36: Statistical characteristics of the identified solutions. 
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As already noted in case of GAOT algorithm, the mean value of the optimal 

objective function values and the high standard deviation reported in Table 36 

let us suppose that no all the performed optimization processes have been able 

to identify the basin of attraction of the best known solution. Figure 127 reports 

the final solutions corresponding to each optimization run in the nFunc-∆V 

plane, while Figure 128 illustrates their distribution over the search space. 

 

Figure 127: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 128: Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 



  

 153

Figure 128 fairly illustrates that some GAOT-shared algorithm runs failed at 

reaching the basin of attraction of the best known solution. In particular, by 

investigating the normalized search space, Table 37 reports the Euclidean 

distance of each final solution form the best known one. 

 

run Euclidean distance 

run 1 4.756·10-2 

run 2 5.936·10-1 

run 3 4.101·10-2 

run 4 7.216·10-1 

run 5 1.752·10-2 

run 6 2.626·10-1 

run 7 4.188·10-1 

run 8 5.844·10-1 

run 9 3.043·10-1 

run 10 7.128·10-1 

Table 37: Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By analysing Figure 128 and by considering two solutions as identical when 

their Euclidean distance is less then 5% of the hyper-diagonal of the normalized 

search space (that is 0.071 in this case), only 3/10 GAOT-shared runs were 

able to get the best known solution. Let us now analyse the main features of the 

final population: Figure 129 shows the distribution of the population over the 

search space at the end of the optimization process corresponding to the best 

identified solution. 



  

 154

 

Figure 129: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 129 fairly illustrates again the effects of the sharing operator on the 

distribution of the final population: the niching technique avoids a concentration 

of the individuals near the global optimum as evident as in the case of the 

simple GAOT algorithm (see Figu123), as will be clearly illustrated later. This 

results held in all runs on average, including the cases where a non global 

optimum has been identified. Figure 130 shows the trace of the best solution 

during the optimization run corresponding to the best identified solution: GAOT-

shared search process immediately gained the basin of attraction of the best 

known solution. 
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Figure 130: Trace of the best solution during the optimization run corresponding to the best 
identified solution. 

 

It is interesting to analyse the effects of the sharing operator on the GAOT 

performances: in fact, by promoting the diversity of the individuals in the 

population, the GAOT – shared algorithm doesn’t allow the concentration of the 

individuals around every point in the solution space and then also around the 

optimal solution. But this concentration process is typically recognizable in the 

convergence phase: suppose we have an individual close to the optimal 

solution and let it participate to the reproduction process; the presence of 

individuals similar to the previously identified one is promoted in the new 

generation and this may lead to another individual close to the optimal solution; 

by processing the sharing operator both the good individuals will be then 

penalized due to their closeness; this has two important consequences: 

 

 The accuracy at finding the optimum solution is penalized; 
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 Improvements in the objective function value are more difficult as the 

closeness to the optimal solution increase and the stopping criteria easily 

become active. 

 

These consequences can obviously be applied to the interpretation of the 

results in the previous figures: algorithms supplied by a sharing operator are 

penalized in terms of effectiveness in identifying the basin of attraction of the 

global optimum in case of presence of several local minima comparable with the 

global one, because, due to the low accuracy, little differences on the objective 

function values corresponding to comparable local minima can’t be detected 

and exploited. On the other hand, it is well-known that the promotion of diversity 

in the population allow to maintain subpopulations and to avoid premature 

convergence to local optima. The previous considerations suggest the 

possibility of improving the performance of GAOT-shared algorithm by 

exploiting the advantages of the sharing operator during the first phases of the 

global search and by decreasing its action along the optimization process in 

order to gain more accuracy in describing the reached local minimum: this could 

lead to better results even in presence of several comparable local minima. 

 

GATBX 

As GATBX implements a genetic algorithm, we report the statistical 

characteristics. Ten run have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 50 individuals evolving for a maximum 

number of generations equal to 100 has been processed again. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of 

generations: 
100 
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Table 37 reports the best identified solution and the best known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

Date of departure 

[d]: 
1253.511 1253.510 

Transfer time [d]: 203.536 203.541 

Table 37: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5678.904 5678.904 

∆VI  [m/s]: 2999.462 2999.464 

∆VF [m/s]: 2679.442 2679.439 

Table 38: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The previous tables show that the best identified solution coincides in fact with 

the best known one. As it concerns the statistical characteristics of the identified 

solution set. Table 39 reports the mean value and the standard deviation of the 

performances which will be used for comparisons with the other optimization 

algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 5740.887 177.082 

Model function evaluations: 2322 424.075 

Runtime [STU]: 1.037·10-2 4.405·10-3 

Table 39: Statistical characteristics of the identified solutions. 
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Table 39 shows that the mean value of the optimal objective function values 

reached at the end of each optimization process is quite different from the best 

identified one and is characterized by a high standard deviation. Again, such a 

result let us suppose that no all the performed optimization processes have 

been able to identify the basin of attraction of the best known solution. Figure 

131 reports the final solutions corresponding to each optimization run in the 

nFunc-∆V, while Figure 132 illustrates their distribution over the search space. 

 

Figure 131: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 
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Figure 132: Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 

Figure 131 and Figure 132 illustrate that GATBX algorithm could not reach the 

basin of attraction of the best known solution corresponding to all the 

optimization runs. In particular, by investigating the normalized search space, 

Table 40 reports the Euclidean distance of each final solution form the best 

known one. 

 

Run Euclidean distance 

Run 1 4.870·10-1 

Run 2 4.870·10-1 

Run 3 4.871·10-1 

Run 4 5.818·10-6 

Run 5 5.981·10-1 

Run 6 4.870·10-1 
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Run 7 4.870·10-1 

Run 8 1.195·10-4 

Run 9 1.042·10-5 

run 10 7.234·10-1 

Table 40: Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By considering two solutions as identical when their Euclidean distance is less 

then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in 

this case), only 3/10 GATBX runs were able to get the best known solution. Let 

now investigate the main features of the final population: Figure 133 shows the 

distribution of the population over the search space at the end of the 

optimization process corresponding to the best identified solution. 

 

Figure 133: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 
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Figure 133 shows that the individuals in the final population mainly concentrated 

in a narrow neighbourhood of the global optimum, in a more evident manner 

than in case of GAOT algorithm. This results held in all runs on average, 

including the cases where a non global optimum has been identified. Figure 134 

shows the trace of the best solution during the optimization run corresponding 

to the best identified solution: GATBX search process typically investigates the 

basin of attraction of different local minima before converging to the final 

solution. 

 

Figure 134: Trace of the best solution during the optimization run corresponding to the best 
identified solution. 

 

GATBX-migr 

 

As GATBX-migr implements a genetic algorithm including a migration operator 

applied among a predefined set of subpopulations, we report the statistical 

characteristics. Ten run have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 50 individuals evolving for a maximum 
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number of generations equal to 100 has been processed again. The population 

has been divided in 5 subpopulations, each one including 10 individuals. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 100 

Number of subpopulations: 5 

Number of individuals per 

subpopulation: 

10 

 

Tables 41-42 report the best identified solution compared with the best known 

solution. 

 

Search space 

Design variable Best identified solution Best known solution 

Date of departure 

[d]: 
1253.519 1253.510 

Transfer time [d]: 203.537 203.541 

Table 41: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5678.904 5678.904 

∆VI  [m/s]: 2999.472 2999.464 

∆VF [m/s]: 2679.432 2679.439 

Table 42: Comparison between the best identified solution and the best known solution: 
objective function space. 
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The previous tables show that the best identified solution coincides in fact with 

the best known one. Let now consider the statistical characteristics of the 

identified solution set. Table 43 reports the mean value and the standard 

deviation of the performances which will be used for comparisons with the other 

optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 5679.957 2.191 

Model function evaluations: 2650 909.799 

Runtime [STU]: 1.646·10-2 6.529·10-3 

Table 43: Statistical characteristics of the identified solutions. 

 

Although the little standard deviation identified in case of GATBX-migr 

algorithm, the mean value of the optimal objective function values lets us 

suppose that no all the performed optimization processes have been able to 

identify the basin of attraction of the best known solution. Figure 135 reports the 

final solutions corresponding to each optimization run in the nFunc-∆V plane, 

while Figure 136 illustrates their distribution over the search space. 
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Figure 135: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 136: Distribution of the final solutions corresponding to each optimization run on the 
search space. 
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Results illustrated in Figure 135 and Figure 136 are quite impressive: most 

GATBX-migr runs effectively and accurately reached the best known solution. 

Only few runs, as showed in the following, got stuck in a different local 

minimum, which is in fact totally comparable with the best known one in terms 

of objective function value. In particular, by investigating the normalized search 

space, Table 44 reports the Euclidean distance of each final solution form the 

best known one. 

 

Run Euclidean distance 

run 1 2.668·10-4 

run 2 7.691·10-4 

run 3 8.619·10-6 

run 4 4.822·10-5 

run 5 2.949·10-5 

run 6 3.793·10-5 

run 7 2.777·10-5 

run 8 4.871·10-1 

run 9 3.502·10-5 

run 10 4.871·10-1 

Table 44 - Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By considering two solutions as identical when their Euclidean distance is less 

then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in 

this case), 8/10 GATBX-migr runs were able to get the best known solution. Let 

now analyse the main features of the final population: Figure 137 shows the 

distribution of the population over the search space at the end of the 

optimization process corresponding to the best identified solution. 
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Figure 137: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 137 shows that the individuals in the final population mainly concentrated 

in a narrow neighbourhood of the global optimum: although the GATBX-migr 

performs independent evolutions of subpopulation, the mutation operator finally 

forces the convergence to the same local optimum. However, the benefits of 

such evolutionary scheme are quite evident: GATBX-migr effectively avoids the 

premature convergence to local optima, thanks to a better coverage of the 

search space. This results held in all runs on average, including the cases 

where a non global optimum has been identified. Figure 138 shows the trace of 

the best solution during the optimization run corresponding to the best identified 

solution: after few iteration, GATBX-migr search process immediately gained 

the basin of attraction of the best known solution. 
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Figure 138: Trace of the best solution during the optimization run corresponding to the best 
identified solution. 

 

FEP 

As FEP implements an evolutionary programming algorithm, we report, as 

already done for genetic algorithms, the statistical characteristics. Ten run have 

been processed in order to solve the previously defined problem. Default 

options suggested by the providers of the code have been used in all the runs. 

As the 2-impulse direct planet-to-planet transfer has low complexity features, 

we used 50 individuals evolving for a maximum number of generations equal to 

100. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 100 
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Table 45 and Table 46 report the best identified solution compared with the best 

known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

Date of departure 

[d]: 
1253.509 1253.510 

Transfer time [d]: 203.540 203.541 

Table 45: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5678.904 5678.904 

∆VI  [m/s]: 2999.463 2999.464 

∆VF [m/s]: 2679.441 2679.439 

Table 46: Comparison between the best identified solution and the best known solution: 
objective function space. 

 
The previous tables show that the best identified solution coincides in fact with 

the best known one. As it concerns the statistical characteristics of the identified 

solution set, Table 47 reports the mean value and the standard deviation of the 

performances which will be used for comparisons with the other optimization 

algorithms.  

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 5711.337 95.130 

Model function evaluations: 2478.9 953.829 

Runtime [STU]: 2.463·10-2 9.004·10-3 

Table 47: Statistical characteristics of the identified solutions. 
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Although the presence, similarly to GATBX-migr algorithm, of a little standard 

deviation identified, the mean value of the optimal objective function values lets 

us suppose that no all the performed optimization processes have been able to 

identify the basin of attraction of the best known solution. Figure 139 reports the 

final solutions corresponding to each optimization run in the nFunc-∆V plane, 

while Figure 140 illustrates their distribution over the search space. 

 

Figure 139: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 140: Distribution of the final solutions corresponding to each optimization run on the 
search space. 
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Results illustrated in Figure 139 and Figure 140 are quite similar to those 

gained in case of GATBX-migr algorithm: most FEP runs effectively and 

accurately reached the best known solution. Only few runs, as showed in the 

following, got stuck in a different local minimum, which is in fact totally 

comparable with the best known one in terms of objective function value. By 

investigating the normalized search space, Table 49 reports the Euclidean 

distance of each final solution form the best known one. 

 

run Euclidean distance 

run 1 9.651·10-7 

run 2 2.471·10-6 

run 3 3.914·10-5 

run 4 4.871·10-1 

run 5 5.672·10-4 

run 6 4.864·10-1 

run 7 2.060·10-2 

run 8 1.441·10-4 

run 9 3.614·10-6 

run 10 4.871·10-1 

Table 49: Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By considering two solutions as identical when their Euclidean distance is less 

then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in 

this case), 7/10 FEP runs were able to get  the best known solution. Further 

interesting observations can be pointed out by analysing the main features of 

the final population: Figure 141 shows the distribution of the population over the 

search space at the end of the optimization process corresponding to the best 

identified solution. 
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Figure 141: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

The final population of the run identifying the best solution is strongly 

concentrated around the best known solution and is characterized by quite 

similar individuals. Such result could be though as negative, as diversity in the 

population generally promotes a better coverage of the search space; however, 

the use of self-adaptive evolutionary parameters based on Cauchy random 

numbers generation seem to tune in a proper way the search step, effectively 

avoiding the premature convergence to local minima. This results held in all 

runs on average, including the cases where a non global optimum has been 

identified, as shown in Figure 142. 
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Figure 142 - Distribution of the population over the search space at the end of an optimization 
process corresponding to a local optimum solution. 

 

Figure 143 shows the trace of the best solution during the optimization run 

corresponding to the best identified solution: FEP search process immediately 

converged to the basin of attraction of the best identified solution, thanks to a 

good trade-off between exploration and exploitation via the self-adaptivity of the 

evolutionary parameters tuning the search step. 
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Figure 143: Trace of the best solution during the optimization run corresponding to the best 
identified solution. 

 

DE 

As DE implements a Differential Evolution algorithm, we report the statistical 

characteristics. Ten run have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. Again, due to the low complexity of the 2-impulse 

direct planet-to-planet transfer problem, we used 50 individuals evolving for a 

maximum number of iterations equal to 100. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 100 

 

Table 50 and Table 51 report the best identified solution compared with the best 

known solution. 
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Search space 

Design variable Best identified solution Best known solution 

Date of departure [d]: 4330.221 1253.510 

Transfer time [d]: 307.746 203.541 

Table 50: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5708.130 5678.904 

∆VI  [m/s]: 3029.958 2999.464 

∆VF [m/s]: 2678.171 2679.439 

Table 51: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The previous tables show that the best identified solution doesn’t coincide in 

fact with the best known one, as illustrated in Figure 144, where the best 

solution identified by DE (black dot) is compared with the best known one (red 

dot) on the search space. 
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Figure 144: Comparison between the best solution identified by DE (black dot) and the best 
known one (red dot).   

 

Statistical characteristics of the identified solution set are reported in Table 52: 

the mean value and the standard deviation of the performances which will be 

used for comparisons with the other optimization algorithms are highlighted.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 5986.674 408.679 

Model function evaluations: 828.3 319.692 

Runtime [STU]: 3.019·10-3 1.098·10-3 

Table 52: Statistical characteristics of the identified solutions. 

 

Table 52 shows that the set of identified solutions is characterized by a high 

standard deviation. Such a result let us suppose that no all the performed 

optimization processes have been able to identify the basin of attraction of the 
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best known solution. Figure 145 reports the final solutions corresponding to 

each optimization run in the nFunc-∆V, while Figure 146 illustrates their 

distribution over the search space. 

 

Figure 145: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 146: Distribution of the final solutions corresponding to each optimization run on the 
search space. 
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Figure 145 and Figure 146 illustrate that DE algorithm couldn’t reach the basin 

of attraction of the best known solution corresponding to all the optimization 

runs. It is worth noting that, although the best identified solution doesn’t lie into 

the basin of attraction of the best known one, other runs were able to identify it; 

however, the low accuracy demonstrated by DE algorithm in such cases in 

describing the corresponding minimum led to objective function values higher 

than the best identified one. As a consequence, one can state that the 

performances of DE algorithm are strongly affected by a low accuracy. Let now 

analyse the normalized search space in order to identify the number of 

successful runs in identifying the basin of attraction of the best known solution: 

Table 53 reports the Euclidean distance of each final solution form the best 

known one. 

 

run Euclidean distance 

Run 1 6.045·10-1 

Run 2 2.218·10-2 

Run 3 8.062·10-2 

Run 4 4.562·10-3 

Run 5 2.244·10-2 

Run 6 5.307·10-1 

Run 7 4.744·10-1 

Run 8 5.990·10-1 

Run 9 4.807·10-1 

run 10 4.698·10-1 

Table 53: Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By considering two solutions as identical when their Euclidean distance is less 

then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in 

this case), only 3/10 DE runs were able to get the best known solution. 
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However, by analysing Figure 147, we can see that solution corresponding to 

run 3 (the red dot in figure), although quite different from the best known one, 

lies in fact in the basin of attraction of the best known solution. As a 

consequence, we can state that 4/10 DE runs were able to get the basin 

attraction of the best known solution. Let now investigate the main features of 

the final population: Figure 147 shows the distribution of the population over the 

search space at the end of the optimization process corresponding to the best 

identified solution. 

 

Figure 147: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 147 shows that the individuals in the final population are widely 

distributed on the search space. This results held in all runs on average, 

including the cases where the basin of attraction of the global optimum has 

been identified, as shown in Figure 148. 
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Figure 148: Distribution of the population over the search space at the end of the optimization 
process corresponding to an identified solution lying on the basin of attraction of the best known 
one. 

 
In particular it is quite interesting observing that the basin of attraction of several 

local minima are kept at the end of the optimization process. Such result could 

be effectively used by performing local optimization processes at the end of DE 

run in order to accurately identify the local minimum corresponding to each 

basin: in this way, although the low accuracy, DE algorithm is able to recognize 

different space trajectory families corresponding to different basin of attraction 

and to keep information about them during the whole optimization process.  

Consequences of such DE feature are highlighted in Figures 149-150, which 

show the trace of the best solution during the optimization runs corresponding 

to the best identified solution and to an identified solution lying on the basin of 

attraction of the best known one respectively: DE search processes typically 

investigates the basin of attraction of different local minima before converging to 

the final solution. 
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Figure 149: Trace of the best solution during the optimization run corresponding to the best 
identified solution. 

 

Figure 150 - Trace of the best solution during the optimization run corresponding to an 
identified solution lying on the basin of attraction of the best known one. 
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ASA 

As ASA implements an Adaptive Simulated Annealing algorithm, we report the 

statistical performance characteristics. Ten runs have been processed in order 

to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. Note that, unlike the 

previous cases, the adaptive simulated annealing needs a starting solution, 

which strongly affects the optimal solution reached. Due to the comparative 

purposes of this work, we decided to use ten different random starting solutions, 

uniformly distributed in the search box. Table 54 and Table  report the best 

identified solution compared with the best known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

Date of departure 

[d]: 
1253.509 1253.510 

Transfer time [d]: 203.542 203.541 

Table 54: Comparison between the best identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 5678.904 5678.904 

∆VI  [m/s]: 2999.464 2999.464 

∆VF [m/s]: 2679.440 2679.439 

Table 55: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The previous tables show that the best identified solution seems to coincide 

with the best known one. Let now consider the statistical characteristics of the 

identified solution set. Table 56 reports the mean value and the standard 
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deviation of the performances which will be used for comparisons with the other 

optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 6328.291 1330.247 

Model function evaluations: 1289.7 56.555 

Runtime [STU]: 3.814·10-3 1.555·10-4 

Table 56: Statistical characteristics of the identified solutions. 

 

The mean value of the optimal objective function values and the high standard 

deviation reported in Table 56 let us suppose that no all the performed 

optimization processes have been able to identify the basin of attraction of the 

best known solution. Figure 151 reports the final solutions corresponding to 

each optimization run in the nFunc-∆V plane, while Figure 152 illustrates their 

distribution over the search space. 

 

Figure151: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 
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Figure 152: Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 

Figure 151 and Figure 152 fairly illustrates that some ASA algorithm runs failed 

at reaching the basin of attraction of the best known solution: in particular, ASA 

got stuck in a set of local minima which is wider than in the previous cases, 

even if they are comparable in terms of objective function values (except in one 

case). By investigating the normalized search space, Table 57 reports the 

Euclidean distance of each final solution form the best known one. 

 

run Euclidean distance 

run 1 1.485·10-1 

run 2 3.856·10-6 

run 3 5.731·10-1 

run 4 1.965·10-6 
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run 5 7.234·10-1 

run 6 4.871·10-1 

run 7 4.014·10-1 

run 8 2.584·10-6 

run 9 3.243·10-6 

run 10 2.188·10-6 

Table 57: Euclidean distance of each final solution form the best known one in the normalized 
search space. 

 

By considering two solutions as identical when their Euclidean distance is less 

then 5% of the hyper-diagonal of the normalized search space (that is 0.071 in 

this case), 5/10 ASA runs were able to get the best known solution. Moreover, it 

is worth noting that in such successful runs, the accuracy shown by ASA is 

higher than all the previous algorithms, thanks to the local component of the 

global optimization process, as the distances corresponding to runs 2, 4, 8, 9 

and 10 have an order of magnitude equal to 10-6. Figure shows the history of 

the solution during the optimization run corresponding to the best identified 

solution. Note that, simulated annealing doesn’t use a population based 

approach, but try to explore the search space using a unique solution: then 

Figure 153 fairly illustrates the global component of the search process 

characterizing a simulating annealing algorithm. 
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Figure 153: History of the solution during the optimization run corresponding to the best 
identified solution. 

 

glbSolve 

 

As glbSolve algorithm implements a deterministic optimization approach, 

statistical characteristics are not needed in this case. Only one run have been 

processed in order to solve the previously defined problem. Default options 

suggested by the providers of the code have been used. As the 2-impulse direct 

planet-to-planet transfer has low complexity features, we used a maximum 

number of iterations equal to 100. 

 

Algorithm parameters 

Maximum number of iterations: 100 

 

Table 58 and Table 59 report the identified solution compared with the best 

known solution. 
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Search space 

Design variable Identified solution Best known solution 

Date of departure 

[d]: 
5087.669 1253.510 

Transfer time [d]: 309.881 203.541 

Table 58: Comparison between the identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Identified solution Best known solution 

∆V  [m/s]: 6406.750 5678.904 

∆VI  [m/s]: 3101.076 2999.464 

∆VF [m/s]: 3305.674 2679.439 

Table 59: Comparison between the identified solution and the best known solution: objective 
function space. 

 

The previous tables show that the identified solution doesn’t coincide in fact with 

the best known one, as Figure 154 fairly illustrates. 

 

Figure 154: Comparison between the solution identified by glbSolve (black dot) and the best 
known one (red dot). 
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Table 60 reports the characteristics of the identified solution, which will be used 

for comparisons with the other optimization algorithms.  

 

Evaluation criterion Criterion value 

V∆ [m/s]: 6406.750 

Model function 

evaluations: 
565 

Runtime [STU]: 3.845·10-3 

Table 60: Characteristics of the identified solutions. 

 

One of the output of glbSolve is the matrix of all rectangle center points 

sampled during the whole optimization run. By means of this matrix one can 

analyse the ability of glbSolve in exploring the whole search space: Figure 155 

shows the distribution of the sampled points over the search space. 

 

Figure 155: Distribution of all rectangle center points sampled during the whole optimization 
run. 
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Figure 155 shows that, even if glbSolve algorithm explored the neighbourhood 

of different local minima, it wasn’t able to identify and explore the basin of 

attraction of the best known solution. The exploration of the basin of attraction 

of different local minima is fairly illustrated in Figure 156, where the objective 

function values corresponding to each rectangle center point are reported: the 

565 sampled points are ordered along the x-axis from the first rectangle center 

point sampled during the optimization process to the final one. 

 

Figure 156: Objective function values corresponding to each rectangle center point. 

 

Figure 156 confirms that at the beginning of the optimization process glbSolve 

algorithm could get worse local optima solution (see also Figure 157 which 

reports the first 140 sampled points and Figure 158 which reports the last 425 

ones). 
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Figure 157: Distribution of the first 140 rectangle center points sampled during the whole 
optimization run. 

 

Figure 158: Distribution of the last 425 rectangle center points sampled during the whole 
optimization run. 
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MCS 

As MCS algorithm implements a deterministic optimization approach, only one 

run have been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used. We 

used a maximum number of objective function evaluation equal to 5000. 

 

Algorithm parameters 

Maximum number of objective function 

evaluations: 
5000 

 

Table 61 and Table 62 report the identified solution compared with the best 

known solution. 

 

Search space 

Design variable Identified solution Best known solution 

Date of departure 

[d]: 
1253.509 1253.510 

Transfer time [d]: 203.542 203.541 

Table 61: Comparison between the identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Identified solution Best known solution 

∆V  [m/s]: 5678.903 5678.904 

∆VI  [m/s]: 2999.464 2999.464 

∆VF [m/s]: 2679.440 2679.439 

Table 62: Comparison between the identified solution and the best known solution: objective 
function space. 

 

The previous tables show that the identified solution coincides with the best 

known one. 
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Table 63 reports the characteristics of the identified solution, which will be used 

for comparisons with the other optimization algorithms.  

 

Evaluation criterion Criterion value 

V∆ [m/s]: 5678.903 

Model function 

evaluations: 
640 

Runtime [STU]: 1.019·10-2 

Table 63: Characteristics of the identified solutions. 

 

Although MCS algorithm is a global optimization algorithm, it has the important 

feature of keeping, in a so called “shopping basket”, good points reached during 

the optimization process. Figure 159 illustrates the whole shopping basket kept 

by MCS in the simple case of the two impulse direct planet-to-planet transfer 

problem. 

 

Figure 159: Shopping basket at the end of the optimization process. 
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Besides the global optimum, which has been get with good performances (see 

Table 63), the shopping basket contain information about the basin of attraction 

of some local optima. 

 

rbfSolve 

As rbfSolve algorithm implements a deterministic optimization approach, based 

on objective function response surfaces assessment and analysis suitable for 

costly objective function problems, statistical features analysis do not hold here. 

Only one run has been processed in order to solve the previously defined 

problem. Default options suggested by the providers of the code have been 

used. It is worth noting that, as already stated in the description of this 

optimization tool, the termination conditions available in TOMLAB version of 

rbfSolve tool (which is not freely available) do not include suitable rules for 

practical problems with not a priori information about the global optimum 

solution. As a consequence, a maximum number of objective function 

evaluations has been fixed for terminating the optimization process; the 

maximum value has been set based on the order of magnitude of the objective 

function evaluations resulting from the application of the previously analysed 

tools. In particular, in case of the 2-impulse direct planet-to-planet interplanetary 

transfer, a maximum value of 2500 objective function evaluations has been 

imposed. 

 

Algorithm parameters 

Maximum number of objective function 

evaluations: 
2500 

 

However, a particular exit condition terminated the optimization process, which 

typically happens when the approximating surface generated by the algorithm 

can not improve due to the generation of successive identical solutions for 

improving the interpolation surface; the maximum number of successive 

identical solutions is automatically set by rbfSolve algorithm once used the 

default options. 
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Anyway, Table 64 and Table 65 report the identified solution compared with the 

best known solution. 

 

Search space 

Design variable Identified solution Best known solution 

Date of departure 

[d]: 
3573.380 1253.510 

Transfer time [d]: 324.312 203.541 

Table 64: Comparison between the identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Identified solution Best known solution 

∆V  [m/s]: 5684.196 5678.904 

∆VI  [m/s]: 3244.820 2999.464 

∆VF [m/s]: 2439.377 2679.439 

Table 65: Comparison between the identified solution and the best known solution: objective 
function space. 

 

The previous tables show that the identified solution does not coincide with the 

best known one, as Figure 160 fairly illustrates: rbfSolve could not identify the 

basin of attraction of the best known solution. 
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Figure 160: Comparison between the solution identified by rbfSolve (black dot) and the best 
known one (red dot). 
 

Table 66 reports the characteristics of the identified solution, which will be used 

for comparisons with the other optimization algorithms.  

 

Evaluation criterion Criterion value 

V∆ [m/s]: 5684.196 

Model function 

evaluations: 
953 

Runtime [STU]: 30.878 

Table 66: Characteristics of the identified solutions. 

 

One of the output of the optimization process is the matrix of all sampled points 

in the search space, which are shown in Figure 161 
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Figure 161: Distribution of all sampled points during the optimization process. 

 

The algorithm do not accurately sample the region of the search space near the 

global optimum solution. Note that the objective function model has 

discontinuities in the search space: the global optimization algorithms based on 

response surface methodologies have well-known difficulties in handling such 

objective function structure, as confirmed in this simple test: the sampled points 

made the algorithm converging to a good approximation of the objective 

function structure in the neighbourhood of the identified local minimum.  
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Summary of results: 
 

Table 67 reports the summary of results for the two impulse direct planet-to-

planet transfer problem in a tabular form. 

 

Algorithm V∆  [m/s] Fun. evaluations Runtime [STU] 

GAOT 5741.524 (σ = 163.525) 1270.5 (σ = 345.683) 8.198 310−⋅  (σ = 3.306 310−⋅ ) 
GAOT-
shared 6420.207 (σ = 574.22) 590.4 (σ = 320.35) 4.907 310−⋅  (σ = 2.776 310−⋅ ) 

GATBX 5740.887 (σ = 177.082) 2322 (σ = 424.075) 1.037 210−⋅  (σ = 4.405 310−⋅ ) 
GATBX-

migr 5679.957 (σ = 2.191) 2650 (σ = 909.799) 1.646 210−⋅  (σ = 6.529 310−⋅ ) 

FEP 5711.337 (σ = 95.13) 2478.9 (σ = 953.829) 2.463 210−⋅  (σ = 9.004 310−⋅ ) 

DE 5986.674 (σ = 408.679) 828.3 (σ = 319.692) 3.019 310−⋅  (σ = 1.098 310−⋅ ) 

ASA 6328.291 (σ = 1330.247) 1289.7 (σ = 56.555) 3.814 310−⋅  (σ = 1.555 410−⋅ ) 

GlbSolve 6406.75 565 3.845 310−⋅  

MCS 5678.903 640 1.019 210−⋅  

RbfSolve 5684.196 953 30.878 

EPIC *(1) 6000.190 (σ = 456.57) 315 (σ = 8.4) - 

EPIC *(2) 5679.1 (σ = 0.579) 2040 (σ = 21) - 

Table 67: Summary of results for the two impulse direct planet-to-planet transfer problem. 

 
Notes: 
 
*(1) : test performed with a 10 individuals population, of which 5 converging 

within  300 cycles  
*(2) : test performed with a 20 individuals population, of which 10 converging 

within   300 cycles 
 

Note that the performance criteria we have measured are in fact partially 

conflicting: the most evident example is the trade off between the global 

optimum solution reached at the end of the optimization process and the 

number of the objective function evaluations or the runtime needed to reach it. 
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As proposed in earlier works [Pintér, 1995], concepts and techniques typically 

adopted in multiobjective optimization problems (such as the concept of the 

Pareto dominance) can be here used in order to gain valuable insights 

regarding the comparative strengths and weaknesses of optimization 

algorithms. As stated above, due to the presence of not optimized codes among 

the tested ones and to the necessity of creating a MEX file for ASA algorithm 

(which slightly affects the runtime performances), the main evaluation criteria to 

be considered have been taken as the best objective function value reached, 

∆V, and the number of model function evaluations needed, nFunc. Figure162 

reports such performances in a ∆V - nFunc plane in order to identify the Pareto 

optimal solution (the red line in figure representing the best known solution). 

 

Figure 162: Algorithms performances in the ∆V - nFunc plane. 

 

Note that Figure 162 reports the performances listed in Table 67, which 

contains statistical performances in case of randomized optimization algorithms. 

By applying the concepts of Pareto dominance, Table 68 reports for each 
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algorithm, the number of algorithms which dominated (and then outperformed) 

it. 

 

Algorithm 
# of dominating 

algorithms 

GAOT 2 

GAOT-shared 1 

GATBX 2 

GATBX-migr 1 

FEP 2 

DE 1 

ASA 4 

glbSolve 0 

MCS 0 

rbfSolve 1 

EPIC *(1) 0 

EPIC *(2) 1 

Table 68: Number of dominating algorithms. 

 

Table 68 shows that the set of Pareto optimal solutions includes in fact two 

solutions: the algorithms which best solved the 2-impulse direct planet-to-planet 

transfer problem (in a Pareto optimal sense) are EPIC*(1) and MCS, the 

performances of which are highlighted in Figure 163. 
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Figure 163: Pareto optimal algorithms. 

 

However, we must take care of the fact that EPIC*(1) could not reach in 

fact the global optimum solution, but a local one in 50% of the cases. Moreover, 

it is interesting to observe the improvement gained by MCS algorithm compared 

with the performances of the more classic globSolve tool: MCS and globSolve 

algorithms have been both inspired by DIRECT method for global optimization 

[Jones et al., 1993]; however, unlike the globSolve algorithm, MCS uses a 

branching method which allow for a more irregular splitting procedure. As can 

be noted from Figure 162, the MCS approach led to evident improvements in 

the effectiveness at identifying the basin of attraction of the best known solution 

in the 2-impulse direct planet-to-planet transfer problem, making the algorithm 

performances less dependent on the upper lower bounds, especially referring to 

design variables associate to objective function periodicities. Moreover, it is 

interesting to highlight again the effects of the sharing operator on the GAOT 

performances: indeed, as stated above, by promoting the diversity of the 

individuals in the population, the GAOT – shared algorithm hinders the 
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concentration of the individuals around the optimal solutions. This can lead to 

low accuracy at describing the optimum solutions and to a premature 

optimization process arrest because the stopping criteria easily become active. 

These consequences can obviously be applied to the interpretation of the 

results in Figure 162, where GAOT-shared performances correspond to higher 

mean objective function value reached at the end of the optimization process 

but lower number of objective function evaluations, although both algorithms 

could find the basin of attraction of the best known solution in a comparable 

number of runs (4/10 for GAOT compared with 3/10 for GAOT-shared). It is 

worth noting that all the achieved results are strictly affected by the stopping 

criterion used: as an example, letting GAOT – shared evolving for a number of 

objective function evaluations greater than the value obtained with the here 

considered stopping criterion may lead to more effectiveness in finding the 

global optimum. However, the effects of the stopping criteria on the algorithm 

performances are not addressed here, where the algorithms are used as black-

box tools. Finally the performances of all algorithms in identifying the basin of 

attraction of the best known solution are reported in Table 69 (note that for 

randomized algorithms the number of successful runs over the total number of 

performed runs is reported). 

 

Algorithm  Success 

GAOT 4/10 

GAOT-shared 3/10 

GATBX 3/10 

GATBX-migr 8/10 

FEP 7/10 

DE 3/10 

ASA 5/10 

glbSolve No 

MCS Yes 
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rbfSolve No 

EPIC *(1) 5/10 

EPIC *(2) 10/10 

Table 69: Algorithms performance in identifying the basin of attraction of the best known 

solution. 

 

Table 69 shows that, unlike a relatively high mean number of objective function 

evaluations necessary to the global optimization process, GATBX-migr turned 

out to have the highest rate of success in reaching the basin of attraction of the 

best known solution if compared with other randomized optimization algorithms 

in case of the 2-impulse direct planet-to-planet transfer problem, thus showing a 

relatively robustness in performing a global search. Similar performances have 

been obtained by FEP tool, where 7/10 runs were successful and a slightly 

lower mean number of objective function evaluations with respect to GATBX-

migr was required. However, note that MCS algorithm, which is based on a 

deterministic approach, identified the global optimum (and non a local one, as in 

glbSolve case) in a deterministic way (which corresponds to a probability of 

success equal to 100%) in a lower number of objective function evaluations with 

respect the other algorithms. We can then conclude that, in the simple case of 

2-impulse direct planet-to-planet transfer problem, the MCS algorithm have 

shown to be the best performing one. 
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8. MULTIPLE GRAVITY ASSIST INTERPLANETARY TRANSFER 
 

Problem class statement: 

 

Interplanetary transfer description 

Multiple gravity assist interplanetary transfer from Earth to Saturn via Venus-

Venus-Earth-Jupiter gravity assist manoeuvres (referred to Cassini-Huygens 

space trajectory) 

Objective function assessment 

Objective function: FPGAI VsVVV ∆+∆+∆=∆ ,  

where: 

• IV∆  is the magnitude of the relative 

velocity at the beginning of the 

interplanetary transfer phase. 

• sV PGA,∆  are the magnitudes of the 

minimum corrective ∆Vs at each gravity 

assist manoeuvre corresponding to planet 

P, PGAV ,∆ , which is necessary to link two 

consecutive interplanetary transfer arcs 

resulting from the Lambert’s problem 

formulation. 

• FV∆  is the magnitude of the velocity 

variation necessary to reach the insertion 

orbit at Saturn, FV∆ . 
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Mathematical models: • Restricted 2-body dynamical model (C2 in 

the whole solution space except in the 

origin) 

• Three dimensional motion 

• Analytical ephemeris model (generated 

by time polynomial series of the orbital 

elements) 

• Linked-conic approximation for gravity 

assist manoeuvres 

• Impulsive corrective manoeuvres for 

matching input and output velocity 

conditions at each gravity assist 

• Impulsive manoeuvres (i.e. instantaneous 

variations in velocity) 

• Lambert’s problem formulation (Battin’s 

algorithm for the problem solution: 

singular for π and 2 π transfer angles) 

Search space, D, characterization 

Number of design variables: 6 

Design Variables: • Date of departure from Earth, 0t  

• Transfer time from Earth to Venus, VEtt −  

• Transfer time from Venus to Venus, VVtt −  

• Transfer time from Venus to Earth, EVtt −  

• Transfer time from Earth to Jupiter, JEtt −  

• Transfer time from Jupiter to Saturn, SJtt −

Topology: Continuous variables ⇒  6ℜ⊂D  
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Constraints 

Constraints typology: Box constraints 

Box intervals: • 0t  included in a 5 years period centred in 

the 1st January 1999 (including  the date 

of departure of Cassini-Huygens mission, 

15th October 1997). 

• [ ] [ ]dHtt VEVE  291.83 ,59.142,1.0 =⋅∈ −− , 

where VEH −  is the Homann transfer time 

corresponding to the linking arc Earth-

Venus. 

• [ ] [ ]dTtt VVV  92.448,23.112,1.0 =⋅∈− , where 

VT  is the period of Venus orbit. 

• [ ] [ ]dHtt EVEV  92.145,592.141,1.0 =⋅∈ −− , 

where EVH −  is the Homann transfer time 

corresponding to the linking arc Venus-

Earth. 

• [ ] [ ]dHtt JEJE  996.54 ,65.991,1.0 =⋅∈ −− , 

where JEH −  is the Homann transfer time 

corresponding to the linking arc Earth-

Jupiter. 

• [ ] [ ]dHtt SJSJ  3650.2 ,02.3651,1.0 =⋅= −− , 

where SJH −  is the Homann transfer time 

corresponding to the linking arc Jupiter-

Saturn. 
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General considerations 

Objective function analysis: The objective function is almost everywhere 

C2, locally discontinuous in a countable 

number limited set 

Problem complexity: High 

Search space normalization: The search space is normalized by means 

of the upper-lower bounds in order to be an 

unit hypercube ⇒  [ ]61,0≡D  

 
Number of global optima: A priori unknown. 

The following best known solution has been gained by means of a multi-start 

search, which implement a local search process via SQP algorithm starting from 

1000 random first guess solutions uniformly distributed over the search space 

(each one requiring a number of objective function evaluations of the order of 

103). 

Search space 

Date of departure: 20/11/1997 

Earth-Venus transfer time: 179.14 d 

Venus-Venus transfer time: 406.53 d 

Venus-Earth transfer time: 53.18 d 

Earth-Jupiter transfer time: 758.33 d 

Jupiter-Saturn transfer time: 3650.2 d 
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Objective space 

V∆ : 6368.2 m/s 

IV∆ : 3888.0 m/s 

1st VGAV ,∆  2032.7 m/s 

2nd VGAV ,∆ : 0.0327 m/s 

EGAV ,∆ : 0.0057 m/s 

JGAV ,∆ : 0.0078 m/s 

FV∆ : 447.400 m/s 

 

It is worth pointing out that a family of alternative solutions have been found 

which, although possessing little bit higher overall V∆  values, require 

considerable shorter transfer times. A representative solution of this family is 

described in the following table. 

 

Search space 

Date of departure: 25/10/1997 

Earth-Venus transfer time: 206.38 d 

Venus-Venus transfer time: 401.21 d 

Venus-Earth transfer time: 54.52 d 
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Earth-Jupiter transfer time: 548.84 d 

Jupiter-Saturn transfer time: 1747.90 d 

Objective space 

V∆ : 7154.6 m/s 

IV∆ : 5756.2 m/s 

1st VGAV ,∆  883.54 m/s 

2nd VGAV ,∆ : 0.0283 m/s 

EGAV ,∆ : 2.3098 m/s 

JGAV ,∆ : 0.0056 m/s 

FV∆ : 512.52 m/s 

 

Number of local optima: A priori unknown. 

 

Hardware platform: 
Intel Pentium 4 – 3.06GHz laptop. 

 

Operating system: 
Microsoft Windows XP 

Home edition 

Version 2002 

Service Pack 1 
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Timings: 

The Standard Unit Time (see Dixon & Szegö, 1978) has been measured. 

 

Performances: 

In the following pages, the performances of each global optimization tool in 

solving the Multiple Gravity Assist interplanetary transfer from Earth to Saturn 

via Venus-Venus-Earth-Jupiter gravity assist manoeuvres are reported. The 

evaluation criteria will be mainly based on the analysis of the optimal solution 

reached and the number of the required model function evaluations. Due to the 

presence of not optimized codes among the tested ones, timing will not be 

considered as a main evaluation criterion. 

 

GAOT 

As GAOT implements a genetic algorithm, we report the statistical 

characteristic, typically considered in case of randomized solution methods. Ten 

run have been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used in all 

the runs: note that by tuning the algorithm parameters one may improve the 

performance of the solvers, but, due to the comparative purposes of this work, 

the tuning effects have not been considered. As the Multiple Gravity Assist 

interplanetary transfer shows high complexity features, we used 100 individuals 

evolving for a maximum number of generations equal to 1000. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of 

generations: 
1000 

 

 

Table 70 reports the best identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 
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function  terms, while Figure 164 plots the resulting interplanetary transfer 

trajectories. 

 

 
Best identified 

solution 
Best known 

solution 

0t : -791.277 d -770.686 d 

VEtt − : 191.670 d 179.524 d 

VVtt − : 408.6 d 406.528 d 

EVtt − : 57.888 d 53.181 d 

JEtt − : 753.46 d 758.334 d 

SJtt − : 3625.9 d 3650.218 d 

V∆ : 6706.599 m/s 6367.990 m/s 

IV∆ : 4291.287 m/s 3901.332 m/s 

1st VGAV ,∆ : 1712.691 m/s 2019.210 m/s 

2nd VGAV ,∆ : 250.044m/s 0.018 m/s 

EGAV ,∆  0.425 m/s 0.005 m/s 

JGAV ,∆  4.611 m/s 0.022 m/s 

FV∆ : 447.541 m/s 447.402 m/s 

Table 70: Comparison between the best identified solution and the best known solution. 
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Figure 164: GAOT: Comparison between the best identified solution and the best known 

solution. 

 

Table 70 and Figure 164 show that the best solution identified by GAOT 

algorithm is close to the best known one: differences in the values of the design 

variables are of the order of 10 days. This can be better illustrated as shown in 

the following: as stated above, the search space has been normalized to a unit 

six-dimensional hypercube for the global search process; Table  reports the 

best identified solution and the best known solution in the normalized search 

space. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.266 0.639 0.908 0.330 0.729 0.993 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 71:GAOT: Comparison between the best identified solution and the best known solution 
in the normalized search space. 
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Differences in the values of the design variables in the normalized search space 

have a maximum value of 10-2. The Euclidean distance between the two 

solutions in the normalized search space is equal to 5.970 210−⋅ , showing their 

relative closeness. Note that, although these relative little differences in the 

search space, the objective function values are quite different, especially if each 

single terms are compared: this highlights the high sensitivity of the objective 

function with respect to the values of the design variables. The closeness of the 

two solutions corresponding to the low Euclidean distance, and, in particular, 

the low difference in the value of the date of departure, let us suppose that, 

although GAOT algorithm couldn’t be able to reach the best known solution 

accurately, it could get its basin of attraction: actually, genetic algorithms are 

known as an effective tool for fast reaching the basin of attraction of good 

solutions, while showing poor converge performances in locally searching and 

accurately describing the corresponding local minimum; this is the reason why 

local search processes via gradient based search algorithms are often 

performed after the genetic algorithm based global search phase. In fact, given 

the best solution identified by GAOT (reported in Tabe 70) and considering it as 

the starting point for a local search process performed by an SQP algorithm, an 

improved best identified solution is identified which almost coincide with the 

best known solution, as shown in Table 72.  

 

 
Best identified 
solution + SQP 

Best known 
solution 

0t : -770.67 d -770.686 d 

VEtt − : 179.5 d 179.524 d 

VVtt − : 406.56 d 406.528 d 

EVtt − : 53.175 d 53.181 d 

JEtt − : 758.35 d 758.334 d 

SJtt − : 3650.2 d 3650.218 d 

V∆ : 6373.258 m/s 6367.990 m/s 

IV∆ : 3900.226 m/s 3901.332 m/s 
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1st VGAV ,∆ : 2016.687 m/s 2019.210 m/s 

2nd VGAV ,∆ : 0.723 m/s 0.018 m/s 

EGAV ,∆  8.203 m/s 0.005 m/s 

JGAV ,∆  0.004 m/s 0.022 m/s 

FV∆ : 447.415 m/s 447.402 m/s 

Table 72: Comparison between the best solution identified by GAOT improved by a SQP based 
local optimization process and the best known solution (number of function evaluations required 
by the local optimization process equal to 410). 

 

Then, Table 72 shows that GAOT algorithm was able to reach the basin of 

attraction of the best known solution in one optimization run at least. Let now 

analyse the statistical values of GAOT performances. Figure 165 shows the 

distribution of the solutions resulting from each optimization run over the plane 

of the objective function, V∆ , and the number of function evaluations, nFunc., 

while Table 73 reports the statistical characteristics, which will be used for 

comparisons with the other optimization algorithms, as well as the 

performances corresponding to the best identified solution. 

 

Figure 165: Distribution of the solutions resulting from each GAOT optimization run over the 
VnFunc ∆−  plane. 
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Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 8256.416 m/s 1555.107 m/s 6702.724 m/s 

nFunc.: 8543.400 4075.382 9380 

Runtime [STU]: 1.883 110−⋅  9.683 210−⋅  1.986 110−⋅  

Table 73: Statistical characteristics of the identified solutions. 

 

Figure 165 and Table 73 show that the resulting optimum V∆  values 

corresponding to the ten runs are distributed over the objective function space 

with a standard deviation that is in fact of the same order of magnitude of the 

mean value of the distribution itself. Such result can be due to the identification 

of different local minima; but it can turn out even if the optimal solutions lie in 

the basin of attraction of the same local minimum, due to the high objective 

function sensitivity with respect to the design variables. As a consequence, 

estimating the number and features of the distinct local minima reached by 

means of the ten runs would be particularly interesting. Moreover, it is worth 

noting that such an analysis will allow the estimation of the number of runs 

which have been able to reach the basin of attraction of the global optimum, 

which in fact can be considered as a success index in performing the 

optimization process. To attain such a task, the optimal solutions corresponding 

to all ten runs have been used as starting solutions for ten local optimization 

processes in order to accurately estimate the local minimum corresponding to 

the basin of attraction each optimal solution belong to. The consequences of the 

local optimization processes in the nFunc - V∆  plane are shown in Figure 166 

where each improved solution is linked to the corresponding starting one by 

means of a straight line. 
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Figure 166: Comparison between solutions resulting from GAOT runs and their improvements 
by means of a further local optimization process via SQP algorithm over the VnFunc ∆−  
plane. 

 

Figure 166 shows that different local minima corresponds to GAOT runs. In 

order to estimate the number of identified solutions which lie in the basin of 

attraction of the best known solutions, let investigate the solutions in the 

normalized search space. Table 74 reports, corresponding to each GAOT+SQP 

run, the reached objective function value and the distance (in Euclidean metric) 

with respect to the best known solution. 
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Mean value ∆V [m/s] Distance 

run 1 6504.259 0.107 

run 2 6396.589 0.021 

run 3 6376.165 0.013 

run 4 6698.965 0.160 

run 5 6368.162 0.002 

run 6 9271.339 0.670 

run 7 7752.866 0.690 

run 8 7753.058 0.690 

run 9 7752.866 0.690 

run 10 6369.524 0.001 

Table 74: GAOT+SQP optimization runs: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

An empirical analysis suggest to define two solutions as identical when the 

Euclidean distance is less than 1% of the hyper diagonal of the normalized 

search space, that is 0.024. The consequence of such definition is that only 

runs 2, 3, 5 and 10 were able to get the best known solution, that is only 4/10 

GAOT runs successfully identified the basin of attraction of the best known 

solution. 

 

GAOT-shared 

As GAOT-shared implements a genetic algorithm including a niching technique, 

we report again the statistical characteristics. Ten run have been processed in 

order to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. The threshold of 

dissimilarity, Sσ , for the sharing method and the shape parameter of the sharing 

function, α , have been set respectively to: 

1.0=Sσ  

1=α  
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We used again a population of 100 individuals, evolving for a maximum number 

of generations equal to 1000. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of 

generations: 
1000 

 

Tabke 75 reports the best identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 

function terms, while Figure 166 plots the resulting interplanetary transfer 

trajectories. 

 
Best identified 

solution 
Best known 

solution 

0t : -816.015 d -770.686 d 

VEtt − : 186.627 d 179.524 d 

VVtt − : 432.194 d 406.528 d 

EVtt − : 73.904 d 53.181 d 

JEtt − : 805.177 d 758.334 d 

SJtt − : 2194.281 d 3650.218 d 

V∆ : 14683.328 m/s 6367.990 m/s 

IV∆ : 3537.910 m/s 3901.332 m/s 

1st VGAV ,∆ : 1419.803 m/s 2019.210 m/s 

2nd VGAV ,∆ : 198.546 m/s 0.018 m/s 

EGAV ,∆  5405.861 m/s 0.005 m/s 

JGAV ,∆  3489.323 m/s 0.022 m/s 

FV∆ : 631.885 m/s 447.402 m/s 

Table 75: Comparison between the best identified solution and the best known solution. 
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Figure 166: GAOT-shared: Comparison between the best identified solution and the best 
known solution. 

 

By analysing Table 75 and Figure 166 differences in the values of the design 

variables of the order of 10 days can be recognized, except for the Jupiter-

Saturn transfer time. A better evaluation of the closeness of the two solutions 

can be gained again by analysing them in the normalized search space, as 

shown in Table 76.  

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.253 0.621 0.962 0.452 0.787 0.557 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 76: GAOT-shared: comparison between the best identified solution and the best known 
solution in the normalized search space. 

 
Differences in the values of the design variables in the normalized search space 

are quite evident, as they assume a maximum value of 10-1. The Euclidean 

distance between the two solutions in the normalized search space is equal to 
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4.783 110−⋅ . In analogy with the GAOT performance analysis, a local 

optimization process by means of a SQP algorithm is now performed. Given the 

best solution identified by GAOT-shared (reported in Table 75) and considering 

it as the starting point for the local search process, the improved best identified 

solution reported in Table 77 is identified. 

  

 
Best identified 
solution + SQP 

Best known 
solution 

0t : -771.089 d -770.686 d 

VEtt − : 179.926 d 179.524 d 

VVtt − : 406.532 d 406.528 d 

EVtt − : 53.178 d 53.181 d 

JEtt − : 758.338 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 6368.116 m/s 6367.990 m/s 

IV∆ : 3915.716 m/s 3901.332 m/s 

1st VGAV ,∆ : 2004.478 m/s 2019.210 m/s 

2nd VGAV ,∆ : 0.496 m/s 0.018 m/s 

EGAV ,∆  0.007 m/s 0.005 m/s 

JGAV ,∆  0.015 m/s 0.022 m/s 

FV∆ : 447.404 m/s 447.402 m/s 

Table 77: Comparison between the best solution identified by GAOT-shared improved by a 
SQP based local optimization process and the best known solution (number of function 
evaluations required by the local optimization process equal to 606). 

 

Table 77 shows that GAOT-shared algorithm was able to reach the basin of 

attraction of the best known solution in the optimization run corresponding to the 

best identified solution. However, it is worth pointing out that very low accuracy 

characterizes the results achievable by GAOT-shared, as demonstrated by the 

high number of function evaluations required to the SQP optimization process to 

converge (606 objective function evaluations). This is due to the effects of 
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niching techniques: indeed, niching techniques promote diversity in the 

population and support the exploration of the search space; but, they avoid the 

concentration of the population around any local optimum which typically arises 

during the last phases of the optimization runs, when, once gained the basin of 

attraction, population evolves in order to only accurately describe the local 

minimum. Let now analyse the statistical values of GAOT-shared performances. 

Figure 167 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc, while Table 78 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. Note that, as one can expect, the low accuracy of GAOT-shared 

corresponds to a low number of function evaluations required for that the 

stopping condition becomes active.  

 

Figure 167: Distribution of the solutions resulting from each GAOT-shared optimization run over 
the VnFunc ∆−  plane. 
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Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 21874.731 m/s 5741.406 m/s 14681.217 m/s 

nFunc.: 1350.400 559.057 2029 

Runtime [STU]: 2.700 210−⋅  1.192 210−⋅  4.345 210−⋅  

Table 78: Statistical characteristics of the identified solutions. 

 

By proceeding in analogy with the GAOT case, the optimal solutions 

corresponding to all ten runs have been used as starting solutions for ten local 

optimization processes in order to accurately estimate the local minimum 

corresponding to the basin of attraction each optimal solution belong to. Figure 

168 illustrates the consequences of the local optimization processes in the 

nFunc - V∆  plane. 

 

Figure 168: Comparison between solutions resulting from GAOT-shared runs and their 
improvements by means of a further local optimization process via SQP algorithm over the 

VnFunc ∆−  plane. 
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Figure 168 shows again that different local minima corresponds to GAOT-

shared runs. In order to estimate the number of identified solutions which lie in 

the basin of attraction of the best known solutions, solutions are now 

investigated in the normalized search space. Table 79 reports, corresponding to 

each GAOT-shared+SQP run, the reached objective function value and the 

distance (in Euclidean metric) with respect to the best known solution. 

 

Mean value ∆V [m/s] Distance 

run 1 12968.384 0.913 

run 2 6824.030 0.456 

run 3 7348.905 0.206 

run 4 14607.801 0.582 

run 5 6946.553 0.576 

run 6 6372.395 0.002 

run 7 15984.312 0.549 

run 8 22394.289 0.833 

run 9 14987.571 0.610 

run 10 6368.116 0.002 

Table 79: GAOT-shared+SQP optimization runs: objective function values and Euclidean 
distance in the normalized search space with respect to the best known solution. 

 

As stated above, two solutions are considered as identical when the Euclidean 

distance is less than 0.024. As a consequence only runs 6 and 10 were able to 

get the best known solution, that is only 2/10 GAOT-shared runs successfully 

identified the basin of attraction of the best known solution. 
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GATBX 

As GATBX implements a genetic algorithm, we report the statistical 

characteristics. Ten run have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 100 individuals evolving for a 

maximum number of generations equal to 1000 has been processed again. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of 

generations: 
1000 

 

Table 80 reports the best identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 

function terms, while Figue 169 plots the resulting interplanetary transfer 

trajectories. 

 

 Best identified solution Best known solution 

0t : -763.599 d -770.686 d 

VEtt − : 132.419 d 179.524 d 

VVtt − : 434.250 d 406.528 d 

EVtt − : 62.334 d 53.181 d 

JEtt − : 756.626 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 7122.878 m/s 6367.990 m/s 

IV∆ : 4259.877 m/s 3901.332 m/s 

1st VGAV ,∆ : 0.099 m/s 2019.210 m/s 

2nd VGAV ,∆ : 2411.222 m/s 0.018 m/s 

EGAV ,∆  0.468 m/s 0.005 m/s 
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JGAV ,∆  4.593 m/s 0.022 m/s 

FV∆ : 446.619 m/s 447.402 m/s 

Table 80: Comparison between the best identified solution and the best known solution. 

 

 

Figure 169: GATBX: Comparison between the best identified solution and the best known 
solution. 

 

By analysing Table 80 and Figure 169, differences in the values of the design 

variables are mainly focused in the first phases of the interplanetary transfer. 

This can be better understood by analysing the two solutions in the normalized 

search space, as shown in Table 81. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.282 0.425 0.966 0.364 0.733 1.000 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 81: GATBX: comparison between the best identified solution and the best known solution 
in the normalized search space. 
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As stated above, large differences can be noticed in the VEtt − , VVtt − , EVtt −  

design variables, reaching a maximum value of  the order of 10-1 in case of 

VEtt − . The Euclidean distance between the two solutions is equal to 1.931 110−⋅ . 

By performing a local optimization process by means of a SQP algorithm in 

order to evaluate if the best identified solution lies in the basin of attraction of 

the best known one, given the best solution identified by GATBX (reported in 

Table 81) and considering it as the starting point for the local search process, 

the improved best identified solution reported in Table 82 is gained. 

 

 Best identified solution + SQP Best known solution 

0t : -782.353 d -770.686 d 

VEtt − : 144.379 d 179.524 d 

VVtt − : 448.916 d 406.528 d 

EVtt − : 56.517 d 53.181 d 

JEtt − : 757.676 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 6743.989 m/s 6367.990 m/s 

IV∆ : 3561.103 m/s 3901.332 m/s 

1st VGAV ,∆ : 142.324 m/s 2019.210 m/s 

2nd VGAV ,∆ : 2574.414 m/s 0.018 m/s 

EGAV ,∆  19.360 m/s 0.005 m/s 

JGAV ,∆  0 m/s 0.022 m/s 

FV∆ : 446.788 m/s 447.402 m/s 

Table 82: Comparison between the best solution identified by GATBX improved by a SQP 
based local optimization process and the best known solution (number of function evaluations 
required by the local optimization process equal to 626). 

 

Table 82 shows that the local optimization process led to the identification of a 

local minimum which is different from and worse than the best known one. The 

best solution identified by GATBX algorithm doesn’t lie in the basin of attraction 
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of the best known solution and in fact it identifies a different and more costly 

transfer (see Figure 170). 

 

 

Figure 170: GATBX: Comparison between the improved best identified solution and the best 
known solution. 

 

Let now analyse the statistical values of GATBX performances. Figure 171 

shows the distribution of the solutions resulting from each optimization run over 

the plane of the objective function, V∆ , and the number of function evaluations, 

nFunc, while Table 83 reports the statistical characteristics, which will be used 

for comparisons with the other optimization algorithms, as well as the 

performances corresponding to the best identified solution. 
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Figure 171: Distribution of the solutions resulting from each GATBX optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 8317.450 m/s 2339.832 m/s 7114.584 m/s 

nFunc.: 39468.000 29981.5990 12580 

Runtime [STU]: 0.748 0.584 0.239 

Table 83: Statistical characteristics of the identified solutions. 

 

The optimal solutions corresponding to all ten runs are now used again as 

starting solutions for ten local optimization processes in order to accurately 

estimate the local minimum corresponding to the basin of attraction each 

optimal solution belong to and to evaluate the number of GAOT-shared 

successful runs. 
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Figure 172 illustrates the consequences of the local optimization processes in 

the nFunc - V∆  plane. 

 

Figure 172: Comparison between solutions resulting from GATBX runs and their improvements 
by means of a further local optimization process via SQP algorithm over the VnFunc ∆−  
plane. 

 

Different local minima corresponds to GATBX runs. In order to estimate the 

number of identified solutions which lie in the basin of attraction of the best 

known solutions, solutions are now investigated in the normalized search 

space. Table 84 reports, corresponding to each GATBX+SQP run, the reached 

objective function value and the distance (in Euclidean metric) with respect to 

the best known solution. 
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Mean value ∆V [m/s] Distance 

run 1 8766.932 0.745 

run 2 6368.134 0.001 

run 3 6944.435 0.257 

run 4 14171.978 0.626 

run 5 6743.989 0.165 

run 6 6948.181 0.170 

run 7 6697.723 0.165 

run 8 6368.128 0.001 

run 9 6686.387 0.165 

run 10 6784.485 0.370 

Table 84: GATBX+SQP optimization runs: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.024, only runs 2 and 8 were able to get the best known solution, that is 

only 2/10 GATBX runs successfully identified the basin of attraction of the best 

known solution. 

 

GATBX-migr 

As GATBX-migr implements a genetic algorithm including a migration operator 

applied among a predefined set of subpopulations, we report the statistical 

characteristics. Ten run have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 100 individuals evolving for a 

maximum number of generations equal to 1000 has been processed. The 

population has been divided in 5 subpopulations, each one including 20 

individuals. 
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Algorithm parameters 

Number of individuals: 100 

Maximum number of generations: 1000 

Number of subpopulations: 5 

Number of individuals per 

subpopulation: 
20 

 

Table 85 reports the best identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 

function terms, while Figure 173 plots the resulting interplanetary transfer 

trajectories. 

 Best identified solution Best known solution 

0t : -770.714 d -770.686 d 

VEtt − : 162.659 d 179.524 d 

VVtt − : 410.900 d 406.528 d 

EVtt − : 62.501 d 53.181 d 

JEtt − : 756.597 d 758.334 d 

SJtt − : 3650.215 d 3650.218 d 

V∆ : 7219.480 m/s 6367.990 m/s 

IV∆ : 3254.960 m/s 3901.332 m/s 

1st VGAV ,∆ : 2880.101 m/s 2019.210 m/s 

2nd VGAV ,∆ : 632.632 m/s 0.018 m/s 

EGAV ,∆  0.625 m/s 0.005 m/s 

JGAV ,∆  4.573 m/s 0.022 m/s 

FV∆ : 446.588 m/s 447.402 m/s 

Table 85: Comparison between the best identified solution and the best known solution. 
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Figure 173: GATBX-migr: Comparison between the best identified solution and the best known 
solution. 

 

In order to better analyse the differences between the two solutions, Table 86 

reports again the values of their design variables in  the normalized search 

space. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.278 0.534 0.913 0.365 0.732 1.000 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 86: GATBX-migr: comparison between the best identified solution and the best known 
solution in the normalized search space. 

 

Little difference exists in the values of the design variables, whose order of 

magnitude is equal to 10-2. The Euclidean distance between the two solutions is 

equal to 9.312 210−⋅ . Given the best solution identified by GATBX-migr (reported 

in Table 85) and considering it as the starting point, a local optimization process 
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by means of a SQP algorithm is now performed, which leads to the improved 

best identified solution reported in Table 87. 

 

 Best identified solution + SQP Best known solution 

0t : -770.850 d -770.686 d 

VEtt − : 179.689 d 179.524 d 

VVtt − : 406.521 d 406.528 d 

EVtt − : 53.181 d 53.181 d 

JEtt − : 757.902 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 6368.087 m/s 6367.990 m/s 

IV∆ : 3905.863 m/s 3901.332 m/s 

1st VGAV ,∆ : 2014.042 m/s 2019.210 m/s 

2nd VGAV ,∆ : 0.002 m/s 0.018 m/s 

EGAV ,∆  0 m/s 0.005 m/s 

JGAV ,∆  0 m/s 0.022 m/s 

FV∆ : 448.179 m/s 447.402 m/s 

Table 87: Comparison between the best solution identified by GATBX-migr improved by a SQP 
based local optimization process and the best known solution (number of function evaluations 
required by the local optimization process equal to 366). 

 
Table 87 shows that GATBX-migr algorithm was able to reach the basin of 

attraction of the best known solution in the optimization run corresponding to the 

best identified solution. Let now analyse the statistical values of GATBX-migr 

performances. Figure 174 shows the distribution of the solutions resulting from 

each optimization run over the plane of the objective function, V∆ , and the 

number of function evaluations, nFunc, while Table 88 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. 
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Figure 174: Distribution of the solutions resulting from each GATBX-migr optimization run over 
the VnFunc ∆−  plane. 

 

Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 8237.810 m/s 972.517 m/s 7213.020 m/s 

nFunc.: 59220 27105.666 72020 

Runtime [STU]: 1.272 0.722 1.196 

Table 88: Statistical characteristics of the identified solutions. 

 

In order to evaluate the number of GATBX-migr successful runs, the optimal 

solutions corresponding to all ten runs are now used as starting solutions for ten 

local optimization processes. Figure 175 illustrates the consequences of the 

local optimization processes in the nFunc - V∆  plane 
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Figure 175: Comparison between solutions resulting from GATBX-migr runs and their 
improvements by means of a further local optimization process via SQP algorithm over the 

VnFunc ∆−  plane. 

 

Different local minima corresponds to GATBX-migr runs. Solutions are now 

investigated in the normalized search space. Table 89 reports, corresponding to 

each GATBX-migr+SQP run, the reached objective function value and the 

distance (in Euclidean metric) with respect to the best known solution. 
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Mean value ∆V [m/s] Distance 

          run 1 7752.872 0.690 

run 2 6368.087 0.001 

run 3 6692.992 0.162 

run 4 6498.430 0.107 

run 5 6388.254 0.022 

run 6 6368.262 0.001 

run 7 8734.077 0.744 

run 8 6368.116 0.001 

run 9 7753.498 0.690 

run 10 6368.104 0.001 

Table 89: GATBX-migr+SQP optimization runs: objective function values and Euclidean 
distance in the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.024, runs 2, 5, 6, 8 and 10 were able to get the best known solution, that 

is 5/10 GATBX-migr runs successfully identified the basin of attraction of the 

best known solution. 

 

FEP 

As FEP implements an evolutionary programming algorithm, we report, as 

already done for genetic algorithms, the statistical characteristics. Ten runs 

have been processed in order to solve the previously defined problem. Default 

options suggested by the providers of the code have been used in all the runs. 

As the Multiple Gravity Assist transfer has high complexity features, we used 

100 individuals evolving for a maximum number of generations equal to 1000. 

 

 

 

 



  

 235

Algorithm parameters 

Number of individuals: 100 

Maximum number of 

generations: 
1000 

 

Table 90 reports the best identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 

function terms, while Figure 176 plots the resulting interplanetary transfer 

trajectories. 

 

 Best identified solution Best known solution 

0t : -767.492 d -770.686 d 

VEtt − : 162.957 d 179.524 d 

VVtt − : 407.819 d 406.528 d 

EVtt − : 62.167 d 53.181 d 

JEtt − : 750.432 d 758.334 d 

SJtt − : 3618.752 d 3650.218 d 

V∆ : 7164.248 m/s 6367.990 m/s 

IV∆ : 3365.720 m/s 3901.332 m/s 

1st VGAV ,∆ : 3006.822 m/s 2019.210 m/s 

2nd VGAV ,∆ : 298.001 m/s 0.018 m/s 

EGAV ,∆  38.029 m/s 0.005 m/s 

JGAV ,∆  9.275 m/s 0.022 m/s 

FV∆ : 446.402 m/s 447.402 m/s 

Table 90: Comparison between the best identified solution and the best known solution. 
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Figure 175: FEP: Comparison between the best identified solution and the best known solution. 

 

Table 91 reports the values of their design variables in the normalized search 

space. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.279 0.535 0.906 0.362 0.726 0.990 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 91: FEP: comparison between the best identified solution and the best known solution in 
the normalized search space. 

 

Although the different objective function values, the values of the design 

variables in the normalized search space corresponding to the two solutions are 

close to each other, showing a maximum value of the order of 10-2 and an 

Euclidean distance equal to 9.092 210−⋅ ; moreover, by analysing Figure 175, the 

two corresponding transfer trajectories seems to show similar structures. This 

suggest the possibility that the best identified solution lies in the basin of 
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attraction of the best known solution. Given the best solution identified by FEP 

and considering it as the starting, a local optimization process by means of a 

SQP algorithm leads in fact to the improved best identified solution reported in 

Table 91. 

 

 Best identified solution + SQP Best known solution 

0t : -770.924 d -770.686 d 

VEtt − : 179.763 d 179.524 d 

VVtt − : 406.523 d 406.528 d 

EVtt − : 53.179 d 53.181 d 

JEtt − : 757.903 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 6368.128 m/s 6367.990 m/s 

IV∆ : 3908.484 m/s 3901.332 m/s 

1st VGAV ,∆ : 2011.217 m/s 2019.210 m/s 

2nd VGAV ,∆ : 0.248 m/s 0.018 m/s 

EGAV ,∆  0 m/s 0.005 m/s 

JGAV ,∆  0 m/s 0.022 m/s 

FV∆ : 448.179 m/s 447.402 m/s 

Table 91 : Comparison between the best solution identified by FEP improved by a SQP based 
local optimization process and the best known solution (number of function evaluations required 
by the local optimization process equal to 473). 

 

The little differences between the two solutions reported in Table 91 show, in 

fact, that the best solution identified by FEP lie in the basin of attraction of the 

best known solution. Let now analyse the statistical values of FEP 

performances. Figure 176 shows the distribution of the solutions resulting from 

each optimization run over the plane of the objective function, V∆ , and the 

number of function evaluations, nFunc, while Table 94 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 
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algorithms, as well as the performances corresponding to the best identified 

solution. 

 

 
Figure 176: Distribution of the solutions resulting from each FEP optimization run over the 

VnFunc ∆−  plane. 

 

Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 9287.112 m/s 2860.194 m/s 7168.115 m/s 

nFunc.: 22238.300 16233.713 19642 

Runtime [STU]: 0.629 0.458 0.542 

Table 94: Statistical characteristics of the identified solutions. 

 

By proceeding in analogy with the previous algorithm analyses, the optimal 

solutions corresponding to all ten runs have been used as starting solutions for 

ten local optimization processes in order to accurately estimate the local 
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minimum corresponding to the basin of attraction each optimal solution belong 

to. Figure 177 illustrates the consequences of the local optimization processes 

in the nFunc - V∆  plane. 

 

Figure 177: Cmparison between solutions resulting from FEP runs and their improvements by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Different local minima corresponds to FEP runs.Solutions are now investigated 

in the normalized search space. Table 94 reports, corresponding to each 

FEP+SQP run, the reached objective function value and the distance (in 

Euclidean metric) with respect to the best known solution. 
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Mean value ∆V [m/s] Distance 

Run 1 6381.341 0.014 

Run 2 6977.111 0.496 

Run 3 6370.082 0.001 

run 4 6783.654 0.297 

run 5 6368.128 0.001 

run 6 14415.505 0.670 

run 7 13774.873 0.791 

run 8 6369.203 0.006 

run 9 6368.001 0.001 

run 10 6496.798 0.107 

Table 94: FEP+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.024, runs 1, 3, 5, 8 and 9 were able to get the best known solution, that 

is 5/10 FEP runs successfully identified the basin of attraction of the best known 

solution. 

 

DE 

As DE implements a Differential Evolution algorithm, we report the statistical 

characteristics. Ten run have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. Again, due to the high complexity of the Multiple 

Gravity Assist interplanetary transfer problem, we used 100 individuals evolving 

for a maximum number of iterations equal to 1000. 
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Algorithm parameters 

Number of individuals: 100 

Maximum number of 

generations: 
1000 

 

Table 95 reports the best identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 

function terms, while Figure 178 plots the resulting interplanetary transfer 

trajectories. 

 

 Best identified solution Best known solution 

0t : -772.497 d -770.686 d 

VEtt − : 167.745 d 179.524 d 

VVtt − : 421.400 d 406.528 d 

EVtt − : 50.758 d 53.181 d 

JEtt − : 620.257 d 758.334 d 

SJtt − : 2471.348 d 3650.218 d 

V∆ : 7513.354 m/s 6367.990 m/s 

IV∆ : 3332.276 m/s 3901.332 m/s 

1st VGAV ,∆ : 1667.957 m/s 2019.210 m/s 

2nd VGAV ,∆ : 1855.955 m/s 0.018 m/s 

EGAV ,∆  46.634 m/s 0.005 m/s 

JGAV ,∆  144.470 m/s 0.022 m/s 

FV∆ : 466.061 m/s 447.402 m/s 

Table 95:Comparison between the best identified solution and the best known solution. 
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Figure 178: Comparison between the best identified solution and the best known solution. 

 

Table 95 and Figure 178 show that, while the values of the first four design 

variables are quite close to each other, important differences exist in the JEtt −  

and SJtt −  values, which lead to evidently dissimilar last phases of the 

interplanetary transfer. This can be highlighted by analysing Table 96 which 

reports the two solutions in the normalized search space. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.277 0.552 0.937 0.275 0.580 0.641 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 96: DE: comparison between the best identified solution and the best known solution in 
the normalized search space. 

 

Differences between the values of the design variables in the normalized search 

space attain a maximum value of 0.359 corresponding to SJtt −  and the 
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Euclidean distance between the solutions is equal to 3.945 110−⋅ , which is higher 

than the corresponding value in case of the previous algorithm. In analogy with 

the previous algorithm performance analysis, a local optimization process by 

means of a SQP algorithm is performed by considering the best solution 

identified by DE (reported in Table 96) as the starting point. The resulting 

improvement of the best identified solution is reported in Table 97. 

 

 Best identified solution + SQP Best known solution 

0t : -772.470 d -770.686 d 

VEtt − : 182.001 d 179.524 d 

VVtt − : 403.715 d 406.528 d 

EVtt − : 53.518 d 53.181 d 

JEtt − : 649.305 d 758.334 d 

SJtt − : 2819.777 d 3650.218 d 

V∆ : 6672.195 m/s 6367.990 m/s 

IV∆ : 4013.102 m/s 3901.332 m/s 

1st VGAV ,∆ : 2200.297 m/s 2019.210 m/s 

2nd VGAV ,∆ : 3.121 m/s 0.018 m/s 

EGAV ,∆  0.003 m/s 0.005 m/s 

JGAV ,∆  0.015 m/s 0.022 m/s 

FV∆ : 455.657 m/s 447.402 m/s 

Table 97: Comparison between the best solution identified by DE improved by a SQP based 
local optimization process and the best known solution (number of function evaluations required 
by the local optimization process equal to 1140). 
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Figure 179: DE: comparison between the improved best identified solution and the best known 
solution. 

 

As already happened in case of GATBX algorithm, the best solution identified 

by DE doesn’t lie in the basin of attraction of the best known solution: the results 

of the local optimization process, reported in Table 97 and Figure 179 led to the 

identification of a local minimum which is different from and worse than the best 

known one; this solution corresponds to shorter values of the JEtt −  and SJtt −  

design variables, then identifying a different family of solutions for the 

interplanetary transfer. Let now analyse the statistical values of DE 

performances. Figure 180 shows the distribution of the solutions resulting from 

each optimization run over the plane of the objective function, V∆ , and the 

number of function evaluations, nFunc, while Table  reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. 
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Figure 180: Distribution of the solutions resulting from each DE optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 10145.388 m/s 3494.605 m/s 7510.975 m/s 

nFunc.: 10250 4696.157 18600 

Runtime [STU]: 0.201 0.094 0.369 

Table 98: Statistical characteristics of the identified solutions. 

 

The optimal solutions corresponding to all ten runs are now considered as 

starting solutions for ten local optimization processes in order to accurately 

estimate the local minimum corresponding to the basin of attraction each 

optimal solution belong to. Figure 181 illustrates the consequences of the local 

optimization processes in the nFunc - V∆  plane. 
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Figure 181: Comparison between solutions resulting from DE runs and their improvements by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Different local minima corresponds to DE runs. In order to estimate the number 

of identified solutions which lie in the basin of attraction of the best known 

solutions, let investigate the solutions in the normalized search space. Table 99 

reports, corresponding to each DE+SQP run, the reached objective function 

value and the distance (in Euclidean metric) with respect to the best known 

solution. 
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Mean value ∆V [m/s] Distance 

run 1 6372.443 0.002 

run 2 6740.310 0.159 

run 3 6535.352 0.111 

run 4 6369.829 0.002 

run 5 6994.426 0.254 

run 6 6672.195 0.281 

run 7 6731.933 0.350 

run 8 6372.292 0.009 

run 9 6582.506 0.186 

run 10 6652.766 0.202 

Table 99: DE+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.024, runs 1, 4 and 8 were able to get the best known solution, that is 

3/10 DE runs successfully identified the basin of attraction of the best known 

solution. 

 

ASA 

As ASA implements an Adaptive Simulated Annealing algorithm, we report the 

statistical performance characteristics. Ten run have been processed in order to 

solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. Note that, unlike the 

previous cases, the adaptive simulated annealing needs a starting solution, 

which strongly affects the optimal solution reached. Due to the comparative 

purposes of this work, we decided to use ten different random starting solutions, 

uniformly distributed in the search box. Table 100 reports the best identified 

solution compared with the best known solution in terms of the values of the 
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design variables and of the objective function terms, while Figure 82 plots the 

resulting interplanetary transfer trajectories. 

 

 Best identified solution Best known solution 

0t : -807.854 d -770.686 d 

VEtt − : 212.421 d 179.524 d 

VVtt − : 406.480 d 406.528 d 

EVtt − : 56.343 d 53.181 d 

JEtt − : 752.539 d 758.334 d 

SJtt − : 3618.545 d 3650.218 d 

V∆ : 6622.699 m/s 6367.990 m/s 

IV∆ : 6164.421 m/s 3901.332 m/s 

1st VGAV ,∆ : 5.166 m/s 2019.210 m/s 

2nd VGAV ,∆ : 0.204 m/s 0.018 m/s 

EGAV ,∆  0.417 m/s 0.005 m/s 

JGAV ,∆  4.630 m/s 0.022 m/s 

FV∆ : 447.860 m/s 447.402 m/s 

Table 100: Comparison between the best identified solution and the best known solution. 
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Figure 182: Comparison between the best identified solution and the best known solution. 

 

Let now consider the two solutions in the normalized search space. Table 101 

reports the values of the design variables. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Best identified 
solution 

0.257 0.714 0.903 0.318 0.728 0.990 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 101: ASA: comparison between the best identified solution and the best known solution in 
the normalized search space. 

 
The differences on the values of the design variables in the normalized search 

space mainly involve the value of the Earth-Venus transfer time, where they 

assume a value of the order of 10-1. The Euclidean distance between the two 

solutions is 1.247 110−⋅ . It is worth noting that, although differences on the 

design variables are similar to those encountered using the previous algorithms, 

the difference on the Earth-Venus transfer make the structures of the 
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interplanetary quite different, especially if we analyse the values of each 

objective function terms: indeed, by considering Table 100, one can note that 

the best solution identified by ASA has very little values of the minimum 

corrective Vs∆  corresponding to each gravity assist manoeuvre, PGAV ,∆ , while 

concentrating the major contribution to the objective function value on IV∆ , that 

is the relative velocity with respect to Earth at the beginning of the interplanetary 

transfer. The difference in the structure of the interplanetary transfer is 

concentrated in the first phase of the interplanetary transfer, as highlighted in 

Figure 182.  

 

Figure 183: Comparison between the best identified solution and the best known solution: close 
up of the first phases of the interplanetary transfer reported in Figure 182. 

 

In order to understand if the identified solution is in fact representative of a new 

family of transfer trajectories corresponding to a local minimum different from 

the best known one, a local optimization process by means of a SQP algorithm 

is performed by considering the solution identified by ASA as the starting point. 

The resulting improvement of the best identified solution is reported in Table 
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102, while Figure 184 illustrates the first phases of the resulting interplanetary 

transfer. 

 

 Best identified solution + SQP Best known solution 

0t : -800.089 d -770.686 d 

VEtt − : 208.892 d 179.524 d 

VVtt − : 406.734 d 406.528 d 

EVtt − : 53.050 d 53.181 d 

JEtt − : 757.953 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 6500.786 m/s 6367.990 m/s 

IV∆ : 5987.912 m/s 3901.332 m/s 

1st VGAV ,∆ : 38.345 m/s 2019.210 m/s 

2nd VGAV ,∆ : 25.552 m/s 0.018 m/s 

EGAV ,∆  0.537 m/s 0.005 m/s 

JGAV ,∆  0.226 m/s 0.022 m/s 

FV∆ : 448.213 m/s 447.402 m/s 

Table 184: Comparison between the best solution identified by ASA improved by a SQP based 
local optimization process and the best known solution (number of function evaluations required 
by the local optimization process equal to 925). 
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Figure 184: ASA: comparison between the improved best identified solution and the best 
known solution: close up of the first phases of the interplanetary transfer. 

 

Table 102 shows that the best solution identified by ASA doesn’t lie in the basin 

of attraction of the best known solution and it identifies in fact a new local 

optimum solution which is worse than the best known one in terms of the 

objective function value, but displays different and interesting features: indeed, 

most of the overall V∆  concentrates on IV∆ , which is usually given by the 

launcher; in this way the spacecraft must provide the corrective PGAVs ,∆  and the 

final FV∆ , which are in fact  lower than in case of the previously identified 

solutions; however, the high IV∆  which can be given by the launcher limits the 

allowed maximum spacecraft launch mass (e.g. in case of using Titan IV-

Centaur launcher, the allowed launch mass is equal to 4500 kg, which is about 

1000 kg smaller than the Cassini-Huygens launch mass). It is interesting to note 

that the objective function value corresponding to the best solution identified by 

ASA is only 132.796 m/s higher than in case of the best known solution: this 

constitutes a further proof of the existence of many comparable local minima 
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close to each other, which increases the possibility of converging to no global 

optima. Let now analyse the statistical values of  ASA performances. Figure  

shows the distribution of the solutions resulting from each optimization run over 

the plane of the objective function, V∆ , and the number of function evaluations, 

nFunc, while Table 102 reports the statistical characteristics, which will be used 

for comparisons with the other optimization algorithms, as well as the 

performances corresponding to the best identified solution. 

 

Figure 185: Distribution of the solutions resulting from each ASA optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation 
criterion 

Mean value 
Standard 
deviation 

Best identified 
solution 

V∆ : 12712.987 m/s 6646.187 m/s 6618.027 m/s 

nFunc.: 96255.800 3281.118 96250 

Runtime [STU]: 1.626 0.273 1.883 

Table 102: Statistical characteristics of the identified solutions. 
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The optimal solutions corresponding to all ten runs are now considered as 

starting solutions for ten local optimization processes in order to accurately 

estimate the local minimum corresponding to the basin of attraction each 

optimal solution belong to. Figure 186 illustrates the consequences of the local 

optimization processes in the nFunc - V∆  plane. 

 

Figure 186: Comparison between solutions resulting from ASA runs and their improvements by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Different local minima correspond to ASA runs. In order to estimate the number 

of identified solutions which lie in the basin of attraction of the best known 

solutions, let investigate the solutions in the normalized search space. ---

reports, corresponding to each ASA+SQP run, the reached objective function 

value and the distance (in Euclidean metric) with respect to the best known 

solution. 
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Mean value ∆V [m/s] Distance 

run 1 14887.689 0.883 

run 2 13774.208 0.791 

run 3 14286.834 0.638 

run 4 6500.786 0.107 

run 5 8731.842 0.744 

run 6 6507.752 0.108 

run 7 23174.526 1.001 

run 8 6368.634 0.001 

run 9 23174.528 1.001 

run 10 6694.102 0.162 

Table 104: ASA+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.024, only run 8 was able to get the best known solution, that is 1/10 ASA 

runs successfully identified the basin of attraction of the best known solution. 

 

glbSolve 

As glbSolve algorithm implements a deterministic optimization approach, 

statistical characteristics are not needed in this case. Only one run has been 

processed in order to solve the previously defined problem. Default options 

suggested by the providers of the code have been used. As the Multiple Gravity 

Assist interplanetary transfer has high complexity features, we used a maximum 

number of iterations equal to 1000. 

 

Algorithm parameters 

Maximum number of generations: 1000 
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Table 105 reports the identified solution compared with the best known solution 

in terms of the values of the design variables and of the objective function 

terms, while Figure 187 plots the resulting interplanetary transfer trajectories. 

 

 Identified solution Best known solution 

0t : 244.168 d -770.686 d 

VEtt − : 250.755 d 179.524 d 

VVtt − : 418.907 d 406.528 d 

EVtt − : 129.888 d 53.181 d 

JEtt − : 536.614 d 758.334 d 

SJtt − : 3605.070 d 3650.218 d 

V∆ : 15354.532 m/s 6367.990 m/s 

IV∆ : 7068.211 m/s 3901.332 m/s 

1st VGAV ,∆ : 920.974 m/s 2019.210 m/s 

2nd VGAV ,∆ : 222.217 m/s 0.018 m/s 

EGAV ,∆  6201.130 m/s 0.005 m/s 

JGAV ,∆  0.484 m/s 0.022 m/s 

FV∆ : 941.515 m/s 447.402 m/s 

Table 105: Comparison between the best identified solution and the best known solution. 
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Figure 187: Comparison between the identified solution and the best known solution. 

 

Table 105 and Figure 187 show that the two solutions are evidently different. 

The two solutions in the normalized search space are reported in Table 106. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Identified 
solution 

0.834 0.852 0.931 0.878 0.487 0.986 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 106: glbSolve: comparison between the identified solution and the best known solution in 
the normalized search space. 

 
The differences on the values of the design variables in the normalized search 

space assume a maximum value of  5.841 110−⋅  corresponding to the Venus-

Earth transfer time. The Euclidean distance between the two solutions is 

8.826 110−⋅ . In order to accurately identify the local minimum reached by 

glbSolve algorithm, a local optimization process by means of a SQP algorithm is 

now performed. Given the solution identified by glbSolve (reported in Table 106) 



  

 258

and considering it as the starting point for the local search process, the 

improved identified solution reported in Table 107 is identified. 
 

 Identified solution + SQP Best known solution 

0t : 242.654 d -770.686 d 

VEtt − : 258.873 d 179.524 d 

VVtt − : 412.968 d 406.528 d 

EVtt − : 127.574 d 53.181 d 

JEtt − : 540.798 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 14763.770 m/s 6367.990 m/s 

IV∆ : 7927.631 m/s 3901.332 m/s 

1st VGAV ,∆ : 0.056 m/s 2019.210 m/s 

2nd VGAV ,∆ : 0.020 m/s 0.018 m/s 

EGAV ,∆  5905.166 m/s 0.005 m/s 

JGAV ,∆  0 m/s 0.022 m/s 

FV∆ : 930.896 m/s 447.402 m/s 

Table 107: Comparison between the solution identified by ASA improved by a SQP based local 
optimization process and the best known solution (number of function evaluations required by 
the local optimization process equal to 566). 

 

Table 108 reports the characteristics of the identified solution, which will be 

used for comparisons with the other optimization algorithms.  

 

Evaluation criterion Identified solution 

V∆ : 15347.899 m/s 

nFunc.: 4345 

Runtime [STU]: 0.093 

Table 108: Characteristics of the identified solutions. 
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MCS 

As MCS algorithm implements a deterministic optimization approach, only one 

run have been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used. Table 

109 reports the identified solution compared with the best known solution in 

terms of the values of the design variables and of the objective function terms, 

while Figure 188 plots the resulting interplanetary transfer trajectories. 

 

 Best identified solution Best known solution 

0t : -783.935 d -770.686 d 

VEtt − : 107.476 d 179.524 d 

VVtt − : 448.916 d 406.528 d 

EVtt − : 82.520 d 53.181 d 

JEtt − : 731.592 d 758.334 d 

SJtt − : 3620.137 d 3650.218 d 

V∆ : 13782.954 m/s 6367.990 m/s 

IV∆ : 3717.562 m/s 3901.332 m/s 

1st VGAV ,∆ : 1764.630 m/s 2019.210 m/s 

2nd VGAV ,∆ : 4413.551m/s 0.018 m/s 

EGAV ,∆  3221.307 m/s 0.005 m/s 

JGAV ,∆  229.904 m/s 0.022 m/s 

FV∆ : 436.000 m/s 447.402 m/s 

Table 109 - Comparison between the identified solution and the best known solution. 

 

 



  

 260

 

Figure 188 - Comparison between the identified solution and the best known solution. 

 

Table 110 reports the two solutions in the normalized search space. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Identified 
solution 

0.270 0.335 1.000 0.517 0.705 0.991 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 110: MCS: comparison between the identified solution and the best known solution in the 
normalized search space. 

 
The Euclidean distance between the two solutions is 3.576 110−⋅ . It is worth 

noting that the differences in the design variables mainly concentrates in the 

VEtt −  and EVtt −  values. In fact the solution identified by MCS can be recognized 

to be alternative to the best known one in terms of these two design variables: 

indeed, the solution identified by MCS is characterized by a lower Earth-Venus 
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transfer time, while having a higher value of the Venus-Earth transfer time (see 

Figure 189). 

 

 

Figure 189: Close up of  th initial phase from Figure 188. 

 

The previous results let us suppose that MCS wasn’t able to reach the basin of 

attraction of the best known solution. Such result can be confirmed by means of 

a local optimization process performed using a SQP algorithm. Given the 

solution identified by MCS and considering it as the starting point for the local 

search process, the improved best identified solution reported in Table 111 is 

identified. 
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 Identified solution + SQP Best known solution 

0t : -783.390 d -770.686 d 

VEtt − : 144.713 d 179.524 d 

VVtt − : 448.916 d 406.528 d 

EVtt − : 57.004 d 53.181 d 

JEtt − : 757.130 d 758.334 d 

SJtt − : 3650.218 d 3650.218 d 

V∆ : 6696.023 m/s 6367.990 m/s 

IV∆ : 3648.442 m/s 3901.332 m/s 

1st VGAV ,∆ : 8.554 m/s 2019.210 m/s 

2nd VGAV ,∆ : 2591.553 m/s 0.018 m/s 

EGAV ,∆  0 m/s 0.005 m/s 

JGAV ,∆  0.027 m/s 0.022 m/s 

FV∆ : 447.446 m/s 447.402 m/s 

Table 111: Comparison between the solution identified by MCS improved by a SQP based local 
optimization process and the best known solution (number of function evaluations required by 
the local optimization process equal to 812). 

 

Table 111 shows that MCS algorithm wasn’t able to get the basin of attraction of 

the best known solution. Table 112 reports the characteristics of the identified 

solution, which will be used for comparisons with the other optimization 

algorithms.  

 

Evaluation criterion Best identified solution 

V∆ : 13782.954 m/s 

nFunc.: 46601 

Runtime [STU]: 1.020 

Table 112: Characteristics of the identified solutions. 
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rbfSolve 

As rbfSolve algorithm implements a deterministic optimization approach, based 

on objective function response surfaces assessment and analysis suitable for 

costly objective function problems, statistical features analysis don’t hold here. 

Only one run has been processed in order to solve the previously defined 

problem. Default options suggested by the providers of the code have been 

used. As already stated in the description of this optimization tool, the 

termination conditions available in TOMLAB version of rbfSolve tool (which is 

not freely available) do not include suitable rules for practical problems with not 

a priori information about the global optimum solution. As a consequence, a 

maximum number of objective function evaluations has been fixed for 

terminating the optimization process. The maximum value in case of the 2-

impulse direct Planet-to-Planet transfer problem has been set based on the 

order of magnitude of the objective function evaluations resulting from the 

application of the previously analysed tools to that problem. By revising the 

previous analysis, in case of Multiple Gravity Assist the number of objective 

function evaluations was quite high: as an example, ASA required about 105 

objective function evaluations. However, rbfSolve is tailored for costly 

optimization processes and can not dealing with so high number of objective 

function evaluations due to the high required memory for handling the 

interpolation process. As a consequence, such limitations forced us to fix a 

maximum number of objective function evaluations of the order of 103. Anyway, 

the achieved results can be considered as indicative of the performance of such 

a tool in solving the previously defined problem: response surface based global 

optimization algorithms use objective function evaluations for interpolating and 

then approximating the objective function shape; the generated response 

surface is then investigated to identify promising regions for the global search. 

The number of objective function evaluations which are usually performed using 

response surface based optimization algorithms are in fact low if compared with 

other global optimization tools, due to the aim of solving costly optimization 

problems. As a consequence, if the response surface algorithm is not able to 

identify and accurately approximate the basin of attraction of the global optimum 

in a low number of objective function evaluations, it is likely the case the 
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algorithm has not converged to the global optimum solution. Hence, the fixed 

number of objective function evaluations has been set to 1000. 

 

Algorithm parameters 

Maximum number of objective function evaluations: 1000 

 

Table 113 reports the identified solution compared with the best known solution 

in terms of the values of the design variables and of the objective function 

terms, while Figure 190 plots the resulting interplanetary transfer trajectories. 

 

 Identified solution Best known solution 

0t : 358.328 d -770.686 d 

VEtt − : 123.810 d 179.524 d 

VVtt − : 418.089 d 406.528 d 

EVtt − : 145.917 d 53.181 d 

JEtt − : 461.924 d 758.334 d 

SJtt − : 2390.057 d 3650.218 d 

V∆ : 16970.001 m/s 6367.990 m/s 

IV∆ : 3338.781 m/s 3901.332 m/s 

1st VGAV ,∆ : 3644.557 m/s 2019.210 m/s 

2nd VGAV ,∆ : 25.226 m/s 0.018 m/s 

EGAV ,∆  8498.370 m/s 0.005 m/s 

JGAV ,∆  109.569 m/s 0.022 m/s 

FV∆ : 1353.497 m/s 447.402 m/s 

Table 113: Comparison between the identified solution and the best known solution. 
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Figure 190: Comparison between the identified solution and the best known solution. 

 

The two solutions seem to belong to basin of attraction of different local minima, 

especially analysing the first phase of the interplanetary transfer. Such idea is 

supported by Table 113, which reports the two solutions in the normalized 

search space. 

 

 0t  VEtt −  VVtt −  EVtt −  JEtt −  SJtt −  

Identified 
solution 

0.896 0.394 0.930 1 0.404 0.616 

Best known 
solution 

0.278 0.594 0.903 0.294 0.734 1.000 

Table 113: rbfSolve: comparison between the identified solution and the best known solution in 
the normalized search space. 

 
The Euclidean distance between the two solutions is 1.085. In order to better 

investigated whether rbfSolve was able to reach the basin of attraction of the 

best known solution, a local optimization process is performed using a SQP 

algorithm. Given the solution identified by rbfSolve and considering it as the 

starting point for the local search process, the improved best identified solution 

reported in Table 116 is identified. 
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 Identified solution + SQP Best known solution 

0t : 371.436 -770.686 d 

VEtt − : 115.158 179.524 d 

VVtt − : 430.791 406.528 d 

EVtt − : 127.931 53.181 d 

JEtt − : 538.053 758.334 d 

SJtt − : 3650.218 3650.218 d 

V∆ : 12968.322 6367.990 m/s 

IV∆ : 2995.515 3901.332 m/s 

1st VGAV ,∆ : 1715.141 2019.210 m/s 

2nd VGAV ,∆ : 1116.794 0.018 m/s 

EGAV ,∆  6209.642 0.005 m/s 

JGAV ,∆  0 0.022 m/s 

FV∆ : 931.231 447.402 m/s 

Table 115: Comparison between the solution identified by rbfSolve improved by a SQP based 
local optimization process and the best known solution (number of function evaluations required 
by the local optimization process equal to 377). 

 

Table 115 shows that rbfSolve algorithm wasn’t able to get the basin of 

attraction of the best known solution. Table 116 reports the characteristics of 

the identified solution, which will be used for comparisons with the other 

optimization algorithms. 

 

Evaluation criterion Best identified solution 

V∆ : 16970.001 m/s 

nFunc.: 1000 

Runtime [STU]: 49.350 

Table 116: Characteristics of the identified solutions. 
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Summary of Results: 
 

Table 117 reports the summary of results for the MGA  transfer problem. 

 

Algorithm V∆  [m/s] Fun. evaluations Runtime [STU] 

GAOT 8256.416 (σ =1555.107) 8543.4 (σ =4075.382) 0.1883 (σ =0.09683) 

GAOT-shared 21874.731 (σ =5741.406) 1350.4 (σ =559.057) 0.027 (σ =0.01192) 

GATBX 8317.45 (σ =2339.832) 39468 (σ =29981.599) 0.748 (σ =0.584) 

GATBX-migr 8237.81 (σ =972.517) 59220 (σ =27105.666) 1.272 (σ =0.722) 

FEP 9287.112 (σ =2860.194) 
22238.3 (σ 

=16233.713) 
0.629 (σ =0.458) 

DE 10145.388 (σ =3494.605) 10250 (σ =4696.157) 0.201 (σ =0.094) 

ASA 12712.987 (σ =6646.187) 96255.8 (σ =3281.118) 1.626 (σ =0.273) 

GlbSolve 15347.899 4345 0.093 

MCS 13782.954 46601 1.02 

RbfSolve 16970.001 1000 49.350 

EPIC* 7133.900 (σ = 431.79) 10127 (σ =115.9) - 

Table 117: Summary of results for the Multiple Gravity Assist interplanetary transfer problem (* 
courtesy of Dr. Massimiliano Vasile). 

 

Note that Table 117 also reports the performances of EPIC algorithm, which 

have been supplied by Dr. Massimiliano Vasile. Unfortunately, the analysis of 

EPIC results on the search space could not be accomplished and the runtime 

performances were not available. As stated in the 2-impulse direct planet-to-

planet transfer algorithms test phase, the performance criteria we have 

measured are in fact partially conflicting. As proposed in earlier works [Pintér, 

1995], concepts and techniques typically adopted in multiobjective optimization 

problems (such as the concept of the Pareto dominance) can be here used. As 

stated above, due to the presence of not optimized codes among the tested 

ones and to the necessity of creating a MEX file for ASA algorithm (which 



  

 268

slightly affects the runtime performances), the main evaluation criteria to be 

considered have been taken as the objective function value reached, ∆V, and 

the number of model function evaluations needed, nFunc. Figure 191 reports 

such performances in a ∆V - nFunc plane in order to identify the Pareto optimal 

solution. 

 

Figure 191: Algorithms performances in the ∆V - nFunc plane. 

 
Note that Figure 191 reports the performances listed in Table 117, which 

contains statistical performances in case of randomized optimization algorithms. 

By applying the concepts of Pareto dominance, Table 118 reports for each 

algorithm, the number of algorithms which dominated (and then outperformed) 

it. 
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Algorithm # of dominating algorithms 

GAOT 0 

GAOT-shared 1 

GATBX 2 

GATBX-migr 1 

FEP 2 

DE 2 

ASA 6 

glbSolve 0 

MCS 5 

rbfSolve 0 

EPIC 0 

Table 118: Number of dominating algorithms. 

 

Table 118 shows that the set of Pareto optimal solutions includes in fact four 

solutions: the algorithms which best solved the Multiple Gravity Assist 

interplanetary transfer in a Pareto optimal sense are GAOT, glbSolve, rbfSolve 

and EPIC whose performances are shown in Figure 192. 
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Figure 192: Pareto optimal algorithms. 

 
It is worth noting that, the concept of Pareto optimality in multicriteria decision 

problems define the optimal solution by simultaneously investigating its 

performances on all considered criteria. This is the reason why, while EPIC is a 

Pareto optimal solution thanks to the identification of the mean best solution in 

terms of the objective function value, rbfSolve algorithm is Pareto optimal 

thanks to its low number of required objective function evaluations, although, as 

resulting from its previous analysis, it was not able to reach the basin of 

attraction of the best known solution. Note that these results are strictly affected 

by the stopping criterion used. However, the effects of the stopping criteria on 

the algorithm performances are not addressed here, where the algorithms are 

used as black-box tools. Let consider now the runtime performances: keeping in 

mind the previously stated considerations about the reasons of choosing ∆V 

and nFunc as main performance criteria, we want to analyze the consequences 

of including the runtime performance on the identification of the Pareto optimal 

algorithm. We have now three performance criteria. Figure 193 and Figure 194 

report the algorithms performances in the ∆V -nFunc plane and in the nFunc -

runtime  plane respectively, which have not been considered so far. Note that 
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EPIC performances couldn’t be reported in the following analysis, due to the 

lack on required runtime information. 

 

Figure 193: Algorithms performances in the ∆V - runtime  plane. 

 

Figure 194: Algorithms performances in the nFunc - runtime  plane. 
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As already noted in case of the 2-impulse direct planet-to-planet transfer 

problem, the runtime corresponding to rbfSolve is quite high if compared to the 

other optimization algorithms (for a better visualization of all algorithms 

performances excluding rbfSolve see Figure 195 and Figure 196) due to the 

time spent in interpolating the response surface. 

 

Figure 195: Algorithms performances in the ∆V  - runtime  plane (excluding rbfSolve). 

 

Figure 196: Algorithms performances in the nFunc - runtime  plane (excluding rbfSolve). 
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By applying the concepts of Pareto dominance in this three-criteria case, Table 

119 reports for each algorithm, the number of algorithms which dominated it. 

 

Algorithm # of dominating algorithms 

GAOT 0 

GAOT-shared 0 

GATBX 1 

GATBX-migr 0 

FEP 1 

DE 1 

ASA 5 

glbSolve 0 

MCS 4 

rbfSolve 0 

Table 119: Number of dominating algorithms in the three criteria case. 

 

Table 119 shows that GAOT-shared and GATBX-migr joined the set of Pareto 

optimal solutions. No changes occurred in the remaining algorithms 

performance. Finally the performance of all algorithms in identifying the basin of 

attraction of the best known solution are reported in Table 120, as resulting from 

the local optimization processes performed at the end of each algorithm run 

(note that for randomized algorithms the number of successful runs over the 

total number of performed runs is reported). 
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Algorithm  Success 

GAOT 4/10 

GAOT-shared 2/10 

GATBX 2/10 

GATBX-migr 5/10 

FEP 5/10 

DE 3/10 

ASA 1/10 

GlbSolve No 

MCS No 

RbfSolve No 

Table 120: Algorithms performance in identifying the basin of attraction of the best known 
solution. 

 

Table 120 shows that GATBX-migr and FEP algorithms turned out to have the 

highest rate of success in reaching the basin of attraction of the best known 

solution in case of Multiple Gravity Assist interplanetary transfers problem. 

However, as reported in Table 118, they do not belong to the set of Pareto 

optimal algorithm in the ∆V – nFunc two criteria case: indeed, EPIC tool 

dominates them in terms of both mean objective function value reached and 

mean objective function evaluations required (see Figure 196). Unfortunately, 

no information are available to the authors regarding the success rate of EPIC. 

As a consequence we can state that: 

 

 In case of interest on only the mean objective function value reached and 

mean number of objective function evaluations required as evaluation 

criteria, GAOT and EPIC tools turned out to be the best performing ones. 

However, due to the relatively low difference in the mean number of 

objective function evaluations (1583.6 over about 10000 objective 

function evaluations required by the two tools for performing the 
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optimization processes) corresponding to a relatively high difference in 

the mean objective function value reached (about 1000 m/s), EPIC tool 

seems to be the most suitable one for practical use in a mission analysis 

optimization environment. 

 

 In case of interest on effectiveness at identifying the basin of attraction of 

the global optimum solution, due to the lack of information about EPIC 

success rate, GAOT, GATBX-migr and FEP can be considered the best 

performing ones. However, due to the little difference on success rate 

between GAOT (4/10), and GATBX-migr and FEP (5/10) corresponding to 

relatively high difference in the mean number of objective function 

evaluations (about 8543.4 for GAOT compared with 22238.3 for FEP and 

even 59220 for GATBX-migr), GAOT tool seems to be the most advisable 

one for practical use. 

 

Note that low values of mean objective function value reached do not 

necessarily correspond to high success rate in identifying the basin of attraction 

of the best known solution. An evident example is GATBX tool: although the 

resulting good mean objective function value reached (which is comparable with 

GAOT and GATBX-migr performances), the corresponding success rate is quite 

low (2/10). This result can be related to the presence of several comparable 

local minima over the search space: indeed, most GATBX runs got trapped in 

local minima which are in fact comparable with the best known one in term of 

objective function value. 
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9. LOW THRUST DIRECT PLANET-TO-PLANET TRANSFER 
 
 
Problem class statement: 
 

Interplanetary transfer description 

Low thrust direct planet-to-planet transfer from Earth to Mars 

Objective function assessment 

Objective function: propFF mvRObjFun ⋅+⋅+⋅= 321 ααα  

where:  
• FR  is the magnitude of the spacecraft 

relative position with respect to Mars at 
the end of the integration of motion (good 
values: Mars sphere of influence radius, 
5.77 810⋅ m). 

• Fv  is the magnitude of the spacecraft 
relative velocity with respect to Mars at 
the end of the integration of motion (good 
values: 100 m/s). 

• propm  is the propellant mass that is 
required by the thrusters for the 
interplanetary transfer (good values: 200 
kg). 

• 1α , 2α  and 3α  are weights which have 
been fixed in order to make the order of 
magnitude of ObjFun  equal to 10, 
corresponding to good FR , Fv  and propm  
values.  
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Mathematical models: • Restricted 2-body dynamical model (C2 in 
the whole solution space except in the 
origin) 

• Three dimensional motion 
• Analytical ephemeris model (generated 

by time polynomial series of the orbital 
elements) 

• Low thrust interplanetary transfer 
(constant thrust level and variable 
direction) 

• Parameterization of the control law on 
thrust azimuth and elevation in six points 
of interpolation over the transfer time 

• Forward propagation of initial conditions 
and thrust control law in equinoctial 
elements 

Search space, D, characterization 

Number of design variables: 16 

Design Variables: • Date of departure from Earth, 0t  
• Transfer time, tt  
• Thrust level, u  
• Magnitude of the escape velocity from 

Earth, Ev ,∞  (tangential to Earth absolute 
velocity) 

• Thrust azimuth and elevation over the 
transfer trajectory corresponding to the 
six parameterization points, iaz  and iel , 

6,...,1=i  

Topology: Continuous variables ⇒  16ℜ⊂D  

Constraints 

Constraints typology: Box constraints 

Box intervals: • 0t  included in a 4 years period starting 
from the 1st January 2000 

• [ ]300,150∈tt  d 
• [ ]168.0,1.0∈u  N 
• [ ]3000,0, ∈∞ Ev  m/s 
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• [ ]ππ ,−∈iaz  rad, 6,...,1=i  
• [ ]2/,2/ ππ−∈iel  rad, 6,...,1=i  

 

General considerations 

Objective function analysis: The objective function is almost everywhere 
C2, locally discontinuous in a countable 
number limited set 

Problem complexity: High 

Search space normalization: The search space is normalized by means 
of the upper-lower bounds in order to be an 
unit hypercube ⇒  [ ]161,0≡D  

 
Number of global optima: A priori unknown. 
 
The following best known solution has been gained by means of a multi-start 

search, which implement a local search process via SQP algorithm starting from 

100 random first guess solutions uniformly distributed over the search space 

(each one requiring a number of objective function evaluations of the order of 

103). 

 
 

Search space 

Date of departure: 553.253 d 

Transfer time: 299.462 d 

Thrust level: 0.130 N 

Escape velocity from Earth: 2676.327 m/s 
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Figure 197: Thrust azimuth and elevation over the transfer trajectory corresponding to the best 
known solution. 

 

Objective space 

ObjFun : 5.750 

FR / MarsSoIR , : 0.002 

Fv : 0.086 m/s 

propm : 114.433 kg 
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Figure 198: Low-thrust transfer trajectory corresponding to the best known solution. 

 
Number of local optima: A priori unknown. 

 

 

Hardware platform:  

Intel Pentium 4 – 3.06GHz laptop. 

 

Operating system: 

Microsoft Windows XP 

Home edition 

Version 2002 

Service Pack 1 

 

Timings: 

The Standard Unit Time (see Dixon & Szegö, 1978) has been measured. 
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Performances: 

In the following, the performances of each global optimization tool in solving the 

low-thrust direct planet-to-planet transfer are reported. The evaluation criteria 

will be mainly based on the analysis of the optimal solution reached and the 

number of the required model function evaluations. Due to the presence of not 

optimized codes among the tested ones, timing will not be considered as a main 

evaluation criterion 

 

GAOT 

As GAOT implements a genetic algorithm, we report the statistical 

characteristic, typically considered in case of randomized solution methods. Ten 

runs have been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used in all 

the runs: note that by tuning the algorithm parameters one may improve the 

performance of the solvers, but, due to the comparative purposes of this work, 

the tuning effects have not been considered. As the low thrust direct planet-to-

planet transfer is characterized by high complexity features and a high number 

of design variables, we used 100 individuals evolving for a maximum number of 

generations equal to 10000. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of generations: 10000 

 

Table 121, Table 122 and Figure 199 report the best identified solution 

compared with the best known solution in terms of the values of the design 

variables and of the objective function  terms, while Figure plots the resulting 

interplanetary transfer trajectories. 
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Search space 

Design variable Best identified solution Best know solution 

Date of departure [d]: 1207.858 553.253 

Transfer time [d]: 257.886 299.462 

Thrust level [N]: 0.168 0.130 

Escape velocity from 

Earth [m/s]: 
2097.126 2676.327 

Table 121: Comparison between the best identified solution and the best known solution: 
search space. 

 

 

Figure 199: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 
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Objective function space 

Term Best identified solution Best know solution 

ObjFun : 154.274 5.750 

FR / MarsSoIR , : 0.104 0.002 

Fv  [m/s]: 1468.719 0.086 

propm  [kg]: 127.192 114.433 

Table 122:Comparison between the best identified solution and the best known solution: 
objective function space. 

 

 

Figure 200: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 201 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc., while Table 123 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 
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algorithms, as well as the performances corresponding to the best identified 

solution. 

 

Figure 201: Distribution of the solutions resulting from each GAOT optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation criterion Mean value 
Standard 
deviation 

Best identified 
solution 

ObjFun: 269.198 71.416 154.274 

nFunc: 14919.300 5121.398 16410 

Runtime [STU]: 3.564 1.564 4.238 

Table 123: Statistical characteristics of the identified solutions. 

 

By proceeding in analogy with the previously investigated mission analysis 

classes, the estimation of the number and features of the distinct local minima 

reached by means of the ten runs is performed; such an analysis will allow the 

estimation of the number of runs which have been able to reach the basin of 

attraction of the global optimum, which in fact can be considered as a success 
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index in performing the optimization process. To attain such a task, the optimal 

solutions corresponding to all ten runs have been used as starting solutions for 

ten local optimization processes in order to accurately estimate the local 

minimum corresponding to the basin of attraction each optimal solution belong 

to. The consequences of the local optimization processes in the nFunc - V∆  

plane are shown in Figure 202, where each improved solution is linked to the 

corresponding starting one by means of a straight line. 

 

Figure 202: Comparison between solutions resulting from GAOT runs and their improvements 
by means of a further local optimization process via SQP algorithm over the VnFunc ∆−  
plane. 

 

Figure 202 shows that different local minima corresponds to GAOT runs. By 

considering the objective function values reached at the end of the optimization 

processes, no solution seems to correspond to the best known one. In fact, let 

investigate the solutions in the normalized search space. Table 124 reports, 

corresponding to each GAOT+SQP run, the reached objective function value 

and the distance (in Euclidean metric) with respect to the best known solution. 
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 ObjFun Distance 

run 1 121.376 1.2268 

run 2 289.680 1.8419 

run 3 190.407 1.0597 

run 4 129.321 0.92134 

run 5 285.754 1.523 

run 6 269.552 1.4895 

run 7 267.177 1.6412 

run 8 131.933 1.0891 

run 9 243.598 1.3223 

run 10 233.039 1.2251 

Table 124: GAOT+SQP optimization runs: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

An empirical analysis suggest to define two solutions as identical when the 

Euclidean distance is less than 1% of the hyper diagonal of the normalized 

search space, that is 0.040 in a 16-dimensional space. The consequence of 

such definition is that no run has been able to get the best known solution, that 

is 0/10 GAOT runs successfully identified the basin of attraction of the best 

known solution. 

 

GAOT-shared 

As GAOT-shared implements a genetic algorithm including a niching technique, 

we report again the statistical characteristics. Ten runs have been processed in 

order to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. The threshold of 

dissimilarity, Sσ , for the sharing method and the shape parameter of the sharing 

function, α , have been set respectively to: 

 

1.0=Sσ  and  1=α  
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We used again a population of 100 individuals, evolving for a maximum number 

of generations equal to 10000. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of 

generations: 
10000 

 

Table 125, Table 126 and Figure 203 report the best identified solution 

compared with the best known solution in terms of the values of the design 

variables and of the objective function  terms, while Figure 204 plots the 

resulting interplanetary transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution

Date of departure [d]: 1225.439 553.253 

Transfer time [d]: 226.995 299.462 

Thrust level [N]: 0.162 0.130 

Escape velocity from Earth 

[m/s]: 
1661.833 2676.327 

Table 125: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 203: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term 
Best identified 

solution 
Best know 
solution 

ObjFun : 257.807 5.750 

FR / MarsSoIR , : 8.296 0.002 

Fv  [m/s]: 1694.607 0.086 

propm  [kg]: 107.713 114.433 

Table 126: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 204: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 205 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc, while Table 126 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. Note that, as one can expect, the low accuracy of GAOT-shared 

corresponds to a low number of function evaluations required for that the 

stopping condition becomes active.  
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Figure 205: Distribution of the solutions resulting from each GAOT-shared optimization run over 
the VnFunc ∆−  plane. 

 

Evaluation criterion Mean value 
Standard 
deviation 

Best identified 
solution 

Objective function: 343.238 49.457 257.807 

nFunc.: 3109.500 1099.448 3384 

Runtime [STU]: 0.621 0.217 0.870 

Table 126: Statistical characteristics of the identified solutions. 

 

By proceeding in analogy with the GAOT case, the optimal solutions 

corresponding to all ten runs have been used as starting solutions for ten local 

optimization processes in order to accurately estimate the local minimum 

corresponding to the basin of attraction each optimal solution belong to. Figure 

206 illustrates the consequences of the local optimization processes in the 

nFunc - V∆  plane. 
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Figure 206: Comparison between solutions resulting from GAOT-shared runs and their 
improvements by means of a further local optimization process via SQP algorithm over the 

VnFunc ∆−  plane. 

 

Figure 206 shows again that different local minima corresponds to GAOT-

shared runs. In order to estimate the number of identified solutions which lie in 

the basin of attraction of the best known solutions, solutions are now 

investigated in the normalized search space. Table 127 reports, corresponding 

to each GAOT-shared+SQP run, the reached objective function value and the 

distance (in Euclidean metric) with respect to the best known solution. 
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 ObjFun Distance 

run 1 158.217 1.007 

run 2 157.833 0.981 

run 3 158.935 1.007 

run 4 172.207 1.167 

run 5 152.208 1.151 

run 6 150.717 1.251 

run 7 177.606 1.181 

run 8 159.181 1.026 

run 9 264.712 1.469 

run 10 132.966 0.982 

Table 127: GAOT-shared+SQP optimization runs: objective function values and Euclidean 
distance in the normalized search space with respect to the best known solution. 

 

As stated above, two solutions are considered as identical when the Euclidean 

distance is less than 0.040. As a consequence no run has been able to get the 

best known solution, that is only 0/10 GAOT-shared runs successfully identified 

the basin of attraction of the best known solution. 

 

GATBX 

As GATBX implements a genetic algorithm, we report the statistical 

characteristics. Ten runs have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 100 individuals evolving for a 

maximum number of generations equal to 10000 has been processed again. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of generations: 10000 
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Table 128, Table 129 and Figure 207 reports the best identified solution 

compared with the best known solution in terms of the values of the design 

variables and of the objective function  terms, while Figure 208 plots the 

resulting interplanetary transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution 

Date of departure [d]: 522.649 553.253 

Transfer time [d]: 276.645 299.462 

Thrust level [N]: 0.161 0.130 

Escape velocity from 

Earth [m/s]: 
2531.142 2676.327 

Table 128: Comparison between the best identified solution and the best known solution: 
search space. 

 

 

Figure 207: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 
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Objective function space 

Term Best identified solution Best know solution 

ObjFun : 7.603 5.750 

FR / MarsSoIR , : 0.086 0.002 

Fv  [m/s]: 2.099 0.086 

propm  [kg]: 130.617 114.433 

Table 129: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

 

Figure 208: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 209 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc, while Table 130 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 
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algorithms, as well as the performances corresponding to the best identified 

solution. 

 

Figure 209:Distribution of the solutions resulting from each GATBX optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation criterion Mean value 
Standard 
deviation 

Best identified 
solution 

Objective function: 172.559 92.517 7.603 

nFunc.: 30036 15485.451 49380 

Runtime [STU]: 7.105 4.068 15.146 

Table 130: Statistical characteristics of the identified solutions. 

 

The optimal solutions corresponding to all ten runs are now used again as 

starting solutions for ten local optimization processes in order to accurately 

estimate the local minimum corresponding to the basin of attraction each 

optimal solution belong to and to evaluate the number of GATBX successful 
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runs. Figure 210 illustrates the consequences of the local optimization 

processes in the nFunc - V∆  plane. 

 

 

Figure 210: Comparison between solutions resulting from GATBX runs and their improvements 
by means of a further local optimization process via SQP algorithm over the VnFunc ∆−  
plane. 

 

Different local minima corresponds to GATBX runs. In order to estimate the 

number of identified solutions which lie in the basin of attraction of the best 

known solutions, solutions are now investigated in the normalized search 

space. Table 131 reports, corresponding to each GATBX+SQP run, the 

reached objective function value and the distance (in Euclidean metric) with 

respect to the best known solution. 
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 ObjFun Distance 

run 1 189.994 1.141 

run 2 287.531 1.568 

run 3 121.513 1.056 

run 4 121.762 1.117 

run 5 179.497 1.116 

run 6 139.253 1.134 

run 7 120.167 1.181 

run 8 5.870 0.776 

run 9 133.503 1.381 

run 10 6.461 0.723 

Table 131: GATBX+SQP optimization runs: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.040, no runs were able to get the best known solution, that is only 0/10 

GATBX runs successfully identified the basin of attraction of the best known 

solution. It is worth noting that, although GATBX was not able to reach the basin 

of attraction of the best known solution (according to the definition of identical 

solutions given above), it could achieve the basin of attraction of two solutions 

which are in fact quite comparable with the best known one in terms of objective 

function values (see runs 8 and 10). Figure 211 shows the trajectories 

corresponding to such solutions compared with the best known one. 
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Figure 211: Comparison between the best known solution and solutions corresponding to run 8 
and run 10. 

 

It is worth noting that, although the objective function values are comparable, 

the identified local minima are different, paticularly in the date of departure, 

whose values in case of the three analysed solutions are reported in Table 132. 

 

 Best identified solution run 8  run 10  

Date of departure [d]: 553.253 560.291 522.644 

Table 132: Date of departure corresponding to the best known solution and solutions run 8 and 
run 10. 

 

Note that differences in the date of departure are quite little but significant. 

However the comparable objective function values let us suppose that all the 

three analysed local minima belong to a big valley structure, that is a “corridor” 

or a line in the search space along which objective function values are 

comparable, confirming the results gained in the objective function structure 
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analysis. Such results are supported by the relative closeness of the three 

solutions in the search space (see Figure 212, where solutions are reported in 

the normalized search space corresponding to the date of departure-transfer 

time plane). 

 

 

Figure 212: Best known solution, run 8 solution and run 10 solution in the in the normalized 
search space corresponding to the date of departure-transfer time plane. 

 

It is important noting that the identification of such big valley structures in the 

search space is quite advantageous in designing transfer trajectories: in fact 

such structures give us a continuous set of comparable optimal solutions 

distributed over the date of departure design variable, which is fundamental in 

identifying the width of the optimal launch windows. The development of tools 

facing such task should be promoted in future works. 
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GATBX-migr 

As GATBX-migr implements a genetic algorithm including a migration operator 

applied among a predefined set of subpopulations, we report the statistical 

characteristics. Ten runs have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 100 individuals evolving for a 

maximum number of generations equal to 10000 has been processed. The 

population has been divided in 5 subpopulations, each one including 20 

individuals. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of generations: 10000 

Number of subpopulations: 5 

Number of individuals per 

subpopulation: 
20 

 

Table 133, Table 134 and Figure 213 reports the best identified solution 

compared with the best known solution in terms of the values of the design 

variables and of the objective function  terms, while Figure 214 plots the 

resulting interplanetary transfer trajectories. 
 

Search space 

Design variable Best identified solution Best know solution 

Date of departure [d]: 526.149 553.253 

Transfer time [d]: 266.741 299.462 

Thrust level [N]: 0.168 0.130 

Escape velocity from Earth [m/s]: 2416.231 2676.327 

Table 133: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 213: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Best identified solution Best know solution 

ObjFun : 10.279 5.750 

FR / MarsSoIR , : 0.074 0.002 

Fv  [m/s]: 29.609 0.086 

propm  [kg]: 131.560 114.433 

Table 134: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 214: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 215 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc, while Table 135 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. 
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Figure 215: Distribution of the solutions resulting from each GATBX-migr optimization run over 
the VnFunc ∆−  plane. 

 

Evaluation criterion Mean value Standard deviation
Best identified 

solution 

Objective function: 153.807 87.043 10.279 

nFunc.: 48436 21584.383 56260 

Runtime [STU]: 9.511 4.140 8.495 

Table 135: Statistical characteristics of the identified solutions. 

 

By proceeding in analogy with the previous algorithm performance analyses, 

the optimal solutions corresponding to all ten runs have been used as starting 

solutions for ten local optimization processes in order to accurately estimate the 

local minimum corresponding to the basin of attraction each optimal solution 

belong to. 



  

 304

Figure 216 illustrates the consequences of the local optimization processes in 

the nFunc - V∆  plane. 

 

Figure 216: Comparison between solutions resulting from GATBX-migr runs and their 
improvements by means of a further local optimization process via SQP algorithm over the 

VnFunc ∆−  plane. 

 

Figure 216 shows again that different local minima corresponds to GATBX-migr 

runs. In order to estimate the number of identified solutions which lie in the 

basin of attraction of the best known solutions, solutions are now investigated in 

the normalized search space. Table 136 reports, corresponding to each 

GATBX-migr+SQP run, the reached objective function value and the distance 

(in Euclidean metric) with respect to the best known solution. 
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 ObjFun Distance 

run 1 141.757 0.917 

run 2 125.117 1.350 

run 3 6.451 0.739 

run 4 280.545 1.377 

run 5 144.582 1.118 

run 6 131.604 0.925 

run 7 119.263 1.079 

run 8 151.281 1.088 

run 9 6.325 0.913 

run 10 128.991 1.170 

Table 136: GATBX-migr+SQP optimization runs: objective function values and Euclidean 
distance in the normalized search space with respect to the best known solution. 

 

As stated above, two solutions are considered as identical when the Euclidean 

distance is less than 0.040. As a consequence no GATBX-run has been able to 

get the best known solution, that is only 0/10 GATBX-migr runs successfully 

identified the basin of attraction of the best known solution. However, as already 

noted in case of GATBX-migr algorithm, two solutions have been reached which 

have objective function values comparable with that achieved by the best 

known solution, that is runs 3 and 9. Such solutions are reported in Figure 217. 
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Figure 217: Comparison between the best known solution and solutions corresponding to run 3 
and run 9. 

 

The identified local minima are different, as the consideration of the date of 

departure values can show (see Table 137). 

 

 Best identified solution run 3 run 9 

Date of departure [d]: 553.253 557.451 527.145 

Table 137: Date of departure corresponding to the best known solution and solutions run 3 and 
run 9. 

 

FEP 

As FEP implements an evolutionary programming algorithm, we report, as 

already done for genetic algorithms, the statistical characteristics. Ten runs 

have been processed in order to solve the previously defined problem. Default 

options suggested by the providers of the code have been used in all the runs. 
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We used again a population of 100 individuals evolving for a maximum number 

of generations equal to 10000. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of generations: 10000 

 

Table 138, Table 139 and Figure 218 report the best identified solution 

compared with the best known solution in terms of the values of the design 

variables and of the objective function terms, while Figure 219 plots the 

resulting interplanetary transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution 

Date of departure [d]: 553.354 553.253 

Transfer time [d]: 299.394 299.462 

Thrust level [N]: 0.131 0.130 

Escape velocity from Earth [m/s]: 2663.050 2676.327 

Table 138: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 218: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Best identified solution Best know solution 

ObjFun : 14.169 5.750 

FR / MarsSoIR , : 0.009 0.002 

Fv  [m/s]: 83.297 0.086 

propm  [kg]: 115.060 114.433 

Table 139: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 219: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 220 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc., while Table 140 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. 

 



  

 310

 

Figure 220: Distribution of the solutions resulting from each FEP optimization run over the 
VnFunc ∆−  plane. 

 

 

Evaluation criterion Mean value Standard deviation Best identified solution 

Objective function: 157.191 76.266 14.169 

nFunc.: 89013.900 68704.199 95585 

Runtime [STU]: 14.996 9.551 16.487 

Table 140: Statistical characteristics of the identified solutions. 

 

The estimation of the number and features of the distinct local minima reached 

by means of the ten runs is performed. The optimal solutions corresponding to 

all ten runs have been used as starting solutions for ten local optimization 

processes in order to accurately estimate the local minimum corresponding to 

the basin of attraction each optimal solution belong to. The consequences of the 

local optimization processes in the nFunc - V∆  plane are shown in Figure 221, 
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where each improved solution is linked to the corresponding starting one by 

means of a straight line. 

 

Figure 221: Comparison between solutions resulting from FEP runs and their improvements by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Figure 221 shows that different local minima corresponds to FEP runs. By 

considering the objective function values reached at the end of the optimization 

processes, two solutions seem to correspond to the best known one. Let us 

investigate the solutions in the normalized search space. Table 141 reports, 

corresponding to each FEP+SQP run, the reached objective function value and 

the distance (in Euclidean metric) with respect to the best known solution. 
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 ObjFun Distance 

run 1 144.831 1.014 

run 2 129.172 0.954 

run 3 5.656 0.513 

run 4 118.967 1.238 

run 5 184.309 1.128 

run 6 124.500 1.193 

run 7 134.372 1.012 

run 8 143.076 1.276 

run 9 5.705 0.011 

run 10 121.917 1.291 

Table 141: FEP+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 1% of the hyper diagonal of the normalized search space, that is 0.040 in a 

16-dimensional space, one run has been able to get the best known solution, 

that is 1/10 FEP runs successfully identified the basin of attraction of the best 

known solution. Moreover, FEP identified an alternative solution which is in fact 

comparable with the best known solution in terms of the objective function 

value, that is run 3 solution. Figure 222 compares the trajectory corresponding 

to such solution with the best known one. 
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Figure 222:Comparison between the best known solution and solutions corresponding to run 3. 

 

Table 142 reports the date of departure corresponding to the two analysed 

solutions. 

 

 Best identified solution run 3 solution 

Date of departure [d]: 553.253 512.841 

Table 142: Date of departure corresponding to the best known solution and run 3 solution. 

 

DE 

As DE implements a Differential Evolution algorithm, we report the statistical 

characteristics. Ten runs have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. Again, due to the high complexity of low thrust direct 

planet-to-planet interplanetary transfer problem and the high number of design 
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variables, we used 100 individuals evolving for a maximum number of iterations 

equal to 10000. 

 

Algorithm parameters 

Number of individuals: 100 

Maximum number of generations: 10000 

 

Table 143, Table 144 and Figure 223 report the best identified solution 

compared with the best known solution in terms of the values of the design 

variables and of the objective function  terms, while Figure 224 plots the 

resulting interplanetary transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution

Date of departure [d]: 528.585 553.253 

Transfer time [d]: 293.142 299.462 

Thrust level [N]: 0.162 0.130 

Escape velocity from Earth [m/s]: 2331.437 2676.327 

Table 143: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 223: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Best identified solution Best know solution 

ObjFun : 224.672 5.750 

FR / MarsSoIR , : 6.561 0.002 

Fv  [m/s]: 1520.989 0.086 

propm  [kg]: 139.320 114.433 

Table 144: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 224: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 225 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc., while Table 145 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. 

 



  

 317

 

Figure 225: Distribution of the solutions resulting from each DE optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation criterion Mean value Standard deviation Best identified solution 

Objective function: 310.233 66.478 224.672 

nFunc.: 2625.000 1081.359 4151 

Runtime [STU]: 0.437 0.177 0.689 

Table 145: Statistical characteristics of the identified solutions. 

 

The estimation of the number and features of the distinct local minima reached 

by means of the ten runs is now performed. To attain such a task, the optimal 

solutions corresponding to all ten runs have been used as starting solutions for 

ten local optimization processes in order to accurately estimate the local 

minimum corresponding to the basin of attraction each optimal solution belong 

to. The consequences of the local optimization processes in the nFunc - V∆  
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plane are shown in Figure 226, where each improved solution is linked to the 

corresponding starting one by means of a straight line. 

 

Figure 226: Comparison between solutions resulting from DE runs and their improvements by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Figure 226 shows that different local minima corresponds to DE runs. Let us 

investigate the solutions in the normalized search space. Table 146 reports, 

corresponding to each DE+SQP run, the reached objective function value and 

the distance (in Euclidean metric) with respect to the best known solution. 
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 ObjFun Distance 

run 1 121.389 1.198 

run 2 166.862 1.124 

run 3 6.076 0.666 

run 4 101.114 1.645 

run 5 6.060 0.767 

run 6 140.131 1.388 

run 7 41.376 1.394 

run 8 6.097 0.673 

run 9 142.843 1.108 

run 10 121.596 1.286 

Table 146: DE+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

An empirical analysis suggest to define two solutions as identical when the 

Euclidean distance is less than 1% of the hyper diagonal of the normalized 

search space, that is 0.040 in a 16-dimensional space. The consequence of 

such definition is that no run has been able to get the best known solution, that 

is 0/10 DE runs successfully identified the basin of attraction of the best known 

solution. However, three solutions have been reached which have objective 

function values comparable with that achieved by the best known solution, that 

is runs 3, 5 and 8. Such solutions are reported in Figure 227. 
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Figure 227: Comparison between the best known solution and solutions corresponding to run 3 
and run 9. 

 

The identified local minima are different, as the consideration of the date of 

departure values can show (see Table 147). 

 

 
Best identified 

solution 
run 3  run 5  run 8  

Date of departure [d]: 553.253 523.430 566.859 560.769 

Table 147: Date of departure corresponding to the best known solution and run 3, run 5 and run 
9 solutions. 

 

ASA 

As ASA implements an Adaptive Simulated Annealing algorithm, we report the 

statistical performance characteristics. Ten runs have been processed in order 

to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. Note that, unlike the 

previous cases, the adaptive simulated annealing needs a starting solution, 
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which strongly affects the optimal solution reached. Due to the comparative 

purposes of this work, we decided to use ten different random starting solutions, 

uniformly distributed in the search box. Table 148, Table 149 and Figure 228 

report the best identified solution compared with the best known solution in 

terms of the values of the design variables and of the objective function  terms, 

while Figure 229 plots the resulting interplanetary transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution 

Date of departure [d]: 516.549 553.253 

Transfer time [d]: 291.885 299.462 

Thrust level [N]: 0.141 0.130 

Escape velocity from Earth 

[m/s]: 
2545.910 2676.327 

Table 148: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 228: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Best identified solution Best know solution 

ObjFun : 10.272 5.750 

FR / MarsSoIR , : 0.234 0.002 

Fv  [m/s]: 18.842 0.086 

propm  [kg]: 120.992 114.433 

Table 149: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 229: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Figure 230 shows the distribution of the solutions resulting from each 

optimization run over the plane of the objective function, V∆ , and the number of 

function evaluations, nFunc, while Table 150 reports the statistical 

characteristics, which will be used for comparisons with the other optimization 

algorithms, as well as the performances corresponding to the best identified 

solution. 
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Figure 230: Distribution of the solutions resulting from each ASA optimization run over the 
VnFunc ∆−  plane. 

 

Evaluation criterion Mean value Standard deviation Best identified solution 

Objective function: 176.977 102.314 10.272 

nFunc.: 78783.8 35239.439 60000 

Runtime [STU]: 12.985 5.856 10.533 

Table 150: Statistical characteristics of the identified solutions. 

 

The optimal solutions corresponding to all ten runs are now used again as 

starting solutions for ten local optimization processes in order to accurately 

estimate the local minimum corresponding to the basin of attraction each 

optimal solution belong to and to evaluate the number of ASA successful runs. 

Figure 231 illustrates the consequences of the local optimization processes in 

the nFunc - V∆  plane. 
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Figure 231: Comparison between solutions resulting from ASA runs and their improvements by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Different local minima corresponds to ASA runs. In order to estimate the 

number of identified solutions which lie in the basin of attraction of the best 

known solutions, solutions are now investigated in the normalized search 

space. Tale 151 reports, corresponding to each ASA+SQP run, the reached 

objective function value and the distance (in Euclidean metric) with respect to 

the best known solution. 
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 ObjFun Distance 

run 1 242.950 1.093 

run 2 120.547 1.086 

run 3 253.604 1.596 

run 4 208.814 1.129 

run 5 153.765 0.974 

run 6 6.487 0.786 

run 7 200.014 1.422 

run 8 6.273 0.761 

run 9 120.364 1.013 

run 10 194.330 1.222 

Table 151: ASA+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.040, no runs were able to get the best known solution, that is 0/10 ASA 

runs successfully identified the basin of attraction of the best known solution. It 

is worth noting that, although ASA wasn’t able to reach the basin of attraction of 

the best known solution (according to the definition of identical solutions given 

above), it could achieve the basin of attraction of two solutions which are in fact 

quite comparable with the best known one in terms of objective function values 

(see runs 6 and 8). Figure 232 shows the trajectories corresponding to such 

solutions compared with the best known one. 
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Figure 232: Comparison between the best known solution and solutions corresponding to run 6 
and run 8. 

 

It is worth noting that, although the objective function values are comparable, 

the identified local minima are different, as the analysis of the date of departure 

values shows, whose values in case of the three analysed solutions are 

reported in Table 152. 

 

 Best identified solution run 6 run 8 

Date of departure [d]: 553.253 547.964 517.339 

Table 152: Date of departure corresponding to the best known solution and solutions run 6 and 
run 8. 
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glbSolve 

As glbSolve algorithm implements a deterministic optimization approach, 

statistical characteristics are not needed in this case. Only one run has been 

processed in order to solve the previously defined problem. Default options 

suggested by the providers of the code have been used. As the low thrust direct 

planet-to-planet interplanetary transfer problem has high complexity features 

and a high number of design variables, we used a maximum number of 

iterations equal to 10000. 

 

Algorithm parameters 

Maximum number of generations: 10000 

 

Table 153, Table 154 and Figure 233 report the identified solution compared 

with the best known solution in terms of the values of the design variables and 

of the objective function terms, while Figure 234 plots the resulting 

interplanetary transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution

Date of departure [d]: 1217.500 553.253 

Transfer time [d]: 225.000 299.462 

Thrust level [N]: 0.165 0.130 

Escape velocity from Earth [m/s]: 2500 2676.327 

Table 153: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 233: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Best identified solution Best know solution 

ObjFun : 158.571 5.750 

FR / MarsSoIR , : 0.152 0.002 

Fv  [m/s]: 1515.863 0.086 

propm  [kg]: 109.305 114.433 

Table 154: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 234: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Table 155 reports the characteristics of the identified solution, which will be 

used for comparisons with the other optimization algorithms.  

 

Evaluation criterion Identified solution 

ObjFun: 158.571 

nFunc.: 29003 

Runtime [STU]: 5.477 

Table 155: Characteristics of the identified solutions. 

 

In order to accurately identify the local minimum reached by glbSolve algorithm, 

a local optimization process by means of a SQP algorithm is now performed, 

where the solution identified by glbSolve is considered as the starting point for 

the local search process. The starting solution and the improved one are 
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reported in Figure 235 on the nFunc-ObjFun plane, while Figure 236 compares 

the improved solution with the best known one in terms of transfer trajectory. 

 

Figure 235: Comparison between solution resulting from glbSolve run and its improvement by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 
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Figure 236:Comparison between solution resulting from glbSolve+SQP run and thebest known 
solution in terms of transfer trajectory. 

 

The solution is now investigated in the normalized search space. Table 156 

reports, corresponding to the glbSolve+SQP run, the reached objective function 

value and the distance (in Euclidean metric) with respect to the best known 

solution. 

 

 ObjFun Distance 

glbSolve+SQP run 120.713 1.314 

Table 156: glbSolve+SQP optimization runs: objective function values and Euclidean distance 
in the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.040, the run wasn’t able to get the best known solution, that is glbSolve 

run failed in identifying the basin of attraction of the best known solution. 
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MCS 

As MCS algorithm implements a deterministic optimization approach, only one 

run has been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used.Table 

157, Table 158 and Figure 236 report the identified solution compared with the 

best known solution in terms of the values of the design variables and of the 

objective function  terms, while Figure 237 plots the resulting interplanetary 

transfer trajectories. 

 

Search space 

Design variable Best identified solution Best know solution 

Date of departure [d]: 1195.711 553.253 

Transfer time [d]: 193.957 299.462 

Thrust level [N]: 0.168 0.130 

Escape velocity from Earth [m/s]: 2160.898 2676.327 

Table 156: Comparison between the best identified solution and the best known solution: 
search space. 
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Figure 236: Comparison between the best identified solution and the best known solution: 
thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Best identified solution Best know solution 

ObjFun : 319.497 5.750 

FR / MarsSoIR , : 0.029 0.002 

Fv  [m/s]: 3144.205 0.086 

propm  [kg]: 95.662 114.433 

Table 157: Comparison between the best identified solution and the best known solution: 
objective function space. 
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Figure 237: Comparison between the trajectories corresponding to the best identified solution 
and the best known solution. 

 

Table 158 reports the characteristics of the identified solution, which will be 

used for comparisons with the other optimization algorithms.  

 

Evaluation criterion Identified solution 

ObjFun: 319.497 

nFunc.: 19183 

Runtime [STU]: 2.960 

Table 158: Characteristics of the identified solutions. 

 

A local optimization process by means of a SQP algorithm is now performed, 

where the solution identified by MCS is considered as the starting point for the 

local search process. The starting solution and the improved one are reported in 
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Figure 238 on the nFunc-ObjFun plane, while Figure 239 compares the 

improved solution with the best known one in terms of transfer trajectory. 

 

Figure 238: Comparison between solution resulting from MCS run and its improvement by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Figure 239: Comparison between solution resulting from MCS+SQP run and the best known 
solution in terms of transfer trajectory. 
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The solution is now investigated in the normalized search space. Table 159 

reports, corresponding to the MCS+SQP run, the reached objective function 

value and the distance (in Euclidean metric) with respect to the best known 

solution. 

 

 ObjFun Distance 

MCS+SQP run 319.497 1.512 

Table 159: MCS+SQP optimization run: objective function values and Euclidean distance in the 

normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.040, the run wasn’t able to get the best known solution, that is MCS run 

failed in identifying the basin of attraction of the best known solution. 

 

rbfSolve 

As rbfSolve algorithm implements a deterministic optimization approach, based 

on objective function response surface assessment and analysis suitable for 

costly objective function problems, statistical features analysis don’t hold here. 

Only one run have been processed in order to solve the previously defined 

problem. Default options suggested by the providers of the code have been 

used. As already stated in the other mission analysis test problems, the 

termination conditions available in TOMLAB version of rbfSolve tool (which is 

not freely available) do not include suitable rules for practical problems with not 

a priori information about the global optimum solution. As a consequence, a 

maximum number of objective function evaluations has been fixed for 

terminating the optimization process. By revising the previous analysis, in case 

of low thrust direct planet-to-planet transfer, the number of objective function 

evaluations was quite high: FEP required about 105 objective function 

evaluations. However, as already noted in Multiple Gravity Assist analysis, 

rbfSolve is tailored for costly optimization processes and can not dealing with so 

high number of objective function evaluations due to the high required memory 

for handling the interpolation process. As a consequence, such limitations 
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forced us to fix a maximum number of objective function evaluations of the 

order of 103. As it concerns the validity of the achieved results, considerations 

similar to those highlighted in case of Multiple Gravity Assist hold in this case 

also: in particular, if the response surface algorithm is not able to identify and 

accurately approximate the basin of attraction of the global optimum in a low 

number of objective function evaluations, it is likely the case the response 

surface based algorithm has not converged to the global optimum solution. 

Hence, the fixed number of objective function evaluations has been set to 1000. 

 

Algorithm parameters 

Maximum number of objective function evaluations: 1000 

 

 

Table 160, table 161 and Figure 240 report the identified solution compared 

with the best known solution in terms of the values of the design variables and 

of the objective function  terms, while Figure 241 plots the resulting 

interplanetary transfer trajectories. 

 

Search space 

Design variable Identified solution Best know solution 

Date of departure [d]: 526.526 553.253 

Transfer time [d]: 235.040 299.462 

Thrust level [N]: 0.122 0.130 

Escape velocity from Earth [m/s]: 2639.289 2676.327 

Table 160: Comparison between the identified solution and the best known solution: search 
space. 
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Figure 240: Comparison between the identified solution and the best known solution: thrust 
azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Identified solution Best know solution 

ObjFun : 352.787 5.750 

FR / MarsSoIR , : 23.191 0.002 

Fv  [m/s]: 1166.648 0.086 

propm  [kg]: 84.241 114.433 

Table 161: Comparison between the identified solution and the best known solution: objective 
function space. 
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Figure 241: Comparison between the trajectories corresponding to the identified solution and 
the best known solution. 

 

Table 162 reports the characteristics of the identified solution, which will be 

used for comparisons with the other optimization algorithms.  

 

Evaluation criterion Identified solution 

ObjFun: 352.787 

nFunc.: 1000 

Runtime [STU]: 77.754 

Table 162: Characteristics of the identified solutions. 

 

A local optimization process by means of a SQP algorithm is now performed, 

where the solution identified by rbfSolve is considered as the starting point for 

the local search process. The starting solution and the improved one are 
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reported in Figure 242 on the nFunc-ObjFun plane, while Figure 243 compares 

the improved solution with the best known one in terms of transfer trajectory. 

 

Figure 242: Comparison between solution resulting from rbfSolve run and its improvement by 
means of a further local optimization process via SQP algorithm over the VnFunc ∆−  plane. 

 

Figure 243: Comparison between solution resulting from rbfSolve+SQP run and the best known 
solution in terms of transfer trajectory. 
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The solution is now investigated in the normalized search space. Table 163 

reports, corresponding to the rbfSolve+SQP run, the reached objective function 

value and the distance (in Euclidean metric) with respect to the best known 

solution. 

 

 ObjFun Distance 

rbfSolve+SQP run 133.213 1.261 

Table 163: rbfSolve+SQP optimization run: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 0.040, the run wasn’t able to get the best known solution, that is rbfSolve 

run failed in identifying the basin of attraction of the best known solution. 

Anyway, it is interesting to analyse the feature of the identified solution, which is 

in fact quite different from the previously reported ones. Table 164, Table 165 

and Figure 244 report the identified solution compared with the best known 

solution in terms of the values of the design variables and of the objective 

function  terms. 

 

Search space 

Design variable Identified solution + SQP Best know solution 

Date of departure [d]: 539.724 553.253 

Transfer time [d]: 178.174 299.462 

Thrust level [N]: 0.168 0.130 

Escape velocity from Earth [m/s]: 2637.871 2676.327 

Table 164: Comparison between the solution resulting from rbfSolve+SQP run and the best 
known solution: search space. 
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Figure 244: Comparison between the solution resulting from rbfSolve+SQP run and the best 
known solution: thrust azimuth and elevation over the transfer trajectory. 

 

Objective function space 

Term Identified solution + SQP Best know solution 

ObjFun : 133.212 5.750 

FR / MarsSoIR , : 0.014 0.002 

Fv  [m/s]: 1286.746 0.086 

propm  [kg]: 87.878 114.433 

Table 165: Comparison between the solution resulting from rbfSolve+SQP run and the best 
known solution: objective function space. 

 

The local minimum corresponding to the basin of attraction identified by 

rbfSolve corresponds to an interplanetary transfer with considerable lower 

transfer time and propellant consumption for the electric engine. However, a 

final relative velocity of 1286.746 m/s characterizes the arrival at Mars, which 
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might force the further use of chemical propulsion system, making hybrid the 

resulting propulsion system.  

 

Summary of results: 

 

Table 166 reports the summary of results for the low-thrust direct planet-to-

planet transfer problem in a tabular form. 

 

Algorithm Objective function Fun. evaluations Runtime [STU] 

GAOT 269.198 (σ = 71.416) 14919.3 (σ = 5121.398) 3.564 (σ = 1.564) 

GAOT-

shared 
343.238 (σ = 49.457) 3109.5 (σ = 1099.448) 0.621 (σ = 0.217) 

GATBX 172.559 (σ = 92.517) 30036 (σ = 15485) 7.105 (σ = 4.068) 

GATBX-

migr 
153.807 (σ = 87.043) 48436 (σ = 21584) 9.511 (σ = 4.140) 

FEP 157.191 (σ = 76.266) 
89013.9 (σ = 

68704.199) 
14.996 (σ = 9.551) 

DE 310.233 (σ = 66.478) 2625 (σ = 1081.359) 0.437 (σ = 0.177) 

ASA 176.977 (σ = 102.31) 78783.8 (σ = 35239) 12.985 (σ = 5.856) 

glbSolve 158.571 29003 5.477 

MCS 319.497 19183 2.960 

RbfSolve 352.787 1000 77.754 

EPIC* 10.24 (σ = 11.33) 80799 (σ = 16952) - 

Table 166: Summary of results for the low-thrust direct planet-to-planet transfer problem 
transfer problem (* courtesy of Dr. Massimilano Vasile). 

 

Note that Table 166 also reports the performances of EPIC algorithm, which 

have been supplied by Dr. Massimiliano Vasile. Unfortunately, the analysis of 

EPIC results on the search space couldn’t be accomplished and the runtime 

performances were not available. Due to the partially conflicting performance 
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criteria considered in this work and by proceeding in analogy with the 2-impulse 

direct planet-to-planet and multiple gravity assist transfer problem analysis, 

concepts and techniques typically adopted in multiobjective optimization 

problems (such as the concept of the Pareto dominance) are here used in order 

to assess the optimization algorithms performances. Due to the presence of not 

optimized codes among the tested ones and to the necessity of creating a MEX 

file for ASA algorithm, the main evaluation criteria to be considered have been 

taken as the objective function value reached, objFun, and the number of model 

function evaluations needed, nFunc. Figure 245 reports such performances in a 

objFun - nFunc plane in order to identify the Pareto optimal solutions. 

 
Figure 245: Algorithms performances in the objFun- nFunc plane. 

 

Note that Figure 245 reports the performances listed in Table 166, which 

contains statistical performances in case of randomized optimization algorithms. 

By applying the concepts of Pareto dominance, Table 167 reports for each 

algorithm, the number of algorithms which dominated, and then outperformed it. 
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Algorithm # of dominating algorithms 

GAOT 0 

GAOT-shared 1 

GATBX 1 

GATBX-migr 0 

FEP 2 

DE 0 

ASA 3 

GlbSolve 0 

MCS 2 

RbfSolve 0 

EPIC 0 

Table 167: Number of dominating algorithms. 

 

Table 167 shows that the set of Pareto optimal solutions includes six solutions: 

the algorithms which best solved the low-thrust direct planet-to-planet transfer 

problem in a Pareto optimal sense are GAOT, GATBX-migr, DE, glbSolve, 

rbfSolve and EPIC. Their performances are shown in Figure 246 
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Figure 246: Pareto optimal algorithms. 

 

For the sake of completeness, let consider now the runtime performances. We 

have now three performance criteria. Figure 247 and Figure 248 report the 

algorithms performances in the objFun - nFunc plane and in the nFunc - runtime  

plane respectively, which have not been considered so far. Note that EPIC 

performances couldn’t be reported in the following analysis, due to the lack on 

required runtime information. 

 

 



  

 348

 

Figure 247: Algorithms performances in the objFun - runtime  plane. 

 

Figure 248: Algorithms performances in the nFunc - runtime plane. 
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By applying again the concepts of Pareto dominance in this three-criteria case, 

Table 168 reports for each algorithm, the number of algorithms which 

dominated it. 

 

Algorithm # of dominating algorithms 

GAOT 0 

GAOT-shared 1 

GATBX 1 

GATBX-migr 0 

FEP 1 

DE 0 

ASA 3 

glbSolve 0 

MCS 1 

rbfSolve 0 

Table 168: Number of dominating algorithms in the three criteria case. 

 

Table 168 shows that no changes in the Pareto optimal set members occurred 

in analysing the three criteria case. Finally the performance of all algorithms in 

identifying the basin of attraction of good solution are analysed, as resulting 

from the local optimization processes performed at the end of each algorithm 

run. Indeed, as stated above, only FEP algorithm were able to get the basin of 

attraction of the best known solution; however other algorithms succeeded in 

reaching basin of attraction of good solutions, which are in fact comparable with 

the best known one in terms of objective function values. As a consequence, 

such successful runs are considered as representative of good algorithm 

performances and are included in Table 169 (note that for randomized 

algorithms the number of successful runs over the total number of performed 

runs is reported). 
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Algorithm  Success 

GAOT 0/10 

GAOT-shared 0/10 

GATBX 2/10 

GATBX-migr 2/10 

FEP 2/10 

DE 3/10 

ASA 2/10 

glbSolve No 

MCS No 

rbfSolve No 

Table 169: Algorithms performance in identifying the basin of attraction of good solutions. 

 

Table 169 shows that DE algorithms turned out to have the highest rate of 

success at reaching the basin of attraction of good solutions in case of low-

thrust direct planet-to-planet interplanetary transfers problem. This is a quite 

interesting result: as shown in Figure 245, DE resulted in quite high mean 

objective function values; however, the global search performed by means of 

differential evolution seemed to be effective at finding good basin of attraction. 

Anyway, it is worth noting that little differences in rate of success with respect to 

GATBX, GATBX-migr, FEP and ASA exist. Moreover, an impressive 

consideration can be highlighted: all algorithms resulted in very low rate of 

success. Actually, we must consider that information about the success rate of 

EPIC couldn’t be included in the previous table, because of not availability to 

the authors. Nevertheless, by looking at the mean objective function value 

obtained by EPIC (10.24) and by considering the objective function value 

corresponding to the best known solution (5.75), it is likely the case that most 

EPIC runs could reach the basin of attraction of good solutions, which are 

comparable in fact with the best known one. As a consequence, in order to 

identify the best performing algorithm in case of low-thrust direct planet-to-
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planet transfer problem, by combining information coming up from Pareto 

optimality analysis carried out on the obj – nFunc two criteria case and rate of 

success investigation, whose results are reported inTable 169, we can state 

that: 

 

• GAOT and GAOT-shared tools, as well as the non randomized algorithms 

glbSolve, MCS and rbfSolve are not suitable for global optimization of low-

thrust direct planet-to-planet transfer problems using the mathematical 

models here employed. 

 

• Among the remaining tools, DE, GATBX-migr and EPIC showed good 

performances in a Pareto optimal sense: in particular, DE and GATBX-migr 

resulted in similar, even if low, rate of success; however, by considering that 

the rate of success is evaluated by performing local optimization processes 

requiring similar further objective function evaluations and by noting that DE 

meanly required considerable fewer objective function evaluations for 

performing the global search, DE tool seems to be preferable with respect to 

GATBX-migr; as a consequence DE and EPIC seem to be the most 

promising tools. 

 

• As stated above, no information are available about the rate of success of 

EPIC. However the impressive results of the global search in terms of mean 

objective function value reached seem to be indicative of performances 

particularly high even in this sense, especially if compared with the scarce 

results of the other tools. As a consequence, in spite of a higher mean 

number of objective function evaluations required to perform the global 

search, the authors believe that EPIC should be considered as the best 

performing algorithm for solving the low-thrust direct planet-to-planet transfer 

problem using the mathematical models here applied. 
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10. LUNAR WEAK STABILITY BOUNDARY TRANSFER 

 

Problem class statement: 

 

Objective function assessment 

Objective function: 21 VVV ∆+∆=∆  

where: 

• 1V∆  is the impulsive manoeuvre required 

to put the spacecraft in the Lambert’s 

three-body arc starting from the initial 

circular orbit around the Earth 

• 2V∆  is the impulsive manoeuvre 

necessary to inject the spacecraft on the 

capture trajectory S
LW 1  

Mathematical models: 
• Restricted three-body dynamical 

model 

• Two dimensional motion (synodic 

dimensionless reference frame) 

• Combination of invariant manifolds 

and Lambert’s three-body arcs 

• Impulsive manoeuvres (i.e. 

instantaneous variations in velocity) 

for linking the three-body arcs 

Search space characterization 

Number of design variables: 3 

Design Variables: 
 

• Angle identifying the starting point 
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over the initial circular orbit (θ ) 

• Time of the backward propagation of 

the stable manifold S
LW 1  from the 

libration point L1, whose final point 

identify the target of the Lambert’s 

three-body arc ( Wt ) 

• Transfer time corresponding to the 

Lambert’s three-body arc from the 

initial circular orbit to the target point 

on the stable manifold S
LW 1  previously 

identified ( Lt ) 

Topology: Continuous variables 

Constraints 

Constraints typology: Box constraints 

Box intervals: • [ ] [ ]deg,, UBLB 3600=θθ  

• [ ] [ ]3,1.0, =UB
L

LB
L tt  d 

• [ ] [ ]150,5, =UB
W

LB
W tt  d 

General considerations 

Objective function analysis: Discontinuous on the boundaries of a finite 

set of regions over the search space; C2 in 

the remaining points. 

Problem complexity: High 
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Number of global optima: A priori unknown. 

 

A systematic analysis of the objective function over the search space, followed 

by local optimization processes starting from 100 random first guess solutions 

uniformly distributed over the search space (each local search requiring a 

number of objective function evaluations of the order of 0.5·102) led to the 

following best known solution, that seems to be the global one over the 

considered search space (although no rigorous mathematical demonstration 

has been provided). 

 

Search space 

θ : 70.835 deg 

Lt : 1.273 d 

Wt : 107.670 d 

Objective space 

V∆ : 3080.767 m/s 

1V∆ : 3080.756 m/s 

2V∆ : 0.011 m/s 
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Figure 249: Best known solution: trajectory representation in the dimensionless Earth-Moon 
rotating frame. 

 

Number of local optima: A priori unknown. 

 

Hardware platform: 

Two platforms have been used, whose main hardware features are reported in 

the following table.  

 

Platform number Hardware features 

Platform 1: Intel Pentium 4 – 3.06GHz laptop 

Platform 2: AMD Athlon™ XP 2600 desktop 

 

 

 



  

 356

Operating system: 

Two different operating systems correspond to the two used platforms, whose 

main data are reported in the following table. 

 

Platform number Hardware features 

Platform 1: Microsoft Windows XP 

Home edition 

Version 2002 

Service Pack 1 

 

Platform 2: Microsoft Windows 2000 

Professional edition 

5.00.2195 

Service Pack 4 

 

Timings: 

The Standard Unit Time (see Dixon & Szegö, 1978) has been measured. 

 

Performances: 

In the following, the performances of each global optimization tool in solving the 

problem of Lunar transfers using libration points are reported. The evaluation 

criteria will be mainly based on the analysis of the optimal solution reached and 

the number of the required model function evaluations. Due to the presence of 

not optimized codes among the tested ones, timing will not be considered as a 

main evaluation criterion. 

 

GAOT 

As GAOT implements a genetic algorithm, we report the statistical 

characteristic, typically considered in case of randomized solution methods. Ten 

run have been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used in all 

the runs: note that by tuning the algorithm parameters one may improve the 

performance of the solvers, but, due to the comparative purposes of this work, 
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the tuning effects have not been considered. As the model used for designing 

Lunar transfers using libration points has high complexity features and a low 

number of design variables, we used 50 individuals evolving for a maximum 

number of generations equal to 1000. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 1000 

 

Table 170 and Table 171 report the best identified solution compared with the 

best known solution (note that the best solution is here measured by 

considering the minimum objective function value reached and is different from 

the Pareto optimal solution described below). 

 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 286.417 70.835 

Lt  [d]: 1.275 1.273 

Wt  [d]: 26.226 107.670 

Table 170: Comparison between the best identified solution and the best known solution: 
search space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3082.940 3080.767 

∆VI  [m/s]: 3080.914 3080.756 

∆VF [m/s]: 2.026 0.011 

Table 171:Comparison between the best identified solution and the best known solution: 
objective function space. 
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The previous tables show that the, although the two solutions are in fact 

comparable in terms of the objective function value, they seem to identify quite 

different solutions in the search space. Such a consideration is confirmed by the 

trajectory representation (see Figure): the best solution identified by GAOT 

belong to a different family of solutions which is comparable to the best known 

one in terms of objective function value, but are characterized by a considerable 

lower transfer time to L1 (27.501 d instead of 108.943 d corresponding to the 

best known solution). 

 

Figure 250: Best identified solution: trajectory representation. 

 

By revising the objective function structure analysis of the problem of lunar 

transfer using libration points, the best solution identified by GAOT can be 

clearly related to the family of solutions corresponding to subgroup 2, which is 

not the best identified one (subgroup 8). Let us now consider the statistical 

characteristics of the identified solution set. Table 12 reports the mean value 

and the standard deviation of the performances which will be used for 

comparisons with the other optimization algorithms.  
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Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3292.300 194.112 

Model function evaluations: 2089.3 1592.775 

Runtime [STU]: 8.327 6.252 

Table 172: Statistical characteristics of the identified solutions. 

 

Table 172 shows that the mean value of the optimal objective function values 

reached at the end of each optimization process is quite different from the best 

identified one and is characterized by a high standard deviation. Such a result 

let us suppose that no all the performed optimization processes have been able 

to identify the basin of attraction of the same solution. Figure 251 reports the 

final solutions corresponding to each optimization run in the nFunc-∆V plane 

(where nFunc is the number of objective function evaluations), while Figure 252 

illustrates their distribution over the search space (the best identified solution is 

highlighted by a green dot) compared with the best known solution (red dot). 

 

Figure 251: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 
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Figure 252: Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 

Figure 251 and Figure 252 fairly illustrates that the presence of comparable 

local minima which has been highlighted in the analysis of the objective function 

structure, hindered the effectiveness of GAOT algorithm at reaching the basin of 

attraction of the best known solution. In particular, the figures seem to confirm 

that no GAOT solution was able to get the basin of attraction of the best known 

solution. In order to better analyse such a matter, the ten identified solutions 

have been used as starting points for ten local optimization processes 

performed by means of a SQP algorithm. Figure 253 reports the improved 

solutions over the nFunc-∆V plane. 
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Figure 253: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

By investigating the improved solutions in the normalized search space, Table 

173 reports, corresponding to each GAOT+SQP run, the reached objective 

function value and the distance (in Euclidean metric) with respect to the best 

known solution. 
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 ∆V [m/s] Distance 

run 1 3286.695 0.799 

run 2 3355.121 0.770 

run 3 3499.922 0.618 

run 4 3088.938 0.248 

run 5 3223.252 0.676 

run 6 3083.992 0.869 

run 7 3082.174 0.865 

run 8 3085.618 0.607 

run 9 3082.795 0.821 

run 10 3595.060 0.418 

Table 173: GAOT+SQP optimization runs: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

An empirical analysis suggest to define two solutions as identical when the 

Euclidean distance is less than 1% of the hyper diagonal of the normalized 

search space, that is 0.017 in a 3-dimensional space. As a consequence, the 

previous analysis confirms that 0/10 GAOT runs were able to identify the basin 

of attraction of the best known solution. However, it should be noted that the 

5/10 runs could reach the basin of attraction of local minima comparable to the 

best known one. A careful analysis showed that such comparable local minima 

are in fact related to a subset of the ten transfer families identified in the 

objective function structure analysis; in particular, no one corresponds in fact to 

the best identified one (subgroup 8). Let us now analyse the main features of 

the final population: to do that, the final population corresponding to the best 

identified solution is investigated. Figure 254 shows the distribution of the 

population over the search space at the end of the optimization process. 
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Figure 254: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

The previous figures show that the individuals in the final population are widely 

distributed over the search space. Figure 255 reports the objective function 

values corresponding to each individual. 
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Figure 255: Objective function values of individuals in the final population corresponding to the 
best identified solution. 

 

Figure 255 shows that some individuals in the final population corresponds to 

region of the search space where the algorithm for Lambert’s three-body 

problem solution couldn’t converge to an admissible solution. A careful analysis 

of the search space shows that other individuals are quite concentrated around  

the best identified solution: indeed, the final population of GAOT algorithm 

concentrates around a unique optimum solution, without keeping information of 

other local optima solutions; the wide distribution of the highlighted in Figure 

255 corresponds in fact to the effects of the crossover and mutation operators. 

 

GAOT-shared 

As GAOT-shared implements a genetic algorithm including a niching technique, 

we report again the statistical characteristics. Ten runs have been processed in 

order to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. The threshold of 
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dissimilarity, Sσ , for the sharing method and the shape parameter of the sharing 

function, α , have been set respectively to: 
 

1.0=Sσ   and  1=α  

 

We used again a population of 50 individuals, evolving for a maximum number 

of generations equal to 100. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 100 

 

Table 174 and Table 175 report the best identified solution compared with the 

best known solution. 
 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 355.901 70.835 

Lt  [d]: 1.313 1.273 

Wt  [d]: 129.706 107.670 

Table 174: Comparison between the best identified solution and the best known solution: 
search space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3337.437 3080.767 

∆VI  [m/s]: 3102.607 3080.756 

∆VF [m/s]: 234.830 0.011 

Table 175: Comparison between the best identified solution and the best known solution: 
objective function space. 
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The previous tables show that the two solutions identify in fact quite different 

Lunar transfer in the search space. Such a consideration is confirmed by the 

trajectory representation (see Figure 256): the best solution identified by GAOT-

shared belong to a different family of solutions. 

 

Figure 256: Best identified solution: trajectory representation. 

 

By revising again the objective function structure analysis of the problem of 

lunar transfer using libration points, the best solution identified by GAOT-shared 

can be related to the family of solutions corresponding to subgroup 10, which is 

different from the best identified one (subgroup 8). Let now consider the 

statistical characteristics of the identified solution set. Table 176 reports the 

mean value and the standard deviation of the performances which will be used 

for comparisons with the other optimization algorithms. 
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Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3597.104 216.418 

Model function evaluations: 606.2 151.610 

Runtime [STU]: 1.836 0.545 

Table 176: Statistical characteristics of the identified solutions. 

 

Table 176 shows that the mean value of the optimal objective function values 

reached at the end of each optimization process is quite different from the best 

identified. Such a result let us suppose that no all the performed optimization 

processes have been able to identify the basin of attraction of the same 

solution. Figure 257 reports the final solutions corresponding to each 

optimization run in the nFunc-∆V plane, while Figure 258 illustrates their 

distribution over the search space (the best identified solution is highlighted by a 

green dot) compared with the best known solution (red dot). 

 

Figure 257: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 
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Figure 258: Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 

Figure 257 and Figure 258 show that no GAOT-shared runs were able to reach 

the best known solution. Then, ten local optimization processes have been 

performed by means of a SQP algorithm, using the identified solutions as 

starting points in order to confirm this result. Figure 259 reports the improved 

solutions over the nFunc-∆V plane. 
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Figure 259: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

By investigating the improved solutions in the normalized search space. Table 

177 reports, corresponding to each GAOT-shared+SQP run, the reached 

objective function value and the distance (in Euclidean metric) with respect to 

the best known solution. 
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 ∆V [m/s] Distance 

Run 1 3083.167 0.811 

Run 2 3182.232 0.665 

Run 3 3191.104 0.723 

Run 4 3496.193 0.589 

Run 5 3857.829 0.290 

Run 6 3204.485 0.674 

Run 7 3261.598 0.655 

Run 8 3083.079 0.606 

Run 9 3294.944 0.789 

run 10 3198.760 0.726 

Table 177: GAOT-shared+SQP optimization runs: objective function values and Euclidean 
distance in the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a 

3-dimensional space, the previous analysis confirms that 0/10 GAOT-shared 

runs were able to identify the basin of attraction of the best known solution. 

Anyway, 2/10 runs could reach the basin of attraction of local minima 

comparable to the best known one (runs 1 and 8). Such comparable local 

minima are in fact both related to the transfer family identified in the objective 

function structure analysis corresponding to subgroup 10, which is not the best 

identified one. Let us now analyse the main features of the final population: to 

do that, the final population corresponding to the best identified solution is 

investigated. Figure 260 shows the distribution of the population over the search 

space at the end of the optimization process. 



  

 371

 

Figure 260: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

The previous figures show that the individuals in the final population are widely 

distributed over the search space; the effects of the sharing operator can be 

highlighted again: concentration of individuals and then accurate identification of 

the local optimum are voided. Figure 261 reports the objective function values 

corresponding to each individual. 
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Figure 261: Objective function values of individuals in the final population corresponding to the 
best identified solution. 

 

Figure 261 shows again that some individuals in the final population 

corresponds to region of the search space where the algorithm for Lambert’s 

three-body problem solution couldn’t converge to an admissible solution. By 

analysing the search space we can see that the all remaining individuals identify 

in fact the best identified solution: indeed, the final population of GAOT-shared 

algorithm concentrates around a unique optimum solution, without keeping 

information of other local optima solutions. 

 

GATBX 

As GATBX implements a genetic algorithm, we report the statistical 

characteristics. Ten runs have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. In analogy with the previous genetic algorithms, we 

used again a population of 50 individuals evolving for a maximum number of 

generations equal to 1000. 
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Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 1000 

 

Table 178 and Table 179 report the best identified solution compared with the 

best known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 70.434 70.835 

Lt  [d]: 1.273 1.273 

Wt  [d]: 36.976 107.670 

Table 178: Comparison between the best identified solution and the best known solution: 
search space. 

 

Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3082.470 3080.767 

∆VI  [m/s]: 3080.774 3080.756 

∆VF [m/s]: 1.696 0.011 

Table 179: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The two solutions are comparable in terms of the objective function value, 

letting us suppose that GATBX best identified solution belong to one of the 

transfer families identified in the objective function structure analysis. However, 

differences in the search space, particularly referring to Wt  values, indicate that 

the two solutions belong to two different families. Such a consideration is 

confirmed by the trajectory representation (see Figure 262). 
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Figure 262: Best identified solution: trajectory representation. 

 

By revising the objective function structure analysis, the best solution identified 

by GATBX can be clearly related to the family of solutions corresponding to 

subgroup 3, which is not the best identified one. Let now consider the statistical 

characteristics of the identified solution set. Table 180 reports the mean value 

and the standard deviation of the performances which will be used for 

comparisons with the other optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3208.216 162.882 

Model function evaluations: 5710 2999.096 

Runtime [STU]: 38.668 19.305 

Table 180: Statistical characteristics of the identified solutions. 
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As reported in Table 180, the mean value of the optimal objective function 

values reached at the end of each optimization process is quite different from 

the best identified one and is characterized by a high standard deviation, letting 

us suppose that no all the performed optimization processes have been able to 

identify the basin of attraction of the same solution. Figure 263 reports the final 

solutions corresponding to each optimization run in the nFunc-∆V plane, while 

Figure 264 illustrates their distribution over the search space (the best identified 

solution is highlighted by a green dot) compared with the best known solution 

(red dot). 

 

Figure 263: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 
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Figure 264: Distribution of the final solutions corresponding to each optimization run on the 
search space. 

 

Figure 263 and Figure 264 illustrate that, although the coincidence of the best 

identified solution with the best known one in the θ - tL subspace, no one 

solution could reach the best known one; this confirms the important effects of 

the presence of several comparable local minima on the effectiveness of the 

global search. In order to better identify the reached basins of attraction, the ten 

identified solutions have been used as starting points for ten local optimization 

processes performed by means of a SQP algorithm. Figure 265 reports the 

improved solutions over the nFunc-∆V plane. 
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Figure 265: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

The improved solutions are now analysed in the normalized search space. 

Table 181 reports, corresponding to each GATBX+SQP run, the reached 

objective function value and the distance (in Euclidean metric) with respect to 

the best known solution. 
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 ∆V [m/s] Distance 

run 1 3082.309 0.488 

run 2 3083.238 0.406 

run 3 3177.197 0.833 

run 4 3297.694 0.620 

run 5 3327.673 0.569 

run 6 3086.674 0.487 

run 7 3090.202 0.248 

run 8 3162.470 0.517 

run 9 3086.758 0.006 

run 10 3082.102 0.576 

Table 181: GATBX+SQP optimization runs: objective function values and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

Table 181 shows that, by defining two solutions as identical when the Euclidean 

distance is less than 1% of the hyper diagonal of the normalized search space, 

that is 0.017 in a 3-dimensional space, 1/10 GATBX runs were able to identify 

the basin of attraction of the best known solution, as Figure 266 confirms. Note 

that, due to the accuracy of the local optimization algorithms and to the 

sensitivity of the objective function, the objective function values corresponding 

to run 9 is slightly higher than the best identified one. 
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Figure 266: Transfer trajectory corresponding to run 9. 

 

Moreover, it is worth noting that further 5/10 runs could reach the basin of 

attraction of local minima comparable to the best known one (runs 1, 2, 6, 7 and 

10). A careful analysis showed that such comparable local minima are in fact 

related to a subset of the ten transfer families identified in the objective function 

structure analysis; in particular, again no one corresponds in fact to the best 

identified one (subgroup 8). The main features of the final population are now 

investigate: to do that, the final population corresponding to the best identified 

solution is studied. Figure 267 shows the distribution of the population over the 

search space at the end of the optimization process. Figure 268 reports the 

objective function values corresponding to each individual. 
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Figure 267: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 268: Objective function values of individuals in the final population corresponding to the 
best identified solution. 
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Figure 268 shows that individuals are quite concentrated around the best 

identified solution: indeed, the final population of GATBX algorithm concentrates 

around a unique optimum solution, without keeping information of other local 

optima solutions. 

 

GATBX - migr 

As GATBX-migr implements a genetic algorithm including a migration operator 

applied among a predefined set of subpopulations, we report the statistical 

characteristics. Ten runs have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. A population of 50 individuals evolving for a maximum 

number of generations equal to 1000 has been processed. The population has 

been divided in 5 subpopulations, each one including 10 individuals. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 1000 

Number of subpopulations: 5 

Number of individuals per subpopulation: 10 

 

Table 182 and Table 183 report the best identified solution compared with the 

best known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 139.544 70.835 

Lt  [d]: 1.307 1.273 

Wt  [d]: 85.825 107.670 

Table 182: Comparison between the best identified solution and the best known solution: 
search space. 
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Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3088.672 3080.767 

∆VI  [m/s]: 3081.123 3080.756 

∆VF [m/s]: 7.549 0.011 

Table 183: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The two solutions are comparable in terms of the objective function value, thus 

indicating the possible belonging of the best identified solution to one of the 

transfer families identified in the objective function structure analysis. However, 

the design variables show evident differences, letting us suppose that they 

identify different local minima. Such a consideration is confirmed by the 

trajectory representation; see Figure 269. 

 

Figure 269: Best identified solution: trajectory representation. 
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The best solution identified by GATBX-migr can be related in fact to the family 

of solutions identified in the objective function structure analysis corresponding 

to subgroup 6, which is not the best identified one. As it concerns the statistical 

characteristics of the identified solution set, Table 184 reports the mean value 

and the standard deviation of the performances which will be used for 

comparisons with the other optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3203.474 111.245 

Model function evaluations: 7050 2144.968 

Runtime [STU]: 53.471 14.408 

Table 184: Statistical characteristics of the identified solutions. 

 

The mean value of the optimal objective function values reached at the end of 

each optimization process reported in Table 184 is quite different from the best 

identified one and is characterized by a high standard deviation. This lets us 

suppose that no all the performed optimization processes identified the basin of 

attraction of the same solution. To better analyse this point, Figure 270 reports 

the final solutions corresponding to each optimization run in the nFunc-∆V 

plane, while Figure 271 illustrates their distribution over the search space (the 

best identified solution is highlighted by a green dot) compared with the best 

known solution (red dot). 
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Figure 270: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 271: Distribution of the final solutions corresponding to each optimization run on the 
search space. 
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Figure 270 and Figure 271 show that, although the best identified solution is 

different from the best known one, one of the remaining local minima seems to 

lie in the neighbourhood of it. Actually, by investigating the remaining identified 

solutions, one solution could be recognized as belonging to the transfer family 

of subgroup 8 (see Table 185, Table 186 and Figure 272, where this solution 

has been indicated as “alternative solution”). 

 

Search space 

Design variable Alternative solution Best known solution 

θ  [deg]: 71.695 70.835 

Lt  [d]: 1.295 1.273 

Wt  [d]: 107.630 107.670 

Table 185: Comparison between the alternative identified solution and the best known solution: 
search space. 

 

Objective function space 

Term Alternative solution Best known solution 

∆V  [m/s]: 3104.864 3080.767 

∆VI  [m/s]: 3082.724 3080.756 

∆VF [m/s]: 22.141 0.011 

Table 186: Comparison between the alternative identified solution and the best known solution: 
objective function space. 
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Figure 272: Alternative identified solution: trajectory representation. 

 

As can be seen from Table 185, Table 186 and Figure 272, GATBX-migr 

identified the basin of attraction of the best known solution in at least one run; 

however, the accuracy in finding such solution, although quite good (the 

Euclidean distance in the normalized search space being 7.926·10-3), is not 

good enough to detect the very small differences in the objective function 

values corresponding to the compared local minima. Again, this confirms the 

important effects of the presence of several comparable local minima on the 

effectiveness of the global search. In order to better identify the reached basins 

of attraction corresponding to each run, the ten identified solutions have been 

used as starting points for ten local optimization processes performed by means 

of a SQP algorithm. Figure 273 reports the improved solutions over the nFunc-

∆V plane. 
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Figure 273: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

In analogy with the previous cases, the improved solutions are now studied in 

the normalized search space. Table 187 reports, corresponding to each 

GATBX-migr+SQP run, the reached objective function value and the distance 

(in Euclidean metric) with respect to the best known solution. 
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 ∆V [m/s] Distance 

run 1 3181.315 0.8709 

run 2 3082.343 0.243 

run 3 3335.858 0.577 

run 4 3247.075 0.709 

run 5 3157.891 0.872 

run 6 3372.239 0.780 

run 7 3267.985 0.524 

run 8 3122.526 0.403 

run 9 3081.312 0.001 

run 10 3093.880 0.391 

Table 187: GATBX-migr+SQP optimization runs: objective function values and Euclidean 
distance in the normalized search space with respect to the best known solution. 

 

By defining two solutions as identical when the Euclidean distance is less than 

1% of the hyper diagonal of the normalized search space, that is 0.017 in a 3-

dimensional space, we can conclude that 1/10 GATBX-migr runs were able to 

identify the basin of attraction of the best known solution. However, as already 

highlighted in the previous cases, it is interesting to identify the number of runs 

which could identify local optima comparable to the best known one, which can 

be related to transfer families identified in the objective function structure 

analysis: in particular, a careful analysis of the solutions showed that 3/10 

further runs could reach the basin of attraction of comparable local minima (runs 

2, 8, and 10). Such comparable local minima, which are related in fact to a 

subset of the ten transfer families identified in the objective function structure 

analysis, do not correspond to the best identified solution (subgroup 8). Let us 

now investigate the main features of the final population: to do that, the final 

population corresponding to the best identified solution is again studied. Figure 

274 shows the distribution of the population over the search space at the end of 
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the optimization process, while Figure 275 reports the objective function values 

corresponding to each individual. 

 

Figure 274: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 275: Objective function values of individuals in the final population corresponding to the 
best identified solution. 
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Although Figure 275 shows that the final population includes individuals not 

concentrated around the identified local minimum, a careful analysis showed 

that no local minima correspond to them, which should be related to the effects 

of the genetic operators on the members of each subpopulation. 

 

FEP 

As FEP implements an evolutionary programming algorithm, we report, as 

already done for genetic algorithms, the statistical characteristics. Ten runs 

have been processed in order to solve the previously defined problem. Default 

options suggested by the providers of the code have been used in all the runs. 

We used again a population of 50 individuals, evolving for a maximum number 

of generations equal to 100. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 100 

 

Table 188 and Table 189 report the best identified solution compared with the 

best known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 71.318 70.835 

Lt  [d]: 1.273 1.273 

Wt  [d]: 107.670 107.670 

Table 188: Comparison between the best identified solution and the best known solution: 
search space. 
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Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3083.427 3080.767 

∆VI  [m/s]: 3083.091 3080.756 

∆VF [m/s]: 0.336 0.011 

Table 189: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The previous tables show that the best identified solution coincides in fact with 

the best known solution, as confirmed by the trajectory representation, Figure 

276. 

 

Figure 276: Best identified solution: trajectory representation. 

 

From the objective function structure analysis of the problem of lunar transfer 

using libration points, the best solution identified by FEP can be recognized as 

related to the family of solutions corresponding to subgroup 8, which coincides 
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with the best identified one. Let now consider the statistical characteristics of 

the identified solution set. Table 190 reports the mean value and the standard 

deviation of the performances which will be used for comparisons with the other 

optimization algorithms. 

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3274.490 154.361 

Model function evaluations: 2369.5 1575.070 

Runtime [STU]: 14.089 15.007 

Table 190: Statistical characteristics of the identified solutions. 

 

Table 190 shows that the mean value of the optimal objective function values 

reached at the end of each optimization process is quite different from the best 

known one with a high standard deviation. Such a result let us suppose that no 

all the performed optimization processes have been able to identify the basin of 

attraction of the same solution. Figure 277 reports the final solutions 

corresponding to each optimization run in the nFunc-∆V plane, while Figure 278 

illustrates their distribution over the search space (the best identified solution is 

highlighted by a green dot) compared with the best known solution (red dot). 
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Figure 277: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 278: Distribution of the final solutions corresponding to each optimization run on the 
search space. 



  

 394

Figure 277 and Figure 278 show that, although the best identified solution 

coincides with the best known one, no further FEP runs could directly reach it. 

Anyway, in order to accurately characterize the basins of attraction 

corresponding to each identified solution, ten local optimization processes have 

been performed by means of a SQP algorithm, using the identified solutions as 

starting points. Figure 279 reports the improved solutions over the nFunc-∆V 

plane. 

 

Figure 279: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

By investigating the improved solutions in the normalized search space, Table 

191 reports, corresponding to each FEP+SQP run, the reached objective 

function value and the distance (in Euclidean metric) with respect to the best 

known solution. 
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 ∆V [m/s] Distance 

run 1 3147.936 0.718 

run 2 3081.820 0.001 

run 3 3164.208 0.697 

run 4 3082.932 0.604 

run 5 3152.141 0.682 

run 6 3092.418 0.246 

run 7 3081.053 0.666 

run 8 3247.172 0.414 

run 9 3167.237 0.546 

run 10 3507.449 0.458 

Table 191: FEP+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a 

3-dimensional space, the previous analysis confirms that 1/10 FEP runs were 

able to identify the basin of attraction of the best known solution. Anyway, a 

careful analysis of the improved solutions showed that 3/10 runs could reach 

the basin of attraction of local minima comparable to the best known one (runs 

4, 6 and 7), which can be related to transfer families identified in the objective 

function structure analysis. Let us now analyse the main features of the final 

population: to do that, the final population corresponding to the best identified 

solution is investigated. Figure 280 shows the distribution of the population over 

the search space at the end of the optimization process, while Figure 281 

reports the objective function values corresponding to each individual. 
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Figure 280 - Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 281: Objective function values of individuals in the final population corresponding to the 
best identified solution. 
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Figure 280 and Figure 281 show that the individuals in the final population are 

concentrated over the search space in a narrow neighbourhood of the best 

identified solution; however, relatively low accuracy and sensitivity of the 

objective function lead to relatively higher objective function values 

corresponding to some individuals. Anyway, the final population of FEP 

algorithm concentrates around a unique optimum solution, without keeping 

information of other local optima solutions. 

 

DE 

As DE implements a Differential Evolution algorithm, we report the statistical 

characteristics. Ten runs have been processed in order to solve the previously 

defined problem. Default options suggested by the providers of the code have 

been used in all the runs. In analogy with the previous genetic algorithms, we 

used again a population of 50 individuals evolving for a maximum number of 

generations equal to 1000. 

 

Algorithm parameters 

Number of individuals: 50 

Maximum number of generations: 1000 

 

Table 192 and Table 193 report the best identified solution compared with the 

best known solution. 

 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 32.101 70.835 

Lt  [d]: 2.764 1.273 

Wt  [d]: 121.690 107.670 

Table 192: Comparison between the best identified solution and the best known solution: 
search space. 
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Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3193.673 3080.767 

∆VI  [m/s]: 3162.143 3080.756 

∆VF [m/s]: 31.530 0.011 

Table 193: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The two solutions are in fact quite different in terms of objective function values, 

letting us suppose that DE best identified solution does not belong to one of the 

transfer families identified in the objective function structure analysis. Such a 

consideration is confirmed by the trajectory representation, see Figure 182. 

 

Figure 282: Best identified solution: trajectory representation. 
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The best solution identified by DE is not related to any family of solutions 

identified in the objective function structure analysis. Actually, it is typically 

related to a new set of families of lunar transfers, which differ from the previous 

identified one only for the Lambert’s three-body arc: the conic-like orbit in the 

Earth-centred reference frame corresponding to the stable manifold is the same 

as in the previous case, but the Lambert’s arc inject the spacecraft in this 

manifold corresponding to points near the apogee on the line coming out from it. 

A systematic analysis showed that similar transfers are identifiable, which are 

related to the insertion in the stable manifold in similar points, corresponding to 

the each revolution around the Earth. Let us now consider the statistical 

characteristics of the identified solution set. Table 194 reports the mean value 

and the standard deviation of the performances which will be used for 

comparisons with the other optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3432.502 184.870 

Model function evaluations: 1096.2 322.346 

Runtime [STU]: 2.945 1.029 

Table 194: Statistical characteristics of the identified solutions. 

 

As reported in Table 194, the mean value of the optimal objective function 

values reached at the end of each optimization process is quite different from 

the best identified one and is characterized by a high standard deviation, letting 

us suppose that no all the performed optimization processes have been able to 

identify the basin of attraction of the same solution. Figure 283 reports the final 

solutions corresponding to each optimization run in the nFunc-∆V plane, while 

igure 284 illustrates their distribution over the search space (the best identified 

solution is highlighted by a green dot) compared with the best known solution 

(red dot). 
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Figure 283: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

Figure 284: Distribution of the final solutions corresponding to each optimization run on the 
search space. 
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Figure 283 and Figure 284 show that no solutions could reach the best known 

one. In order to better identify the reached basins of attraction, similarly to the 

previous cases, the ten identified solutions have been used as starting points 

for ten local optimization processes performed by means of a SQP algorithm. 

Figure 285 reports the improved solutions over the nFunc-∆V plane. 

 

Figure 285: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

The improved solutions are now analysed in the normalized search space. 

Table 195 reports, corresponding to each DE+SQP run, the reached objective 

function value and the distance (in Euclidean metric) with respect to the best 

known solution. 
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 ∆V [m/s] Distance 

run 1 3189.665 0.534 

run 2 3276.178 0.848 

run 3 3099.697 0.578 

run 4 3414.689 0.215 

run 5 3187.481 0.638 

run 6 3163.848 0.676 

run 7 3237.658 0.810 

run 8 3094.371 0.578 

run 9 3119.811 0.244 

run 10 3178.252 0.645 

Table 195: DE+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

Figiure 285 and Table 195 let us determine that no runs were able to get the 

basin of attraction of the best known solution and, moreover, no runs identified 

basin attraction of local minima belonging to the set of transfer families 

characterized in the objective function structure analysis. Such considerations 

are confirmed by a systematic analysis of the resulting lunar transfer as well as 

by the fact that, by considering two solutions as identical when the Euclidean 

distance is less than 1% of the hyper diagonal of the normalized search space 

(that is 0.017 in a 3-dimensional space) 0/10 DE runs were able to identify the 

basin of attraction of the best known solution. The main features of the final 

population are now investigate: to do that, the final population corresponding to 

the best identified solution is studied. Figure 286 shows the distribution of the 

population over the search space at the end of the optimization process, while 

Figure 287 reports the objective function values corresponding to each 

individual. 
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Figure 286: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 

 

Figure 287: Objective function values of individuals in the final population corresponding to the 
best identified solution. 
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An impressive wide distribution of the final population over the search space 

can be recognized in Figure 286. However, Figure 287 seems to highlight that 

no niches on the objective function value are present, which indicates that the 

wide distribution of individuals over the search space does not necessarily 

corresponds to the detection of several local minima over the search space, as 

a systematic analysis of the resulting transfer trajectories confirmed. Actually, 

the wide distribution of individuals should be related to the effects of the 

differential operators used by DE for the global search. 

 

ASA 

As ASA implements an Adaptive Simulated Annealing algorithm, we report the 

statistical performance characteristics. Ten runs have been processed in order 

to solve the previously defined problem. Default options suggested by the 

providers of the code have been used in all the runs. Note that, unlike the 

previous cases, the adaptive simulated annealing needs a starting solution, 

which strongly affects the optimal solution reached. Due to the comparative 

purposes of this work, we decided to use ten different random starting solutions, 

uniformly distributed in the search box. Table 196 and Table 197 report the best 

identified solution compared with the best known solution. 

 

 

Search space 

Design variable Best identified solution Best known solution 

θ  [deg]: 139.282 70.835 

Lt  [d]: 1.29642 1.273 

Wt  [d]: 15.137 107.670 

Table 196: Comparison between the best identified solution and the best known solution: 
search space. 
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Objective function space 

Term Best identified solution Best known solution 

∆V  [m/s]: 3080.823 3080.767 

∆VI  [m/s]: 3080.623 3080.756 

∆VF [m/s]: 0.200 0.011 

Table 197: Comparison between the best identified solution and the best known solution: 
objective function space. 

 

The two solutions are comparable in terms of the objective function value, thus 

indicating that the best identified solution belongs in fact to one of the transfer 

families identified in the objective function structure analysis. However, the 

design variables show evident differences, letting us suppose that they identify 

different local minima. Such a consideration is confirmed by the trajectory 

representation, see Figure 288. 

 

Figure 288: Best identified solution: trajectory representation. 
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The best solution identified by ASA can be related in fact to the family of 

solutions identified in the objective function structure analysis corresponding to 

subgroup 1, which is not the best identified one. As it concerns the statistical 

characteristics of the identified solution set, Table 198 reports the mean value 

and the standard deviation of the performances which will be used for 

comparisons with the other optimization algorithms.  

 

Evaluation criterion Mean value Standard deviation 

V∆ [m/s]: 3162.392 131.859 

Model function evaluations: 4825.1 82.108 

Runtime [STU]: 31.361 3.894 

Table 198: Statistical characteristics of the identified solutions. 

 

The mean value of the optimal objective function values reached at the end of 

each optimization process reported in Table 198 is different from the best 

identified one and is characterized by a high standard deviation. This lets us 

suppose again that no all the performed optimization processes identified the 

basin of attraction of the same solution. To better analyse this point, Figure 289 

reports the final solutions corresponding to each optimization run in the nFunc-

∆V plane, while Figure 290 illustrates their distribution over the search space 

(the best identified solution is highlighted by a green dot) compared with the 

best known solution (red dot). 
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Figure 289: Distribution of the final solutions corresponding to each optimization run on the 
nFunc-∆V plane. 

 

 

Figure 290: Distribution of the final solutions corresponding to each optimization run on the 
search space. 
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Figure 289 and Figure 290 show that, although ASA seems to have identified 

several local minima comparable with the best known one, no run was able to 

identify its basin of attraction. Such result should be related again to the 

important effects of the presence of several comparable local minima on the 

effectiveness of the global search. In order to better identify the reached basins 

of attraction corresponding to each run, the ten identified solutions have been 

used as starting points for ten local optimization processes performed by means 

of a SQP algorithm. Figure 291 reports the improved solutions over the nFunc-

∆V plane. 

 

Figure 291: Distribution of the improved solutions at the end of a local optimization process on 
the nFunc-∆V plane. 

 

Figure 291 shows that low improvements have been gained by means of the 

SQP search, which highlights the effectiveness of the local component of the 

ASA search at accurately identifying the local minimum corresponding to the 

detected basin of attraction. In analogy with the previous cases, the improved 

solutions are now studied in the normalized search space. Table 189 reports, 

corresponding to each ASA+SQP run, the reached objective function value and 

the distance (in Euclidean metric) with respect to the best known solution. 
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 ∆V [m/s] Distance 

run 1 3080.815 0.406 

run 2 3081.170 0.488 

run 3 3080.766 0.666 

run 4 3328.015 0.521 

run 5 3227.446 0.599 

run 6 3080.703 0.243 

run 7 3096.411 0.248 

run 8 3080.708 0.666 

run 9 3081.245 0.666 

run 10 3257.415 0.538 

Table 189: ASA+SQP optimization runs: objective function values and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By defining two solutions as identical when the Euclidean distance is less than 

1% of the hyper diagonal of the normalized search space, that is 0.017 in a 3-

dimensional space, we can conclude in fact that 0/10 ASA runs were able to 

identify the basin of attraction of the best known solution. However, as already 

highlighted in the previous cases, it is interesting to identify the number of runs 

corresponding to local optima comparable to the best known one, related to 

transfer families identified in the objective function structure analysis: in 

particular, a careful analysis of the solutions via a systematic study of the 

corresponding lunar transfers showed that 7/10 runs could reach the basin of 

attraction of comparable local minima (runs 1, 2, 3, 6, 7, 8, and 9). Such 

comparable local minima, which are related in fact to a subset of the ten 

transfer families identified in the objective function structure analysis, do not 

correspond to the best identified solution (subgroup 8). 
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glbSolve 

As glbSolve algorithm implements a deterministic optimization approach, 

statistical characteristics are not needed in this case. Only one run has been 

processed in order to solve the previously defined problem. Default options 

suggested by the providers of the code have been used. We used a maximum 

number of iterations equal to 1000. 

 

Algorithm parameters 

Maximum number of iterations: 1000 

 

Table 190 and Table 191 report the identified solution compared with the best 

known solution. 

 

Search space 

Design variable Identified solution Best known solution 

θ  [deg]: 120.082 70.835 

Lt  [d]: 2.147 1.273 

Wt  [d]: 29.167 107.670 

Table 190: Comparison between the identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Identified solution Best known solution 

∆V  [m/s]: 3359.190 3080.767 

∆VI  [m/s]: 3109.076 3080.756 

∆VF [m/s]: 250.114 0.011 

Table 191: Comparison between the identified solution and the best known solution: objective 
function space. 
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The previous tables show that the identified solution does not coincide in fact 

with the best known solution, as confirmed by the trajectory representation, see 

Figure 292. 

 

Figure 292: Identified solution: trajectory representation. 

 

Similarly to the results gained in case of DE tool application to the problem of 

lunar transfer using libration points, the best solution identified by glbSolve is 

not related to any family of solutions identified in the objective function structure 

analysis. Actually, as the DE best identified solution, it is typically related to the 

set of families of lunar transfers characterized by a Lambert’s three-body arc 

injecting the spacecraft in the stable manifold corresponding to points near the 

apogee of the conic-like orbit in the Earth-centred inertial frame on the line 

coming out from it. Table 192 reports the characteristics of the identified 

solution, which will be used for performance comparisons with the other 

optimization algorithms. 
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Evaluation criterion Identified solution 

V∆ [m/s]: 3359.190 

Model function evaluations: 1311 

Runtime [STU]: 5.240 

Table 192: Characteristics of the identified solution. 

 

In order to accurately identify the local minimum reached by glbSolve algorithm, 

a SQP based algorithm is now used to perform a local optimization process, 

where the solution identified by glbSolve is considered as the starting point for 

the local search process. The starting solution and the improved one are 

reported in Figure 293 on the nFunc-∆V plane, while Figure 294 plots the 

transfer trajectory corresponding to the improved solution. 

 

 

Figure 293: Distribution of the improved solution at the end of a local optimization process on 
the nFunc-∆V plane. 
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Figure 294: Improved solution via local optimization process: transfer trajectory. 

 

The local optimization process confirms that the solution identified by glbSolve 

does not lie in the basin of attraction of the best known one and does not belong 

to any of the families of lunar transfers characterized in the objective function 

structure analysis, as confirmed by Table 193, which reports, corresponding to 

the glbSolve+SQP run, the reached objective function value and the distance 

(in Euclidean metric) with respect to the best known solution. 

 

 ∆V [m/s] Distance 

glbSolve+SQP 

run 
3273.594 0.678 

Table 193: glbSolve+SQP optimization run: objective function value and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a 

3-dimensional space, glbSolve run was not able to identify the basin of 
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attraction of the best known solution. As already noted in previous analyses, 

one of the output of glbSolve is the matrix of all rectangle center points sampled 

during the whole optimization run. By means of this matrix one can analyse the 

ability of glbSolve in exploring the whole search space: Figure 295 shows the 

distribution of the sampled points over the search space (the identified solution 

is highlighted by a green dot) compared with the best known solution (red dot). 

 

 

Figure 295: Distribution of the population over the search space at the end of the optimization 
process corresponding to the best identified solution. 
 

Figure 295 shows that, after exploring different promising regions of the search 

space, glbSolve finally converges to the identified local minimum. The detection 

of several promising regions before convergence is highlighted in Figure 296 

and Figure 297, which plots the objective function values corresponding to each 

rectangle center point: the 1311 sampled points are ordered along the x-axis 

from the first rectangle center point sampled during the optimization process to 

the final one. 
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Figure 296: Objective function values corresponding to each rectangle center point. 

 

Figure 297: Objective function values corresponding to each rectangle center point (close up of 
Figure 296). 
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The center points corresponding to the highest objective function values in 

Figure 296 corresponds to regions where the algorithm for the solution of the 

Lambert’s three-body problem couldn’t converge. By omitting such solutions, 

Figure 297 shows that, after analysing worse solutions at the beginning of the 

optimization process, glbSolve algorithm finally got the identified local optimum 

solution. 

 

MCS 

As MCS algorithm implements a deterministic optimization approach, only one 

run has been processed in order to solve the previously defined problem. 

Default options suggested by the providers of the code have been used. We 

used a maximum number of objective function evaluation equal to 10000. 

 

Algorithm parameters 

Maximum number of iterations: 10000 

 

Table 194 and Table 195 report the identified solution compared with the best 

known solution. 

 

 

Search space 

Design variable Identified solution Best known solution 

θ  [deg]: 148.121 70.835 

Lt  [d]: 1.882 1.273 

Wt  [d]: 150 107.670 

Table 194: Comparison between the identified solution and the best known solution: search 
space. 
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Objective function space 

Term Identified solution Best known solution 

∆V  [m/s]: 3594.321 3080.767 

∆VI  [m/s]: 3112.293 3080.756 

∆VF [m/s]: 482.028 0.011 

Table 195: Comparison between the identified solution and the best known solution: objective 
function space. 

 

The previous tables show that the identified solution does not coincide in fact 

with the best known solution, as confirmed by the trajectory representation, 

Figure 298. 

 

Figure 298: Identified solution: trajectory representation. 

 

It is interesting to note that the transfer trajectory corresponding to the solution 

identified by MCS seems to belong to the family of solutions indicated in the 

objective function structure analysis as subgroup 6. However, the time spent on 

the stable manifold is higher than in subgroup 6: subgroup 6 corresponds to 
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values of tW of about 85 d, while the solution identified by MCS has a value of tW 

equal to 150 d, that is the upper limit for such variable. This observation let us 

understand that the identified solution corresponds to a transfer configuration 

similar to that of subgroup 6, but occurring in a different revolution of the 

spacecraft around the Earth on the conic-like orbit in the Earth-centred inertial 

frame. The characteristics of the identified solution, which will be used for 

performance comparisons with the other optimization algorithms, are reported in 

Table 196. 

 

Evaluation criterion Identified solution 

V∆ [m/s]: 3594.321 

Model function evaluations: 585 

Runtime [STU]: 3.719 

Table 196: Characteristics of the identified solution. 

 

In order to better analyse the previous consideration about the identified 

solution, a local optimization process is now performed by means of a SQP 

based algorithm to accurately identify the local minimum corresponding to the 

reached basin of attraction. The solution identified by MCS is considered as the 

starting point for the local search process. The starting solution and the 

improved one are reported in Figure 299 on the nFunc-∆V plane, while Figure 

300 plots the transfer trajectory corresponding to the improved solution. 
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Figure 299: Distribution of the improved solution at the end of a local optimization process on 
the nFunc-∆V plane. 

 

Figure 300: Improved solution via local optimization process: transfer trajectory. 
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Figure 299 and Figure 300 show that the local optimization process only slightly 

improves the solution identified by MCS. This is due to the fact that such 

solution lies on the upper limit admissible value of the time spent on the stable 

manifold to L1: a further improvement could be allowed by increasing this limit. 

Anyway, the local optimization process confirms that the solution identified by 

MCS does not lie in the basin of attraction of the best known one and does not 

belong to any of the families of lunar transfers characterized in the objective 

function structure analysis. Similarly to the previous cases, such result is 

evident by analysing Table 197, which reports, corresponding to the MCS+SQP 

run, the reached objective function value and the distance (in Euclidean metric) 

with respect to the best known solution. 

 

 ∆V [m/s] Distance 

MCS+SQP run 3594.315 0.419 

Table 197: MCS+SQP optimization run: objective function value and Euclidean distance in the 
normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a 

3-dimensional space, MCS run was not able to identify the basin of attraction of 

the best known solution. As already stated for previous analyses, although MCS 

algorithm is a global optimization algorithm, it has the important feature of 

keeping, in a so called “shopping basket”, good points reached during the 

optimization process. Figure 301 illustrates the whole shopping basket kept by 

MCS during the performed optimization process. 
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Figure 301: Shopping basket at the end of the optimization process. 

 

Figure 301 shows that MCS shopping basket got trapped in the boundary 

region of the search space lying on the upper limit of the time spent on the 

stable manifold, without keeping information of other promising regions of the 

search space. 

 

rbfSolve 

As rbfSolve algorithm implements a deterministic optimization approach, based 

on objective function response surface assessment and analysis suitable for 

costly objective function problems, statistical features analysis don’t hold here. 

Only one run have been processed in order to solve the previously defined 

problem. Default options suggested by the providers of the code have been 

used. As already stated in the other mission analysis test problems, the 

termination conditions available in TOMLAB version of rbfSolve tool (which is 

not freely available) do not include suitable rules for practical problems with not 

a priori information about the global optimum solution. As a consequence, a 

maximum number of objective function evaluations has been fixed for 

terminating the optimization process. The previous analysis showed that, in 
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case of the problem of lunar transfers using libration points, the number of 

objective function evaluations was high: GATBX-migr required about 7000 

objective function evaluations. However, as already noted in Multiple Gravity 

Assist and Low Thrust direct planet-to-planet transfers analyses, rbfSolve is 

tailored for costly optimization processes and can not dealing with a high 

number of objective function evaluations due to the high required memory for 

handling the interpolation process. As a consequence, a maximum number of 

objective function evaluations of the order of 103 had to be fixed. As it concerns 

the validity of the achieved results, considerations similar to those highlighted in 

case of Multiple Gravity Assist hold in this case also: in particular, if the 

response surface algorithm is not able to identify and accurately approximate 

the basin of attraction of the global optimum in a low number of objective 

function evaluations, it is likely the case the response surface based algorithm 

has not converged to the global optimum solution. Hence, the fixed number of 

objective function evaluations has been set again to 1000. 

 

Algorithm parameters 

Maximum number of objective function 

evaluations: 
1000 

 

However, as already occurred in the 2-impulse direct planet-to-planet transfer 

problem, a particular exit condition terminated the optimization process, which 

typically happens when the approximating surface generated by the algorithm 

can not improve due to the generation of successive identical solutions for 

improving the interpolation surface; the maximum number of successive 

identical solutions is automatically set by rbfSolve algorithm once used the 

default options. Table 198 and Table 199 report the identified solution 

compared with the best known solution. 
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Search space 

Design variable Identified solution Best known solution 

θ  [deg]: 128.096 70.835 

Lt  [d]: 2.094 1.273 

Wt  [d]: 99.959 107.670 

Table 198: Comparison between the identified solution and the best known solution: search 
space. 

 

Objective function space 

Term Identified solution Best known solution 

∆V  [m/s]: 3579.249 3080.767 

∆VI  [m/s]: 3320.974 3080.756 

∆VF [m/s]: 258.274 0.011 

Table 199: Comparison between the identified solution and the best known solution: objective 
function space. 

 

The previous tables show that the solution identified by rbfSolve does not 

coincide in fact with the best known solution, as confirmed by the trajectory 

representation; this can be see in Figure 302. 
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Figure 302: Identified solution: trajectory representation. 

 

Similarly to the results gained in case of DE and glbSolve tools application to 

the problem of lunar transfer using libration points, the best solution identified by 

rbfSolve is not related to any family of solutions identified in the objective 

function structure analysis. Actually, it seems to be related to the previously 

identified set of families of lunar transfers characterized by a Lambert’s three-

body arc injecting the spacecraft in the stable manifold corresponding to points 

near the apogee of the conic-like orbit in the Earth-centred inertial frame on the 

line coming out from it. Table 200 reports the characteristics of the identified 

solution, which will be used for performance comparisons with the other 

optimization algorithms. 

 

Evaluation criterion Identified solution 

V∆ [m/s]: 3579.249 

Model function evaluations: 474 

Runtime [STU]: 6.128 

Table 200: Characteristics of the identified solution. 
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In order to accurately identify the local minimum reached by rbfSolve algorithm, 

a SQP based algorithm is now used to perform a local optimization process, 

where the solution identified by rbfSolve is considered as the starting point for 

the local search process. The starting solution and the improved one are 

reported in Figire 303 on the nFunc-∆V plane, while Figure 304 plots the 

transfer trajectory corresponding to the improved solution. 

 

Figure 303: Distribution of the improved solution at the end of a local optimization process on 
the nFunc-∆V plane. 

 

Figure 304: Improved solution via local optimization process: transfer trajectory. 
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The local optimization process does not change the feature of the transfer 

trajectory, which confirms to not belong to any of the families of lunar transfers 

characterized in the objective function structure analysis. Such a result is 

showed Table 201, which reports, corresponding to the rbfSolve+SQP run, the 

reached objective function value and the distance (in Euclidean metric) with 

respect to the best known solution. 

 

 ∆V [m/s] Distance 

rbfSolve+SQP 

run 
3292.968 0.394 

Table 201: rbfSolve+SQP optimization run: objective function value and Euclidean distance in 
the normalized search space with respect to the best known solution. 

 

By considering two solutions as identical when the Euclidean distance is less 

than 1% of the hyper diagonal of the normalized search space, that is 0.017 in a 

3-dimensional space, rbfSolve run was not able to identify the basin of attraction 

of the best known solution. One of the output of the optimization process is the 

matrix of all sampled points in the search space, which are shown in Figure 305 

(the identified solution is highlighted by a green dot, compared with the best 

known one which is indicated by a red dot). 
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Figure 305: Distribution of all sampled points during the optimization process. 

 

Figure 305 shows that the algorithm do not accurately sampled the region of the 

search space near the global optimum solution.  Note that the objective function 

model has discontinuities in the search space and, as stated in previous 

analyses, global optimization algorithms based on response surface 

methodologies have well-known difficulties in handling such objective function 

structure. 

 

Summary of results: 

 

Table 202 reports the summary of results for the problem of lunar transfer using 

libration points in a tabular form. 

 

 

 

 

 

 



  

 428

Algorithm V∆  [m/s] Fun. evaluations Runtime [STU] 

GAOT 3292.3 (σ = 194.112) 2089.3 (σ = 1592.775) 8.327 (σ = 6.252) 

GAOT-

shared 
3597.104 (σ = 216.418) 606.2 (σ = 151.610) 1.836 (σ = 0.545) 

GATBX 3208.216 (σ = 162.882) 5710 (σ = 2999.096) 38.668 (σ = 19.305) 

GATBX-migr 3203.474 (σ = 111.245) 7050 (σ = 2144.968) 53.471 (σ = 14.408) 

FEP 3274.49 (σ = 154.361) 2369.5 (σ = 1575.07) 14.089 (σ = 15.007) 

DE 3432.502 (σ = 184.87) 1096.2 (σ = 322.346) 2.945 (σ = 1.029) 

ASA 3162.392 (σ = 131.859) 4825.1 (σ = 82.108) 31.361 (σ = 3.894) 

glbSolve 3359.19 1311 5.24 

MCS 3594.321 585 3.719 

rbfSolve 3579.249 474 6.128 

Table 202: Summary of results for the problem of lunar transfers using libration points. 

 

By proceeding in analogy with the previous mission analysis classes, due to the 

partially conflicting performance criteria considered in this work, concepts and 

techniques typically adopted in multiobjective optimization problems (such as 

the concept of the Pareto dominance) are here used in order to assess the 

optimization algorithms performances. As already stated, due to the presence of 

not optimized codes among the tested ones and to the necessity of creating a 

MEX file for ASA algorithm (which slightly affects the runtime performances), 

the main evaluation criteria to be considered have been taken as the best 

objective function value reached, ∆V, and the number of model function 

evaluations needed, nFunc. Figure 306 reports such performances in a ∆V - 

nFunc plane in order to identify the Pareto optimal solution (the red line in figure 

representing the best known solution). 
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Figure 306: Algorithms performances in the ∆V - nFunc plane. 

 

Note that Figure 306 reports the performances listed in Table 202, which 

contains statistical performances in case of randomized optimization algorithms. 

By applying the concepts of Pareto dominance, Table 203 reports for each 

algorithm, the number of algorithms which dominated, and then outperformed it. 
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Algorithm 
# of dominating 

algorithms 

GAOT 0 

GAOT-shared 2 

GATBX 1 

GATBX-migr 1 

FEP 0 

DE 0 

ASA 0 

glbSolve 0 

MCS 1 

rbfSolve 0 

Table 203: Number of dominating algorithms. 

 

Table 203 shows that a wide set of Pareto optimal solutions can be identified: 

the algorithms which best solved the problem of lunar transfer using libration 

points (in a Pareto optimal sense) are GAOT, FEP, DE, ASA, glbSolve, and 

rbfSolve, whose performances are highlighted in Figure 307. 
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Figure 307: Pareto optimal algorithms. 

 

In particular, it is worth noting that GATBX and GATBX-migr algorithms, which 

in fact are based on the same genetic operators (although the migration 

operator is involved in GATBX-migr), where completely dominated by ASA 

algorithm, which could reach a better objective function value in a lower number 

of objective function evaluations. This is not the case if compared with the 

remaining optimization tools, where a Pareto equivalence holds. However, we 

must take care of the results gained: as noted in the previous analysis and as 

will be reported later, most optimization tool couldn’t identify the basin of 

attraction of the best known solution and only few optimization runs could reach 

local optima solutions comparable with the best known one. As a consequence, 

the results presented in Table 202, Table 203 and Figure 306 should be simply 

related to the use of the algorithms as black box tools for solving mission 

analysis related optimization problems and they indicate the mean 

performances of the tools in case of the randomized algorithms or the right 

performance in case of the deterministic ones. For the sake of completeness, in 
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analogy with the previous mission analysis classes, consider now the runtime 

performances and let analyze the consequences of including the runtime 

performance on the identification of the Pareto optimal algorithm. We have now 

three performance criteria. Figure 308 and Figure 309 report the algorithms 

performances in the ∆V - runtime  plane and in the nFunc - runtime  plane 

respectively, which have not been considered so far. 

 

Figure 308: Algorithms performances in the nFunc - runtime  plane. 

 

Figure 309: Algorithms performances in the nFunc - runtime  plane. 
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By applying again the concepts of Pareto dominance in this three-criteria case, 

Table 204 reports for each algorithm, the number of algorithms which 

dominated it. 

 

Algorithm # of dominating 
algorithms 

GAOT 0 

GAOT-shared 0 

GATBX 1 

GATBX-migr 1 

FEP 0 

DE 0 

ASA 0 

glbSolve 0 

MCS 0 

EGO 0 

Table 204: Number of dominating algorithms in the three criteria case. 

 

Table 204 shows that the set of Pareto optimal algorithms now includes also 

GAOT-shared and MCS algorithms. Finally the goodness of the basin of 

attraction identified by the various algorithms is analysed, as resulting from the 

local optimization processes performed at the end of each algorithm run. First of 

all, Table 205 reports the successful runs corresponding to the optimization 

algorithms which were able to identify the basin of attraction of the best known 

solution (note that for randomized algorithms the number of successful runs 

over the total number of performed runs is reported). 
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Algorithm  Success 

GAOT 0/10 

GAOT-shared 0/10 

GATBX 1/10 

GATBX-migr 1/10 

FEP 1/10 

DE 0/10 

ASA 0/10 

glbSolve No 

MCS No 

EGO No 

Table 205: Algorithms performance in identifying the basin of attraction of the best known 
solution. 

 

Table 205 shows that the rate of success of all algorithms was really low: this is 

mainly related to the stiffness of the analysed optimization problem which is 

associated to the presence of several comparable local minima. However, by 

revising the achieved results and by referring to the objective function structure 

analysis, it is worth noting that most algorithms could have more success in the 

identification of local minima belonging to the identified set of lunar transfer 

families comparable to the best known one in terms of objective function values. 

This led to the decision of reporting such successful runs together with those 

which identified the basin of attraction of the best known solution (see Table 

205), by considering them as representative of good algorithm performances 

and included in Table 206. 
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Algorithm  Success 

GAOT 5/10 

GAOT-shared 2/10 

GATBX 6/10 

GATBX-migr 4/10 

FEP 4/10 

DE 0/10 

ASA 7/10 

glbSolve No 

MCS No 

rbfSolve No 

Table 206: Algorithms performance in identifying the basin of attraction of the best known 
solution. 

 

Table 206 shows that ASA algorithm turned out to have the highest rate of 

success in reaching the basin of attraction of good solutions. As a 

consequence, in order to identify the best performing algorithm in case of the 

problem of lunar transfer using libration points, by combining information 

coming up from Pareto optimality analysis, carried out on the ∆V – nFunc two 

criteria case, and rate of success investigation, whose results are reported in 

Table 206, we can state that: 

 

• The non randomized codes glbSolve, MCS and rbfSolve, due to their inability 

to identify basin of attractions corresponding to neither the best known 

solution nor the comparable ones characterized in the objective function 

structure analysis, can not be considered as suitable for solving the 

previously identified problem. 

 

• GATBX and GATBX-migr algorithms have been outperformed by ASA tool in 

both Pareto optimality and effectiveness at identifying the basin of attraction 
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of good solutions. In fact, one can observe that they were the only ones 

which were able to identify the basin of attraction of the best known solution; 

however, such a result was reached only corresponding to 1/10 runs, which 

seems to the authors a too low percentage for justifying the use of this 

success for preferring them to remaining algorithms. 

 

• Due to the relatively low rate of success at identifying basin of attractions of 

good solutions in comparison with the remaining algorithms, DE and GAOT-

shared are not included in the set of well performing optimization tools for the 

problem here analysed. 

 

As a consequence, GAOT, FEP and ASA turned out to be the best performing 

tools for the problem of lunar transfer using libration points. Their performances 

are highlighted in Figure 310, which reports the corresponding results in the ∆V 

– nFunc plane, and Table 207, which reports their rate of success at identifying 

the basin of attraction of good solutions. 

 

Figure 310: GAOT, FEP and ASA performances in the ∆V - nFunc plane. 
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Algorithm  Success 

GAOT 5/10 

FEP 4/10 

ASA 7/10 

Table 207: GAOT, FEP and ASA performances in identifying the basin of attraction of the best 
known solution. 

 

Figire 310 and Table 207 show that ASA could reach a better mean objective 

function value with more effectiveness at identifying the basin of attraction of 

solutions comparable to the best known one (which belong to the set of lunar 

transfer families identified in the objective function structure analysis); however, 

it meanly required a number of objective function evaluations which is about 

twice the number necessary to GAOT and FEP, which anyway turned out to 

have good values of the rate of success (see Table 207). 
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11. CONCLUSIONS AND RECOMMENDATIONS 
 

This work has been carried out under an European Space Agency 

contract in the context of the Ariadna program during the six months period 

April-October 2004. The aim of this study was an investigation of the 

effectiveness of some global optimisation techniques at solving practical 

problems related to space trajectory design. Four mission analysis classes have 

been investigated: the two impulse direct planet-to-planet transfer problem 

(referring to an Earth-Mars transfer), the Multiple Gravity Assist interplanetary 

transfer problem (referring to an Earth-Saturn transfer), the low thrust direct 

planet-to-planet transfer problem (referring again to an Earth-Mars transfer) and 

the problem of lunar transfer using the interior libration point L1 in a Restricted 

Three Body Problem environment. In the framework of each corresponding 

optimisation problem, a suitable objective function has been defined for 

performing single objective optimisation processes. Hence, proper 

mathematical models have been used for the evaluation of relevant quantities 

for the objective function assessment and, consequently, appropriate design 

variables have been selected, defining the search space. Box-constrained 

optimisation problems have been taken into account by defining proper upper 

and lower bounds for each design variable, while possible inequality constraints 

have been treated using the classical approach of defining the objective 

function as a suitable weighted sum of several terms, including the constraints 

violation. Once the optimisation problem has been fully defined, an exhaustive 

and systematic analysis of the resulting objective function structure has been 

performed in order to identify typical features which would mostly affect the 

global search; discontinuity as well as non-differentiability regions have been 

identified over the search space and particular care has been taken to 

characterize the objective function in the neighbourhood of the best known 

solution, as this constitutes a remarkable feature strongly affecting the 

effectiveness of some global optimisation algorithms at identifying it. The use of 

a multi-start search using local optimisation processes starting from initial 

guesses randomly distributed over the search space assisted the systematic 

analysis and allowed the identification of big valley structures. Such structures 
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turned out to be mainly related to the periodicity of all the investigated objective 

functions with respect to particular design variables, as the time spent on the 

stable manifold to L1 in case of lunar transfer using the interior libration point L1 

and the date of departure from Earth in the remaining test cases. 

 

Following this complete and comprehensive objective function structure 

analyses have been carried out, and a set of global optimisation tools has been 

selected for testing purposes. The set embraced classical genetic algorithms 

including different genetic operators for performing the global search (GAOT 

and GATBX), genetic algorithms with sharing and migration operators (GAOT-

shared and GATBX-migr respectively), evolutionary programming (Fast 

Evolutionary Programming, FEP), differential evolution (DE), an improved 

simulated annealing (Adaptive Simulated Annealing, ASA), branching methods 

(glbSolve and MCS), response surface based optimisation algorithms (rbfSolve) 

and, in some cases, an innovative hybrid systematic-heuristic method combing 

branching techniques and evolutionary programming (EPIC). The previously 

described optimisation problems corresponding to the four different mission 

analysis classes have been submitted to the whole set of global optimisation 

tools and an extensive study has been carried out in order to recognize suitable 

problem-method relation corresponding to the identification of the best 

performing algorithms for each mission analysis problem. By considering the 

objective function value reached at the end of the optimisation process, the 

number of objective function evaluations performed required and the 

effectiveness at identifying the basin of attraction of the best known solution as 

well as of good solutions comparable to the best known one, results of the test 

phase can be resumed as follows: 

 

 Two impulse direct planet-to-planet transfer problem: due to its 

deterministic features, the success at reaching the best known 

solution and the corresponding relatively low number of required 

objective function evaluations, Multilevel Coordinate Search (MCS) 

turned out to outperform all the remaining algorithms, thus resulting 

as the best performing one. 
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 Multiple Gravity Assist interplanetary transfer problem: in case of 

interest on the only mean objective function value reached and mean 

number of objective function evaluations required as main evaluation 

criteria, EPIC turned out to be the most advisable one for practical 

use in space trajectory design optimization; however, due to lack of 

information about the effectiveness of EPIC at identifying the basin of 

attraction of the best known solution (not necessarily related to better 

mean objective function values, because of the presence of several 

comparable local optima), GAOT resulted to have the highest rate of 

success in solving the global search problem; 

 

 Low thrust direct planet-to-planet transfer problem: low rate of 

success characterized all the tested algorithms at identifying the 

basins of attraction of both the best known solution and solutions 

comparable to it. In such an environment Differential Evolution (DE) 

and EPIC turned out to constitute the best compromises based on the 

previously described performance criteria. Anyway, it should be noted 

that no information is available about the EPIC rate of success; 

however, the impressive results of its global search in terms of mean 

objective function value seem to be indicative of particularly good 

performances even in this sense, especially if compared with the 

scarce results of the other tools. As a consequence the authors think 

that more comprehensive analyses should be performed on EPIC, 

which seems to represent the most promising global optimization tool 

for solving the low thrust direct planet to planet transfer problem; 

 

 Problem of Lunar transfer using the interior libration point L1:  GAOT, 

FEP and ASA turned out to be the best performing ones. In particular, 

ASA could reach a better mean objective function value with more 

effectiveness at identifying the basin of attraction of solutions 

comparable to the best known one if compared with GAOT and FEP, 

which performed in a similar way in fact; however, it meanly required 

a number of objective function evaluations which is about twice the 
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number necessary to GAOT and FEP, which anyway turned out to 

have good rates of success. 

 

Moreover, general considerations can be stated about the test results for some 

global optimisation tools. The effects of the sharing operator on the GAOT 

scheme can be highlighted: by promoting the diversity of the individuals in the 

population, the sharing operator hinders the concentration of the individuals 

around the optimal solutions; this led to low accuracy at describing the optimum 

solutions and to a premature optimisation process arrest because the stopping 

criteria easily became active. It is worth noting that, as stated above, no tuning 

procedures have been performed on the available tools and so GAOT default 

options have used even using the sharing operator. However, as reported in 

[Sareni, and Krähenbuhl, 1998], sharing should use low recombination 

operators to promote stability of generated subpopulation and to avoid the 

formation of poor individuals. As a consequence, future works must address 

such a matter, by deeply investigating the effects of tuning processes on GAOT-

shared scheme to enhance the global search and to promote the preservation 

of subpopulations, even allowing the simultaneous identification of distinct 

optimal niches over the search space. Moreover, it is interesting to note how the 

migration operator always led to improvements on the mean value of objective 

function reached at the end of the optimisation processes: as a consequence, it 

can be stated that the migration operator allowed evident improvements in the 

effectiveness of the global search. However, it should be noted that such 

improvements always resulted in corresponding higher values of number of 

objective function evaluations performed. Moreover, interesting analyses could 

be performed in future works for comparing performances gained by sharing 

and migration operators: indeed, such techniques aim to promote both a broad 

global search over the search space and the maintenance of subpopulations for 

identifying several local optima corresponding to each algorithm run. Then, 

comparative studies should be performed for recognizing the most suitable 

technique for this purpose; however, as stated above, a tuning procedure on 

recombination operators should be carried out first in case of using sharing 

operators. Furthermore, it is quite impressive to note how the deterministic 
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glbSolve and, in particular MCS, tools lost their good performances in passing 

from the two impulse direct planet-to-planet transfer problem to the remaining 

ones: the high multimodality and the fragmentation of the big valley structures 

associated to Multiple Gravity Assist interplanetary transfers with a high number 

of gravity assist manoeuvres could be investigated as the main reason of such 

behaviour in this problem; as it concerns the problem of lunar transfer using the 

interior libration point L1, because of the highlighted important difficulties of 

glbSolve and MCS, the presence of discontinuities in the neighbourhood of the 

best known solution identified in the objective function structure analysis 

certainly affected the performances of such tools in this second mission 

analysis problem; however, no clear explanations could be identified of the 

scarce performances showed by these deterministic tools in solving the low 

thrust direct planet-to-planet transfer problem. Finally, performances showed by 

rbfSolve, which could not identify the basin of attraction of good solutions in 

none of the performed tests, seem to be associable to the well known difficulties 

of response surface based global optimisation algorithm at handling 

optimisation processes on discontinuous and non-differentiable objective 

functions. However, it should be noted again that no clear insights have been 

identified on the scarce performances in case of the low thrust direct planet-to-

planet transfer problem.   

 

It is worth noting that, off course, limitations affects the achieved results. 

First of all, each mission analysis class has been investigated by selecting a 

particular transfer problem and by facing it with proper, but anyway particular, 

mathematical models. The authors believe that the decisions taken about such 

a matter in this work can be considered as representative of practical interesting 

problems in space trajectory design. However, further analyses should be 

performed, including additional transfer problems, alternative mathematical 

models and search space definitions for getting a more complete insight in the 

broad field of mission analysis. Secondly, it is widely known in the global 

optimisation community that optimisation algorithms can be suitably tuned to 

enhance their performances. However, as already occurred in remarkable 

existing comparative studies (Neumaier et al., 2004), due to the comparative 
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purposes of this work, the large scale of comparisons performed, the available 

devices and the high time required by some optimisation case, it was 

impossible to do such tuning. Finally, regarding the termination condition, note 

that, as stated by Huyer and Neumaier [Huyer and Neumaier, 1999] and 

already described in previous chapters, in practical global optimisation problems 

such as those analysed in this work, one does not know the solution in advance 

and needs a criterion that tells the program when to stop searching for a better 

local optimum. For those algorithms where such a criterion was not included, a 

common stopping rule has been developed and implemented, which appeared 

to be suitable and robust. However, the achieved results are necessarily strictly 

affected by the employed stopping criterion. Nevertheless, the effects of the 

stopping criteria on the algorithm performances were not addressed here, 

where most algorithms have been used as black-box tools.  

 

As a final remark, the authors would like to recommend future extensive 

works on assessing the sure benefits of a better management of the 

mathematical techniques used for the objective function evaluation in the 

problem of lunar transfer using the interior libration point L1, particularly 

referring to the penalty terms employed in case of non convergence of the 

shooting algorithm for the solution of the Lambert’s three-body problem. 

Moreover, a better investigation of EPIC performances should be accomplished: 

thanks to its combination of systematic and evolutionary techniques, EPIC tool 

seemed to handle the global search in a more effective way. Finally, this work 

could be considered as a contribution to the complex identification of the most 

promising global optimisation techniques for solving practical problems in space 

trajectory design optimisation; further extensive studies are necessary to 

address such a matter and the development of tailored global optimisation tools 

for mission analysis should be promoted, as they certainly will lead to better 

results if compared to those achieved by the classical black-box tools here 

investigated. 
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APPENDIX 1: NOTES ON NP-COMPLEXITY 
 

It has been stated that convex quadratic programming is solvable in polynomial 

time with the ellipsoid method or an interior point method [Vavassis, 1995]. 

However a quadratic function: 

 

( ) TT cHf +=
2
1             [37] 

 

is convex if H is positive semidefinite, i.e., if all the eigenvalues of H are 

nonnegative. Even if only one eigenvalue is negative, the problem turns out to 

be NP-hard [Pardalos and Vavasis, 1991]. 

 

The mission analysis problems analysed in this report are not quadratic, 

but they can be locally approximated with a quadratic function. This suggest the 

following question: if it is possible to show that the objective function is locally 

non-convex, meaning that at least one of the eigenvalues of the locally defined 

H is negative, could one state that the global search is then NP-hard? The 

answer to this important question will constitute an important subject for future 

developments. 
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