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Chapter 1

Introduction

This document addresses a feasibility study of a deep space navigation system based on pulsar timing
information. The extreme frequency stability of radio and X-ray pulsars and their ubiquity have been
considered in the past for positioning purposes. Although many different aspects need be addressed in
the design of a system capable of self-positioning in volumes at Solar System scale, the emphasis in this
study is placed upon the signal processing issues. In particular, the following points are addressed:

e Physical aspects related with the characterization of signals received from radio and X-ray pulsars.
o Signal processing for Time of Arrival and drift estimation.
e Signal processing for positioning estimation.

e Impact of location accuracy on instruments.

Our main objective has been to perform a high-level analysis of the signal model to determine the
accuracy/complexity trade-offs attainable from pulsar signals. Although sometimes more advanced signal
processing than that exposed in this study would be required for enhanced accuracy, reasonable simplifi-
cations have been performed to obtain meaningful trade-off curves as far as feasibility is concerned.

1.1 Navigation System Structure

This feasibility study considers a special structure for the navigation system, where processing is carried
out in a hierarchy of levels, not necessarily presented in the same order in the document:

e instrumental stage: antennas or X-ray detectors.
e timing estimation stage: estimation of pulsar timing parameters.
e position estimation stage: determination of position.

e navigation stage: higher levels of navigational information.

A depiction is provided in figure (1.1). In this way, closed form expressions have been obtained for the
parameters of interest. The signal model is characterized in the leading chapters, where a radio and X-ray
pulsar database is presented. A chapter on stochastic models for the pulsar signal has been introduced for
statistical characterization of the pulsar and noise signals. The position estimation stage, which utilizes
timing estimates from the next lower level of processing, is introduced first in the document, followed by
the chapters on timing estimation for radio and X-ray pulsars. In the last chapters, feasibility results are
obtained and the corresponding conclusions are drawn. A technological overview of instruments is also
included.
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Figure 1.1: Depiction of the navigation system structure assumed for this study. The first stage (instruments)
converts EM waves/photons to raw input signals to the digital signal processing stages. Decoupling of timing
(second stage) and location (third stage) parameter estimation has been considered for ease of implementation and
obtention of closed-form expressions of performance measures. Timing estimation uses information from a pulsar
database to compare measured pulse arrival times with expected pulse arrival times. The location stage uses this
differential information to derive a position estimate. All processing is carried out by an open-loop architecture,
except at the location processor where timing estimates from previous data blocks are used in obtaining the current
position estimate.



Chapter 2

Pulsar Database

This section provides a compilation of all pulsar features and parameters of import to the design of a
pulsar navigation system.

2.1 Pulsar properties

2.1.1 Distribution

Radio pulsars are powered by the rotation of a neutron star, implying a great stability of the pulsar period,
steadily increasing as the pulsar releases its rotational energy. Some 1300 pulsars are known at present
(PSRCAT 2004), and more are discovered in every new survey (see, for instance, Hobbs et al. 2004). The
great majority of pulsars are galactic objects, with a distribution concentrated along the galactic plane. In
Figs. 2.1 and 2.2 we show the distribution a pulsar selection in galactic coordinates —coordinate system
where the fundamental plane (b = 0) is the galactic plane and the origin of longitude (I = 0) is toward the
galactic center. In Figs. 2.3 and 2.4 we show the distribution of the same pulsars in ecliptic coordinates
—coordinate system where the fundamental plane (bg = 0) is the ecliptic, the plane of the orbit of the
Earth around the Sun, and the origin of longitude (Ig = 0) is toward the Aries point (the intersection of
the ecliptic and the equatorial plane of the Earth). Pulsars usually show high proper motions, of several

tens of mas yr—1.

2.1.2 Period and pulse

Pulsar periods range from a millisecond to a few seconds. Most of millisecond pulsars belong to binary
systems, their pulse arrival time being affected by the system orbital motion.

In some pulsars irregularities in their rotation speed have been observed every few years. These
irregularities are known as ‘glitches’. For the Vela pulsar, the fractional changes in rotational speed can
be of the order of 1076, while for the Crab pulsar, they are only of 1075.

Pulsars emit only a pulse of radiation during a small fraction of the rotation period. Although individ-
ual pulses vary in strength and shape, the average pulse shape is stable and characteristic of each pulsar.
In Figs. 2.5 and 2.6 we show the pulse profile of a selection of pulsars.

2.1.3 Flux density

Pulsars have in general steep power-law spectra, with spectral indices « (S, o v®) ranging from —3.0
to —0.1, with a median value of ~ —1.7. The strongest pulsar at 1 GHz has a flux density of 1.7 Jy
(1 Jy = 10726 W m~2 Hz~!). In Fig. 2.7 we show the spectra of a selection of pulsars between 0.1 and
10 GHz.



2.2 Pulsars selection

2.2.1 Signal-to-noise ratio

We can express the signal-to-noise ratio of a pulsar observation as the ratio of the average spectral power
wp, 1 (W Hz™') received by the antenna from the pulsar (averaged over the pulsar period T'), wp T = 0} 1,
and the equivalent noise spectral power w, at the antenna terminals, w, = o2,
2
[ w
SNR = 2L — Zp T (2.1)

o2 Wy

As we will see in sections 2.3 and 2.4, the SNR can be given as
1
SNR = 5 Ae Syt Tyt (2.2)

where k is the Boltzmann constant (k = 1.38 x 10723 W Hz ! K1), A, (m?) is the effective aperture area
of the antenna, S, T is the pulsar flux density average over the pulsar period, and Ty (K) is the system
temperature, which takes into account the receiver noise and the radiation picked up by the antenna and
not coming from the pulsar (see section 2.4). In practical units, the last equation becomes

A1 [Sur] [Tas]1™
— —4 e v, sys
SNR = 3.6 x 10 {—2] { Ty } [ Ky ] . (2.3)

For an antenna with an effective aperture of 10 m?, a pulsar flux density of 100 mJy, and a system

temperature of 40 K, the resulting SNR is 9.0 x 1076, or —50 dB.

2.2.2 Pulsar quality factor

The pulsar quality factor, @), defined as the inverse of the expected error in position (m) per sample, is
proportional to the SNR, the square root of the pulsar period, and approximately to the —3/2 power of
the pulse width. For a practical use, we calculated the quality factor referred to an accuracy of o, = 106
m, per L = 10° samples, which is given by

Ox 1 5T — Tso
= 754.8 SNRVT ,/ : 2.4
c orL 5T1o + TTs0 \| Ts0(T10 — T50) 24

where o, 1, is the standard deviation of the synchronization error for the given L', ¢ the speed of light, T
is the pulsar rotational period, and T59 and Tig are the pulse widths at 50% and 10% of peak intensity.
We used this expression of the quality factor to select the best pulsars. The list of selected pulsars is
given in Tables 2.1 and 2.2. The first 15 pulsars of the list comprise 5 pulsars with period under 100 ms.
No binary pulsar has been considered, since there are enough high quality millisecond non-binary pulsars.
The pulsars that present glitches (including the Vela and Crab pulsars) have not been included in the
selection. In Fig. 2.13 we show the dependence of the quality factor of these pulsars with frequency.

The rest of the list, up to a total of 50 pulsars, show the best quality factor pulsars. In Table 2.1 we
give the pulsar coordinates, spectral index and flux density at 1 GHz. The last columns give the system
temperature Tgys at 1 GHz, estimated from Egs. 2.7, 2.9, and 2.16, for a beam efficiency nv = 0.9, the
resulting SNR at 1 GHz for an effective aperture area of 10 m?, and the quality factor at 1 GHz per
10° samples, referred to an accuracy of 105 m. In Table 2.2 we show the pulse properties of the selected
pulsars.

Q=

2.3 Signal from the pulsar

The spectral power average over the pulsar period, wp T, received by the antenna from the pulsar is given
by

1
wp.r = 5 Ae Suyr. (2.5)

Tt is shown in the Timing Estimation chapter that 0,1, is proportional to L—1/2,



The factor 1/2 in the last equation is exact for non polarized emission. Taking into account the degree
of polarization of the pulsar radiation, Il = \/Q? + U? + V2/I (in terms of the Stokes parameters), the
correct factor ranges from (1 — II)/2 to (1 4 II)/2, depending on the coupling of the polarization of the
pulsar radiation and the polarization of the antenna.

2.4 System noise

The equivalent noise spectral power w, at the antenna terminals can be given in terms of the system noise
temperature, Tyys (K),
wWn = k Tyys. (2.6)

The two contributions to the system temperature are the receiver noise temperature, Ty, and the sky
temperature, Tyiy,
Tsys =T+ Tsky- (27)

The sky temperature accounts for the radiation arriving at the antenna and not coming from the pulsar. It
has two main constant contributions, the isotropic cosmic background radiation, Tcpe = 2.7 K (independent
on frequency), and the background radiation from the Galaxy, Tyai, plus a time-variable contribution from
Solar System objects, Tyso,

Tsky = chg + Tgal + Tso- (28)

The brightest Solar System objects are the Sun and Jupiter, which emit variable non-thermal radiation
and can be very bright at radio frequencies.

2.4.1 Receiver temperature

The receiver temperature depends on the observing frequency. At low frequencies the limit is due to the
physical temperature at which the front end is cooled (4 K using liquid He). However, helium cooling is
difficult to use in a long duration spacecraft, and we will adopt a more conservative low-frequency receiver
temperature limit of 30 K. At high frequencies the quantum noise limit, hv/k is relevant. Current tech-
nology can reach about six times the quantum limit. Thus, we can consider a receiver noise temperature
given by

Trx _ hV_ 14
[K}_30+67_30+0.29 [GHZ]. (2.9)

2.4.2 Galactic background radiation

The galactic background radiation can be described by a brightness temperature T, function of the
galactic coordinates (,b), which peaks at the galactic equator (b = 0), with a maximum at the galactic
center (I,b) = (0,0) (See Fig. 2.9).

The contribution of the galactic radiation to the sky temperature can be evaluated as

1

Tgal = Q_A

/ Pa(l,b) Ta (L, b) dO2, (2.10)
A
where P,(l,b) is the antenna power radiation pattern, normalized so that max (P,) = 1, and Q4 is the
antenna solid angle,

Qp = P,(6, ¢) dQ. (2.11)

i

The integral over 47 sr can be decomposed into two contributions, one coming from the main beam (a
small solid angle, with a high value of the antenna power pattern) and another from the rest of the beam
(outside the main beam), where the antenna power pattern is low, but the solid angle is large. The
contribution from the main beam can be approximated by

/ Pa(l,b) Ta(1,b) d ~ Qi T (I, by), (2.12)
MB



where (I,,bp) are the galactic coordinates of the pulsar, and Qy is the main beam solid angle,

Oy = /MB Pa (0, ¢) dS. (2.13)

This approximation is valid for a highly directive antenna. The other contribution can estimated as
/ P,(1,b) Ta(1,b) dQ ~ (24 — Q) (TG), (2.14)
47—MB

(T) being the average galactic temperature,

1
Ty = —/ T (1,0) dS2. (2.15)
4m 4
Thus, by substitution into Eq. 2.10, we obtain
Tgar = v Ta(lp, bp) + (1 —nw) (Ta), (2.16)

where ny is the beam efficiency, defined as ny = Qum/Qa. If the pulsar is far from the galactic plane
(18] > 20° approx.), T (lp, by) will be of the same order as (Tg), and Tya =~ (TG).

Since the galactic background radiation is non-thermal, its brightness temperature depends strongly on
the frequency of observation. For frequencies above 0.1 GHz, the brightness temperature is a power law of
frequency with a spectral index ~ —2.2 (T oc v~ 2-?) (Brown 1974). In the direction of the Galactic center
(GC), the Galactic temperature can be roughly estimated to be 40 K at 1 GHz, while in the anticenter
direction (AC) and in the galactic poles (GP), the temperature is roughly ten times lower (T (AC) ~ 5 K
and Tg(GP) ~ 3 K at 1 GHz). ;From the map of galactic background radiation at 150 MHz (Landecker
& Wielebinsky 1970) (see Fig. 2.9), the average galactic temperature at 150 MHz is 385 K, corresponding

’ (7] <o t] ™ =

2.4.3 Emission from the Sun

The radio emission from the Sun consists of a steady component (the quiet Sun), a slowly varying com-
ponent linked to the solar activity (sunspots) with a 11 year cycle of minimum and maximum activity,
and finally, a rapidly varying component consisting of bursts linked to solar flares, especially important
at frequencies of tens of MHz. In Fig. 2.10 we show the minimum and maximum flux density of the solar
emission between 0.1 and 10 GHz, at a distance of 1 AU from the Sun. At 1 GHz the minimum and
maximum flux densities are 2 x 10° and 5 x 10”7 Jy. Flux density scales as the inverse of the square of the
distance. For frequencies between 0.1 and 10 GHz the Sun flux density at a distance of 1 AU, S., can be
roughly approximated by the expressions

Svl o 2.18
Jy 5% 107 [v/GHz]™*"  (active Sun). (2.18)

{Si] N { 2 x 10° [v/GHz| (quiet Sun),

The Sun emission is strong enough to make impossible the observation of any pulsar when the antenna
main lobe points to the Sun. This can occur occasionally for pulsars located in the ecliptic plane (see Fig.
2.1). But even when the antenna is pointing away from the Sun direction, solar radiation can be picked
up by the sidelobes of the antenna radiation pattern. The contribution to the sky temperature of the Sun
radiation picked up by a sidelobe with level dg relative to the main lobe, is given by

Tsun _ —4 Ae Si d -2

where d is the distance to the Sun. For a sidelobe level of —30 dB, an effective area of 10 m?, a distance of
1 AU, and the flux density of the quiet Sun at 1 GHz, the Sun antenna temperature is Ty, (quiet) = 1 K.
However, with the same conditions for the maximum flux density of the active Sun, the Sun temperature is




Tsun (active) = 180 K. Thus, for distances from the Sun d S10 AU, the active Sun can increase significantly
the system temperature and degrade the SNR. In Figs. 2.11 we show the SNR as a function of frequency
for the observation of the 15 best () pulsars, assuming an effective area 4, = 10 m?, a beam efficiency
nv = 0.9, and no contribution from the Sun emission. As a comparison, in Fig. 2.12 we show the SNR
for the same pulsars in the same conditions, but for the maximum active Sun flux density at 1 AU as it
enters the antenna through a sidelobe of —30 dB.

2.4.4 Emission from Jupiter and other planets

Jupiter is a sporadic very strong source at decameter wavelengths. However, at frequencies around 1
GHz, Jupiter is much fainter and its flux density is not extremely dependent on frequency (see Fig. 2.10).
Jupiter intensity as observed from the Earth is ~ 6 Jy. This means a flux density at 1 GHz as a function

of distance,
Sy (Jupiter) a1
— | ~1 — . 2.2
{ Jy 60 AU (2.20)

This is about 3 orders of magnitude less than the Sun and thus, with a negligible effect on the SNR.. The
rest of planets are even fainter than Jupiter.

2.5 X-ray pulsars

X-ray pulsars can be grouped in two different families according to the powering source: accretion-powered
pulsars and rotation-powered pulsars.

The accretion-powered pulsars are found in X-ray binary systems, which constitute the brightest class
of X-ray sources in the sky. An X-ray binary contains either a neutron star or a black hole accreting
material from a companion star. A neutron star with a strong magnetic field (~ 10'2 G) will disrupt
the accretion flow at several hundred neutron star radii and funnel material onto the magnetic poles. If
the magnetic and rotation axes are misaligned, X-ray pulsations will be observed if the beamed emission
from the magnetic poles rotates through the line of sight. There are 32 accretion-powered X-ray pulsars
discovered (White et al. 1995), with pulse periods distributed between 0.069 s and 835 s. Long term
monitoring of the pulse periods of these X-ray pulsars has revealed that the pulse period shows different
types of behaviour: a) linear decrease with time (spin-up) with erratic variations around the trend, b)
no long term trend and only a random walk in the period, c) a steady increase in the period (spin-
down). Some examples of these fluctuations in pulse period are illustrated in Fig. 2.14. The pulse period
fluctuations reflect inhomogeneities in the accretion flow. This type of pulsars are not suitable candidates
for the project.

The rotation-powered pulsars are rapidly spinning and strongly magnetized neutron stars which are
radiating at expense of rotational energy. For a long time the most luminous of all rotation-powered
pulsars, the Crab pulsar, had been the only radio pulsar detected at X-ray energies. Today, as a result
of observations with ROSAT and ASCA, 27 pulsars have been detected (Becker & Trumper 1997), with
a range of spin periods between 1.6 ms and 530 ms. However, some of them have shown lack of pulsed
emission at X-rays and/or the presence of glitches. These facts precluded them to be included in our list
of suitable candidates. Finally, ten X-ray pulsars have been selected and are shown in Table 2.3.

2.5.1 Millisecond pulsars

Millisecond pulsars are distinguished by their small spin periods (P< 20ms) and high rotational stabil-
ity (dP/dt ~ 10718 — 1072). Among the rotation-powered pulsars with pulsed X-ray emission listed
in Table 2.3 , there are four millisecond pulsars (PSR J0437—47, PSR B1821—24, PSR J2124—33 and
PSR J0030+0451). PSR J0030+0451 was recently discovered, presenting a period of 4.8 ms and gross
similarity between the radio and the X-ray pulse profile (Fig. 2.15)(Becker et al. 2001). In the case of
PSR B1821—24, the pulse profile has narrow peaks (Fig. 2.16) while for PSR J0437—47 and PSR J2124—33
(Fig. 2.17) the pulse profiles are broad.



2.5.2 X-ray background

Maps of the soft X-ray diffuse background in the 0.1-2.0 keV band from the ROSAT all-sky survey are
available in digital format in the World Wide Web through ROSAT home pages (Snowden et al. 1997).
We show these maps in Fig. 2.18. The galactic center direction at energies above 0.5 keV is about 6 times
brighter than the typical high-latitude flux and shows considerable structure.

We present, in Table 2.4 the background values in counts per second and squared arcmin for each of
the selected X-ray pulsar direction of the sky. The hydrogen column density is also presented in Table 2.4.
These values have been calculated as the background that would be received per squared arcmin and have
been obtained from the web page: http://heasarc.gsfc.nasa.gov/cgi-bin/Tools/xraybg/xraybg.pl

2.5.3 Detectability

To detect the X-ray pulses from a pulsar it is necessary to take into account the technical capabilities
of the instrument, the background levels and the hydrogen column density at a given position on the
sky, and the exposure time of the observation. We have explored how pulsed emission can be detected
through the use of a proportional sensitive position counter like the PSPC detector onboard the satellite
ROSAT. A first approach to determine the detectability of a source, taking into account the employed
instrument, can be done through a formula that is useful to estimate the exposure time of an observation:
t > 25(B/A?) (for at least 50 detection), where A and B are the source and the background counts per
second respectively (detector dependent).

ROSAT was an X-ray satellite that detected all the pulsars presented in Table 2.3. The mission on
flight started in 1990 and was turned off in 1999. On September 11, 1994, after four years of successful
operation, the PSPC was shut down to conserve the remaining detector gas. This remaining gas was
used during 1997 in series of pointings to complete the all-sky survey coverage. PSPC detector had a
field of view of two degrees, with a mean sensitivity in latitude of about 0.1 mCrab (0.015 ct/s) in the
ROSAT XRT all sky survey. The temporal resolution of the PSPC detector was about 100 us, sufficient
to resolve X-ray pulses from millisecond pulsars. During the ROSAT all sky survey, the exposure times
were different depending on the direction of the pointing, although being around 1000 seconds. About
the location of the source, it could be estimated with 10-30”. The effective area of the instrument was
from 500-1000 cm? at 0.1 keV to 200-400 at 2 keV. There are value ranges because the off-set that goes
from 1° to 0°. We will consider that we want to detect the pulsation with the PSPC camera of ROSAT in
the XRT all sky survey mode. The mission imformation has been obtained from the ROSAT home page:
http://heasarc.gsfc.nasa.gov/docs/rosat /appf/appf.html

As an example of the ROSAT XRT all sky survey detection capabilites, we have explored the pos-
sibility to detect the pulsations of a source located a 1 kpc of distance from us at galactic or mid-
latitudes. We have taken a hydrogen column density of about 10! cm™2. In order to be detected,
considering time exposures similar to those of XRT all sky survey observations (about 1000 s), the object
should have a pulsed luminosity of about 5x103! erg s—'. Moreover, for each selected pulsar, we have
estimated the number of counts per second expected for a ROSAT(PSPC)-like instrument in three en-
ergy bands (R12=0.12-0.284 keV, R45=0.47-1.21 keV, R67=0.76-2.04 keV). The obtained results can be
seen in Table 2.4. These calculations have been performed with the HEASARC tools of the web page:
http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html

Regarding the observation of the X-ray pulsars on-flight, a moderate number of detectors of relatively
small field of view can be used if those pulsars can be roughly tracked through the attitude control of the
spacecraft. In such a case, fixed pointings to selected pulsars could be carried out, allowing the permanent,
observation of their pulsed emission.

2.5.4 X-ray pulse profile

In order to determine the shape of the pulsation, it is necessary to split the X-ray pulse in several bins.
The bin duration is constrained by both the timing resolution of the instrument and the total integration
time. The second constraint comes from the fact that each bin should have counts enough for being
significantly above the background, which implies that smaller bins require longer exposure times.

For instance, the ROSAT detector PSPC, with its 100 us timing resolution, was able to resolve the
X-ray pulse of a millisecond pulsar. Otherwise, from the sensitivity point of view, if the pulse is splitted
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in 10 bins, the averaged number of counts per bin will be ten times smaller than for the whole pulse. It
would imply that roughly the exposure time will be increased by a factor of one hundred. Therefore, for
the ten bins case, the thousand of seconds of exposure mentioned above for the XRT all sky survey will
turn to 10° s if we want to know the profile of the pulsation for an important fraction of the selected
pulsars. Roughly speaking, if we want to split the pulse duration in n bins, the exposure will increase n?
(see subsect. 2.5.3).
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Table 2.1: 50 best @) pulsars: coordinates, flux density, SNR, @

Name Ig® bg® ° b? af 5¢ DM?  Spectral® S, 17  Tga? Teys”  SNR? Q7

(deg) (deg) (deg) (deg) (h) (deg)  (ecm~—® pc) Index (mJy) (K) (K) (dB) (dB)
B1937+21 301.82 42.30 57.51 —0.29 19.661 21.58 71.04 ) 33.1 10.8 433 —55.6 11.8
B0329+454 65.19 34.26  145.00 —1.22 3.550 54.58 26.83 —1.6 3474 9.2 41.9 —45.2 4.5
B1642—03 250.19 18.86 14.11 26.06 16.751 —3.30 35.73 —2.3 46.1 6.4 39.4 —53.7 1.3
B0950+08 147.71 —4.62 228.91 43.70 9.886 7.93 2.96 —1.2 127.7 2.6 35.9 —48.9 —0.7
B0740—28 125.33  —48.71  243.77 —2.44 7.714  —28.38 73.76 —2.4 33.4 5.2 38.3 —55.0 —2.3
B1929+410 297.05 32.29 47.38 —3.88  19.537 10.99 3.18 —1.7 63.8 15.0 47.1  —53.1 —2.9
B1556—44 246.80 —23.57 334.54 6.37 15.995 —44.65 56.10 —0.8 52.5 24.9 56.0 —54.7 —3.8
B1451—68 246.26 —49.00 313.87 —8.54 14.933 —68.73 8.60 —1.2 118.9 10.7 43.2 —50.0 —3.8
B1449—64 243.26 —45.02 315.73 —4.43 14.892 —64.22 71.07 —2.2 29.7 16.0 48.0 —56.5 —4.1
B0835—41 150.63 —57.04  260.90 —0.34 8.623  —41.59 147.29 —2.0 31.4 6.7 39.6 —55.4 —4.1
B2020428 317.95 46.59 68.86 —4.67  20.377 28.91 24.64 -0.5 44.9 11.7 44.1 —b54.4 —4.2
J1617—5055 251.79  —29.09  332.50 —0.28 16.291  —50.92 467.00 —1.7 65.6 37.1 67.0 —54.5 —5.3
J1730—2304 263.14 0.19 3.14 6.02 17.506 —23.08 9.61 —2.0 7.2 23.2 54.5 —63.3 —6.4
B1821—24 275.57 —1.55 7.80 —5.58 18.409 —24.87 119.86 —4.3 0.8 34.8 64.9 —T73.7 —T7.7
J23224-2057 0.04 22.88 96.52 —37.31  23.373 20.95 13.37 —1.7 0.6 3.5 36.7 —72.4 —8.5
B2016428 316.46 46.69 68.10 —3.98  20.301 28.67 14.17 —1.9 56.4 11.3 43.8 —53.3 —4.4
B1749—28 268.45 —4.68 1.54 —0.96 17.883 —28.11 50.37 —3.3 54.3 49.6 78.2 —56.0 —4.5
B0823+26 122.60 7.24 196.96 31.74 8.448 26.62 19.45 —1.6 17.1 2.8 36.1 —57.7 —4.6
B1240—64 225.40 —52.66 302.05 —1.53 12.721 —64.39 297.25 —1.7 23.1 13.2 45.5 —57.4 —4.6
B1933+416 299.33 37.31 52.44 —2.09 19.597 16.28 158.52 —1.4 67.2 13.2 455 —52.7 —4.7
B2310+42 10.60 43.12 104.41 —16.42 23.219 42.89 17.28 —1.4 24.2 5.6 38.6 —56.5 —5.8
B1133+16 168.15 12.16 241.90 69.20 11.601 15.85 4.86 —1.7 56.0 2.9 36.2 —52.5 —6.0
B2021+51 337.86 67.13 87.86 8.38 20.381 51.91 22.65 —0.8 35.8 10.1 42.7 —55.2 —6.1
B1557—50 248.66 —29.46 330.69 1.63 16.015 —50.74 260.56 —1.7 30.1 35.0 65.1 —57.8 —6.2
B1821—19 275.66 3.56 12.28 —3.11 18.400 —19.76 224.65 —2.1 10.0 31.7 62.1 —62.3 —6.4
B1356—60 233.08 —44.59 311.24 1.13  14.000 —60.64 293.71 —2.1 15.4 20.9 52.4 —59.8 —6.6
B1323—62 229.57 —48.10 307.07 0.21 13.455 —62.38 318.80 —1.7 28.4 19.5 51.1 —57.0 —7.1
B0736—40 130.28 —60.75 254.19 —9.19 7.642 —40.71 160.80 —0.7 100.9 5.2 38.3 —50.2 —7.5
B1713—40 261.42 —17.78  346.82 —1.73  17.289  —40.91 308.50 1.0 38.3 32.2 62.6 —56.6 —8.2
B1804—08 271.95 14.63 20.06 5.59  18.127 —8.80 112.38 —1.2 22.2 22.2 53.6 —58.3 —8.5
B1323—58 227.02 —45.27  307.50 3.57 13.450 —58.99 287.30 —2.0 19.3 16.2 48.2  —58.4 —8.7
B1508+55 188.03 67.22 91.33 52.29 15.157 55.53 19.61 —2.1 16.3 3.3 36.6 —57.9 —8.7
B1911—-04 289.34 17.53 31.31 —7.12 19.232 —4.68 89.39 —2.6 10.6 22.2 53.6 —61.5 —8.7
B0136457 48.56 43.80  129.22 —4.04 1.655 58.24 73.78 —1.4 7.5 9.5 42.1  —61.9 —8.9
B2217447 3.29 52.54 98.39 —7.60 22.330 47.91 43.52 —2.9 7.9 7.4 40.3 —61.5 —9.1
B1046—58 201.08 —57.84  287.43 0.58 10.803 —58.53 129.10 —1.7 11.5 12.5 448 —60.3 —9.2
B1055—52 195.47 —52.39 285.98 6.65 10.966 —52.45 30.10 —1.7 16.8 6.2 39.2 —58.1 —9.3
B1221—-63 222.53 —53.82 299.98 —1.42 12.406 —64.13 97.47 —2.0 7.7 11.6 44.0 —62.0 —9.4
B1702—19 257.14 3.72 3.19 13.03 17.093 —19.11 22.91 —1.0 11.3 9.9 42.5 —60.2 —9.5
B19534-50 327.05 68.80 84.79 11.55  19.922 51.00 31.97 6.6 8.6 41.3 41.3 —62.4 —9.7
B0450+55 79.04 32.91 152.62 7.55 4.902 55.73 14.49 19.5 8 40.8 40.8 —57.6 —9.7
B1727—47 264.76 —24.43 342.57 —T7.67 17.528 —47.74 123.33 —2.2 25.2 17.7 49.5 —57.4 —9.9
B0540+23 86.14 0.10 184.36 —3.32 5.719 23.48 T7.71 12.3 7.5 40.3 40.3 —59.6 —10.0
B1600—49 248.77 —27.80 332.15 2.44  16.073 —49.17 140.80 —1.7 9.6 34.0 64.2 —62.7 —10.1
B1818—04 275.50 18.88 25.46 4.73  18.348 —4.46 84.44 —2.6 14.6 25.3 56.4 —60.3 —10.4
B1358—63 235.86 —47.38 310.57 —2.14 14.031 —63.96 98.00 —1.4 9.8 19.5 51.1 —61.6 —10.5
B1426—66 241.53 —48.01 312.65 —5.40 14.511 —66.38 65.30 16.9 14.8 46.9 46.9 —58.9 —10.7
B1742—30 266.95 —7.27 358.55 —0.96 17.766 —30.67 88.37 —1.3 20.1 47.9 76.7 —60.3 —11.2
B1607—52 250.86 —30.50  330.92 —0.48 16.184 —52.16 127.57 2.1 36.5 66.4 66.4 —69.4 —11.6
B1719—37 262.29 —14.00 350.49 —0.51 17.383  —37.20 99.50 —1.6 5.6 37.2 67.1 —65.3 —11.7

“ Ecliptic longitude and latitude.
Galactic longitude and latitude.

Right ascension and declination J2000.
Dispersion measure.
Between 0.4 and 1.4 GHz.
At 1 GHz, average over the pulsar period
Assuming ny = 0.9.
Assuming no contribution from the Sun.
i Assuming A. = 10 m?.

b

BTN R -V o}

i Quality factor per 10° samples, referred to an accuracy of 10° m.
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Table 2.2: 50 best ) pulsars: rotational period and pulse properties

Name Ta foa flb be EpOChC T50d Tlod

(s) (Hz) (s™?) (s™®  (MJD) (ms) (ms)
B1937+21 0.001558 641.928261 —4.332 x 10~ 7 4.00 x 1072  47899.5  0.10  0.199
B0329+54 0.714520 1.399542 —4.012 x 10715 5.30 x 1072®  46473.0  6.60 31.400
B1642—03 0.387690 2.579382 —1.185 x 10~ !4 6.60 x 10727  46515.0  4.20  8.000
B0950+08 0.253065 3.951551 —3.588 x 107'% —7.60 x 10727 46375.0  9.50 20.600
B0740—28 0.166762 5.996559 —6.049 x 107'%  —1.32 x1072* 49326.0 5.40  8.300
B1929+10 0.226518 4.414667 —2.256 x 10~ 1.50 x 10726 46523.0  7.40 14.000
B1556—44 0.257056 3.890201 —1.542 x 1074 46800.0  6.00 14.00a
B1451—68 0.263377 3.796841 —1.417 x 107'? 46800.0 12.50  29.000
B1449—64 0.179485 5.571504 —8.524 x 10~ 46800.0  4.40  9.700
B0835—41 0.751624 1.330453 —6.265 x 107*° ... 51700.0  8.90 18.000
B2020+28 0.343402 2.912038 —1.606 x 10~ !4 2.40 x 10725 49692.0 12.00 15.800
J1617—5055 0.069357  14.418187 —2.809 x 10~ ! 50829.7  5.80 11.000
J1730—2304 0.008123 123.110289 —3.063 x 10~*¢ ... 50320.0 1.10  1.600
B1821—24 0.003054 327.405665 —1.735x 107 * —3.30x 10726 49858.0 0.15  0.300
J232242057  0.004808 207.968167 —4.195 x 10~° ... 48900.0 0.17  0.600
B2016+28 0.557953 1.792264 —4.757 x 10716 4.86 x 10727 46384.0 14.90 22.200
B1749—28 0.562558 1.777596 —2.569 x 10~ 1.30 x 10726 46483.0  9.10 15.000
B0823+426 0.530661 1.884444 —6.070 x 1015 1.50 x 10726 46450.0  5.80 12.400
B1240—64 0.388481 2.574129 —2.982 x 10~ ... 46800.0  6.60 11.000
B1933+16 0.358738 2.787546 —4.664 x 10714 1.45 x 10726 46434.0  9.00 17.700
B2310+42 0.349434 2.861773 —9.203 x 10716 5.80 x 10727  48241.0  8.80 14.600
B1133+16 1.187913 0.841812 —2.646 x 10~'? 8.70 x 1072%  46407.0 31.70 41.800
B2021+51 0.529197 1.889656 —1.094 x 107'* —2.27 x1072°  46640.0  7.40 29.400
B1557—50 0.192601 5.192075 —1.365 x 10713 ... 492155  5.40 11.000
B1821—19 0.189335 5.281644 —1.459 x 1073 5.20 x 10726 49877.0  2.90  5.500
B1356—60 0.127501 7.843089 —3.899 x 10~ '3 43555.7  3.90  7.400
B1323—62 0.529906 1.887126 —6.727 x 10~ 43555.7 11.00  19.000
B0736—40 0.374920 2.667236 —1.150 x 10~ 51700.0  29.00  52.000
B1713—40 0.887710 1.126494 x10* ... 48013.8 15.00 30.000
B1804—08 0.163727 6.107714 —1.074 x 107 —4.79 x 10727 48244.0 890 13.000
B1323—58 0.477991 2.092090 —1.417 x 10~ ... 477818  7.60 23.000
B1508+55 0.739682 1.351932 —9.135 x 1013 5.16 x 10725 49904.0  10.90  26.300
B1911—04 0.825936 1.210748 —5.963 x 10~ 1% 1.61 x 10726 46634.0  7.50 14.900
B0136+57 0.272451 3.670390 —1.443. .. 1.60 x 10726 49289.0 520  9.600
B2217+47 0.538469 1.857118 —9.537 x 107'® —3.18 x 10727 46599.0  7.50 13.100
B1046—58 0.123671 8.085992 —6.298 x 107!2  —3.90 x 10722 50889.0  5.60  9.700
B1055—52 0.197108 5.073371 —1.501 x 1073 43555.6  14.00  17.000
B1221—63 0.216476 4619445 —1.057 x 10713 ... 46800.0 6.10  9.100
B1702—19 0.298987 3.344622 —4.629 x 10~ 3.34 x 10725 48733.0 7.30 14.700
B1953+50 0.518938 1.927013  —5.096 x 107 —9.82 x 10727  48741.0  6.00 13.200
B0450+55 0.340729 2.934880 —2.043 x 107'* —1.79 x1072® 49910.0 810 29.100
B1727—47 0.829829 1.205068 —2.376 x 1073 5.60 x 1072*  50939.0 20.00 32.000
B0540+23 0.245975 4.065458 —2.549 x 10713 242 x 10725 48892.0  6.20 18.900
B1600—49 0.327418 3.054204 —9.509 x 1013 ... 46800.0 4.40 13.000
B1818—04 0.598076 1.672029 —1.770 x 10~ 3.57 x 10726 46634.0 11.00  20.000
B1358—63 0.842790 1.186536 —2.355 x 10~ 46800.0 10.00  19.000
B1426—66 0.785441 1.273170 —4.489 x 1013 ... 46800.0 18.00 28.000
B1742—30 0.367429 2.721616 —7.902 x 10™** —8.30 x 1072% 49890.0  7.80  23.000
B1607—52 0.182492 5.479702 —1.551 x 1073 48360.5  2.20  4.100
B1719—-37 0.236173 4.234181 —1.946 x 1073 48381.0  4.00  9.000

¢ Pulsar rotational period, T, and frequency, fo.
b First and second time derivatives of fo-

¢ Modified Julian Date of pulse ephemeris.

4 Pulse width at 50% and 10% of peak intensity.
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Table 2.3: Characteristics of the radio, optical and X-ray detected rotation-powered pulsars

Name I® be®  detected® E/(4wd?) lg B 1gd Lttt qgd ppwls gd [pn pe Px107t®

(deg) (deg) ROX (erg/s/cm®) (erg/s) (erg/s) (erg/s)  (erg/s) (ms) (ss™")
J0030+0451 8.91 1.45 - - ~29.8 - 1.8 -
B0633+17 98.11 —5.43 ?2dp 1.1 1078 34.51 31.10 30.62 - 237.09 10.97
B1509—58 243.89  —39.40 pdp 7.7107° 37.25 34.29 34.10 35.3  150.23 1540.19
B1929+10 297.05 32.29 pdp 1.1 107° 33.59 30.00 29.5 - 22651 1.16
J0437—47 50.47 —67.87 p-D 1.0 107° 33.62 30.86 30.3 - 5.75 2.0 107°
B1821—24 275.56 —1.55 p-p 6.2 10710 36.35 33.24 ~32.56 - 3.05 1.6 1073
B0656+14 104.64 —8.44 PPD 5.5 10710 34.58 32.98 32.15 —  384.87 55.03
B0540—69 301.63 —86.66 PPD 5.1 10710 38.17 36.21 36.1 37.2 50.37 479.06
J2124-33 312.74 —17.82 p-p 4.7 10710 33.55 30.35 29.8 - 4.93 1.08 102
B1055—52 195.77 —52.39 pdp 1.1 10710 34.48 33.42 32.57 - 197.10 5.83

“ Ecliptic longitude and latitude.
b Energy ranges in which pulsed (p), unpulsed (d) radiation has been detected: R:radio, O:optical, X:X-rays.
¢F is the pulsar spin-down power.

4 1,t°t the sum of the pulsed and unpulsed X-ray luminosities; L2*'® is the pulsed luminosity; LE™ is the total luminosity including nebula emission.
¢ Pulsar period.

Table 2.4: Characteristics of the radio, optical and X-ray detected rotation-powered pulsars(II)

Name nH Ap-R12° Ap-R45% Ap-R67 An-R12% An-R45% An-R67%

cm ™2 (ct/s) (ct/s) (ct/s)  (ct/s/arcmin®)  (ct/s/arcmin®)  (ct/s/arcmin?)
J00304+0451  3.1x10%° 1.2x10~°%  4.1x10~° 5.1x10°° 5x10~ 7 10~ % 1.2x10~ 7%
B0633+17 4.1x10%! 2.7x107%  35x1072  7.5x1072 7.2x107% 1.2x107% 1.3x107%
B1509—58 1.4x1022  2.2x1072!  3.2x1072 2%x1071 4.4x10™% 2x107% 4.5x107%
B1929+410 3.8x102! 4.9%x107°  2.4x107%  5.1x107% 4.2%x107* 1.5x107% 1.8x107%
J0437—47 1.8%x10%° 1.2x1072 2x1072  2.5x1072 9.8x10~% 1.4x10~% 1.4x10~%
B1821—24 1.9%x10%¢ 3x107% 3.6x107% 5.8x107% 3.4x107% 6.3x107% 6x10™%
B0656+14 1.3%x10%! 5.1x107%  8.1x1072 1.2x107! 8.4x10™% 1.2x1074% 1.3x107%
B0540—69 6.7x10%° 1.1x1072  1.8x10~! 2.3x107?! 4.6x10°% 6.3x10% 5.7x107%
J2124—33 5.5x102° 3.5x107%  3.5x107% 4.5x1073 4.7x10™% 1.2x1074% 1.4x107%
B1055—52 3.2x10%! 5.1x1077  3.9x1072  7.5x1072 4.7x10™% 1.7x107% 1.5x107%

% Energy bands: R12=0.12-0.284 keV, R45=0.47-1.21 keV, R67=0.76-2.04 keV
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Figure 2.1: Position of the 15 best ) pulsars, in galactic coordinates. The sizes of the circles indicate the
pulsar quality factor @. Dark color circles indicate pulsars with periods under 100 ms, and light color
circles correspond to pulsars with periods longer than 100 ms. The dashed line shows the ecliptic plane.
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Figure 2.2: Same as Fig. 2.1 for the 50 best @) pulsars. Note that the pulsars appear concentrated along
the galactic plane.
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Figure 2.3: Same as Fig. 2.1, in ecliptic coordinates.
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Figure 2.4: Same as Fig. 2.2, in ecliptic coordinates.
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Figure 2.6: Pulse profiles (continuation).
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Figure 2.7: Flux density of the 15 best () pulsars as a function of frequency.
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Figure 2.8: System temperature, Ty, as a function of frequency, showing the contributions from the
receiver, Ty, from the cosmic background radiation, Tp,g, from the galactic background radiation, Tq (its
average and its maximum for the galactic center), and from solar radiation for a distance of 1 AU, an
effective area of 10 m?, and seen through a —30 dB sidelobe, Ty, (its minimum for the quiet Sun and
maximum for the active Sun).
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Figure 2.9: Galactic background brightness temperature at 150 MHz, in galactic coordinates. Contour
levels are 200 K to 500 K in steps of 50 K, 600 K to 1000 K in steps of 100 K, 1200 K, and 1500 K to

3000 K in steps of 500 K.

Flux density at 1 AU (Jy)

ILRLIL N ELLL B L B R R B R L
ENERETIT | \

ERLL |

T

~q-_ Active sun (max)

|

|

Quiet sun (min)

Jupiter

(ol

!

o
N

10

=
o

Frequency (GHz)

Figure 2.10: Flux density of the active and quiet Sun, and Jupiter, scaled for a distance of 1 AU (Kraus

1966; Roberts & Stanley 1959).
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for the observation of the 15 best () pulsars, assuming an effective area 4, = 10 m?, a beam efficiency
nv = 0.9, and no contribution from the Sun emission.
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Figure 2.14: Period changes of four X-ray binary pulsars (White et al. 1995).

Figure 2.15: X-ray and radio pulse profile of PSR J0030+0451 as observed with the ROSAT PSPC in
the 0.1-2.4 keV band (top) and the Arecibo radio telescope at 1.4 MHz (bottom). Two phases cycles are

shown for clarity.
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Figure 2.16: Integrated pulse profiles of the globular cluster pulsar PSR 1821—24 as observed with the
ROSAT HRI (top), the ASCA GIS detector and with the NRAO at 800 MHz (bottom). Two phase cycles
are shown for clarity. The X-ray pulse profiles are characterized by a double peak structure with a phase
separation of ~ 0.6 between the two peaks. The radio profile at 800 MHz depicts three pulse components.
At this frequency the dominating radio pulse is nearly phase aligned with the primary X-ray pulse.
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Figure 2.17: Light curves of PSR J2124-3358 as observed with the ROSAT HRI in 0.1-2.4 keV (top)
and the Parkes radio telescope at 436 MHz (bottom). Two phase cycles are shown for clarity. Both light
curves are characterized by two peaks which are separated by ~ 0.4 rotations.
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Figure 2.18: ROSAT survey diffuse X-ray background maps. Galactic longitude increasing to the left. The
values next to the color bars indicate the intensity and the units are 10~% counts s~ arcmin 2. Regions
of missing data are black.
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Chapter 3

Geometry

This chapter provides an overview of the geometrical aspects of a pulsar-based location system and of
how position estimation algorithms and associated performance bounds are obtained. The described algo-
rithms constitute a post-processing scheme of timing estimates (front-end processing) obtained from the
received signal and exposed in later chapters, as first described in figure (1.1). Therefore, performance
bounds of position estimation are determined by the performance bounds of timing estimation in the
previous stage. Timing estimation basically provides differential information between the expected and
measured pulse arrival times, which is used to infer a position estimate, as described in figure (3.2). Such
measurements are affected by noise, so that a precise characterization of signal and noise statistics is
necessary to formulate well-performing algorithms. This approach, based on the Maximum Likelihood
(ML) criterion, will be the workhorse of this and following chapters.

The main issues addressed are:
e the achievable position accuracy.
e the achievable accuracy of the (auto-estimated) internal clock.

e the ambiguity problems related with the unknown number of phase-cycles of the pulsar signals.

3.1 Introduction

Pulsar-based location is only possible if pseudo Time-Of-Arrival (p-TOA) estimates' from at least two
pulsars can be obtained. For the location scales considered, the distance from the spacecraft to the pulsar
is so much larger than the travel distance that the angle of arrival of the pulsar signals is practically
constant, everywhere in the location sphere. This important fact simplifies the location algorithm based
on p-TOA measurements and excludes location algorithms based on variations in the angle of arrival.

These algorithms combine N p-TOA measurements (from N pulsars) to obtain a position estimate. In
contrast to artificial signals for location, pulsar signals are not modulated and it is not possible to identify
the number of phase cycles (pulsar periods) between two positions (see figure (3.2) for clarification). This
will produce an ambiguity problem as p-TOA measurements are, indeed, phase evolution measurements:
the N p-TOA measurements are N values defined in the interval [0,1) indicating the exact time in the
phase evolution of each pulsar with respect to a reference time. In the signal model subsection, we describe
how this ambiguity impacts the location algorithm.

This first feasibility study assumes a simplified constant speed model for the spacecraft over long
periods of time. The inclusion of higher position derivatives would refine further the trajectory model,
but more complex models are required.

Ip-TOA measurements are defined as the time of arrival of the pulse with respect to a local timing reference: see figure
(3.1)
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Figure 3.1: Depiction of p-TOA measurements with respect to several pulsars. The vertical line stands for the

local time reference.

3.2 Signal Model

In this section, the signal model of the available p-TOA measurements is precisely defined. The data
structures are formulated in matrix notation along with the necessary statistical characterization for the
derivation of optimum algorithms. It is assumed that Pulse Arrival Time Drift (PATD) measurements
may also be available. Using this signal model, it will be possible to obtain closed-form expressions for the
location algorithm and its achievable position accuracy, showing that some assumptions on the internal
clock are also necessary.

3.2.1 Signal model for phase estimates

It is known that pulsars have incredible stability properties that allow to predict the exact phase evolution
of the pulsar signal at any instant in the reference frame of the Solar System Barycenter (SSB) using,

e Some previous estimate of the phase evolution at a reference time T
e An estimate of the pulse frequency (PF)

e Its multiples derivatives.

The exact phase evolution is expressed as follows,

M o(m) o pm
B () = |55 (To) + fu - (t—To) + > % (3.1)

w
where ®55B (t) is the phase evolution of the n-th pulsar at a generic time ¢, f,, is the known PF of the
n-th pulsar, f,(Lm) are its known multiple derivatives and [ ], is the phase wrapping operation, defined as,

[*], =2z +m, €[0,1) (3.2)

with m, the integer satisfying the (€ [0,1)) condition. This operation guarantees that the obtained
measurements are real numbers in the interval [0,1). It is necessary to consider explicitly the wrapping
operation and its associated m, as the previous timing estimation stage can only resolve time differences
within one pulsar period. This fact also becomes evident in figure (3.2), where for distances spanning
several pulsar periods, the unwrapped phase is the magnitude directly related to differences in position.
In the literature, (3.1) is usually truncated to four or five terms, taking into account that higher order
terms only affect over years.

Assuming a phase estimate for each of the N available pulsars, the signal model can be expressed as,
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X (t) = B3P (t — 1) + wa, ], (3.3)

where Ef’ﬁ (t) is the phase estimate associated with the n-th pulsar taken at the common and unknown
initial time ¢ at the spacecraft (note that the superindex x is used to remark that that is a spacecraft
measurement), 7, is the phase delay with respect to the SSB and we, is the additive Gaussian noise
sample associated with the estimate <f>;§ (t). Phase estimates for each pulsar are generated in front-end
processing, and the Gaussian nature of the phase estimation noise is guaranteed over the operating region
of the phase estimation algorithms described later in the document. Thus, the algorithms described in this
chapter constitute post-filtering of the phase (timing estimates). Noise samples are real (non-complex),
independent zero-mean Gaussian random variable with covariance matrix,

o3, 0 0
Re=E[wewg|=1| o . o (3.4)

0 0 o3,

where wg = [wg,, -+ ,ws,]| . This covariance matrix completely characterizes the noise statistics.

3.2.2 Simplified signal model for phase estimates

This subsection modifies the previous signal model to facilitate the natural formulation of location algo-
rithms. The first natural approach assumes that we have some coarse knowledge of the measurement time
t (some ambiguity remains). Assuming that ¢ is close to T}, we can simplify (3.3) as follows,

OX (t) = [®55P (T) + fu - (t = T} — 1) +wa, ], (3.5)

where it can be noted that only two terms of the phase evolution (3.1) have been used exploiting the
vicinity of ¢ to 7. This is not a strong assumption as the rest of terms can only affect after several months.
At present, only a very coarse estimation of ¢ is needed. Note also that the reference phase ®358 (T}) can
be obtained precisely using (3.1),

M (m)
B (TY) = B55B (Ty) + o+ (Ty—To) + 3 22

m=1

(Tg - T,)™"
(m +1)!

(3.6)

where all the terms are known.
Now, the specific delay for the n-th phase estimate 7,, shown in (3.5) can be easily related with the
position of the spacecraft and the direction of arrival (DOA) for the specific pulsar,

T = %unTx (3.7)

where u,, is the unitary vector in the direction of the pulsar in any Cartesian system (centered in the SSB
in our case) and c is the speed of light. This relationship is linear as the angle of arrival from the pulsar is
constant everywhere. As can be seen in figure (3.2), the delay with respect to the SSB can be understood
as the projection of the position vector x onto the constant angle of arrival of the pulsar.

For a typical distance of 1 Kpc (Kparsec) between the pulsar and the SSB, the constant angle-of-arrival
(AOA) assumption is satisfied as

[l Kpc

1Kpc 100

Let us now to define the final signal model for the p-TOA measurements. Taking (3.5) and (3.7), we
have,

1
<<1= 7|l < ~3-10"m (3.8)

= 1
B 0= [0 (1) + fo- (1= 70 20, 7x) 4w | 3.9)

w
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Figure 3.2: Geometrical interpretation of the phase estimate corresponding to time t = T + (¢t —T) as a snapshot
depicting the pulsar wavefronts as reference. The correction with respect to the reference position is represented
by x. The source of ambiguity is observed as an integer number of spatial pulsar periods D, in the direction u,,
of the pulsar.

and exploiting the definition of the wrapping operation (3.2),

~ 1

X (1) = 5B () + £, - (t ~T! - EunTx> + mp + we, (3.10)
where m,, is an unknown integer related with the number of wrapped phase cycles for each pulsar signal.
Now, rearranging terms we can find the following transformation of measurements,

M= 57 (B0~ 855 (1) + 70 = t = L Tx 4 [+ f (3.11)
where )\, are the linear transformed initial phase delays. Basically, this last transformation tries to
generalize the relationship between the p-TOA measurements and the unknown parameters: time, position
and ambiguity.
In this last expression, it can be seen that the new transformed measurements have a completely
linear relationship with the unknown parameters and are still corrupted with Gaussian noise. This can
be expressed in vector notation as follows:

A LT 10 0 [ my 10 0 Wy,
t
N B I O\ . { < ]+ 0 0 T oo 0
AN =T 0 0 fy' 1l [ mn 0 0 fy' We
(3.12)
t " W oo
A=[1n —U]-[X]+F- +F- (3.13)
my | Wy
where U and F are defined in the trivial way as,
f
U= : (3.14)
e



Finally, we can redefine the noise terms as:

wq>1
wy=F.| (3.16)
’U}<I>N

It is easy to note that w) is a zero-mean random Gaussian vector with the following covariance matrix,

fitod, 0 0 o3, 0 0
R>\ :E[W)\ -WAT] :FRq;.FT = 0 0 = 0 0 (317)
0 0 fylod, 0 0 o3,

where 03 = f %03
So, the final model for the modified phase estimates is:

t

A=[1n —U]-{X}—FF-m—I-w)\ (3.18)
It may seem strange to model the internal time ¢ as an unknown when in practical applications the
internal clock will have very stable properties, even in long journeys. It will be seen in the ambiguity

section, that modeling the clock as an unknown simplifies the ambiguity resolution problem.

3.2.3 Signal model for PATD estimates

It is shown in this report that Pulse Arrival Time Drift (PATD) estimates from pulsars can also be
obtained. This will be exploited in the constant speed model as the estimated PATD are linearly related
with the speed of the spacecraft. Additionally, PATD estimates may also be used for ambiguity resolution.
The general signal model for PATD estimates is expressed as follows,

1
Tn = U sy, (3.19)
where s is the speed of the spacecraft and w., is the zero-mean Gaussian noise associated with this

PATD estimate. This noise term is considered component-wise independent. Hence, its covariance matrix
becomes,

031 0 0
R,=Ew,w, =] ¢ . (3.20)
0 0 U,%,N
where W, = [wa,, - ,wWN]T. So, if the N PATD estimates are collectred into one vector, we get,
')/:U-s—|-w,y (321)

where U was defined in (3.14).
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3.2.4 General signal model

The previous signal model sections were devoted to showing the relationship between the available mea-
surements (p-TOAs estimates and PATDs) and the parameter of interest. This section generalizes the
previous signal models for the case of more than a single observation window.

Let us assume that L consecutive observation windows are used to estimate L p-TOAs and PATDs for
each of the N available pulsars. This means that N - L p-TOA and PATD estimates are available. Using
(3.18), the I-th set of p-TOA estimates can be expressed as,

t

A(l):[lN —U]-|:X+l_s:|+F-m+W>\(l) (3.22)

where the term x + [/ - s indicates that the position of the spacecraft in the I-th observation window will

be the position at the last observation window linearly offset with the speed of the spacecraft. Finally, if
we define a new modified p-TOAs vector as the stacked version of all the L estimated set of p-TOAs as,

X = [A(ﬁ), s ,)\(TL)]T (3.23)

and the stacked version of the noise samples as,

T
Wi = [w)‘(l)T’ e 7WA(L)T] (3.24)
then, we can define the general signal model for p-TOAs estimates as follows,
iy -U 0
1y -U -U " "
Y= | In -U -2U A x [+Fmiws=Ay | x | +F-m+ws (3.25)
: : : s s
1y -U —(L-1)U
where
' T T
F=[F", ... F"] (3.26)

As far as neither PATD estimates nor the time offset ¢ are sensitive to distance, it is not difficult to
generalize from (3.21) the expression for the L set of PATD estimates, including zero matrices at the
necessary positions,

Oy Opp U ¢ ¢
5= : : Sl x | +ws=A, | x| +wsy (3.27)
Oy Op,p U s s
where 7 and wy are defined in the same way as X and wy,
T
3= |:’Y(j;)7"' 7'7(TL)] (3.28)
S T ... ™" 3.29
Wy = [WVu) ) ' W, ] (3.29)

with v(;) and w,, the vectors containing the N PATD estimates and their associated noise terms for
the [-th observation window. Finally, the covariance matrices of the stacked noise sample vectors can be
defined as,

s 0 0
(1)
RX = E[WXwXT] = 0 T 0 (330)
0 0 Ry
(L)
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Ry, 0 0
0 0 R

V(L)

3.3 Location algorithm without ambiguity

This section presents the location algorithms and their performance assuming that there is no ambiguity
problem, that is, vector m in (3.18) and (3.25) is known. The following section will focus on some key
points of the ambiguity problem. Two cases are considered in this section: single and multiple observation
windows. The former is the simplest algorithm that transforms N p-TOAs into a position estimate in the
optimal way. The latter exploits several correlative observation windows using the constant speed model.

3.3.1 Single observation window

In this case, only N p-TOA measurements are available for the location algorithm. Assuming that m is
known (my is the true value), the signal model shown in (3.18) can be rewritten as,

X

)\—F-moz[lN —U]-{t]-l-w)\ (3.32)

where all parameters except the position of the spacecraft and, in general, the time offset, are known.
In a practical implementation, the internal clock will be provided by some stable hardware clock: the
precision of the internal clock is enough to assume that t is known. However, as seen in the ambiguity
section, it is also interesting to obtain the performance assuming that the clock is unknown.

To get an idea of the achievable accuracy of the location algorithms, we compute the Maximum
Likelihood (ML) estimation of the position and its corresponding covariance matrix. This provides the
asymptotic theoretical limit of the accuracy, or Cramer-Rao Bound (CRB).

Basics of ML estimation for the linear signal model

We introduce briefly some basics on (unconstrained) ML estimation for the linear signal model to be
particularized later to position estimation. Let us assume the following measurement equation,

x=Ah+n

with x the measurement vector, A the matrix characterizing the structure of the data, h the parameter
vector to estimate and n the noise vector. If the noise is Gaussian, complex and zero-mean, with covariance
matrix R,,, the probability density function (pdf) of x is expressed as,

1 C(x— HR—1(x_
Po) = e,

with R, the covariance matrix of the zero-mean Gaussian noise vector n: R, = E{nn'}, with the
superscript 7 denoting the Hermitian (conjugate transpose) operator. Although in our case, the data
vector X is real, the estimation equation to be obtained will also be applicable (the corresponding pdf for
real data should be used). The ML estimate of h, fl, is obtained maximizing equation (3.3.1) with respect
to the unknown (unconstrained) parameter. Hence, the exponent is to be minimized and,

. -1
h=(A"R;'A)" APR;'x
This is an unbiased estimator, E{fl} = h, with error covariance matrix,

R, = BE{(h—h)(h-h)"}

= (A"R;'A) (3.33)
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ML estimation of the position vector

As far as the relationship between the measurements and the parameter of interest shown in (3.32) is linear,
the ML estimation of the parameters (x and ¢) and the associated covariance matrix has a closed-form
expression,

x=[ATR,'A] 'ATR;' (A — £~ © my) (3.34)

R = [ATR;'A]T (3.35)

where the definition of X and A depends on the assumption about ¢. If ¢ is considered unknown,
x=[tx"]" A=[1y -U] (3.36)
and if the internal clock ¢ is considered known,
x=x A=[-U] (3.37)

Matrix Rz shows in their diagonal elements the variance for all estimated parameters. These are, the
unknown instant of time ¢ and the position of the spacecraft x if ¢ is considered unknown or just the
position of the spacecraft if the internal clock is assumed known. In the following two subsections, we will
show the exact closed-form expressions of the accuracy (time and position) for both cases: known time ¢
and unknown time ¢.

Known internal clock

As will be seen in the ambiguity resolution section, this expression is used to evaluate the final position
algorithm in the case that the ambiguity has been solved. As far as Rz only includes the position
estimation variance, the performance can be obtained as follows,

—1
Rx = R 02 ~ tr[Ry] = tr [Z O'AfununT] (3.38)
n
2

To simplify, let us assume that all involved pulsars have similar timing variances (3). Under this
assumption, the expected position accuracy can be expressed as,

n

02 ~tr[Ry] =73 tr “Z ununT] 1} (3.39)

and finally, assuming a uniformly distribution of pulsars (optimistic assumption), the expression is
simplified to,
P
0?2 = tr[Ry] = T3¢ = (3.40)
N
where P is the dimension problem, two for 2D location and 3 for 3D location. Obviously, this expression
is only presented to have a coarse idea of performance. In the simulations, only (3.38) will be used.

Unknown internal clock

As the ambiguity resolution section will show, this assumption is used to solve the major part of the
ambiguity problem. The trick here is to estimate also the internal clock with the incoming p-TOA
measurements in order to compare with the real internal clock provided by the hardware. This will
allow to discard a large part of the ambiguity points produced by the unknown number of phase cycles.
Achieving this goal is extremely important to computing the achievable accuracy for the internal clock
(in seconds) and for the spacecraft position (in meters).
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Taking into account that the term Rz includes the accuracy of the clock and the position, both terms
can be computed as follows,
Ry = Tx' RzTx (3.41)

o} = T,"RTy (3.42)

where Ty = [02,1,12’2]T and T; = [1, O,O]T. To compare what the effect is of assuming an unknown
internal clock, it can be shown after non-trivial algebraic manipulations, that this term can be also
expressed as,

-1
R;' = [Z axfununT] - [Z aAf] lZZUAf(Hf, unuan] (3.43)
n n n n'

Again, as in the previous subsection , let us assume that similar variance are obtained for all pulsars,

-1
Ry =7y [Z u,u,’ — Z Z ununzT] (3.44)

and a final expression of the position error is given by,

-1
02 ~ tr[Ry] =y tr lz u,u, !’ — Z Z unuan] (3.45)

This last expression of the mean position error tends to the following closed-form expressions if the
available pulsars are uniformly distributed in all possible directions,
, P
N -1
where again P is the dimension problem, two for 2D location and 3 for 3D location.

(3.46)

0273 C

3.3.2 Multiple observation windows

This section is provided to get an idea of the achievable accuracy when more than one correlative obser-
vation window is used. This will be necessary when the available time to estimate the position is large
enough to invalidate the natural static assumption considered in the p-TOAs estimate.

Assuming that we have L phase and PATD estimates for each one of the N available pulsars, the
general model shown in (3.25) and (3.27) can be rewritten taking into account that now, m = myg is

known,
m]_[ﬁ]'mo:[:]' ’:‘ +[:§} (3.47)

As in the single observation window case, it can be considered that the internal clock is known or not.
This will be clearly explained in the ambiguity resolution section. In the following (simplified) development
no special emphasis will be given to this point. To consider the case with known internal clock, we only
have to remove this parameter to the unknowns vector and modify accordingly the definition of matrix A

Let us assume the general case where X, the unknowns vector, A, the model matrix, and Ty are defined
as,

|« 59

s

_ | A
A= [ A, } (3.49)
Ty = [021,2,0]" (3.50)
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As far as the signal model presented in (3.47) has the same terms than in the single observation window,
the same expressions can be used. The final expression of the position accuracy is then,

-1
R=' 0 -1
R = lATl S mo ]A] = [AATR;A}\+A7TR§1A7] (3.51)
Y

and finally, the position accuracy is obtained as,

Ry = Tx RzTx (3.52)

Although this expression is quite simple, the result is very useful. The diagonal elements of matrix Rz
show the accuracy obtained in the estimation of position, speed and time-offset. The first two elements
provide us with the achievable accuracy for spacecraft navigation. The last term provides information
on the capability of the system is able to estimate the time-offset. If this estimation is good enough,
the system will be able to estimate the difference between the local internal clock and the pulsar-based
estimated clock. This will allow to correct the internal atomic clock with a more precise source: the
pulsars. In the simulation section, results of the auto-estimation of the on-board clock is also presented
for this interesting feature of pulsar-based location.

3.4 Ambiguity resolution

The ambiguity resolution problem will be, by far, one of the most important points in the geometrical
considerations of this study. In general, it can be considered one important point to solve since no
modulation or additional information is obtained from the pulsars. The ambiguity resolution algorithm
has to be capable of estimating the vector m in (3.18) and (3.25) in order to apply the algorithms presented
in the previous section.

In the first subsection, the main ideas for ambiguity resolution will be presented. In the following sub-
sections, the signal model needed to formulate the ambiguity resolution will be also presented and some
closed-form expressions for the ambiguity probability will be derived. Finally, some issues about imple-
mentation complexity will be addressed. Most of the mathematical developments related with ambiguity
resolution have been included in the appendix to this chapter. At this stage, only descriptive arguments
are provided.

3.4.1 Methods for the ambiguity resolution

The ambiguity problem presented in the pulsar-based location algorithm appears as no a-priori knowledge
of the phase-cycle number for each pulsar is available. This is mathematically expressed by the unknown
integer vector presented is the general formulation in (3.18) and (3.25).

In this document, two ways to estimate m will be introduced: the former limits the number of possible
values for m assuming that there is a priori coarse knowledge of the spacecraft position and a good
estimation of the internal clock; the latter uses additional pulsars to geometrically solve some remaining
ambiguity points (few values for the integer vector m).

Previous knowledge of position and time

In general, it can be assumed that there is a previous coarse knowledge of the spacecraft position. In the
worst case, it will be the entire possible positions assuming the maximum speed of the spacecraft, but
in general better previous position estimation may be assumed. Additionally, the internal clock of the
spacecraft can be considered stable enough to be a valid reference.

Let us assume that the previous knowledge of the spacecraft position is a sphere of radius R meters.
It is not difficult to count the possible values for each component of m. This number is related to the
number of times the period of the pulsar-signal (translated to meters) fits in the coarse position estimation
(of radius R). Once we have this set of possible values for m, we can formulate the position estimation
algorithm in each of the possible values for m.

35



It is important to note that if we assume that the internal clock is known, only three pulsars will be
needed to compute a valid 3D spacecraft position and better accuracies are obtained (with respect to
assuming ¢ unknown) but it will be really hard to decide which value of m is the correct one.

The trick here consists of processing one more pulsar and assuming that the internal clock is unknown.
Simulation results show that the major part of possible values of m produce estimates of the internal clock
t very different from its current value. Then all the values of m that yield a time estimate far from the
current internal clock (hardware) will be discarded. In general the rule can be mathematically expressed
as,

[t > T (o) (3.53)

where ? is the estimated time and o is its associated variance, both obtained using the closed-form
expressions presented in the previous section. Y is a threshold parameter that can take values of 4,5,6,etc.

This technique can eliminate a great number of possible values of m, called ambiguity points. It is
important to note that this technique can be applied with 4 or more pulsars (for 3D location). It is
important to note also that as far as the initial coarse location increases, so does the number of possible
values for m. Then, this technique possibly fails. In this case the second technique presented in this
document has to be applied.

This first technique is by far, the simplest and most robust technique and it will be applied to reduce
the possibly huge number of ambiguity points to only a few. The simulations section shows how it works
for several initial coarse locations.

ML function for each possible point

If the first technique is not able to remove all the possible values for m (except for the correct one), the
problem of deciding which of a set of M possible values for m is the most likely should be addressed. The
only way to do this is to evaluate the maximum likelihood function at each of these points. Obviously the
use of additional pulsars will facilitate the task. For instance, it can be proved that it is not possible to
discard one ambiguity point (a value for m not discarded with the first technique) if only four pulsars are
used. It means that if the first technique fails, a minimum of five pulsars have to be processed.

Appendix A shows the development needed to evaluate the fail-probability of ambiguity resolution.
This development basically shows the probability that the ML function evaluated at an incorrect point
would be larger than the ML function evaluated at the correct point. The results shown in this appendix
are a good reference to evaluating the necessity of processing additional pulsars.

3.4.2 Implementation issues

This subsection summarizes the complexity related with the ambiguity resolution problem and some key
points in implementation. First of all, the ambiguity resolution problem is clearly related with the initial
coarse estimation of the spacecraft position and the initial uncertainty of the on-board clock. Both are
critical parameters in the evaluation of the ambiguity resolution complexity. At the end of this section,
an expression of complexity will be given in terms of position and clock ambiguity.

Complexity analysis

In general, the ambiguity resolution problem consists of solving which of the possible integer values m in
(3.60) is the correct value. Basically, as explained in previous sections, this is related with the unknown
integer number of phase-cycles associated with each pulsar. Let us assume that the mobile can lie in a
spherical volume of radius R meters. Let us also assume that the internal clock has a maximum deviation
of At seconds (this is the maximum deviation of the clock in the whole trip). Depending on the unknown
exact position of the spacecraft and the exact value of the internal on-board clock, the integer included
in m can take different values. The number of possible values is related with R and At as follows,

_ [R/c+ Atw

= | (3.54)
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where T is the period of the pulsar and [ | is the upper-integer operation. It is clear from this
expression that large-period pulsars will be better to resolve ambiguity with less complexity.

Assuming that the number of possible values is similar for all used pulsars (p), it seems from (3.60)
that, as far as the dimension of m is N (the number of used pulsars) the complexity of the ambiguity

resolution may rise exponentially with the number used pulsars N as,

O ocpV (3.55)

Fortunately, the complexity of the ambiguity resolution algorithm can be drastically reduced with the
following reasoning;:

1. Let us assume that we want to find the position of the spacecraft in a P-dimensional space (normally
P is considered 2 or 3).

2. If we first generate the possible ambiguity points using only P + 1 pulsars, we will get a set, of p(F+1)
points.

3. Under each one of the p*1) hypothesis (to assume that this point is correct), we can compute
the position (with this first P + 1 pulsars with a certain accuracy (normally really smaller than the
initial coarse location) following expression (3.42) or (3.42).

4. Now, the rest of pulsars used to improve accuracy and ambiguity resolution, only add a few ambiguity
points due to the fact that for each hypothesis they include the following number of points

Do, = [CU””T] (3.56)

where o, is the accuracy obtained with the first P 4+ 1 pulsars. Obviously, the number of ambiguity
points included with these additional pulsars is clearly lower that the original one.

In conclusion, the complexity associated with the ambiguity resolution can be expressed as follows,

0[BT (o) -

Using the approximation shown in (3.46) when N = P + 1, it can be observed that,

— [ P
Oy OX"C\/ N1 O
~ S — 1 .
T . T << (3.58)

This means, that the complexity of the ambiguity problem can be reduced to,

0 ([Hera) " a0

The conclusion is that the complexity of ambiguity only depends on the initial ambiguity in position
and clock, not on the number of used pulsars. Additionally, the internal clock will be in most cases stable
enough not to add additional ambiguity points, so it can be removed from (3.59).

Problems related with ambiguity resolution

One of the most critical problems related with ambiguity is that a power failure could stop the location
system during a certain period of time (failure-time). After that, the ambiguity resolution algorithm will
spend some time before restoring the spacecraft tracking regime. In this particular case, the ambiguity
resolution task will be difficult if the number of initial ambiguity points (values for m) rises to huge values.
Indeed, the complexity associated with ambiguity resolution is related with the initial coarse location or
previous position estimate. So can the effect of a power-failure be derived.
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Accuracy versus ambiguity resolution

It is clear from previous subsections that the best pulsars to resolve the ambiguity problem are those with
large periods. Fortunately, they are also the most powerful pulsars in terms of SNR. Nevertheless, their
timing noise is higher than for millisecond pulsars and the latter should be used to stabilize large period
pulsars over long time spans. Millisecond pulsars will allow to improve the accuracy but they are not good
resolving ambiguities so they cannot be used as the first P+ 1 pulsars needed to define the first ambiguity
points.

3.5 Numerical simulation

This section presents the numerical simulations conducted to show the main features of the proposed
algorithm: achievable position accuracy and some results related with the ambiguity resolution problem.

3.5.1 Results with a single observation window

This first subsection shows the performances of the location algorithm based on a single observation
window.

e Figure (3.3) shows the achievable timing performance for each of the best ten pulsars. Their cor-
responding time threshold? can be observed in the same figure. This time threshold (the vertical
line of the same color) represents the minimum integration time needed to use the associated pulsar
timing estimate.

e Figure (3.4) shows the location algorithm performances for the best 10 pulsars, always taking the best
combination. This means that the algorithm will intelligently select the pulsars with minimum time-
thresholds to provide a position with minimum latency. As integration time progresses, additional
pulsars can be incorporated to the location process. This figure is divided into four sections showing:
the position accuracy, the individual coordinates accuracy, the number of used pulsars (due to the
minimum time threshold) and the accuracy in the internal clock estimation.

e Figures (3.5) and (3.6) show the location algorithm performances using only 4 pulsars. In the first
figure, the best pulsars are chosen in terms of accuracy while in the second one, the best pulsars are
selected in terms of time-threshold. This means that the first selection will obtain better accuracies
with enough integration time while the second one will provide a solution in the minimum time.
These two figures, organized as in figure (3.4), allow us to compare the trade-off between time and
accuracy if only four pulsars are selected.

3.5.2 Results with a multiple observation window

It is clear that the single observation window model cannot be infinitely extended in time. So, the multiple
observation window model must be used. This section provides simulations using multiple observation
windows.

Choosing the best combination of pulsars to perform the position estimation with multiple observation
windows is not a trivial task. It has to be taken into account that if a group of pulsars is large, it
will achieve better performances (for large observation windows) but at the same time, the minimum
integration time for each individual window will increase, along with the minimum time to get the first
position estimate. Figure (3.7) shows the best performances for each instant of time choosing the most
favorable group of pulsars. The algorithm first groups a few pulsars (four) to get a short time-threshold
and medium position accuracies and later more pulsars are incorporated to improve the position accuracy.
As we are selecting the best combination in terms of accuracy, the best combination in terms of clock
estimation is unpredictable. For long observation periods, it seems that both estimations (clock and
position) are good enough.

2as shown later, the equations describing phase noise are valid above a minimum observation time. This question is
addressed in detail in the timing estimation chapter.
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Figure 3.3: Timing accuracies for the best 10 pulsars

The accuracies presented in figure (3.7) are then the best accuracies achievable with any combination
of the first 10 pulsars.

For comparison, the performances obtained with a single observation window are reproduced. The
precision of the internal clock estimation is also simulatred. This performance can be used to study the
possibility of correcting the onboard clock in very long space journeys.

Finally figures (3.8) and (3.9) show the same performance but when only the best 4 pulsars are used.
Here, there are no multiple possible combinations. Each figure shows the best selection of four pulsars in
terms of accuracy and time threshold.

3.5.3 Ambiguity resolution results

The most important technique to ameliorate the ambiguity phenomena is the first proposed technique
based on the estimation of the internal clock and the comparison with the hardware-based internal clock.
The purpose here is to estimate the internal clock using one additional pulsar (four pulsars in total) and
to compare with the internal hardware-based clock. For each one of the possible ambiguity points (values
for the vector m that gives a position inside the initial coarse position estimation), the estimated clock
is compared with the real hardware clock. If the difference (also called time offset) is larger than the
standard deviation associated with the clock estimation (See previous sections for more details) then, this
point is discarded.

Here, we present a brief simulation of the effect of this first technique. The first six valid pulsars have
been taken in order to check which combination (of four pulsars) yields the best ambiguity resolution
performance.

e Tables (3.1) and (3.2) summarize the results of the experiment. Each row represents the performance
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Figure 3.4: Performances with the best 10 Pulsars

associated to each combination of pulsars. The first column shows the combination itself, specifying
pulsrs as shown in table (2.1). Tt is important to note that the first pulsar in that table has not been
used because its period is very small, and the complexity of ambiguity resolution is considerable.

The second column provides the minimum integration time for the associated combination of pulsars
and also the time used in the simulation.

The third column shows the accuracy of internal clock estimation. This is a crucial parameter in
the ambiguity resolution problem.

The following six columns correspond (in groups of two columns) to the results of the simulations
for three different values of initial coarse position estimation: 108, 5-10% and 10° meters. Each of
the simulations shows in their two columns the number of ambiguity points (first column) and the
number of ambiguity points that remains after the first ambiguity resolution technique. In these
second columns, the minimum time-offset associated with ambiguity points is also presented in order
to show how close to fail/sucsses the ambiguity resolution algorithm is.

The most important point is that the combination that has zero ambiguity points after the first
technique does not require additional pulsars to solve the ambiguity.

The conclusion is that the resolution ambiguity problem will be really complex if the ambiguity of the
position grows up to several times the period of the pulsars used (translated to distances multiplying by
c). This could be caused by a power failure of a temporal disconnection of the location algorithm.
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Table 3.1: Number of ambiguity points for all possible pulsar combinations

Comb

Time precision

Amb. Points

Time offset
and Amb. points

Amb. Points

Time offset
and Amb. points

Amb. Points

Time offset
and Amb. points

(seconds) R =108m R =10%m R=5-10%m R=5-10%m R=10%m R=109m
(seconds) (seconds) (seconds)
78910 0.006186 10 0.619412 / 0 1040 0.002413 / 6 7286 0.000455 / 80
68010 0.008102 3 0.749464 / 0 164 0.029890 / 6 3330 0.003680 / 42
67910 0.009820 3 0.553987 / 0 514 0.003609 / 4 3822 0.003609 / 56
67810 0.005467 B 0.676002 / 0 388 0.004347 / 6 6790 0.000232 / 58
6780 0.009635 5 0.541348 / 0 948 0.013010 / 12 6582 0.000238 / 114
58010 0.004362 B 0.001348 / 0 1230 0.001568 / 6 8592 0.001568 / 62
57010 0.006027 Z 1.081424 / 0 870 0.016083 / 6 6436 0.000104 / 52
57810 0.008501 1 1.515392 / 0 192 0.001034 / 4 3792 0.001034 / 48
5780 0.022387 3 1.645327 / 0 514 0.012865 / 22 3542 0.002131 / 144
56910 0.013306 0 —/0 218 0.020813 / 6 1800 0.007701 / 30
56810 0.003215 3 0.024754 / 0 1266 0.000064 / 4 0584 0.000064 / 36
5680 0.010246 5 0.183642 / 0 502 0.007497 / 16 6240 0.000878 / 114
56710 0.003939 3 0.811416 / 0 1114 0.010689 / 6 8360 0.000072 / 34
5670 0.009504 1 3.202745 / 0 530 0.009572 / 6 2004 0.002355 / 58
5678 0.009825 B 0.550958 / 0 582 0.001201 / 14 5684 0.001201 / 100
28010 0.004260 i 0.615269 / 0 1626 0.001714 / 10 11404 0.000163 / 82
17910 0.006187 B 2.538499 / 0 798 0.013305 / 4 5922 0.001607 / 50
27810 0.011081 3 0.696712 / 0 356 0.016142 / 2 1662 0.010538 / 26
1789 1.574750 0 —/0 12 0.100168 / 12 68 0.079125 / 68
2609010 0.011232 3 0.794299 / 0 152 0.010698 / 8 3608 0.002893 / 54
16810 0.003573 12 0.640074 / 0 1500 0.005507 / 12 11318 0.000285 / 56
16809 0.009688 12 0.155647 / 0 1498 0.001162 / 18 10360 0.000181 / 178
26710 0.004785 6 1.427413 / 0 504 0.000242 / 4 6750 0.000242 / 38
1679 0.009626 1 1.091649 / 0 726 0.001837 / 8 5402 0.001557 / 76
1678 0.055271 3 0.018084 / 0 178 0.017223 / 12 1422 0.007016 / 114
15910 0.009677 3 2.223698 / 0 114 0.009574 / 4 3350 0.003284 / 42
25810 0.006355 B 0.534484 / 0 500 0.000690 / 2 3088 0.000217 / 18
1580 0.014219 B 1.638102 / 0 514 0.008895 / 18 5650 0.001555 / 146
15710 0.012368 0 —/0 230 0.053488 / 2 1744 0.004039 / 24
1570 0.014321 1 1.840221 7 0 398 0.022602 / 8 3064 0.004707 / 66
1578 0.049747 0 —/0 110 0.075757 / 6 550 0.002703 / 66
25610 0.005853 6 0.826015 / 0 702 0.010051 / 4 5008 0.000678 / 24
1560 0.007175 B 3.480553 / 0 166 0.051531 / 0 1272 0.001750 / 14
1568 0.007121 28 0.156164 / 0 1204 0.002210 / 10 9106 0.002219 / 104
1567 0.007336 16 0.336415 / 0 700 0.005113 / 8 1916 0.005113 / 42
38010 0.014165 B 1.631889 / 0 392 0.000962 / 10 3828 0.000962 / 68
379010 0.006138 Z 5.434500 / 0 638 0.002567 / 4 1632 0.002567 / 38
37810 0.004758 0 —/0 198 0.021131 / 2 1572 0.003802 / 8
3780 0.004717 6 0.100901 7 0 3512 0.006792 / 12 17770 0.000209 / 150
36910 0.008954 B 0.714296 / 0 180 0.002231 / 10 3856 0.001087 / 46
36810 0.010042 Z 1.430087 / 0 438 0.001177 / 6 3568 0.000550 / 44
3680 0.008576 B 0.147244 / 0 1500 0.005230 / 22 10366 0.000564 / 150
36710 0.006711 3 3.701364 / 0 504 0.006408 / 8 3764 0.000312 / 64
3670 0.009961 0 —/0 670 0.000535 / 8 5028 0.000535 / 76
3678 0.004560 12 0.139728 / 0 1978 0.000518 / 14 15194 0.000358 / 112
35010 0.003483 6 0.501480 / 0 1088 0.004527 / 4 5688 0.000207 / 42
35810 0.073216 0 —/0 12 0.036907 / 4 340 0.005861 / 36
3580 0.003520 28 0.078382 / 0 3190 0.000515 / 16 33328 0.000028 / 134
35710 0.004850 B 3.575284 / 0 536 0.002898 / 2 1036 0.002898 / 18
3570 0.003303 6 0.172656 / 0 1788 0.004330 / 12 13374 0.000594 / 64
3578 0.005272 10 0.341268 / 0 1265 0.002294 / 8 9946 0.002294 / 82
35610 0.002464 B 0.858450 / 0 1424 0.007792 / 2 11212 0.001202 / 20
3560 0.002746 0 —/0 304 0.015809 / 0 1688 0.000954 / 2
3568 0.002476 28 0.020322 / 0 3240 0.000796 / 8 24742 0.000100 / 86
3567 0.002433 2 0.830086 / 0 3018 0.007562 / 4 15060 0.000325 / 40
34910 0.001590 10 0.746618 / 0 1324 0.002292 / 4 10358 0.000279 / 24
34810 0.006994 0 —70 354 0.004392 / 2 1788 0.001778 / 18
3480 0.001580 36 0.077372 / 0 3960 0.000779 / 10 27712 0.000447 / 74
34710 0.003705 B 3.808672 / 0 328 0.010508 / 2 3570 0.000330 / 12
3470 0.001687 2 0.672678 / 0 1046 0.000057 / 4 14420 0.000057 / 32
3478 0.006339 B 3.561523 / 0 506 0.003293 / 4 2098 0.003293 / 36
34610 0.001366 18 0.879176 / 0 1418 0.000393 / 2 10720 0.000393 / 14
3460 0.011295 0 —/0 54 0.015879 / 2 625 0.015879 / 8
3468 0.001343 30 0.085780 7 0 3388 0.000118 / 10 35982 0.000118 / 46
3467 0.001452 18 0.811181 / 0 1892 0.008612 / 0 14244 0.000604 / 22
34510 0.002606 B 0.895084 / 0 500 0.005608 / 4 1644 0.000162 / 16
3450 0.002192 Z 3.686008 / 0 378 0.007699 / 2 3042 0.007699 / 4
3458 0.002698 14 0.178989 / 0 1362 0.011271 / 2 10494 0.000505 / 40
3457 0.003146 6 0.747757 / 0 716 0.002221 / 2 5488 0.001705 / 20
3456 0.002105 B 0.862308 / 0 104 0.006415 / 2 2898 0.006415 / 4
38010 0.004831 Z 1.541743 / 0 366 0.009398 / 2 1854 0.002277 / 14

41




Table 3.2: Number of ambiguity points for all possible pulsar combinations

27910 0.006569 6 0.474306 / 0 214 0.070538 / 0 1548 0.000388 / 14
27 810 0.007255 2 3.127843 / 0 230 0.009915 / 6 1794 0.003444 / 14
2789 0.015797 8 0.780401 / 0 166 0.026890 / 4 1160 0.003739 / 30
26910 0.015372 0 -/ 0 44 0.069051 / 2 326 0.000412 / 6
2 6 8 10 0.002886 4 0.881775 / 0 330 0.043132 / 0 2450 0.000394 / 20
2689 0.010887 2 0.192153 / 0 184 0.060804 / 0 1216 0.005063 / 28
267 10 0.003246 2 2.097008 / 0 336 0.011696 / 2 2472 0.001914 / 8
2679 0.009373 0 -/ 0 114 0.028978 / 2 808 0.002125 / 10
2678 0.005469 0 -/ 0 344 0.018026 / 2 2664 0.001500 / 20
259 10 0.020640 0 -/ 0 24 0.216456 / 0 196 0.029446 / 6
25810 0.006118 0 -/ 0 142 0.010154 / 2 1094 0.010154 / 10
2589 0.023383 0 -/ 0 68 0.049461 / 4 460 0.010021 / 26
25710 0.010081 2 0.738609 / 0 112 0.042394 / 2 796 0.002147 / 10
2579 0.024162 0 -/ 0 42 0.103535 / 2 288 0.023227 / 12
2578 0.057558 0 -/ 0 38 0.107120 / 4 240 0.013064 / 28
25 6 10 0.007942 2 2.916897 / 0 60 0.306427 / 0 530 0.033726 / 2
2569 0.012302 0 — 2 2.554955 / 0 46 0.120105 / O
2568 0.007002 8 0.086056 / 0 146 0.086056 / 0 1344 0.000400 / 20
2567 0.006608 2 2.813060 / 0 94 0.172303 / 0 864 0.013683 / 2
24910 0.008923 0 -/ 0 126 0.007651 / 2 1000 0.007651 / 10
2 4810 0.004786 2 2.252878 / 0 294 0.013205 / 2 2334 0.000445 / 16
2489 0.011449 2 2.815851 / 0 268 0.025570 / 2 1888 0.001269 / 36
24710 0.007852 2 3.721996 / 0 154 0.094905 / 0 1202 0.006291 / 14
2479 0.011342 2 2.754090 / 0 134 0.093734 / 0 998 0.004018 / 14
2478 0.076623 0 - /0 32 0.076380 / 2 292 0.034784 / 32
246 10 0.003742 6 2.366221 / 0 246 0.010466 / 2 1858 0.001757 / 8
2469 0.005099 0 -/ 0 40 0.388861 / 0 322 0.043186 / 0
2468 0.003928 8 2.304681 / 0 508 0.020400 / 0 3940 0.001372 / 24
2467 0.003939 2 2.948063 / 0 284 0.005468 / 2 2106 0.005468 / 6
24510 0.019066 0 -/ 0 46 0.050701 / 2 406 0.050701 / 4
2459 0.030315 0 -/ 0 6 0.365737 / 0 56 0.010737 / 2
2458 0.031413 2 3.012448 / 0 68 0.027332 / 2 510 0.000856 / 2i
2457 0.030048 0 - /0 30 0.084817 / 2 306 0.001585 / 8
2456 0.004757 2 2.883243 / 0 26 0.266325 / 0 236 0.021937 / 2
239 10 0.004348 2 0.894553 / 0 250 0.023620 / 0 1940 0.003203 / 8
23810 0.036797 0 -/ 0 32 0.120593 / 2 264 0.004405 / 10
2389 0.004386 10 0.084849 / 0 710 0.001583 / 10 4980 0.000641 / 58
23710 0.005356 0 -/ 0 208 0.046282 / 0 1636 0.003683 / 10
2379 0.004093 8 0.785294 / 0 416 0.017332 / 2 3000 0.002831 / 18
2378 0.004982 4 0.850904 / 0 570 0.004451 / 4 4610 0.000452 / 40
23610 0.002278 6 2.277387 / 0 404 0.028760 / 0 3250 0.004215 / 6
2369 0.002115 0 - /0 50 0.091170 / 0 396 0.013055 / O
2368 0.002276 10 0.008368 / 2 896 0.008368 / 2 6826 0.000876 / 28
2367 0.002292 4 2.273177 / 0 562 0.018250 / 0 4040 0.001300 / 8
23510 0.005508 0 -/ 0 168 0.019502 / 2 1334 0.006382 / 8
2359 0.042195 0 - /0 2 2.317904 / 0 24 0.439447 / 0
2358 0.005547 6 0.071481 / 0 362 0.010023 / 4 2888 0.003492 / 20
2357 0.005229 2 2.817605 / 0 240 0.007792 / 6 1850 0.006911 / 10
2356 0.002122 2 2.815522 / 0 26 0.281405 / 0 216 0.002089 / 2
23410 0.001639 8 0.710184 / 0 338 0.054110 / 0 2746 0.000673 / 6
2349 0.002661 4 0.818581 / 0 94 0.036184 / 0 754 0.006652 / 2
2348 0.001610 28 0.118898 / 0 768 0.001002 / 2 6412 0.001002 / 14
2347 0.001798 10 0.587338 / 0 426 0.009335 / 0 3546 0.000429 / 6
2346 0.002446 0 -/ 0 76 0.135882 / 0 634 0.009648 / 2
2345 0.003538 0 - /0 56 0.013102 / 2 446 0.013102 / 2
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Figure 3.5: Performances with the best 4 Pulsars (in accuracy)

3.6 Appendix A

This appendix shows the development needed to compute the success and fail probabilities of ambiguity
resolution. This is basically the performance of the second technique previously presented for resolving
ambiguity. This appendix is organized as follows: first, a general signal model is presented for single and
multiple observation windows; second, the ML function is presented and evaluated at the correct m and
at a hypothetically incorrect value; finally, a closed-form expression for the ambiguity error is presented.

3.6.1 General signal model for single and multiple observation windows

There are two interesting scenarios to evaluate the ambiguity problem. First, in a single observation
window, a set of N phase and PATD estimates will be available (this case is interesting for evaluating
the magnitude of the ambiguity problem); secondly, a generic scenario with L consecutive observation
windows and additional previous measurements constitutes the general framework needed to extract valid
conclusions. It will become clear in this first subsection that both problems can be analyzed mathemati-
cally with the same expressions by means of defining a common signal model. The general signal model
proposed for both cases can be expressed as follows,

pu=A-X+F, m+w, (3.60)

where y is the general sampling vector containing all available measurements, A is a generic model
matrix, X is the vector containing the unknown terms (as position, speed, etc), m is the integer ambiguity
vector and w, is the vector containing the noise terms associated with the samples included in p.
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Figure 3.6: Performances with the best 4 Pulsars (in latency)

Single observation window

In this specific case, the spacecraft is assumed to be static during the observation window. Additionally,
the PATD estimates are only related with the speed of the spacecraft, not with its position. The only
available measurements in this scenario are the phase estimates. The unknowns are position and the time
offset (not speed). It can be seen that the signal model proposed in (3.18) perfectly fits in the general
signal model proposed in (3.60) assuming the following definitions,

nw=A\ A:[lN U] i:[i] F,=F W, = W)
(3.61)
Finally, the covariance matrix for the noise vector can be expressed in this case as,
R, = E[w,w,] =R, (3.62)

Multiple observation windows

For the sake of generality, we will assume that L consecutive observation windows are used to estimate
the N phase evolutions and the N PATDs associated to the N available pulsars. We will also assume
that a previous position and speed estimate are available. If these two last estimates are not available,
high variances are used for both estimates in the equations. Let us define the previous position and speed
estimates as follows,

X, = X + Wg, (3.63)
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Figure 3.7: Performances with multiple observation windows (5 pulsars)

Sp =S+ Wg,

where the covariance matrices of both previous estimates are considered known,

Rgp =F [ngwz ]

Xp

Rgp =F [ng W»sr‘l; ]

ioS
(3.64)
(3.65)
(3.66)

Note again that if one or both of these measurements is not really available, we only have to replace
the associated covariance matrix with: R = col. Now, fusing the signal model for these previous estimates
and the signal model shown in (3.25) and (3.27), we have,

where, it is easy

X A/\ t f‘ W‘X
v — A, - 0 Wz
s = + -m +
Xp [0p,1Ip,0pp] 0 wg,
Sp [0710p,p,TP] 0 W,

to identify all terms presented in equation (3.60) as follows,
hy A, ,
A’y/ A = A’Y i = X
Xp [0p11p,0p p] i
Sp [0p10p,p,Ip]
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F,, = W, =

cocom
E
=

Finally, the covariance matrix for the noise vector can be expressed in this case as,

Ry 0 0 0

. O R- 0 0

R, = E[Wuwu] = 0 OW Rq 0
0 0 0 Rs

P

3.6.2 ML function

(3.69)

(3.70)

From the common signal model shown in (3.60), it becomes clear that the ML function to be minimized

can be formulated as,

Typ(Xm)=(pu-A-X-F, -m) R;'(u—A -X—F, m)

The ML estimate of the unknown parameters included in X can be obtained as follows,

x=(ATR,'A) " AR, (i~ F,, -m)

(3.71)

(3.72)

Now, we can compress the ML function shown in (3.71) with the parameter estimate shown in (3.72).

Ty (m) = [(ATR;A)’1 AR (1 —F,, - m)] TR;1 [(ATR,;lA)’1 AR (1 —Fp, - m)] (3.73)
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After several straightforward mathematical manipulations , we obtain,

— — — -1 —
Uarpe(m) = (0= Fp-m)" [R;' ~R;'A (ATR;'A) T ATR| (0-Fpom)  (3.74)

3.6.3 Ambiguity error probability

The ambiguity error probability is defined as the probability of not estimating m correctly. This can be
expressed as,

Pamp (Am) =p (Uarr . (m=my+Am) < ¥py7, . (m=myg)) =p (AT (Am) < 0) (3.75)

where AUy . (Am) = ¥prr . (m=mg + Am) — ¥ps7 . (m = mg). Note that if the value of the ML
function using an incorrect estimate for m is lower than using the correct one, this will produce an
ambiguity error. Now, assuming that measurements u are obtained at the correct m, this is y = A -X +
F,, -my + w,. The ML function shown in (3.74) can be rewritten as follows,

Tarpe(m) = (wy — Fpp - Am)T [R;l ~R;'A(ATR;'A)” ATR;1] (W, —Fp-Am)  (3.76)

Finally, the difference of the ML function between the correct and the incorrect estimates of m is
obtained,

AUy (Am) = (w, — Fpy - Am)T [R;l ~R;'A(ATR;'A)”" ATR;l] (Wy — Fp - Am) — (3.77)

(wy)" [R;l ~R;'A(ATR;'A) " ATR;1] (w,) (3.78)
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which, after several mathematical manipulations, can be expressed as,

AUy . (Am) = (F,, - Am)” [R;l ~R,'A(ATR;'A)" ATR,;l] (Fo - Am) (3.79)
—2(wy)" [R;l ~R;'A(ATR;'A)” ATR;l] (Fp - Am) (3.80)

It is easy to see that as the random term w, appears only in the second term and in a linear way, the
term AU,rr . (Am) is also a random Gaussian variable.

Individual ambiguity probability

It is well-known that for a random variable distributed as ¢ N ({},c€), we have,

p(¥ <0)=@Q (%) (3.81)
where function () is defined as,
L [T
Q) == /t e~ (3 gc (3.82)

Then, the ambiguity probability defined in (3.75) can be also expressed as,

Pamb (Am) = p(A¥yp . (Am) < 0) (3.83)
E[Upp.. (m = A
- Q Wart.e (m = Mo + Smn) - (3.84)
E¥yr,e(m=mg+ Am) — E[¥ 7 . (m =my+ Am)]]
where it can be shown that,
E[¥y1.. (m=mo+ Am)] = Am?F? [R;l ~R,'A(ATR;'A)” ATR;l] F,,Am (3.85)

E[‘I'ML,C (m =mgy + Am) — E[‘I’MLC (m = mg + Am)]]2 = 4E[‘I!ML7C (m = mg + Am)] (386)

So, the final ambiguity error probability becomes,

i
Pamb (Am) = Q D) (387)
where,
_ —1
R, = [R;' - R;'A(ATR;'A) "ATR;'] (3.88)

Some conclusions about this expression (3.87) are:

e The term F,, Am shows the time-offsets produced by the ambiguity given a certain Am. This can
be considered the time-offset that allows to detect that this is an ambiguity point and not the real
spacecraft position.

e These time-offsets are "filtered” through the projection matrix R;fl/ ?_ Thisis why these time-offsets
are sometimes difficult to detect. The closer the result of R;fl/ *F,,Am is to zero, so much difficult

is ambiguity to detect.
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Common ambiguity error probability

The previous subsection has shown the exact expression of ambiguity probability given an individual
Am. Obviously, we are interested in the common ambiguity probability given a certain set of possible
ambiguity points. This is not as simple as desired due to the fact that the individual probabilities are
indeed correlated. Although the exact expression for the ambiguity probability can be found defining the
non-ambiguity N-dimensional space for the values of w,, we will present now an upper bound in order
to show some results in the simulations section. The exact expressions are really tedious and they will be
not presented for clarity reasons.

The used upper bound consists in assuming independence between ambiguities. This can be also
understood as the union bound of all individual ambiguity probabilities. The final expression of this
approach can be formulated from (3.87) as,

b Am) =1= 5@ (5 R, am]) (3.59)
Ame[Am].,.
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Chapter 4

Stochastic Signal Model

The understanding of the signal model and the establishment of a useful notation to characterize the
pulsar signal is the prior step to the formulation of algorithms and associated performance bounds. In
this chapter, broadband and narrow-band models for pulsar signals are elaborated in terms of stochastic
cyclo-stationary processes. Cyclo-stationarity refers to the periodic variation in the pulsar signal statistics,
which completely captures the stable pulsating nature of the source. The complete scheme is shown in
figure (4.1).

The following conventions shall be used for radio and X-ray pulsars:

e Radio Pulsars: signal processing for radio pulsars is all performed in baseband, after down-conversion
from the filtered passband signal at the antenna output. Signals are represented in terms of the in-
phase and in-quadrature components, z;(t) and z,(t) of the pulsar passband signal at the center
frequency f.. The pulsar passband signal is represented as x(t) = z;(t) cos(27 fet) —x4(t) sin(27 f.t) =
Re (b, (t)e’*"/<t), with the baseband equivalent signal b,(t) corresponding to the receiver output
and containing the in-phase and in-quadrature components expressed as by (t) = z;(t) + jz,(t).
This representation allows to reconstruct the original passband signal z(¢) and hence preserves all
information of interest. The structure of the receiver is shown in figure (4.1).

e X-Ray Pulsars: due to the nature of the detector, only real number notation is necessary.

It will be shown that complete experimental information is not available to characterize the second-
order statistics of the pulsar signal. To this purpose, a detailed study on the correlation matrix of the
pulsar cyclo-stationary process has been carried out. This will lead later to reasonable simplifications in
the evaluation of timing estimation algorithms based on the available experimental data.

The second part of this chapter considers, in lesser extension, X-ray pulsars. Similar analyses as found
in the correlation matrix of radio-pulsars carry over to the cyclo-stationary emission probability of X-ray
pulsars.

4.1 Broadband Model of the Pulsar Signal

We examine the experimental model of the pulsar signal and the theoretical model of cyclo-stationary
processes used to match the experimental data.

4.1.1 Experimental Model

Physical measurements of pulsar signals have established the following features:

e Let z(t) be the received noiseless pulsar signal, with x(¢) a cyclo-stationary! stochastic process in-

Leyclo-stationarity refers to the periodic variation of the signal statistics. As an example, for stationary processes, the
autocorrelation function rzz(t,7) = Ex*(t)x(t + 7) = rzz(7), is a function of the delay 7 only, while for cyclo-stationary
processes, Tz (t,7) depends on 7 and is periodic in ¢. This will be developed henceforth in more detail.
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Figure 4.1: (Above) Depiction of the signal processing scheme for generating the in-phase and in-quadrature
components of a passband radio signal at the central frequency f.. (Below) Equivalent representation in complex
notation as used in this report. This scheme, known as IQ-sampling, is conceptually useful as background for
understanding the operation of the receiver. In a technological implementation, IF-sampling (not shown) would
be used.

duced by the pulsar rotation. We will denote the inverse of this rotation frequency as the pulse
repetition period (PRP). Frequencies associated with periodic variations of signal statistics are de-
noted cyclo-frequencies. At this stage, we are not yet considering effects such as slow-down or orbital
perturbations on the pulsar signal. These effects will be incorporated later on as modifications to
the cyclo-stationary model of z(t).

Let T be the PRP. Then, each period py(t) = z(t + kT)II(t/T) describes? a broadband pulse so that

z(t) can be expressed as,
“+o00

2(0)= 3 plt—kT)

k=—00

where each random py(¢) is constituted by sub-pulses. The mean power profile of pg(t), typically
known as the pulsar pulse profile, is defined as,

o2(t) = E|z(t+kT)] T(t/T) (4.1)
Eylpr(t)]?

2TI(t) is the unitary pulse: II(t) = 1 in |t| < % and II(t) =0 in [t| > %
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The term az (t) depends on t but not on the index k due to the cyclo-stationary nature of the process.
This is still defined on the noiseless broadband signal z(t), rather than on the corresponding analyzed
sub-band component.

e modifications to the model in (4.1.1) may be expressed as,

+o00

o(t)= Y pr(t—kT — o(t))

k=—00

with p(t) incorporating perturbations of whatever nature, as orbital motion. As only solitary pulsars
are considered in this study, o(#) only incorporates slow-down and other effects.

e due to dispersion in the interstellar medium, the propagation channel introduces a delay at each
component frequency defined as,

T(f) =T —D(r)f*

with D(r) a dispersion constant depending on the distance r from the pulsar. After propagation
and for each analyzed band of z(t), the cyclo-stationary model is still valid. This effect will motivate
later the consideration of a narrow-band model of the pulsar signal and multiband analysis, where
T(f) may be considered constant within each sub-band.

4.1.2 Generic Theoretical Model
The generic broadband model of the (real) pulsar signal is expressed as,

+o00

CU(t) — Z ay (t)ej27rkozt
k=—0o0
Takh (&t+T) = ropr(T) = E{aw (t+ 1)aj(t)} (4.3)

with {ar(t)} a set of jointly stationary correlated processes and a = 1/T the cycle frequency. Each a/(t)
can be generated by spectral shaping of a white process wy (), where the members of {wy(t)} are also
jointly stationary correlated,

ar(t) = wi(t) *h(t)
Tw,k k' (t,t+7’) = Tw,k,k (T) = E{wkr (t+7')’u}]:(t)}
ht) = aSIH;Z?t)
H(f) = H(f/a) (4.4)

The spectral shaping filter H(f) is a frequency rectangular function common to all wg(t). The pulsar
profile o2(t) is determined by the set of correlation functions {r. g (7)}.

4.2 Subband analysis of z(¢)

We derive here the signal structure of a receiver tuned to a generic central frequency f. which analyzes
a given subband of the broadband signal z(¢). As a particular case, it will be shown how the ay(t) can
be recovered from z(¢). The generation of the in-phase and in-quadrature components from a central
frequency f. of the analysis band is performed as,

b(t) = (x(t)e 27I0) x g(t)
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with g(t) the impulse response of the analysis filter and * the convolution operator. Then,

“+o00
b(t) = / g(r)z(t — T)e 2= qr

— 00

+o00 ] 00 )
— / g(,[.)efg%rfc(tf‘r) Z ak(t _ T)e]2ﬂ'ka(tfr)d7_

— 00

k=—oc0
400 ] +o00 )
= Z 632”(*’%”“”/ (Q(T)e*ﬂ”(*f“*ka)r) ay(t — 1)dr
k=—oc0 -0
+w . .
= Z ed2m(—fetka)t (g(t)e*ﬂﬂ(ffﬁka)t) % ap(t) (4.5)
k=—00
Now, setting ay (t) = wg(t) * h(t), we have,
+00 ]
bt) = D bi(t)ern Ik
k=—00
b(t) = (g 2R s (1)
= ((g(t)e*ﬂ”(*f“*ka)t) * h(t)) * wy, ()
= R'(t) xwi(t) (4.6)

which is stationary, where the filter h'(¢) has a frequency response H'(f),

H'(f) = G(f - fo+ka)H(f) (4.7)

Equation (4.5) expresses that, in general, b(¢) has components at frequencies — f. + ka. This expression
provides the baseband signal structure observed by a receiver tuned to the central frequency f..

As a particular case, to proceed to show how the components ay(t) can be recovered: setting f. =
kea = k. /T and g(t) = h(t), we get,

H'(f) = (T f)6 1. (4.8)

in terms of the Kronecker delta, which means that only a filtered version of the component of interest is
recovered when k = k.,

b(t) = b (t) = h(t) * ar.(t)
But as I*(T'f) = II(T'f), we have that h(t) = h(t) = h(t). Hence,

b(t) = i, (t) = h(t) * h(t) * wg, (t) = h(t) * wg. (t) = ak.(t)

c c

4.2.1 Sampling

The analog signal b(¢) within the analysis band is sampled at the sampling frequency fs = 1/Ts to obtain
the discrete time (quantized) signal b[n],

b[n] = b(nTy) (4.9)

Oversampling is performed to avoid aliasing: fs > 2B, with B the bandwidth of b(¢). The sampling
procedure herein described corresponds to IQ sampling, but suffices for the feasibility analysis. IF sampling
would be used in a real implementation.
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4.3 Model of Correlation Matrix: Pulsar Signal

Synchronization algorithms (Phase and Pulse Arrival Time Drift (PATD) Estimation) for the pulsar
signal z(t) will be shown to require a model for the pulsar correlation matrix corresponding to different
samples of z(t). We will provide first a generic model for the correlation matrix of an analog cyclo-
stationary vector process x(t), to be used for deriving the correlation matrix of the discrete (sampled)
cyclo-stationary process z[n] = z(nTs), with T the sampling period. We will consider the case when the
sampling frequency is a multiple of the cycle period T, and the case where due to the spacecraft speed,
the sampling frequency is not a multiple of the cycle period.

4.3.1 Analog Fourier expansion of the correlation matrix

A Fourier model for the correlation matrix of a cyclo-stationary vector process is derived in this section.
In accordance with the previous section, a cyclo-stationary vector process x(t) of cycle frequency a can
be expressed from a set of stationary vector processes ay(t) as,

+0oo
X(t) = Z ag (t)€j2ﬂ—kat
k=—oc0
Ra,k,k’,t,tJrT = Ra,k,k’,‘r = E{ak/ (t + T)aI];I (t)} (410)

with Rg i #,- the corresponding correlation matrices. We construct the correlation matrix of the process,

R.(t) = E{x()x"(1)} = EY aw(naj (e * 1
.k’
— Z Ry ki Oej27r(k'7k)at
.k’
400 ]
— Z ej27rlat Z Ra,k,k’70
l=—00 k' —k=I
+o0
= ) R’ (4.11)
l=—00
Ry, = > Rarwo (4.12)
k' —k=l

In equation (4.11), matrices R,, are precisely the Fourier coefficients in the expansion of R, (t) at the
cycle frequency la =1/T,

1 /2 —j27la 1
Ral — ?/T/2 Rm(t)e Jj2 tdt: T]:[Rz(t)]f:l/f]‘ (413)

with F[-] denoting the component-wise Fourier transform of the corresponding matrix.

4.3.2 Discrete Fourier expansion of the correlation matrix
When the analog complex baseband signal z(t) is sampled at the frequency fs = 1/Ts, with Ts the
sampling period, a vector process x[n] can be defined by stacking N consecutive samples of z(t) as,

X(t) = [.’L‘(t),l‘(t—Ts),--- 7$(t_(N_1)TS]T

x[n] = x(nTj) (4.14)

Setting @« = 1/T = 1/NrT;, with Np the number of samples per period (the length N of x[n] does not
necessarily correspond to an integer number of periods), we get,

nTs

+o0 “+o00
R.[n] = > Ree”' T = Y R, % (4.15)

l=—o0c0 l=—0c0
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Setting [ = Iy Ny + I, with —0o < I3 < +00 and 0 <[y < Np — 1, we get,

Nr—1 400
_ E J27 ;= (li N7 +12)
R.[n] = Z R‘”lNT+l2€ T

l2:0 11:700

Nr—1 —+o0
27 <p—1

l2:0 l1:700

Nr—1 )

= D Rgfl]e™¥r"

12=0

+00
Ra[l2] = RallNT+l2 (4.16)

[1=—

Therefore, once the process has been sampled, only a finite number of terms is required to express R[n].
The matrices R,[l2] can be obtained from R, [n] using the Discrete Fourier Transform (DFT) as,

1 = 7'27rl—2n
R[] = + > Ry[nle 27~

n=0

which is applied component-wise on the matrix elements.

4.3.3 Detailed structure of the discrete correlation matrix

The detailed structure of the correlation matrix for the broadband signal cannot be completely determined
from the available experimental data. Traditionally, radio-astronomy measurements have only provided
information on the average power profile of the pulsar signal and on its average spectral power density
ratio. These measurements, which have been performed via sub-band analysis of the pulsar signal, are
envelope-based measurements. The envelope of a passband signal of a given bandwidth, e(t), is defined
as the modulus of the equivalent baseband signal: e*(t) = z7(t) + 23(t) = [b.(t)|?, in terms of its in-
phase and in-quadrature components z;(t) and z,(¢t). As we have seen, complete characterization of
the correlation matrix requires evaluation of expectations of the type E{b,(t + 7)b%(t)}, which are not
available. The approach taken in the timing estimation chapter consists of modeling correlation matrices
as diagonal matrices. This is reasonable if the examined bandwidth is sufficiently narrow to guarantee that
the spectral power density is approximately constant. Variations in the spectral power density within the
band of interest always appear as off-diagonal terms in the correlation matrix of the process. The procedure
to extrapolate results when processing wider bands is justified later in the timing estimation chapter (see
section (5.1.7)). Under these conditions, the correlation matrix R,[n] and its spectral coefficient matrices
R,[l2] in equation (4.3.2), become diagonal when considering a narrow-band sub-channel of the pulsar
signal. In particular, the diagonal coeflicients of R, [n] correspond to correlative samples of the average
power profile o2 (t).

4.3.4 Conclusions

Apparently, it seems that not enough experimental data is available to establish the broadband cyclo-
stationary model of the pulsar signal. Hence, we will try to assess synchonization algorithms in the
presence of imperfect knowledge of the signal model (full characterization of the signal model would lead
to increased performance). In spite of this, for multiband processing, the pulsar spectral variation may
be considered negligible within each subband, so that the subband correlation matrix is approximately
diagonal. This fact will be used in the assessment of timing algorithms.
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4.4 Model of the Noise Correlation Matrix

4.4.1 System Noise

The correlation matrix of Gaussian system noise can be inferred from the system temperature provided
in the previous chapter. A non-uniform trend in frequency is expressed as off-diagonal terms in the
correlation matrix of the noise. For the considered central frequency and bandwidth, 1 GHz and 200 MHz
respectively, it is reasonable to assume that system noise is white (its correlation matrix is diagonal). This
will lead to simplifications in the timing estimation algorithms.

4.4.2 Solar and Jovian Radiation

The Sun and Jupiter constitute strong sources of RF interference, which further degrade reception SNR
through antenna sidelobes. The level of interference is dependent on the location within the solar system,
so that in the vicinity of the sources the receiver is expected to enter a ’blind’ region in terms of posi-
tioning. This type of interference points to the need of a multibeam antenna capable of adaptive sidelobe
cancellation. In a more detailed study location algorithms should be extended to spatial processing. This
study will solely provide the degradation SNR expected from both sources in terms of distance. A suitable
dB margin will be considered to account for residual Solar/Jovian RF interference after cancellation, so
that overall system noise is still considered white for the band of interest.

4.5 Signal Model for X-Ray Pulsars

X-Ray pulsars are characterized by a cyclo-stationary probability of emission. The nature of the received
signal is expressed in terms of a Poisson point process as described in the following sections. The cyclo-
stationary characterization of the Poisson process is dealt with in the chapter on timing estimation for
X-ray pulsars.

4.5.1 Poisson Point Processes

A stationary Poisson point process is characterized by its mean event density as,

A= lim @
T—o0

with T the observation time and n(7T) the number of events in 7. The event duration is always assumed
to be zero. The addition of two independent Poisson point processes (X-Ray pulsar single photon arrival
and Galaxy X-Ray Background) has an equivalent arrival density A = A, + A,. In an ideal setting, each
event (Poisson point) has zero duration. The time resolution of the X-Ray detector is such that if more
than one photon arrives within a given time-bin, it is detected as a single photon.

The probability that & Poisson points occur in an interval of time T} is provided by the relationship,

(ATy)* AT,

Pr(k) = i

Hence, we have to distinguish two cases:
1. no photon has arrived in a given time-bin of duration T}
2. more than one photon has arrived in the given time-bin.

The respective probabilities are,

Py e b (4.17)
P, = 11— (4.18)

Depending on A, a sufficiently low T} has to be considered not to saturate the detector. In our case, the
arrival density A is cyclic: A = A(7).
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4.5.2 X-Ray detector description

X-Ray sources have a photon arrival time density spectrum in terms of the frequency v/energy e of
individual photons: € = hv, with h Planck’s constant. FEither of the following definitions is possible,
although the latter is commoner,

_a
T dv ’

)

Sx(v) =

Sx(e)

The X-ray detector is tuned to a given band (measured in KeV), so that the photons arrival density is

evaluated as,
ec+E/2
A :/ Sx(e)de
ec—E/2

around a central energy €. and an energy bandwidth E. Photon counting is performed using a time base
of resolution T},. Therefore, T}, has to be sufficiently low so that the detector is not saturated. Typically,
Ty < In Poftlh, with Pp ¢n a suitable threshold probability of non-event (not to saturate the detector: a
photon is always detected). In its turn, Sy(€) can be obtained in terms of a directional density per solid
angle as,

Sxa(e) = \ Sx(e,0,0)F (0, $)d (4.19)

with F'(6, ¢) modeling the focalization properties of the X-ray detector. In establishing the photon arrival
density spectrum of the pulsar and the X-ray background, the pulsar is considered a point source with,

Sx(€,6,9) = A(€)d(0 = 0,)0(¢ — ép)

with (6, #p) the angular coordinates of the pulsar and §(-) Dirac’s delta. On the contrary, the X-ray
background is considered a distributed source with a continuous Sy (¢, 6, ¢) (in fact, a spatial distribution
of point sources).
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Chapter 5

Timing Estimation for Radio Pulsars

This section analyzes synchronization algorithms and associated performance bounds for radio pulsars.
Phase or Time-of-Arrival (TOA) estimation and Doppler or Pulse Arrival Time Drift (PATD) estimation
are considered. The low signal-to-noise-ratio (low-SNR) regime is assumed to be consistent with the small
antenna assumption: increasingly larger antennas can boost the reception SNR but are not feasible for
location on small to medium-sized spacecraft. In this low-SNR regime, it is found that the performance of
algorithms is controlled solely by the second order statistics (correlation matrix) of the pulsar signal, which
can be (partially) inferred from experimental results. Hence, the average power profile within the pulsar
period is used as the only available information on the signal of interest. Noise appears as the dominant
factor of degradation of timing estimates, so that for small antennas, a large bandwidth and a long
observation time (many pulsar periods) are necessary to recover useful timing information. Knowledge
on the micro-structure of individual pulsar pulses, which averaged constitute the power profile, is not
necessary in the low-SNR regime, as it is related with statistics of order higher than two. Only for large
antennas does this micro-structure constitute a factor of importance in the evaluation of the timing error,
which adds to the effect of additive noise (less important for large antennas). The equations derived
in this chapter are not applicable therefore for large antennas. Rather, they are optimistic as they do
not consider the timing jitter of individual pulsar pulses, irrelevant in the low-SNR regime. In general,
it is found that algorithms and performance bounds for the high-SNR regime are mathematically more
complex to analyze.

5.1 TOA Estimation

This section applies the Maximum Likelihood (ML) Criterion! to the estimation of the pulsar TOA. We
assume that the signal model is a cyclo-stationary signal immersed in Gaussian noise. In a first simplified
approximation, the following considerations are made:

e both polarizations of the pulsar signal are sampled in a given bandwidth at an integer number of
samples per period. Processing both polarizations is necessary as pulsars are polarized.

e the pulse repetition period (PRP) is assumed known.

e the 2nd order statistics, or average power profile, of the sampled pulsar signal is assumed known.
Partial knowlege results in some performance degradation, adding to the loss budget.

e the signal to noise power ratio is very low (small antenna assumption). As will be shown, this only
requires knowledge of the second order statistics of the signal of interest.

e only one pulsar signal is present. It is assumed that other pulsars are equivalent to noise as syn-
chronous averaging is done for the pulsar of interest.

IThe ML criterion was already introduced in the geometry chapter for the linear case, where measurements and parameters
are related through a linear equation. In the timing estimation case, the relationship is non-linear, which complicates the
analysis and introduces degradations at very low signal-to-noise ratios.
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e the acquisition regime (no prior knowledge on parameters) is assumed.

It is assumed that all sampled data is stacked into vector x, optionally using the upper and lower halves
for each polarization, and each half including all periods of the pulsar signal in a given time span. Then,
the signal model can be expressed as,

R, = E{xx"}
X=p-+n R,() = E{pp"} R, (1) = Ry(1) + R,
R, = FE{nn"} (5.1)

with p and n the pulsar and noise vectors, R,(7) the cyclic autocorrelation matrix of the pulsar signal
vector and R, the stationary autocorrelation matrix of the noise vector.
The data vector x may contain:

e one, or both polarizations. In the latter case, x
of one polarization.

T = [xT xI'T with x; the vector containing samples

e a wideband signal sampled at a high sampling frequency, or sub-vectors corresponding to several
sub-bands of the pulsar signal. In the first case, it should be taken into account that the pulse profile
has experimented interstellar dispersion and is broader than when observed in smaller bands. In
the latter case, x” = [x{,xj,---,xx |7, with x; the vector containing samples of one out of N,
non-overlapping channels.

In the first sections of this chapter, it will be assumed that a channel of sufficiently narrow bandwidth
(in terms of variations of the spectral power density and negligible interstellar dispersion) is processed.
Extension to larger bandwidths and consideration of interstellar dispersion will be considered later.

5.1.1 Establishment of Performance Bounds

It is known that the ML criterion asymptotically (for large data records) approaches the performance
of the Minimum Variance Unbiased Estimator? of a parameter vector. A bound to the variance of the
ML parameter estimates, the Cramér-Rao Lower Bound (CRLB), is the inverse of the Fisher Information
matrix, which is achieved in the small error region (high SNR). For a fixed data record length, and
when the signal to noise power ratio (SNR) decreases, the variance of the ML estimates departs from the
performance predicted by the CRLB (threshold effect). Tighter bounds, as Barankin’s Bound (BB), exist
for the low-SNR region, but are computationally expensive and difficult to derive. Barankin’s Bound is
reachable (there exists an estimator whose performance matches BB) and constitutes the largest reachable
lower bound to the variance of unbiased estimators.

Provided that the data record length is sufficiently long, the CRLB will be a close measure to the true
performance, and the parameter estimates will be Gaussian distributed with correlation matrix equal to
the CRLB. The asymptotic Gaussianity of the estimates justifies the assumption of Gaussian phase noise
adopted for location algorithms in the geometry chapter. A criterion to establish for a given data record
length L or SNR if the CRLB is tight or not, i.e. the evaluation of the corresponding L or SNR threshold,
is of interest and has also been addressed in this chapter.

5.1.2 Statistical Characterization of the Pulsar Signal

For the formulation of the ML criterion, the exact statistical characterization of the pulsar signal is
required. At this point, two possibilities arise:

e the pulsar signal is Gaussian with cyclic statistics. This may seem reasonable but to our knowledge
it has not been experimentally verified. In this case, the likelihood function of the data is expressed
as,

1 -
=X (R + Ry (7)) '

P = L R TR ()

2An estimator §(x) of a parameter § operating on the data vector x is unbiased when its expectation fulfils Ex0(x) = 0.
The estimator is of minimum variance when all other unbiased estimators 0’ fulfil that Ex|0'(x) — 0|> > Ex|Omv(x) — 02

99



e the pulsar signal is non-Gaussian with cyclic statistics. In this case, we will apply a more robust
approach: the low-SNR ML approximation.

We show that similar results in terms of the covariance of the timing estimates are found in both cases,
so that the Gaussian assumption for the pulsar signal is not critical at low SNR. Hence, when more
convenient, the Gaussian assumption has been used in deriving some results.

5.1.3 Cyclic Gaussian case

The ML estimate is produced by maximizing the probability density function of the signal conditioned on
the unknown parameters and evaluated at the current data vector x. The ML estimator for the Gaussian
case can be obtained as the following maximization,

A

7 = argmax, Inp(x|r)
= argmin. Indet (R, +R,(7)) +x (R, +R,(1)) 'x (5.2)
In the previous equation, we can distinguish two cases:

e true ML estimate: the data vector x is fixed and a value of 7 is sought to minimize the previous
expression.

e running ML estimate: the model variable 7 is fixed and the data vector x is time-shifted according
to a delay variable 7'. In this case, only the second term is necessary.

Only true ML estimates are analyzed in this report, for which the Cramer-Rao bound applies. Note in the
previous equation that the first term is specific to the Gaussian statistics and is independent of 7, while
the second term alone can be considered itself an ML estimator 7 such that,

7 =argmin, Z(x|r) =x" (R, +R,(7)) " x

We are not considering power estimation. If this were the case, the first term should be incorporated into
the ML formulation.

Cramér-Rao Lower Bound

We provide a general expression for the Cramér-Rao Lower Bound (CRLB) in the low-SNR range, where
T, refers to time units in samples,
1 -1
CRLB Ts = =
T = BV mpam)P BV p(ein)
1

ir (R (72) - Vo Ry ()

where the trace operator® is used. It should be understood that the previous expression is evaluated at
the true parameter. In this case we will assume that the correlation matrix of the data is perfectly known
except for the true delay 7.. Otherwise, noise power and pulsar power should also be incorporated into
the estimation procedure. This might be of interest in more refined procedures where the pulsar signal is
subject to slow power variations. For a sufficiently narrow channel, the correlation matrix of the pulsar
signal, R,(7s), can be assumed diagonal, with diagonal elements delayed sampled versions of the average
power profile o7 (t),

(5.3)

Rp(ms =n)kw = o,((n—k)Ty)-6(k — k') (5.4)
with 0(-) Kronecker’s delta. To derive a more specific expression for the CRLB, we introduce now the
cyclic model of the correlation matrix into the calculations,

Nr—1 . N
Ry(r.) = Y Ralkle”™7™ (5.5)
k=0

3The following property is used: a’ Be = tr(Bca”'), with a and ¢ vectors and B a matrix.
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where the Fourier matrix coefficients are Ra[k] = S [k]DF, with D a diagonal matrix of components
[D];; = e’ TNy corresponding to the frequency-domain equivalent of the delay operation of each ele-
ment in the diagonal of R, (7s), and S[k] the discrete Fourier transform coefficients of the sampled power
profile o7 (t).

An approximate computation of the CRLB for the low-SNR range and white noise case R, = 021
yields,

1

fr ((R;lvTRp(r))2) tr ((R;le‘er(T))2)

= ) tr (R, '"RaK]R,"Ra[K]) (—471’2—

k,k'
_ 1 , k' [ g2k K\ jomkgi s
- ZU%S[k]S[k]tr(D ) w5 ) e
k, k'
A . ’
_ Z = S[k k]6k+k]< ka>eJ2ﬂkz¢$T
kk’ Tl T
k‘2
= —42 [—k]4n? e (5.6)
In k

where the notation Y, is over the interval —3 Ny < k < 1 Np. As S[k]S[—k] = |S[k]|?, we finally get the
CRLB,

1 4
n (5.7)

LB(1,) ~
CRLB() = g L5, 1STHPR

A slight modification in terms of previously introduced parameters yields,

CRLB(r;) ~ - 2\ (5.8)
T B \az,) '
4
2 Ip,T 1
T T T 212 (5.9)
NZ >k IS[E] Pk S ‘ E’g} N2

with +y, a shape factor of the pulsar pulse, independent of its power, and O'z’T the average power over the
pulsar period. The number of samples L can be expressed from the observation time T, and bandwidth
B as L =T,B. We have used the property,

S[0] = 0'p7T N, ZO’
o2 = Ry(W)h (5.10)

The usefulness of equation (5.9) will be clear later when establishing the equivalence with the CRLB at
low SNR for a non-Gaussian pulsar statistic. An expression to the CRLB more related to the pulsar
database parameters is established in the following section.

The CRLB and the Pulsar Quality Factor

In this section, we will define a quality factor to measure the goodness of a given pulsar in terms of the
equivalent positioning error, which corresponds to the previous Q(f) plots found in the Pulsar Chapter.
This quality measure is dependent on the exact power profile of the pulsar. As a simplified model is taken
for this profile, the quality factor results we derive should be considered an approximation to the true
value. To this purpose, we will assume an approximate pulsar profile ag (t) in terms of the parameters
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Figure 5.1: Definition of the pulsar profile.

available in the database (see figure): the pulse durations at 10 % and 50 % peak intensities, respectively.
The expression of the CRLB is valid for the low-SNR range where o7, >> o7 (t),

NiNr—1 52 2
tr ((R;l(r) -VTRp(T))2) ~ Z <Vt p(t)>
t=iT,

. o2
i=0 n

1 S\ 2 S\ ?
—2 — | N — ] N. 5.11
P <<T1 > 1+ <T2 2 ( )
where Ny = T /Ts = Ty B is the number of samples in 7} and T; = 1/fs = 1/B is the sampling period

or inverse of the sampling bandwidth B. Then, using Ny = T,,/T, with T, the observation time and T
the pulsar period, the expression for the CRLB becomes,

|
=z

2T, B (S? S2
CRLB™! = i s B
(™) Tol <T1 7
(5.12)
Finally, the CRLB can be expressed as,
1/2 (o2’ ol
CRLB(r) = (—”) T2 (5.13)
TOB Ug i_? + i_g
Now, according to the definitions of the pulsar database, we set T; = %(Tw —T50) and Ty = %T50, and
Sl = ‘527
1/2 (o2\’ ol
LB = o) L TTee -2
CRLB(r) T,B <ag> of'g2
1
Tt = —/—— 5.14
ef T1,1 + T2,1 ( )

As 25 is the peak intensity, its relationship with ag (average over the pulse duration) and 012),T (average
over the pulsar period) is,

V)

STy + 28115 + ST

_ 5.15
r 9T, + 215 (5.15)
2T, + 2T: T
2 _ 2 1 2 _ 2 P
Up,T O'p . T = O'p . T (516)
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with T}, = 2T + 275 the complete pulse duration,
1
Tp = Z(STlo — T50)

Hence, for S; = Ss, the term aé/Sf becomes,

o (Ti430 )\’ (5.17)
Sz \2Ty + 2Ty |

Finally, as L = T, B is the number of processed samples in an observation window 7, and bandwidth
B. The CRLB can be defined in terms of the per-sample CRLB, CRLB(7), as,

CRLB(r) = B CRLBs(7)

CRLB,(r) = % %)2 -TTefg—jZ (5.18)
and pulsars can be selected according to the quality factor Qs = {/CRLB; 1(T). For the parameters
provided in the pulsar data-base, we get,

log;,@ = :_r§z|dB : liO + %108;10 TLTef + log,, Sz—\g/ﬁ
e ) 519
3 = v o

or, in terms of the average pulsar power,

O';T 1 \/T/Tef Sl\/5 (5 21)

o2 dB'1_0+108§10 T, +log, o2

log,,@ =

It has been found more useful to refer the quality factor to the position error normalized to o, = 106
m. for L = 10° samples. Then,

o,V L

c

Q=0Q;

(5.22)
The resulting expression is that which appeared in the Pulsar Database chapter.

The definition of this quality factor is asymptotically valid for large values of L, when the CRLB
applies and the timing error is practically unbiased and Gaussian distributed. Hence, for any L or SN R,
position accuracy results obtained from () shall have to be checked for compliance with the threshold.
The procedure is examined later in the Performance Evaluation section.

5.1.4 Cyclic non-Gaussian case

In the non-Gaussian case, we will derive an estimator independent from the statistics of the pulsar signal.
It will be shown that at low SNR, results are equivalent to the assumption of Gaussian statistics for
the pulsar, requiring statistical moments only up to second order. The likelihood function of the data x
conditioned on the pulsar signal and the unknown phase can be expressed as,

1 —x-p)"R;'(x-p)

PXITP) = TR,
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In this application, the pulsar signal is unknown but not its statistics. Therefore, the likelihood function
is modified to,

—(x— HRp-1 X —
p(x|7) = Epp(x|7,p) = mgpe (x—p)"R(x—p)

in terms of Ey,, the expectation with respect to the pulsar signal. Now, the low-SNR assumption is applied
up to second order,

1

H H
p(x|t) ~ mEp (f(x) = Vxf(x) - p—P" Vi f(x) + " - Vi Vi f(x) - p)  (5.23)
fx) = e R
fo(x) — _e—xHR,le . XHR,,_LI
VanVif(x) = e Bix (R, 'xx'R;' - R;") (5.24)
Hence,

(xl1) = —m——e R M (x|r) ~ p(x|7)

pa(x|T ﬂLdetRne T) ~ p(x|T
M(x|r) = 1-tr(R;'Ry(7) +x"R,;'R,(1)R;'x (5.25)

as Epp = 0. If the other parameters are known, M (x|7) has to be maximized. Note that the term
tr (R;'R,(7)) does not depend on 7 for a cyclic model of R,(7) (assuming R, (7) diagonal and white
noise). To prove this, we consider L x L-matrices, with L = NpNj.

NT—l *
R,(r) = Y Ralkle”™~r"
k=0
NT—I . X
tr (Ry'Ry(r)) = ) tr (R '"Ralk]) e/”"n77
k=0

= Y S[ir (R, 'D*) > N7

R[k] = S[k|D* , [D]; = ¢ 977!
Nr—1
= S[k]tr (o, *DF) TN
k=0
= L-S[0]/o2 (5.26)
tr (D¥) = L-4[K] (5.27)

In the case of stationary noise, the term tr (R; 1Rp(7')) is asymptotically independent of 7 as R,;' is
asymptotically Toeplitz.

CRLB Evaluation

It is more suitable in this case to evaluate the low-SNR CRLB approximation in terms of the second
derivatives,

-1 -1
ExV2 Inpy(x|7s)  ExV2 In M (x|7s)
-1

" & (Rn Ry()R: V2R, (7)) (5.28)

CRLB(ry) ~
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Using here the Fourier model of the correlation matrix,

NT—I
Ry(r) = Y Ralke™ ¥
k=0
2 2k2 J2m = Te
VZR,(1) = > Rualk] i (5.29)
k T

as well as the white noise assumption R,, = 021, we obtain exactly the same result for the CRLB as was
derived before in the cyclic Gaussian case,

2 2
CRLB(7s) L (”n ) 2

" 4n2T,B \opr p

Both CRLB’s coincide (asymptotically for large L) even if the white noise assumption is not used. This
result is expected as the matrix used in the Gaussian metric can be aproximated in the low SNR region
as,

(R,+R,) "~R;'-R,'R,R,"

In the following, the metric for the non Gaussian case shall be used.

Discrimination of the pulsar from noise

Now we examine the mean and variance of the new metric Z(x|7) = xTA(7)x, with A = R;'R,(7)R;!.
This will help determine the necessary integration time where the pulsar signal starts to be distinguishable
from noise. As is also commented later in more detail, the distinguishability threshold approximately
determines the operating region where the previously derived CRLB is applicable. Note that for this
metric, knowledge of noise and signal power is not necessary but it will be for generating reliability
information. For this term, we have x = p + n, and,

Z(x|r) = x"A(r)x (5.30)
= p"A(r)p + n"A(r)n + 2Re (p"A(7)n) (5.31)

We assume there is some synchronization error, so that the true delay is 7. Therefore, as the noise and
pulsar signal are not correlated, the expectation of Z(x|7) is,

Z(r,7") = ExZ(x|r)
= tr (R,'R,(7)R;'R, (7)) +tr (R,;'Ry(7)) (5.32)
Zp(r,7') = tr (R;'R,y(1)R;'Ry(7)) (5.33)

As we have shown before, the second term in (5.32) is independent of 7. Hence, only the first term,
Zp(7,7") can provide timing discrimination. Further, when |7 — 7'| > T}, with T, the duration of the
pulse, we have Z,(7,7") ~ 0. To evaluate the quality of the metric, this discrimination has to be compared
with the level of equivalent metric noise. The equivalent noise covariance is evaluated as,

Ry(r,7") = Ex|Z(x|r) = Z(r,7)
= Ex|ZxIn) - 1Z(r, 7)) (5.34)
where,
Ex|Z(x|7)” = Extr’ (R;'Ry(7)R;; ' xx")

Extr (R, 'R, (1R, 'xx") ® (R, 'R, (7)R; "xx"))
= tr ((R;'R,y(1R,;,' @ R,,'R,(1)R;; ") Ex (xx" @ xx"))
= tr (R Ry(1R;' @ Ry 'Ry (1)RY) Rayp(7)) (5.35)

with Ry ,, containing all fourth-order moments of the pulsar signal and ® denoting the Kronecker product.
As this expression is rather awkward, we have assumed Gaussian statistics for the pulsar signal to arrive
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at a more informative expression. To evaluate Ey |Z(x|7)]* = Fx |XHA(T)X|2, we shall use the following
property: for a normally distributed random variable v and a positive definite matrix €, the following
equation is true,

EvIQv)? = tr’Q + (K — 1)trQ?

where K = 2,3 for complex or real data, respectively. Hence, setting x = Ré (t")v, we obtain,
B Z(x|7)” = 6% (A(T)R. (7)) + (K = Dtr ((A(DR.(7)°)

and,

h_ 1 P (ADR(T)
Ry(r,7) = .
AR tr ((A(r)R.(1))

which, expressing the traces in terms of the eigenvalues, it is easy to see that this ratio goes to infinity for
large L. The asymptotic trend is examined by way of an example.

Example: we consider the white noise case, R,, = 021, a diagonal R, and low SNR. We consider
that 7 = 7’ to evaluate the quality of the discrimination at the optimum time and therefore we drop the
dependence of matrices on time variables. Then,

tr (AR,)?) ~ tr((AR.)) =t ((R,'R,)°)
tr2 ((R;lRp)2)

Ry(r,7) = Kl_ltr((R,;lRp)Q) (5.36)

tr? (AR,)

Therefore, for the white noise case and making explicit the dependence on the integration length L, we
get,

', = Rz(r,7)

- T > oplk] (5.37)

with Ny = T,/T the number of pulsar integration periods, T, the observation time and T the pulsar
period. The number of samples per period, Ny, fulfils Ny = T'/Ts = T'B, with T, the sampling period
and B the corresponding bandwidth. The number of samples is L = NyNr = T,B. Hence,

1 1 et
I, = ————N/Np— ;
L & -1z TN, ]; op[k]
2 Np—1
1 U2T 1 T (74[k]
= — 2L — L (5.38)
(K -1) ("% ) Nt kz:(:) Oy

Hence, the pulsar will be distinguishable when I';, exceeds a given threshold, 'y, (Other type of criteria
may be established in terms of hypotheses testing theory). Then, the final equation is expressed in terms
of the number of integration samples and the average SNR as,

o2 5 ?
L. (p—> > (K -1Twép

2
On

4
Ip,T

& = — (5.39)
~ Sy oilk]

and &, a factor depending on the pulse shape. A more detailed analysis shows that this factor is propor-
tional to the duty cycle of the pulsar.
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5.1.5 Performance Evaluation: Regions of Operation

We consider the timing error behaviour of the ML algorithm with respect to the predicted CRLB. Several
regions can be distinguished in the corresponding timing error plots (see figures (5.2) and (5.3)):

e saturation region: the probability density function of the timing error is practically uniform over
1

the pulsar period and equal to its apriori value o, = ET.
e sub-threshold region: the variance estimation error departs substantially from the CRLB at SNR
below the threshold. The threshold decreases with longer integration times.

o CRLB region: the CRLB is a tight lower bound to the performance of the ML estimator, improving
at larger SNR’s. Within this region we can distinguish two sub-regions:

1. the low-SNR region where the previously derived CRLB applies.

2. the high-SNR region where the signal of interest is more powerful than noise. Here a lower
saturation is observed due to pulsar self-noise (random individual pulses). The timing error in
this region decreases for longer integration times.

The CRLB and the Threshold Effect

The CRLB is a valid, and tight, lower bound to the performance of the ML algorithm in the small error
region. When the ML function is maximized, equating its derivative to zero, it is assumed that noise
is located in the vicinity of the zero-crossing, where the derivative is approximately linear (small error
assumption). When noise is sufficiently high, or integration time is too low, noise causes the data to
enter the non-linear region of the ML derivative. Hence, we provide here an estimate of the threshold of
operation of the CRLB based on this assumption. It will be shown that the criterion is sensitive to the
pulse shape. In this context, we will use the S-curve defined as the derivative of the expected metric with
respect to the timing parameter 7. For a metric of the type Z(x|7) = x"A(7)x we get,

S(r) = ExV.:Z(x|r)
= tr(R,'R,(7)R,'V.R,(7)) (5.40)

Now, to evaluate the above expression at the zero crossing, we assume 7' = 0, without loss of generality.
Hence, its Taylor expansion yields,

S(r) = 87 + %5153%3 +o(7%)

we assume as value for the threshold, 7y, that point where the cubic term exceeds a given percentage of
the linear term. A more fundamental justification of this procedure is interpreting the threshold as that
point where the estimation error is no longer Gaussian, as the Gaussianity of the estimation error is a
fundamental property in the region of operation of the CRLB for a given integration time and SNR. In
comparing the variance of the estimation error with the S-curve, it seems reasonable to set as threshold
that point where the CRLB reaches a given value (which will depend on the S-curve and hence on the
pulse shape). This point may be calibrated for each pulse shape. Then, to determine the threshold of
the operation of the ML algorithm, we set 73, = CRLB(7). As an approximation, we establish an ad-hoc
percentage n such that,

1

S(gl)Tth + 55(53)713}1 = S(gl)(l — n)Tth

S(l)
= —677% (5.41)
So
Both derivatives may be calculated as,
Sy = (R, Ry (7R, VIR,(1))
SV = Ry R, (7 )R;VIR, (7)) (5.42)



In terms of the previously defined spectral coefficients S[k], we establish for the white noise case,

(1) _ L471'2 2,92
S0 = s LIS
k
L 167
S = N > IS[kIPE! (5.43)
n T k

where in these derivatives, time units have now been expressed in samples: 75. Hence, the threshold time
in samples, 7, ¢}, is expressed as,

G g ISP

= T = oo 5.44
T A g ISP o

Setting this value equal to the CRLB: Tf,th = CRLB(7;) yields the threshold condition for the integration
time and SNR,

2
1 2 1
CRLB(T,) = =7 (;”) SHP m
1) Tulg
(5.45)
and,
2\ 2 > ‘M 2K
(o k| S[0]| NZ
L - n > —— X 5.46
<U§7T> _(bp 6 ) ( )

which is a similar threshold as that derived for pulsar distinguishability from noise.

Comments: One consideration is important here. The above derivation has assumed derivability
of the S-curve, with continuity beyond the third derivative. The corresponding value for the threshold
is reasonable if higher order derivatives are not abnormally high. The double triangular profile used
in the derivation of the Quality factor does not fulfil this condition. Hence, in deriving an estimate of
the threshold, without resorting to calibration, we can either apply a smoothing function to the double
triangular pulse, preserving a similar shape as much as possible, or use the alternative equation based on
the minimum discrimination of the pulsar from noise, or the most conservative of both predictions. In
either case, both methods are ad-hoc. Nevertheless the threshold constant ¢, may be calibrated for any
pulse using a numerical simulation, and extrapolating the result to other values of L and SNR. Although
an approximated profile has been used in deriving results, the CRLB and its threshold are sensitive to the
true pulse shape and a more detailed analysis should use the true digitized pulsar profiles.

Gaussian Pulse: Evaluation of the timing error covariance is highly dependent on the pulsar profile.
For the sake of comparison with results obtained with the double triangular pulse, the CRLB and threshold
condition have also been evaluated for a Gaussian profile using the 50 % intensity duration Tso in the
pulsar tables. The CRLB is provided by the approximate expression,

2
1 O'2 2\/7_1' T50
CRLB(7) ~ n =72
=75 <037T> (2232 T

and the threshold condition has been calibrated to,

0.232
< - 2
CRLB(r) < 21112T50

which establishes the necessary lower bound on L - SNR?.
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Figure 5.2: Depiction of the low-SNR, CRLB (low-SNR, approximation used in this study to the true CRLB)
versus the true performance of the ML algorithm for timing estimation, obtained for a rectangular pulse profile
at 25% duty cycle. The units of root mean square timing error correspond to the normalization with respect to
the pulsar period T, plotted versus the average pulsar SNR in dB. The saturation region to the a priori error
at 1/4/12 and the high SNR floor determine the operating range of the ML algorithm. At the lower threshold,
the true performance departs from the low-SNR CRLB, and rises to the saturation. In the sub-threshold region,
timing error is no longer Gaussian and unbiased. The operating region of the low-SNR CRLB is valid above the
threshold and before the floor effect starts to be important at high SNR. Taking into account the SNR’s listed in
the database for the effective antenna area A. = 10 square m., timing estimation algorithms will never operate in
the floor (high SNR) region.

69



Ccovs

10° ¢ ;

10" &

©

10

|

<+— LOW-SNR CRLB

'\‘ '\ ,\\.\ TRUEMLPERFQ;
D O e g e e e S E

RMANCE

10 [A PRIORI ERROR TRUE GRLB
102k v THRESHOLD " .
: : X ]
T \\ % X 9 ‘
10° . R R/ R E
E N \\ E|
F < :
107 ! X
i
5| : HIGH=SNR NUMERICAk
10 & : (can.be.reduced
10°L HIGH-SNR FLOOR-© B < \
3 =
1070 * L ! ! I ! I | ‘
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

Figure 5.3: Depiction of timing error performance of the ML algorithm for a Gaussian power profile and several
integration lengths (different in factors of 100). The standard deviation of the timing error normalized to the
standard deviation of the Gaussian pulse is depicted versus the average SNR (dB) of the pulsar signal. The signal
statistics has been considered Gaussian. Several effects can be observed: (a) the threshold occurs at the same timing
error variance in all cases, which constitues an experimental verification of the theoretical threshold equations.
It can be observed how the timing error rises steeply below the threshold SNR. ; (b) above the threshold, the
true CRLB coincides with the performance of the ML timing estimation algorithm (for a low integration length);
(c) the true CRLB reaches a floor at high SNR for a finite integration length due to the intrinsic stochastic
nature of the signal; (d) only a finite grid of timing hypotheses is searched, so that a numerical floor occurs for
all sufficiently high integration lengths (this can be reduced or eliminated by refining the search algorithm using
gradient methods), where the numerical error is larger than the final noise-induced timing error; (e) the operation
region of the derived equations is contained between the high-SNR floor and the low-SNR threshold; (f) at very
low SNR, the timing error variance saturates to its a priori value. (g) note the influence of the 100 factors between
different integration lengths (number of processed samples): each time the integration length is increased by a
factor of 100, the corresponding timing error standard deviation decreases by a factor of 10.
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5.1.6 Square Timing Recovery

It has been shown previously that pulsar phase estimation can be carried out from maximization of metrics
of the type Z(x|7s) = x"A(75)x in the time domain, where the correlation matrix A(7g) incorporates
knowledge on the pulsar and noise signals, and 0 < 75 < N7 models an appropriate pulsar timing offset in
samples. Here, pulsar phase estimation 75/Np will be considered in the frequency domain to obtain sub-
sample resolution for the timing offset estimate. This will be precise if the pulsar profile is band-limited,
i.e. can be interpolated by a finite number of complex exponentials. If the pulsar pulse duration is small
w.r.t. T and the noise spectral density variations are not too large in the band under analysis, matrix
A (715) is reasonably approximated to a block-diagonal matrix of Ny x Ny blocks A,,(7s), with the discrete
time n evaluated at multiples of the pulsar period: n = nyNp. So that, in terms of the corresponding
subvectors x, of x, each containing a single pulsar period out of N periods, we have,

Nr—1
Z(x|1s) = XHA(TS)X = Z XIT—LIyNTAnl'NT (Ts)Xn, Ny

n1:0
Now, matrix A,,.n,(7s) admits a Fourier expansion as it stems from the correlation matrix of a cyclo-
stationary process,

Npr—1 ) N
Anl-NT(Ts) — Z RA[k]e]27rN—T(n1~NT—Ts)

k=0
Npr—1 ) N
> Ryfkle PTFr (5.47)
k=0

Therefore, substitution into the metric equation yields,

N[*l NTfl o X
Z(xlr) = > Xhng (Z Ru[kle™ “NNS) Xn, Ny
k=0

n1:0
Npr—1 Nr—1

= > e Nk  Ralk]xn, N,
k=0 ni1=0
Nr—1
< —jom k1,

= Z Y - € Nt (548)
k=0
Nr—1

ve = Y xb oy Ralkxn,.n, (5.49)

n1:0

with y;,0 < k < Ny —1 a compressed data sequence of N samples from the original L = Ny N samples,
which can be used in the previous equation to maximize Z(x|7s) in terms of 75. In the white noise case,
R 4[k] is found to be a diagonal matrix expressed as,

Ruk] = S[k]-D*
D], = e /2"¥:! (5.50)

So that the operation xI  Ra[k]x,, N, is in fact the S[k]-weighted DFT at the discrete normalized

7L1-NT
frequency k/N7p of the modulus squared components of each subvector x,,,.n,, and,

_ionrk
X, N RAK%n, Ny = S[H] Z |z(ny Np — i) e 7> Ve
=0

Nr—1 Nr—1 ) e
Yk S[K D (Z |z(n1 N7 —i)|2> e 2Tt (5.51)
i=0

ny =0

As an example, let matrix A(7s) be defined as A(7s) = R, 'R, (75)R,; !, and let the true correlation of

n
the pulsar signal be R, (), where we want to estimate 7] by varying 75 in the correlation model.

71



¥ SIK
— \—> | |2 0 M k=0 3| n=0 —>

A4

SEARCH
: n=0 ——>

\, ¥ SIK
—> |17 0 L e B e 2

\ 4

° FFT IFFT

..... ¥ SI

—> k=N, _’®_> n=N[M

Figure 5.4: Phase estimation based on square timing recovery. The scheme generates an average profile before
performing a single correlation with the pulsar profile template. Correlation has been performed in the frequency
domain for sub-sample resolution, although other correlation-interpolation approaches may be formulated in the
time domain.

Expectation of the metric

We will analyze an estimator 7; from the expression of Z(x|7s). We first evaluate the expectation, so that,

Nr—1 ) X
ExZ(xlr) = ) (Beyp)e 0
k=1
Exyr = tr(Ra[kl(Rp(7) + Ra)) (5.52)

But we note that for the white noise case where R,, = 021, we have that tr(R4[k]R.,) = S[k]o2tr(D*) = 0.
Hence, for k # 0,

Euy = S[k]tr(DkRp(Ts'))
NTfl i ! ,
= Sk Y tr (D*RA[K]) e 27V7 T
k'=0

= S[k]S[—K]e ™I N

= |S[K[Pe (5.53)
Clearly, Z is maximized for 7 = —7;, which corresponds to maximal ratio combining of the components
at multiples of the cycle frequency.
5.1.7 Multi-band Analysis and Interstellar Dispersion

In the previous sections, general equations have been derived assuming knowledge of the pulsar correlation
matrix R, (7). In some cases, particular expressions as CRLB’s are obtained assuming a diagonal structure
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for Ry(7). This is only valid when the reception bandwidth is sufficiently small. For larger bandwidths,
non-negligible components appear in the sub-diagonals of R, (7). Unfortunately, it has been shown that
experimental data does not provide sufficient information to derive the detailed structure of R,(7). As
larger B’s are considered, the dispersion of the interstellar medium starts to appear, spreading the duration
of the pulsar pulse (up to a limit, as the delay in inversely proportional to 1/f2). This would be irrelevant
for processing if R, (7) were known, as the shape of the broadened profile would be available. Nevertheless,
experimental data is limited to small B.

An alternative to use the derived framework is to consider that the data vector x contains data sub-
vectors corresponding to different narrow bands of the large band B, but sufficiently large to preserve
the pulse shape. Then, processing combines several bands, where for each i-th band, the sub-correlation
matrix Rg) (7) is known. The difference between consecutive Rg,i) (7)’s can be inferred from the dispersion
model of the interstellar medium and amounts to a frequency-dependent time delay and a scaling factor.
This time-delay is known from the dispersion coefficient of each pulsar and can be compensated over
all sub-bands (in fact, the dispersion measure is varying slowly and should be tracked). Nevertheless, it
should be taken into account that signals extracted from contiguous bands are correlated due to cyclo-
stationarity. The value of the cross-correlation of signals from differents sub-bands is not known. At least
it is reasonable to assume that for Ny sub-bands of bandwidth Bs = B/N; each, frequency components
more than 2B, apart can be already considered uncorrelated.

Assuming uncorrelated sub-bands, the global correlation matrix is block-diagonal with block-elements
corresponding to the (diagonal) correlation matrix over each sub-band. Then, an estimate of the timing
error, 62, can be obtained, which will not differ substantially from the true timing error in presence of the
sub-band cross-correlation induced by cyclo-stationarity (it is limited to basically the first sub-diagonal).
This small difference can be incorporated to a safety margin to guarantee fulfilment of specifications. We
have then that,

2 No—1 nr2rn\ F 2 No—1 a2\t
T 472T, B, pa NE(i) 472T,B \ N, pa NE(i) '
in terms of the pulsar and noise spectral power density ratios IV, and Ny at each sub-channel, which is
basically the same single-channel equation where the square SNR, average over all sub-bands is used. The
shape factor 712) of the pulsar pulse is considered uniform over the sub-bands (no shape distortion). In the

numerical evaluation of the position error we will simply take the SNR at 1 GHz as this average value,
assuming suitable lower and upper limits of the band B.

5.2 PATD Estimation

Spacecraft speed introduces a Doppler effect which changes the observed PRP. Period to period integration
will thus be affected by pulse arrival time drift (PATD) when the averaging period does not coincide with
the true period, and degradation will occur. Therefore, the pulsar PRP should be known to a high degree
of accuracy and PATD estimation should also be considered. By way of an example, let us consider that
the spacecraft is travelling at speed v, and let us compute the drift-time, normalized to the pulsar duration
at 10% peak intensity Tig, during an observation time Ty,

At vl T,
= - = 9.59
T10 cT T10 ( )

For the millisecond pulsar B1937+421, a speed of 50000 kmph. in the pulsar direction and one minute of
observation, we have a value of 13.95 T} time-units.

We formulate the ML algorithm by making the pulsar correlation model dependent on the PATD so
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Figure 5.5: Joint phase and PATD estimation based on square timing recovery. The FFT blocks in the polyphase
branches are not full, only the lower bins of the FFT are checked within the PATD range.

that R,(7,67’) is included in the metric. The model for A is expressed as,

Nr—1
Anl-NT—nldT(Ts) — Z RA[k]GJZﬂ'NLT(nl.NTfnléTfrs)
k=0
Nr—1 ) . o
= ) Ralkle PTFEA M e TN T (5.56)
k=0

with d7 a small value to account for the PATD. Then, substitution into the metric equation yields,

Nr—1 Nr—1 ) X . N
Z(X|Ts,(5T) = Z XEI'NT ( Z RA[k]e_ﬂﬂ—NT/STnle_ﬂﬂwﬁ) Xn,-Nt

n1=0 k=0
Npr—1 ) N Nr—1 ) N

= Y TN v Ralkly g e TN
k=0 n1=0
Npr—1 . N

= 3 plr) e T (5.57)
k=0
Nr—1 N

_ior—k
yk((ST) = Z (XErNTRA[k]anNT) ~e I N (558)

7L1:0

Then, several hypotheses of 7 need to be tracked: a two-dimensional search over (7s,d7) has to be
performed. In the white noise case, the expression for yi(d7) becomes,

Nr—1

_iom kg

XITJLIl'NTRA[k]anNT = S[k’] Z |x(n1NT_’L.)|26 J2 Nt
i=0

NT—l NI—l
uk(0r) = Sk Y (Z lw(mNT—m?e””—NT/JT“)eﬂ”N‘"‘T’ (5.59)

i=0 ni =0
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5.2.1 Joint pulsar phase and PATD bounds

We show that in the presence of PATD, the presented scheme generates a pulsar phase estimate uncorre-
lated with the PATD estimate. The phase estimate corresponds to the pulsar phase in the mid-point of
the observation window.

The components of the Fisher Information matrix and the corresponding joint CRLB for this problem
are given by,

Jrsrin = —tr (R,'Ry(7s,67)R,'VZ R, (15, 07)) (5.60)
Frosrlie = Trsrl2a = —tr (R, Ry(7s,07)R;, 'V, V. Ry (75, 67)) =0 (5.61)
Jroorlee = —tr (R,'Ry(7s,67)R, V3, Ry (1s,07)) (5.62)

and the corresponding CRLB is expressed as the inverse of the Fisher information matrix,

CRLB(rs,0r) = J_*' (5.63)

Ts,0T

where due to the diagonality of J,_ s5,., the phase and PATD estimates are not correlated, and asymptoti-
cally Gaussian.
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Chapter 6

Timing Estimation for X-Ray Pulsars

6.1 Timing Estimation for X-Ray Pulsars

This section analyzes synchronization algorithms and associated performance bounds for time-of-arrival
(TOA) estimation in the case of X-ray pulsars.

6.1.1 Signal Model

As introduced in Sec. 4.5, the X-ray pulsar density of arrival is cyclic in time and will be denoted hereafter
as
A) =X (@) + A = A+ T) (6.1)

where T is the pulsar PRP, \,(¢) its characteristic periodic signature in counts per second and A, the
density of arrival for the stationary background noise. The bandwidth of A,(t) is limited to 1/2T} with
Ty the detector temporal resolution (7, = 100us for the ROSAT detector). Hereafter A,(t) and A, are
assumed to be perfectly known.

The detector provides the indicator function I(n1,n2) that asserts whether an event has been detected
(I =1) or not (I =0) for the time-bin recorded at time

tnine =T +n2Ty = (mNy +n2) Ty (6.2)

with N, = T'/T}, the number of bins per period. For simplicity we will consider that N is an integer
number. Accordingly, I(n1,n2) is known to follow a Bernouilli distribution described by the following two
probabilities

Py(naTy) = Pr{I (ny,ny) =0} = e~ ToAn2Te) (6.3)
Py (nTy) =1 — Py(n2Tp) (6.4)
which were derived in Sec. 4.5 from the Poisson distribution.
The pulsar averaged density of arrival over the whole pulsar period T' (see Table 2.4) is computed as
1 [T 1 et
A= /0 M\p(t)dt = A > Ay (n2Tp) (6.5)

n2:0

and the signal-to-noise ratio (SNR) is defined in the following way for X-ray pulsars:

A
SNR =" (6.6)

The simplified pulsar profile introduced in section 5.1.3. (Fig. 5.1) will be adopted in the sequel when
evaluating A,(t). In that case the pulsar duration T}, and the maximum value of \,(t) are given by
5T10 — Tso

4

16),T

AI‘ﬂaX = -—r ., e )
TTio + 5759

T, = (6.7)

(6.8)
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respectively.

6.1.2 Maximum Likelihood TOA estimation

From the above signal model, the ML criterion consists in maximizing the log-likelihood function In f; (I;T)
with respect to the wanted TOA 7. After trivial manipulations, and assuming the temporal independence
of I(n1,ns), we have that

Nr—1Ny—1
Inpr(I/7) = Z Z (n1,n2) In Py (noTy — 7) + (1 — I(n1,n2)) In Py(noTy — 1) =

ny= =0 na= =0
Nb—l
:NI Z (Po(ng)lnPO(ngTb—T)+P1(n2)lnP1(n2Tb—T)) , (69)

n2:0

where Ny is the number of processed pulsar periods and,

R 1 Nr—1
Pi(n,y) = N > I(na,ny) (6.10)
Py(ns) = 1— Py(ny) (6.11)

are the ergodic estimates of Py (n.T, — 7) and Po(noTy — 7), respectively. Since I(nji,n») are indepen-
dent Bernouilli random variables, ﬁl (n9) is distributed following a binomial distribution of mean P; and
variance Py Py/Ny, respectively. The central limit theorem states that ﬁl (ng) would become Gaussian if
N;P; >> 1. Thus, a long sample is required to have Gaussian statistics in case of a low density of arrival
(TyA(t) << 1). Therefore, the Gaussian assumption is precluded in most situations and the true statistics
of Py (n2) must be dealt with. Elaborating further, we obtain that

Nbfl
Inpr (I/r) =Ny (—Po(n2)Tb)\(n2Tb — 1)+ Pi(ny)In (1 - e—TbMMTb—T))) -
n2:0
Nbfl
=N Y (—(1 — Pi(n2))TyA(noTy, — 7) + Pr(ns) In (1 - e—TbMMTb—T))) -
n2:0
Nbfl
=Ci+N; Y Pi(n2)P(noTy — 1) (6.12)
n2:0

where Cy = —NT} Zn _0 A(n2Tp — 7) is independent of 7 provided that the bandwidth of Ap(¢) is less
than 0.5/T}, and, P(t) is defined as

P(t) = TLA(t) + In (1 - e*TbW) =In (eT”’\(t) - 1) (6.13)

Low-SNR approximation

In this section the ML estimator derived previously is particularized for the studied low-SNR scenario in
which A, is usually several orders of magnitude greater than \,. Thus, we can expand P(t) into a Taylor
series at Ap(t)/A, = 0, obtaining that

Ty (1) (6.14)

PO = T Ty ™

with Cy = In (eTV‘" — 1) an irrelevant term. Plugging this approximation into Inpy (I/7), the ML esti-

mator is found to be the maximizer of

N T, fot

Inp; (I/T) :CS+1—exp—Tb)\ Z P1 TLQ TLQT{,—T) (615)
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that can be seen as the output of a filter matched to the pulsar density of arrival A\,(¢). Thus, the ML
estimator is the one maximizing the following cost function:

Np—1
A(r) =" Pi(na)Ap(n2Ty — 7) (6.16)

’I'LQ:O

Based on the sampling theorem, it is sufficient to compute N samples of A () and interpolate to
recover A (7). Simulations revealed that Ny = 8 samples per period are enough for the studied SNR range
whereas Ny < 8 yields yields some losses at high SNRs. The sampling cost function will be denoted A (n)
in the following.

Square Timing Estimation

Having in mind that A\, (%) is cyclic, we obtain that A (7) is also periodic and therefore it can be expanded
into a Fourier series

A(r) = k:io:oo Cl exp (j27r§r> (6.17)
with the k-th coefficient given by
T k g k
cp = /0 A (1) exp (—jQﬂ'TT> dr = ,;) A (n) exp <—j27rﬁsn> (6.18)

Following the same reasoning than in Sec. 5.1.6 for the radio pulsars, an approximated closed-form
ML estimator can be derived considering uniquely the first harmonic (k = 1) of the Fourier series:

A(7) ~co+2Re{crexp (j2n7/T)} (6.19)

In that case, the ML estimator is approximately given by

T T N,—1 n
T= g arg {1} = ~5r arg{ nz:;) A (n)exp <—]27TE> } (6.20)

6.1.3 Cramer-Rao Bound

The ML estimator will yield unbiased estimates if the maximum of Inpy (I/7) yields the true TOA on the
average, that is':

Np—1

d ~
E {EIHPI (I/T)} =—-N; nX::oE {Pl (n2)} P'(neTy —7) =

Nb—l Nb—l
=—N; > Pi(nT, —)P'(noTy —7) = =Ny > Xy(noTy—7) =0 (6.21)

’I'LQ:O n2:0

using that
d d Ty, (t)e™A®
] _ v _ v TpA(t) _ _ P _
P'(t) = 2:P(t) = S n (€70 - 1) = = —

_ @) TiA(Y)
B 1-— G_Tbx(t) B Pl(t)

(6.22)

Under the above regularity condition, the Cramer-Rao bound for the TOA estimation problem is given
by the inverse of

INotice that this condition is exactly the same that we imposed to consider that C'; was independent of 7.
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d 2 Np—1 R 2
CRB™(r)=E { <$ In pr (I/T)) } = N? Z E (Pl(nQ) — Py (nT), — 7')) P’ (noTy —7) =

’I'LQ:O

Nb—l
= NI Z PO(TLQT[, — T)P1 (TLQT{, — 7').PI2 (1’L2Tb — T) =

n2:0

Np—1 Np—1 I
Po(noTy — 1) 2 Ap (n2Th)

_ 2 o\"'2Lp l _
i n2z::0 Py (n2Ty — 1) % (nalh =) = NIy rmz:o Tb}‘(nQT”) -1 (6:23)

having in mind again that ﬁl (n9) follows a binomial distribution of variance Py P, /N;. Notice that in the
last equality we have taken into account that the result is independent of the actual value of 7 because
the function inside the summation is periodic. The CRB can be particularized to the studied low SNR
scenario obtaining that

N,T? et N, T
T oo — 1 Z >\ (naTy) ~ TToAe 1/ )\' t)dt < N\, / )\' (6.24)

n20

CRB;,} (1) =

where the last upper bound correspond to T, — 0 taking into account that z/(e® —1) is strictly decreasing
for z > 0. Therefore, the detector should guarantee that T, << A,! in order to provide optimal estimates
at low SNRs. Otherwise, the background noise saturates the detector output and the performance is
degraded dramatically. The above integral can be evaluated for the simplified pulsar profile considered
in Sec. 5.1.3 (Fig. 5.1) obtaining the following upper bound

¢
> —— .
CRByoy (1) > NISNR (6.25)
with
5T50(7T10 4+ 5T50)(Tho — Ts0)

&= 16Amax T (5T10 — T50)

(6.26)

the pulsar-dependent performance figure.
On the other hand, the CRB suffers a significant floor at high SNRs when T3\, << 1. Unfortunately,
this is the actual situation when we deal with X-Ray pulsars because \,T << 1 (see Tables 2.3-2.4. ). It

is for this reason that the sufficient statistic 131 (n1) remains noisy even when A, — 0 since
E2{ P} Jvar (131) = NPy /Py oc Ny (€% —1) << 1. (6.27)

and therefore the sample size N; must be increased to overcome this limitation.
The asymptotic CRB for high-SNRs has not been derived yet but the following approximate bound
predicts correctly the referred high-SNR floor and converges to CRBy,y, (7) at low SNRs:

—~— = ¢(1+SNR)

CRB (1) = ~ (6.28)

Finally, the quality factor for the X-ray pulsar (Sec. 2.2) can be computed using the following expres-
sion:

Ox
cvVCRB

with the CRB evaluated considering L = NyNp = 10° and o, = 10° the target standard deviation for the
positioning error.

Q= (6.29)
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6.1.4 Simulations

In this section some simulations are provided with the aim of assessing the feasibility of using X-ray pulsars
in spacecraft navigation applications. The figure of merit is the spatial standard deviation, i.e., o, =
cy/var {7}. X-Ray millisecond pulsars are considered with 7' =5 x 1072 and A, = 0.025 corresponding
to the J0437-47 pulsar (Table 2.4). The detector resolution is T, = 10~* and the field of view is set to 2
degrees from the ROSAT specifications. Regarding again the pulsars database in Table 2.4, the received
SNR = \,/\, varies from -40dB to -10dB. The observation time is set to Ny = 107, 2 x 107, or 108
periods yielding an observation time equal to Ty ~ 14, 28, or 140 hours, respectively. This observation
time is coherent with the one predicted in Sec. 2.5.3 by means of the formula Ty > 25/\n//\f).

Notice that long observation times are required to work above the SNR threshold for those SNRs of
interest (Fig. 6.1). Otherwise, the ML estimator variance departs from the CRB and, eventually, the
estimator performance collapses at low SNRs due to the periodicity of A, (¢). Taking into account that
E (T - 7')2 < T?/12, the estimator spatial accuracy is upper-bounded by o, < 4.33 x 10° meters in the
case of the studied millisecond pulsars (see Figs. 6.1 and 6.2). Finally, we observe in figure 6.1 that
the SNR threshold occurs approzimately at SNR=-20dB (N; = 10%) and SNR=-10dB (N; = 107). A
longer sample would be required to work below this point (-20dB). Indeed, the threshold is known to be
inversely proportional to the observation time and, thus, Ny ~ 10'° pulses should be averaged to yield
efficient TOA estimates for any SNR greater than -40dB. Anyway, it is worth noting that the position of
the studied X-ray pulsars (J0030, J2124, J0437) can be estimated without noticeable bias although the
SNR is slightly below the referred thresholds.

Regarding the performance of the proposed ML-based estimators, we observe in figure 6.1 that both
the optimal low-SNR ML estimator and its approximation (square timing) attain the CRB for moderate
SNRs whereas the low-SNR approximation yields minor losses at high SNRs. However, the square timing
is found to be slightly outperformed at high SNRs by the exact ML solution. On the other hand, the
approximated CRB deduced in equation (6.28), which is not plotted for the sake of clarity, is found to
predict the ML estimator performance for any SNR.

In figure 6.2 the performance of the triangular pulsar profile simulated in Fig. 6.1 is compared with
the one provided by a narrower pulsar profile. As it is shown in Fig. 6.2, the temporal resolution
is improved by increasing the signal bandwidth. Nonetheless, the detector finite resolution limits the
observed bandwidth to 1/7}. On the other hand, figure 6.2 shows that the square timing estimator is
degraded for the medium SNR range due to an insufficient oversampling (Ns; = 10) of the log-likelihood
function when the pulsar profile is narrower.
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Figure 6.1: Positioning error standard deviation for the studied X-ray pulsars. The integration time is set
to Ny = 107, 10® and the pulsar profile is triangular, i.e., Tso=2.5ms and T}o=4.5ms. Plots are obtained
running 1000 independent realizations. The actual SNR, for the X-ray pulsars listed in Table 2.4 as well as
the approximated low-SNR threshold are indicated in the figure assuming that the detector field of view is
equal to 2 degrees. The square timing estimates are computed from Ny = 10 samples of the log-likelihood
function.
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Figure 6.2: Positioning error standard deviation for the studied X-ray pulsars. The integration time is set
to Ny = 2 x 107 and two pulsars profiles are compared; the triangular pulsar profile in Fig. 6.1 (upper
curves) and a narrower pulsar profile with Ts5o=1ms and Tio=3ms (lower curves). Plots are obtained
running 500 independent realizations. The actual SNR for the X-ray pulsars listed in Table 2.4 as well as
the approximated low-SNR threshold are indicated in the figure assuming that the detector field of view is
equal to 2 degrees. The square timing estimates are computed from N; = 10 samples of the log-likelihood
function.
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Chapter 7

Feasibility Results

Results in the geometry chapter were provided in terms of pulsar combinations, assuming a Gaussian
profile for each pulsar. In this section we analyze the equivalent position accuracy provided by each
single pulsar, o, as 0, = co,, with ¢ the speed of light and o, the timing accuracy. Two models have
been proposed to model the pulsar profile from experimental data: the double triangular model and
the Gaussian model. Timing accuracy is closely dependent on the pulse shape. Hence, comparing the
predicted accuracy from these two models helps to show the sensitivity of timing accuracy on this feature.
The required position accuracy is 105 m. When translated to equivalent travel time, the required timing
accuracy becomes 10%/c = 3.33 ms. Except for millisecond pulsars, it is found that this value falls below
practically all pulse durations listed in the radio-pulsar database, and below all X-ray pulsars.

7.1 Quality factor analysis

Fast evaluation of feasibility for the wanted positioning accuracy can be obtained from the quality factor
plots, Q(f). Results provided for Q(f) in the pulsar database chapter correspond to the double triangular
model for the pulse shape. As we proceed to show, this model predicts better timing accuracies than
those obtained from the Gaussian pulse model. Thus, both models provide a rough estimate of the range
of values that may be expected due to different pulse shapes.

According to the definition of the Quality factor, Q(f)|dB > 0 dB guarantees (if in the operating
region of the CRLB) an equivalent timing error to comply with the positioning accuracy o, = 10® m. for
L = 10° samples, which for a bandwidth of 200 Mhz is equivalent to 5 seconds of integration time. If we
take the millisecond pulsar B1937+421, which has the highest quality factor at 1 GHz, the quality factor is
Q(1GHz) = 11.8 dB for an effective antenna area A, = 10m2. Hence, the equivalent positioning accuracy
is,

10° 6 —1.18
Op = 0 =10"-10 = 66069 m. (7.1)

We should check now that the integration time of 5 s. is above the threshold for the ML estimation
algorithm and that the CRLB applies. The threshold condition (for I'r, = 15 dB and K = 2 (complex
data) is,
1
e
SNRlGHZ

which yields a minimum L = 4.36 - 10! samples, clearly the threshold condition is not fulfiled for 10°
samples, although B1937+21 is asymptotically for large L the best pulsar. For 5 s. of integration, the
timing error predicted by the CRLB is still much larger than the pulse duration of B1937+21. The
determining factor for the threshold condition is SNR: table (7.1) depicts the minimum integration time
required for several pulsars and the equivalent positioning accuracy obtained from the extrapolation
equation (7.2). The positioning accuracy obtained from B1937+21 after sufficient integration to reach
the operating region of the CRLB is related to the very narrow pulse of this pulsar.

L (K - 1)Fthgzo
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Pulsar SNR (dB) @ (dB) T, (min.) o, (m.) T5o (ms.)

B1937+21 —55.6 11.8 36.36 3162 0.1
B0736—40 —50.2 —7.5 3.07 926467 29
B1451-68 —50.0 -3.8 234 452529 12.5
B0950+08 —48.9 -0.7 1.04 316174 9.5
B0329+54 —45.2 4.5 0.12 290556 6.6

Table 7.1: Minimum Integration times and the corresponding equivalent positioning accuracy for some of the best
SNR pulsars, considering the double triangular model for the pulsar profile. Results have been obtained using a
(conservative) value I'r = 15 dB and an effective antenna area A, = 10 square m. A more elaborate equation
for the threshold incorporating information on the pulse shape might reduce this value, obtained from simulations
using a rectangular profile. The accuracy at the threshold 7, is related to the effective duration of the pulse. The
last column lists T5o, the duration at 50% peak intensity, for comparison. Note that for the last pulsar a low
integration time below 100 pulsar periods is predicted: this is to be corrected as SNR conditions are too good
in this case for the low-SNR theory we have developed to apply. The necessary correction will be applied in the
following table, which assumes a Gaussian model for the average pulsar power profile.

Pulsar SNR (dB) @ (dB) T, (min.) o, (m.) Tjo (ms.)
B1937+421 —55.6 8.90 40.13 5860 0.1
B0736—40 -50.2 —10.72 4.02 1699492 29
B1451-68 -50.0 —5.80 225 732540 12.5
B0950+4-08 —489  —3.00 1.07 556730 9.5
B0329+54 —45.2 5.32 1.19 77681 6.6

Table 7.2: Minimum Integration times and the corresponding equivalent positioning accuracy for the same pulsars
as in table (7.1), under identical conditions but using the Gaussian pulse shape model. Note that worse results
are obtained for the position accuracy, as the double triangular model is optimistic. A minimum of 100 pulsar
periods has been considered now in all cases for the integration time. For pulsar B0329+54, the double triangular
shape predicts better behaviour (better asymptotic quality factor) than the Gaussian shape: this is due to the
much wider 10% to 50% peak intensity duration ratio Tho/T50 of this particular pulsar over other pulsars. The
quality factors listed in this figure have been evaluated for the same antenna area over all pulsars. Therefore, the
relationship between different quality factors is maintained for a different (smaller) antenna area.

Pulsar SNR (dB) @ (dB) T, (min.) o, (m.) T5o (ms.)
B1937+21 —60.6 8.90 401.30 5860 0.1
B0736—40 -55.2 —10.72 40.22 1699492 29
B1451-68 -55.0 —5.80 22,50 732540 12.5
B0950+-08 -53.9  —3.00 10.72 556730 9.5
B0329+54 —50.2 5.32 1.19 245651 6.6

Table 7.3: Minimum Integration times and the corresponding equivalent positioning accuracy for the same pulsars
as in table (7.2), using the Gaussian pulse shape model but with an antenna area of 5 square meters (3 dB loss in
SNR) plus an additional degradation loss of 2 dB (mis-pointing and other effects). Note that now the positioning
accuracies are the same as listed in table (7.2), but at the cost of a much longer integration time. For the last
pulsar the minimum observation time of 100 periods is still enforced. Now, over 6 hours of integration are required
to synchronize to the millisecond pulsar B1937+421.
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7.1.1 Extrapolation to other 7,B and A,

The equivalent positioning accuracy is derived from the equality,

2
Oy Oy g
Q = c oL = ?271'\/50_—5’)/1, (72)

Therefore, using different values for the effective area, integration times or bandwidth, we should have
(above the threshold) that,

10 [10° 10
02 (ToB, Ae) = o\TE A (7.3)

for A. in square meters. This will be valid when the ”above- threshold” condition is met,

012) T ’ 2 A 2
L (ﬁ) = SNRIGHZ . <1—0> . TOB Z (K - 1)Fth£p
in terms of the average SNR, UE—'ZT, and L = T,B with B = 200 MHz and T, the observation time. As
the SNR is evaluated for A, = 10 square m., extrapolation from the average SNR at 1 GHz, SNR;qu,
appearing in the corresponding pulsar tables and figures yields the previous equation, with K = 2 (complex
data) and T'y, = 15 dB (for the double triangular pulse). For the Gaussian pulse, the calibrated equation
(5.1.5) has been used to establish the threshold condition.

7.2 Long term stability

Millisecond pulsars are required due to their low timing noise to derive a stable timebase. Pulsars which
much higher periods should have their timing models corrected in the long run by millisecond pulsars, as
high order derivatives of the timing models are noisier than for millisecond pulsars. Continuous monitoring
is thus required, as well as extraction of a sufficiently high number of pulsars. Other millisecond pulsars
apart from B1937+21 should be recovered for greater long term stability of the time base. Unfortunately,
other millisecond pulsars have very low SNR and much longer integration times are required to beat
the threshold effect. It is expected that for longer integration times, the constant speed model we have
assumed does not suffice and higher derivatives of the position are required. As pulsars with longer periods
usually have better SNR, they can be used to estimate these position derivatives an aid in the extraction
of millisecond pulsars from the noise, although the SNR of the remaining millisecond pulsars appears to
be extremely low.
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Chapter 8

Technological Aspects

This chapter addresses the technological impact of the required navigation system on instrumentation. For
radio-pulsars, it has been determined that large antenna effective areas are necessary to avoid extremely
long integration. Nevertheless, a technological analysis is included in terms of a reference system.

8.1 Reflector Antennas

Geometrical Dilution of Precision (GDOP) requires that reference sources for positioning be widely dis-
tributed in arrival angles. Hence, the use of a single reflector antenna requires mechanical steering and
that only a single pulsar or cluster of closely-spaced pulsars can be processed within each observation win-
dow. Due to small angular differences within each pulsar cluster, the antenna can only focus on one single
pulsar, while others are recovered with some mis-pointing loss. A similar problem appears for the case of
electronically steerable micro-strip antennas and is discussed in more detail in the following section. The
advantage of reflector antennas over multibeam antenna arrays is found in the complexity of the reception
chain: only one is necessary. Nevertheless, spatial processing capabilities are more limited.

8.2 Electronically Steerable Micro-Strip Antennas

Array antennas are the most suitable architecture to provide multibeam capability and adaptive beam-
forming. The following three issues are considered, taking the MIRAS-SMOS mission of ESA as an
example :

e expected performance for the RF subsystems.
e potential technologies and geometries for the antenna system.

e technological implications of the antenna system.

8.2.1 A reference system, MIRAS-SMOS

The MIRAS-SMOS is a radiometer for earth observation operating at 1.4 GHz. The radiometer has 69
independent receivers in a Y shaped geometry, and by properly processing the signal received by each of
the 69 independent receivers a radiometric image of the observed scene can be produced.

The MIRAS-SMOS receivers have a noise temperature of the order of 230 K, but they are not cooled,
and their application requires the insertion of an isolator between the antenna and the receiver that in-
troduces additional losses. The proposed Spacecraft Navigation System probably would not require the
insertion of an isolator, and in the case that the receivers are cooled the assumption of noise temperature
of 30 K seems reasonable.

For the Spacecraft Navigation System it is necessary to synthesize beams pointing at different direc-
tions and to place nulls on the radiation pattern to cancel noise sources such as the sun. This requires
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Table 8.1: Cluster coordinates

Cluster Ecliptic latitude Ecliptic Longitude

1 15,45 300,240
2 ~30,0 270,240
3 —60,—30 240,180
4 —60,—30 180,150
5 ~15,15 180,120
6 30,60 90,60

Table 8.2: Pointing losses

Cluster Pointing lat. Pointing long. Lat. scan Long. scan Loss (dB)

1 30 270 +15 + 30 2
2 -15 255 +15 +15 0.5
3 -45 210 +15 + 30 2
4 -45 165 +15 + 15 0.5
5 0 150 +15 + 30 2
6 45 75 £ 15 +15 0.5

an antenna geometry based on single non-directive antennas, each one with its own receiver, and pattern
synthesis done by processing the received signal. Once again the MIRAS-SMOS antenna gives us some
real data on the performance of this type of antennas. The MIRAS-SMOS antennas are dual polarized,
circular microstrip patch antennas on a circular cavity. The radiation pattern can be approximated by
t(#) = cos® §, and the elements only radiate in one half-space. This is an important consideration, because
the proposed Spacecraft Navigation System requires the reception of signals coming, in principle, from any
direction. It must be stressed, that although beam synthesis can be performed by processing the received
signals, there is a loss due to the radiation pattern of the elements. If we consider the cos® # pattern, it
means that for a scan angle of 30 deg there is a loss of 1.9 dB and for a scan angle of 60 deg there is a loss
of 9 dB relative to the effective area defined for the broadside direction. Therefore having a single large
aperture with the requirement of very large scan angles is probably not the best choice. In fact, with a
single antenna it is impossible to steer the beam to all space directions. It must be remembered that the
radiation pattern of a single antenna element is never isotropic.

8.2.2 Structure of the antenna array

An observation of figure 4 shows that the 50 best pulsars are not uniformly distributed, but they are
clustered in certain directions (at least 6 clusters can be defined as appear in the tables). A possible
strategy would be to use as antenna system 5 different arrays, pointing at the center of each of the
clusters. Each array would have a limited beam shaping capability in order to scan its cluster and to
place nulls in the direction of noise sources. An array of 3 x 3 elements gives enough degrees of freedom
to achieve these goals. If we consider an array of 3 x 3 elements spaced 0.7\, this results at 1 GHz in an
effective area in the broadside direction of the order of 0.36m?.

Tables (8.1) and (8.2) summarize for each antenna the pointing direction, the required scan angle and
the losses due to the radiation pattern of the element due to beam scanning. It is observed that clusters
1 and 3 require larger angular scanning that results in larger losses. A potential option can be to split
each into two clusters. In this case there would be 7 different clusters, each of them having maximum
scan of the order of 15 deg. With 7 clusters and considering a 3 x 3 antenna, there would be a need
for 63 antenna elements and receivers. Considering that the MIRAS-SMOS has 69 elements, the payload
specification concerning of mass, and power consumption of this mission can be a good referent for the
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requirements of the proposed Spacecraft Navigation System.

For an antenna element, a relative bandwidth of the order of 20% is near the technological limit. In
this sense, considering a bandwidth of 200 MHz centered at 1 GHz is a reasonable figure that will be
difficult to exceed.

The component technology at the 1 GHz band is well established for space applications. transceiver
equipment for deep space probes such as Voyager have been operational in this band for over 30 years.
References
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Chapter 9

Conclusions

As far as signal processing is concerned, the possibility of obtaining position accuracies below 10% meters
has been validated. The required geometrical framework and the associated position and timing estima-
tion algorithms have been presented in the previous chapters. The derived theoretical results apply in the
low-SNR (small antenna) regime, where additive Gaussian noise affecting pulsar reception is the dominant
degradation factor. This region of operation is understood as that requiring the integration of many pulse
periods before reliable timing estimates well below the pulse duration can be obtained.

Nevertheless, the true limitation of a pulsar-based location system has been found to be the required
instrumentation. Very few radio pulsars have a sufficiently high signal-to-noise ratio so that a small an-
tenna can provide reasonable integration times (few minutes) under the best possible conditions, although
they suffice to provide position estimates. Our results have been obtained for a 10 square meter antenna
(brief summary in tables (7.1) to (7.3), and more complete results in the Geometry chapter), assuming
perfect cancellation of radio-frequency noise from the Sun and/or nearby planets, a constant speed model
during the integration time, perfect antenna pointing (attitude control) and simultaneous observation of
the processed pulsars. The technological effort does not only apply to the antenna but also to the sig-
nal bandwidth. It has been shown that increasing the bandwidth of the receiver allows to obtain better
positioning accuracies. Hence, results have considered the optimistic technological limit of 200 MHz band-
width at a central frequency of 1 GHz. Thus, front-end digital signal processing is also performing at high
speed, with power consumption being also a critical factor.

A relaxation of the technological constraints considered in this study (smaller antennas, sequential
rather than simultaneous observation of different pulsars, smaller receiver bandwidths, consideration of
implementation loss and safety margins) is possible at the expense of much longer integration times, as
resulting from very faint pulsar signals. A reduction in the antenna area by a factor r must be com-
pensated for with an increase in the integration time-bandwidth product of 1/r2. It is believed that for
reduced-size antennas, the constant speed model may fail due to the necessity of estimating higher order
derivatives of position (as integration times are longer). In all likelihood, an integration time of many
hours would be required to extract the faintest millisecond pulsars from noise, maybe imposing limita-
tions on the smoothness of the trajectory (number of significative position derivatives). In particular, the
highest, technological impact is the issue between simultaneous or sequential observation of pulsars. The
former requires as many antennas as observed pulsars but provides the fastest evolution of positioning
accuracy versus time. The latter would further increase latency, the minimum time before a position
estimate is produced (probably by a factor equal to the minimum number of required pulsars), as well as
the ambiguity resolution algorithm. The smoothness of the spacecraft trajectory is believed to be more
critical in the case of sequential observation.

The study of X-ray pulsars predicts longer integration times as arrival rates in the order of only 90
photons per hour have been reported for the usable X-ray pulsars, thus yielding over one day of integration
(taking the ROSAT detector as a baseline). The number of available X-ray pulsars has been found to be
much lower than for radio pulsars.
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Summary: the authors of this study believe that the complexity involved for autonomous positioning
at the spacecraft is rather involved. Although pulsar positioning has been shown to be theoretically pos-
sible, issues of complexity and latency in obtaining position estimates cannot be met for small spacecraft
capable of fast autonomous positioning. Rather, such a positioning system appears more suitable for large
spacecraft or for hub stations providing telecommunication and location services to smaller spacecraft.

Some additional comments on pulsar-based positioning are provided:

e Hardware calibration is necessary, specially electronic delays of the receiver which contribute a bias to
the timing estimates. Note that the location algorithms we have devised operate on the assumption
of unbiased timing estimates.

e Kalman based approaches (optimum post-filtering schemes) can provided effective integration times
of many days to increase positioning accuracy.

e For long term stability, the recovery of millisecond pulsars is crutial due to their low level of timing
noise. Apart from B1937+421, millisecond pulsars have very low SNR and long integration times are
required to extract timing information. Theoretically, stronger pulsars could be used to estimate a
sufficient number of position derivatives to guarantee synchronous averaging of millisecond pulsars
over longer periods of time. Nevertheless, the involved SNR are so low that unforeseen irregularities
might hinder their reception.

e As concerns interference from SSO, navigation would be seriously hampered in the inner solar
system or in the vicinity of Jupiter. The impact of these interfering sources can be diminished at the
cost of increased system complexity (adaptive antenna arrays for interference cancellation). Such a
navigation system is intended for cold regions in space.

e the definition of a universal pulsar time standard seems unavoidable for deep space navigation over
long periods of time. This would also be advantageous for Earth-based systems requiring long term
stability.

e speed estimation does not require ambiguity resolution. Hence, as long as this assumption is ap-
proximately correct, the integration window for speed estimation can be much longer than for phase
estimation. Otherwise, speed CRLBs should also be checked to be above the corresponding estima-
tion threshold. The constant speed assumption fails in the vicinity of planets due to acceleration
and higher order derivatives.

e this study has considered that all pulsars are observed simultaneously. This allows for the computa-
tion of the best positioning accuracy per observation time, using any number of pulsars. If sequential
observation is performed instead, the complexity of instrumentation is greatly reduced at the cost
of slower evolution of the positioning accuracy. At the instrument level, this requires a mechanical
pointing system. At the geometric level, the associated signal processing should be revisited. It is
expected, though, that sequential observation may limit the maximum position derivatives of the
spacecraft that the algorithms can successfully deal with.

e results for X-ray pulsars are constrained to the found solitary rotation-powered pulsars listed in the
database. These are few and their reduced photon arrival rate leads to very long integration times
taking the ROSAT detector as the baseline. More reasonable integration times would require larger
detectors with better focusing capability.

Other aspects not considered in this study are:

e interstellar scintillation: pulsar signals are subject to slow frequency selective fading, which should be
monitored for the derivation of timing and position estimates. Some pulsars may go below a detection
threshold, becoming unavailable for positioning. This study has not considered SNR. estimation.
Statistics of interstellar scintillation could help establish probabilities of pulsar availability.
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e adaptive de-dispersion: the dispersion coefficient is also slowly changing in time. Adaptive correc-
tions could be used to refine de-dispersion.

e long-term corrections to the pulsar timing database: (a) procedures for compensating long-term
timing noise of second pulsars via the more stable millisecond pulsars. This would require the
definition of a universal pulsar time standard. (b) compilation of all physical effects determining the
pulse arrival time model.

e relativistic corrections: this study has only considered aspects related with signal processing. The
full definition of a pulsar navigation system is to be formulated in the geometrical framework of
general relativity.
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