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1 Introduction

NASA’s Deep Space 1 and recently ESA’'s SMART-1 have shown the effectiveness of low-
thrust systems as primary propulsion devices. This opens the door to new kinds of missions
in the solar system, exploiting the beneficial effects given by the combination of gravity as-
sist maneuvers and low thrust. In recent studies, missions to Mercury, Jupiter and the Sun
have been designed, resorting to a combination of low-thrust and multiple swing-bys. Such
new scenarios, characterized by new propulsion systems and by highly challenging mission
objectives, make the task of mission analysts more difficult than ever. In fact, the design of
low-thrust transfers generally requires the solution of an optimal control problem, which has
no general solution in closed form. Different methods have been developed to tackle these
trajectory design problems and it is common practice to classify them into two large families:
direct and indirect methods. The former family collects all those methods that transcribe
the infinite dimensional optimal control problem into a finite parameter optimization problem
and then solve the resulting system of nonlinear algebraic equations with a general nonlinear
programming approach. Several flavors of transcription methods have been devised ranging
from shooting techniques, collocation methods, based on Hermite-Simpson formulas, Lobatto
quadrature, Finite Elements in Time or multispectral methods to differential inclusions. The
latter family collects all those methods that explicitly derive the necessary conditions for op-
timality as given by optimal control theory. The solution of the resulting differential algebraic
system of equations with boundary conditions is then performed through numerical integration
and some kind of gradient method.

All of these approaches need to be fed with a first guess solution which, depending on the
particular method, may be quite far from the final optimal solution or needs to be very close to
it. The generation of a suitable first guess turns out to be a tricky and quite time consuming
task since it deeply effects the final result and the convergence of all the above mentioned
methods. For this reason all of them turn out to be unsuitable for the preliminary assessment
of a large number of solutions as is usually required in pre-phase A studies. The main difficulty
comes from the unavailability of sufficiently general analytical solutions; in fact few cases of
analytical solutions of a thrusting spacecraft exist in literature and—although very interesting—
they are quite specialized (i.e. restricted to two space dimensions or useful only for particular
trajectories). For more general cases, numerical propagation is necessary, with a considerable
computational effort even in a very preliminary phase. Studies on the characterization of
transfer options for low-thrust trajectories and on the generation of first guess solutions date
back to the late nineties with the works of Coverstone et al. [4,26], where multi-objective
genetic algorithms were first used to compute first guess solutions for an indirect method.
The derivation of approximate analytical solutions was addressed in the work of Markopoulos
[15], Bishop and Azimov [1,2]. The former has provided a sort of generalization of non-
keplerian analytical solutions for the case of a thrusting spacecraft, while the latter two have
tackled directly the solution of the optimal control problem for a low-thrust trajectory with
very interesting results. Inspired by the work of Tanguay [29], Petropoulos and Longuski [21,
22,20] proposed a shape-based approach, which represents the trajectory (connecting two
points in space) with a particular parameterized analytical curve (or shape) and computes the
control thrust necessary to satisfy the dynamics. Although the resulting trajectory is not the
actual solution of an optimal control problem, by tuning the shaping parameters it is possible
to generate solutions which are sufficiently good to be fed into a more detailed optimization
process. More precisely, in the work by Petropoulos a thrust arc is represented by an analytical
curve, known as exponential sinusoid, which consists of a shape with five free parameters



in polar coordinates. This shape is suitable for the approximation of planar motion and the
reduced number of shaping parameters does not allow to satisfy all the possible boundary
conditions on position and velocity, while satisfying the constraints on the time of flight and
on the level of acceleration; for 3D problems the propellant consumption for out of plane
motion is only estimated. By implementing the exponential sinusoid trajectory model in the
software code STOUR, Petropoulos and Longuski extended their systematic search for optimal
ballistic MGA transfers to the global solution of Low-Thrust Gravity Assist (LTGA) transfers
[16,23,7].

Recently, it has been shown that whenever a Multiple Gravity Assist (MGA) optimisation
problem is characterised by a simple Av-matching for the swing-bys and no deep-space ma-
noeuvres are present, there exists a polynomial-time algorithm that solves the problem [11,
17]. Namely, a space pruning technique exists with a complexity which is quartic with re-
spect to dimensionality, i.e. in the number of swing-bys, and cubic in the resolution of the
discretisation of time variables. If Multi LTGA trajectories (MLTGA) are considered it would
be desirable to have an equivalent polynomial-time algorithm. By revisiting Petropoulos’ ap-
proach, lzzo [10] has derived a form of the exponential-sinusoid which represents the solution
of Lambert’s problem for low-thrust arcs in two dimensions. This suggests how to embed the
solution of Lambert’'s problem for exponential-sinusoids into a design tool able to solve the
MLTGA problem efficiently.

1.1 Study Objectives

In order to address the definition and implementation of an efficient tool for the solution of
the MLTGA problem, the present study aims at reaching the following objectives:

I. Implementation of the solution of Lambert’s problem for exponential sinusoids
in a global optimisation scheme

The primary goal of this study is the implementation and assessment of a preliminary de-
sign tool based on the solution of Lambert’s problem for exponential sinusoids. If each arc
connecting two planets is solved by an exponential sinusoid and the launch, flyby and arrival
dates are taken as variables, then the MLTGA problem can be formulated as general global
optimisation problem of finite dimension. Notice that if the flyby sequence and the number of
spirals for each low thrust arc are kept constant, the problem is perfectly homogeneous since
all quantities have real values.

As for the ballistic MGA case, the complexity of the MLTGA case can be studied by looking
for the existence of an algorithm that solves the problem in a time which is polynomial in
problem dimension (typically the number of flyby bodies). To this aim a pruning algorithm,
analogous to the one used for the ballistic MGA case [17], can be applied when the exponential
sinusoids are used in addition to ballistic arcs in order to connect the planets. If the problem
can be solved in polynomial time then we can say that the problem has polynomial complexity.
However, this does not say much about the structure of the solution space: distribution and
number of minima, number of nested minima, size and shape of the basins of attraction,
etc... Therefore, a preliminary analysis of the structure of the solution space for a simple
low thrust direct transfer will be performed by gridding the search space. The result for the
low thrust transfer is then compared to a bi-impulsive transfer. Furthermore, a multistart
algorithm is applied to both the bi-impulsive and the low thrust transfers. Since multistart is a
stochastic algorithm, ones expects that each run converges to a different minimum, depending
on the number of initial samples. If the number of minima is small and the initial samples



are sufficiently dense then the algorithm should always converge to the global optimimum.
Thus the number of initial samples for the multistart algorithm is increased until the same
minimum is found at every run. This preliminary analysis will help to better understand the
performance of a general stochastic global optimisation scheme when applied to the MLTGA
problem.

In particular, in this study evolutionary strategies (Differential Evolution as proposed by Be-
cerra et al. in previous study [17]) have been used in order to explore the remaining portions of
the solution space after the application of the pruning technique. The resulting combination
of the exponential sinusoid trajectory model and the global optimisation scheme will be used
to characterise complex MLTGA problems (in this sense complexity is a direct function of the
number of gravity manoeuvres, sequence of planetary encounters and orbital elements asso-
ciated to each target celestial body). The application to realistic cases will assess the actual
usefulness of this approach for the creation of a preliminary design tool.

Il. Assessment of alternative approaches to the preliminary design of LTGA
trajectories

Though the combination of the pruning technique and of the exponential sinusoid shaping
approach could be a powerful tool for the preliminary design of LTGA trajectories, other
techniques are worth of investigation. Three extensions of this combination will be explored:

— The use of a general tool for global single and multiobjective optimization, instead of the
dedicated pruning technique.
— The use of a full 3D shaping approach.

These two extensions, while expected to be computationally more expensive, can however
provide a wider range of solutions to the MLTGA problem. It would therefore be interesting
to investigate if the reward in terms of number and quality of solutions is worth the increase
in computational load. In addition, it is to be noted that for low thrust systems the gain in
propellant consumption is often completely offset by the cost of operations (which is directly
related to the time of flight).

The optimality of an LTGA trajectory is therefore a trade-off between operating time of the
engine and the propellant mass consumption. For this reason, a multiobjective approach would
be more appropriate and could lead to a better set of solutions for a given MLTGA problem.
Among all available global optimization tools, it is proposed to use the set oriented approach
implemented in the software package GAIO!. Originating in the realm of numerical analysis of
dynamical systems, this package implements a hierarchical domain decomposition technique
combined with pruning criteria based on dynamical systems ideas for the treatment of single-
and multi-objective global optimization problems.

This will represent the frame of reference since it implements a problem independent pruning
of the search space coupled with various kinds of sampling. Since GAIO has already been
successfully used for several realistic applications, it will serve as a reference for the assessment
of any alternative approach to preliminary trajectory design.

I1l. Application to realistic space mission cases

The above-mentioned algorithms will be tested on a number of realistic cases. In particular,
three types of missions will be studied: direct transfers to the asteroid Apophis, an MLTGA
transfer to Mercury and an MLTGA transfer to Jupiter.

! http://www.math.upb.de/~agdellnitz/Software/gaio.html



IV. Assessment of solution optimality and the effectiveness of the proposed
approach

The preliminary design approaches investigated in this study will be compared and evaluated
in terms of computational performance and quality of the achievable solutions. The computa-
tional cost of each approach will be evaluated in terms of the number of function evaluations
and the cost for each single evaluation. The quality of the achievable solution is evaluated in
terms of its optimality and usefulness at system design level.

Solution optimality can be defined according to a local criterion and a global criterion. The
local criterion will be the satisfaction of the necessary and sufficient condition for optimal-
ity derived from optimal control theory. This criterion can be applied a posteriori, inserting
the obtained control law and the state evolution into the necessary equations for optimality
and deriving the Lagrangian multipliers. Once the Lagrangians are available, it is possible to
evaluate how far the solution is from satisfying the Pontryaging maximum principle.

The global criterion for optimality will be derived empirically by comparing the solutions ob-
tained with each approach over a given number of runs. The usefulness at system design
levels accounts for the trade-offs among several optimality criteria: mass, power, cost and
time. Pareto optimality will be used to construct the optimal trade-off curves. Different ap-
proaches can be compared in terms of the classical performance metrics, generally used to
evaluate multiobjective optimization methods: the distance from the best achieved Pareto
set, the spreading of the solutions, and the extension of the Pareto set. In addition, a pair of
nondominated sets are compared by calculating the fraction of each set that is covered by the
other set. This can be used in order to show that the outcomes of an algorithm dominate the
outcomes of another algorithm, although it does not tell how much better it is. In fact, since
by construction the set oriented multiobjective optimization schemes (GAIO) always compute
a covering of the entire global Pareto set, we will use this scheme as a benchmark for the
other approaches. Notice that here the aim is not to test the global optimiser but more to
asses the Pareto optimality of the set of solutions that can be obtained with the tested tra-
jectory models and optimisation techniques. As an example, if the exponential sinusoid model
is run in conjunction with a pruning technique for a given Earth-GA-NEOQO sequence, then the
solution space will be reduced to a limited number of disconnected sets representing different
launch windows. For each launch window a number of Pareto optimal solutions should exist.
All these solutions will form a Pareto optimal front for that particular trajectory model and
for a given interval of launch dates and transfer times.

2 Trajectory Model and Problem Formulation

In this section we are introducing the trajectory models used for this study. In particular, the
exponential sinusoid for low thrust arcs and the powered swing-by model for gravity assist
manoeuvres. The problem of finding an optimal MLTGA trajectory will be formulated as a
general global optimisation problem.

2.1 The Exponential Sinusoid

It is here proposed to use a particular model for multiple gravity assist low thrust trajecto-
ries (MLTGA). Low thrust arcs are modeled through a shape based approach based on the
exponential sinusoid proposed by Petropoulos et al.[23]:

r = ko exp(ky sin(ke0 + ¢))



6

For each transfer arc a two-point baundary value problem (TPBVP) has to be solved. For the
solution of the TPBVP we follow the development proposed by 1zzo [10]. If the thrust vector
is aligned with the velocity, the flight path angle v and the thrust steering angle « are equal,
v = «, and the thrust history and the polar angle history are uniquely determined and the
control acceleration is given by:

p tan-y [ 1 k2(1 — 2kys) (2.1)

T r22cosy [tan?y + kikZs + 1 (tan?y + kikZs + 1)
The time variation of the true anomaly is given by:

o= (L) 1 (2.2)

r3/) tan? vy + kik3s + 1

with the flight path angle given by:
tany = kyko cos(kqof + ¢) (2.3)

and s = sin(k20 + ¢). Now by solving the integral:

~1/2
W 1
At = — do 2.4
/(<r3> tan? vy + ki k2s + 1) (24)

one can compute the actual time of flight.

The exponential sinusoid expresses the variation of the radius as a function of the polar angle
6 and depends on three shaping parameters kg, k1, ko plus a phase parameter ¢. By fixing the
initial and final radius:

71 = ko exp(ky sin(¢)) (2.5)
ro = ko exp (ki sin(kof + ¢)) (2.6)

two of the three parameters can be computed as a function of the others.

The two position radii can be computed from the ephemeris of two planets or other celestial
bodies under consideration. In this case, it is normally required that the transfer trajectory
going from one planet to the other is flown in a given time 7. This implies that the actual
time of flight must be equal to the required time of flight in order to have a physical solution:

At —T =0. (2.7)

If now this time constraint is solved, a third parameter can be determined and the exponential
sinusoid becomes a single valued function.

In this form, given the transfer time and the two position vectors at the beginning and at the
end of the transfer we can compute the velocities at the two extremal points and the thrust
profile. Since only one shaping parameter is free it is not possible to optimise the value of
the velocities at the boundaries plus the thrust profile but the problem is equivalent to the
Lambert’s problem for conic arcs.

Furthermore some analysis reveals that the exponential sinusoid gives physical solutions when-
ever kik3 < 1.



2.2 Gravity Assist Model for the Exponential Sinusoid

Since the values of the velocities at the boundaries are not completely free, given an incoming
velocity vector it is not possible in general to match any possible outgoing leg. A match
can be obtained through a powered gravity assist manoeuvre. Modeling gravity manoeuvres
through powered swing-bys has a very important advantage: it decouples the transfer arcs from
each other. Each transfer leg is therefore independent of the others. As was demonstrated
in a previous study and as will be demonstrated later in this report, this important property
renders the growth of the possible paths polynomial with the number of flybys.

We propose two different models: In the first model, the radius of the flyby pericentre 7, is
adjusted until the velocity turning angle constraint is no longer satisfied. A simple impulsive
Av manoeuvre is then inserted at the pericentre in order to match the incoming and the
outgoing velocities. In the second, the radius of the flyby pericentre r, is adjusted until a
lower limit is reached. At that point, a Av manoeuvre is inserted in order to produce an
additional turn of the velocity vector and to match the incoming and outgoing velocities.

2.3 Problem Formulation

For N 4 1 celestial bodies, each thrust arc is linked to the others through a sequence of
powered swing-bys. Abstractely, we are faced with a problem of the form

minimise: J
| () (2.8)
subject to: 1, > Timin,
where the solution vector y is

y = [to, 1, kop,ny o, Ty Koy iy o, Ty ko v, )™ (2.9)

and the objective function J is

AV AVy AV,
le—eXp(— cat Al _ LT), (2.10)
gOIspl gOIsp2

where AV 4 is the sum of all the AV s required to correct every gravity assist manoeuvre, AV
is the departure manoeuvre, while AV is the sum of the total AV of the low thrust arcs.
The two specific impulses I,,; and I, are those for a chemical engine and for a low-thrust
engine, respectively. In this formulation, the use of low thrust is favorized with respect to the
chemical corrections. Given the solution vector y, the values for all the r, can be computed
for each swing-by through a one-dimensional search. To this end, a Newton iteration has been
adopted in this study.

The overall process for the composition of an MLT GA trajectory with the exponential sinusoid
model can be summarised in the following steps (cf. Fig. 1):

— For each departure date ¢y and set of transfer times 7;

— Compute a exponential sinusoid transfer from A to B

— Compute v,

— Compute a 2-impulse transfer from B to C

— Compute v3

— Compute v, with pericenter radius r,

— If v9 = v3 proceed, otherwise compute matching Dvi at the pericentre of the hyperbola
— Compute the launch impulsive manoeuvre Awvy

— Compute the arrival impulsive manoeuvre Avy

— Compute the sum of all Av



Fig. 1. Composition of a whole MLTGA trajectory for the exponential sinusoid model

3 Problem Analysis

3.1 Search Space Structure

The first step to analyse the problem defined in the previous section was to grid the search
space for a direct transfer from the Earth to the astroid Apophis. There are four free variables:
the initial time %, the time of flight T}, the k5 shaping parameter and the number of revolutions
n. This four-dimensional space has been analysed fixing the number of revolutions and gridding
the other three variables.

The result can be seen in Fig. 2,3 and 4 for different values of &, in the range [0.05,0.6].

If we compare each contour plot with a simple bi-impulsive transfer, as in Fig. 5, we notice that
the distribution of minima and the general structure of the search space are very similar. The
effect of low-thrust is to 'blur’ the basins of attraction of the minima. The general structure
and the distribution of the minima remain unchanged also when k5 changes from 0.05 to
0.275. The white areas on the plot correspond to parts of the search space that are not
admissible since the algorithm can not find a solution satisfying the constraint on the time of
flight.

It is remarkable that these areas do not correspond only to high values of Av but also embrace
portions of the search space at the border or intersecting the basin of attraction of some of
the minima. If one full revolution is inserted before the encounter the whole set of optimal
solutions is shifted in time to longer times of flight but the launch windows remain unchanged
(cf. Fig. 6,7 and 8). Moreover, a longer transfer time corresponds to an extension of the
admissible set though at a value of k& = 0.6 again part of the search space becomes not
admissible.

3.2 Upper limit on k,

The number of allowable revolutions is dependent on the transfer time and on the value of
ko. For physical reasons, there cannot be more than a certain maximum number of spirals
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in a given transfer time. In order to avoid looping over all possible values of the number
of revolutions, a particular heuristic has been implemented: for a given transfer the number
of allowable revolutions can not be larger than the ratio between the transfer time and the
shortest revolution period between the departure celestial body and the target celestial body.
In addition to that, an upper limit on &y was derived in order to avoid imaginary solutions.
From the condition 1 — k;k3 > 0 we get

1 — —=1In° — > cos (k20y). (3.1)
2 T2
The two curves will cross before
2
ko = —W (3.2)
Oy

Therefore, we start from this point and we look for a solution to the problem

1 — —=In" — > cos (k20y). (3.3)

2 D)
The upper limit on ks reduces the search space but it does not solve the problem completely
since it does not identify either the feasible region nor a region in which the cost function
is monotonic with respect to k3. On the other hand, it reduces the size of the search space

along the k5 direction.

3.3 Solution of Lambert’s problem with the Exponential Sinusoid

The algorithm for the solution of Lambert’'s problem with the exponential sinusoid is repre-
sented in Fig. 9. Given the initial and final radii 7, and ry, the number n of revolutions (or
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Fig. 9. Algorithm for the solution of the Lambert’s problem with the exponential sinusoid

spirals) and the time of flight 7', the algorithm computes the acceleration profile a, the total
Awv due to the low thrust action and the velocity vectors at the boundaries of the thrust arc
v1 and vy, The two velocity vectors are in the plane of the orbit and need to be converted
into a 3D cartesian reference frame.

After that, the gravity assist manoeuvre is computed with the associated required Av for the
powered swing-by. This Av and the Awv for the low-thrust arc are finally used to compute the
total propellant mass fraction and the objective function.

Part of the code for the solution of the TPBVP with the exponential sinusoid was orignially
provided by the ACT and was then modified and integrated with the rest of the software.

3.4 Convergence Analysis

Another analysis of the structural complexity of the search space can be performed looking
at the convergence of a simple multistart algorithm. If we call A a generic solution algorithm
and p a generic problem we can define the following procedure:

(i) Set the maximum number of function evaluations for A equal to V.
(i) Apply A to p for n times.
(iii) Compute

Gmin(N) = minmin f(A(N), p,n)
Gmax(N) = maxmin f(A(N),p,n)

One expects that if the number of function evaluations N goes to infinity, the two functions
converge to the same value, the global minimiser. This can be considered true if the initial
set of samples covers densely the whole search space.

Fig. 10 and Fig. 11 show the convergence profile for the bi-impulsive problem, 50 repeated in-
dependent runs, Latin hypercube sampling and a local optimisation from each sample. Slightly
more than 1000 initial samples are required to have sure convergence to the global minimum.
Fig. 12 and Fig. 13 show the convergence profile for the exponential sinusoid problem, 50
repeated independent runs, Latin Hypercube sampling and a local optimisation from each
sample, ky € [0.05,0.6],n € [0,2]. After 2000 initial samples there is still a low probability of
converging to the minimum.
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4 Optimality Analysis

The analysis of the optimality of the solutions has two fundamental aims. The first is to assess
how reliable the results are and the second how good they can be as a first guess for a more
refined optimisation. In the following we are thus using two different approaches: the analysis
of the necessary conditions for optimality derived from Pontryagin's maximum principle and
the analysis of the convergence of a direct transcription method initialised with the exponential
sinusoid. For the latter case we are using the software DITAN [31].

4.1 Necessary Conditions for Optimality

The optimal control problem underneath the exponential sinusoid can be formulated as follows:

1 F?
inJ(F)= [ ——dt 4.1
win J(F) = [ 55 (@)
subject to
T
Vg
2
v;,:i (—%—F%—FFsinv) (4.2)
Vg r r
o= —v, + F'rcos~y

Vo

where ()" denotes the first derivative with respect to the polar angle 6.
The Hamiltonian function is therefore given by:

F " 2
g=La (_% ;% +asm) £, (_w _v) (43)
0 Vg Vo T T Vy

From the Hamiltonian we can derive the optimality conditions:

Frs
0] = )\UTL (—F cosy) + Ay, (M) =0

(% Vo

7 (4.4)
o, T COS 7y
09 = Ay, — (Sin —i—)\y( >+—.:O
2 Ve (sin) 0 e 0
The first of the two optimality conditions gives us the classical tangent steering law:
Av
t =" 45
my =4 (@5)
while the second one gives us the optimal value for the acceleration:
F=-0 [)\WL (siny) + Ay, <TCOSW)] . (4.6)
Vo Vo
The time history of the adjoint variables can be computed from the necessary conditions:
. OH
Ay, = —
" ov,
. oH
A, = 22 4.7
= o (4.7)
: 0OH
Ar =

o
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Now if the terminal constraint on the radius is enforced in weak form and there are no
terminal constraints on the velocities, for a fixed time problem the final conditions for the
adjoint variables are:

A, (0 =0) =1y
Moy (0 = 0) = 11 (4.8)
/\r<9 = 9_) = U3

Since the solution for the exponential sinusoid is providing the states and the controls at any
instant of time, the differential equations for the adjoints can be integrated backwards in time.
Given the adjoints, the states and the controls, the optimality conditions should be satisfied if
the solution is optimal. We can then use the norm of the violation of the optimality conditions
as a measure of the optimality of the solution computed with the exponential sinusoid. The
violation of the optimality conditions can be defined as:

Oy
Jo = ma 02+ 02) df 4.9
2 ee[eoigf] /90 ( 1 2) ( )

In order to integrate backwards the adjoint equations, the adjoints v, and v3 have to be
estimated. Given the control law from the exponential sinusoid the following minimisation
problem has to be solved:

min Jo(v1, Vo, v3) (4.10)

The result of this minimisation is the best estimation of the adjoint variables for the imposed
control law.

5 LTGASP - Low Thrust Gravity Assist Space Pruning

In this section we propose the LTGASP algorithm which is designed to efficiently detect and
prune infeasible parts of the parameter space of a given MLTGA problem. For this, we shortly
recall the problem formulation, state the different pruning techniques and finally present the
entire algorithm.

5.1 The MLTGA Problem Formulation

In the following we consider the MLTGA optimisation problem which is closely related to
(2.8). To be more precise, given an arbitrary but fixed sequence (nq,...,ny) of numbers of
revolutions we consider the following problem:

minimise:  J(7)
subject to: 1, > Tpn
where the solution vector ¢ is given by:

g =[to, 11, To,..., TN, k21, ..., kan],
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and where the parameters have the following ranges:

toEIQ,
T.eT,i=1,. .. N,
kmeIkW 1=1,...,N.

Define Z as the entire search space, i.e.
T:=Tgx...IN X Ty, X ... X L,
Introducing the map (cf. [11])
frx=1to,Th,...,Tn] = X = [to,t1,- .., tN],
defined by the simple component wise relation t; = tg + Z;onj, i=0,...,N, and setting
T = f(T) X Ty, X oo X Ipy

we can reformulate (5.1) as:

find X eI”
minimizing J(X) (5.2)
subject to 7,(X) > Tin.
We first give some notations which are helpful for the statement of the different pruning
techniques. Every (feasible) trajectory from planet p;_; to planet p; in the current setting is
determined by the parameters ¢;_;,t;, and ks ;. Given these three values, denote the resulting

trajectory from p; | to p; by
T(tio1,ti, ko).

Further, denote by D(Z;) and D(Z;,,) the discretisations of Z; and Z;,,. Thus, the entire
discretised search space is given by

D(I*) = D(Zy) x ... X D(I§N) X D(Zyy,) X ... X D(Zy, ).

Now we are in the position to state the pruning techniques which will be done in the following.

5.2 The Pruning Techniques

In the following we will propose the pruning techniques which are used for the LTGASP
algorithm.

Initialisation. Mark all t; € D(Z}), i =0,...,n, as valid as well as all trajectories
T(tz;l, ti, ]{3271'), Vti,l € D(.’Z;;l), t; € D(IZ*), k'Q,i - D(IkQ,i),
i=1,...,N.

AV constraining. The maximal allowable AV} is the main pruning criterion of the LTGASP
algorithm in phase 4. It works on the sampled space D([; ;) x D(I) x D(l,,) and prunes
out all those points corresponding to trajectories having a velocity change larger than a given
budget AV, ™%,

Algorithm 1 describes the AV pruning for the transfer from planet p;,_; to planet p;, i. e. for
phase i. Denote by AV;(T') the velocity change required by a given trajectory 7.
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Algorithm 1 AV pruning

1: for all valid t,_, € D(Z;_,) do
2: for all valid ¢; € D(Z;) do

3: if t; —t;_1 €Z; then

4: for all k2,1 € D(Z,, ,) do

5: if AV;(T(ti—1,ti,k24)) > AV then
6: mark T'(ti—1,ts, k2,5) as not valid.

7: end if

8: end for

9: end if

10: end for

11: end for

Departure velocity constraining. This criterion prunes out all trajectories where the de-
parture velocity (and thus the corresponding thrust required by the spacecraft) is larger than
a given threshold.

Forward pruning. An application of the AV pruning in each phase typically reduces the
search space volume of an MLTGA problem significantly. As a consequence many values of
the arrival time t; in phase i become non-feasible departure times in phase i + 1. To be more
precise: if there is no feasible trajectory that arrives at a planet on a given date because they
have all been pruned out according to the various criteria introduced, then there will be no
departures from that planet on that date. Thus, all the corresponding points will also be
pruned.

Algorithm 2 describes the forward pruning from phase i to phase i + 1 with respect to t; €
D(Z7).

Algorithm 2 Forward pruning
1: for all valid ¢; € D(Z;) do

2 If T(ti—1,%i, k2,;) is not valid for all (t;—1,k2.:) € D(Z}) X D(Zy, ;)
3: mark ¢; as not valid as well as all trajectories T'(¢;, ti+1, k2,i+1)
4: end for

Backward constraining. This technique is analogue to the previous one: clearly, if a depar-
ture time in phase ¢ + 1 becomes infeasible because of pruning, also the relative arrival date
in phase i has to be pruned out.

Algorithm 3 describes the backward pruning from phase ¢ + 1 back to phase i with respect to

Algorithm 3 Backward pruning
1: for all valid ; € D(Z;) do

2 If T({i,tﬂ_l, kQ,H_l) is not valid for all (t7;+1,l€27i+1) S D( ;(+1) X D(Ikz’,iJrl),
3: mark Z; as not valid as well as all trajectories T'(¢;_1,%;,k2,;)
4: end for

Gravity assist maximum thrust constraint. The gravity assist maximum thrust constraint
prunes out the trajectories having a difference between incoming velocities of trajectories in
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phase i (denote this velocity by V' ,(T) for a given trajectory T)) and outgoing velocities
of trajectories in phase i + 1 (denote by V'L (T)) during a gravity assist larger than some
threshold, A,. This threshold has to be set separately for each gravity assist. Further, an
appropriate tolerance, L,, based on the Lipschitzian constant of the current phase plot has
to be taken into account.

Algorithm 4 describes the gravity assist maximum thrust constraint pruning between phase ¢

and phase i + 1.

Algorithm 4 Gravity assist maximum thrust constraint pruning
1: for all valid #; € D(Z;) do

2: vfm.n =, min V7 (T (ti—1,ti, k2.4)) > forward
i—1,F24
3: U‘Tl;mz = max VJnd(T(ti_l,t_i,ng))
ti—1,k2,q
4 for all valid t;11 € D(Z;y,)) do
5: for all valid k2,41 € D(Z, ., ,)) do
6: if Vsittit(T(t_i,ti-q—h kg’i+1)) Q [Ufmn — A, — Ly, 11'7fn,1z + A, + Lv] then
7 mark T'(t;,ti11, k2,i+1) as not valid.
8: end if
9: end for
10: end for
11: Vin = min VS (T, tiga, k2.i41)) > backward
tit1,k2i+1
12: Vhaw =  max VL (T, tig1, k2i41))
tit1,k2,it1
13: for all valid ¢t;—; € D(Z;_,)) do
14: for all valid k2; € D(Zy, ,)) do
15: if V2 (T(tio1,ti,k24)) € 020 — Ay — Ly, ¥5as + Ay + L] then
16: mark T(ti717fi7 kzqi) as not valid.
17: end if
18: end for
19: end for
20: end for

Gravity assist angular constraint. The gravity assist angular constraint prunes infeasible
swingbys from the search space on the basis of them being associated with a hyperbolic
periapse under the minimum safe distance for the given gravity assist body.

This is determined over every arrival date ¢; € D(Z;) as follows: for all incoming trajectories
T(t;—1,t;, ko) and all outgoing trajectories T'(¢;, t;11k2+1) check if the corresponding swingby
is valid. In this case mark both incoming and outgoing trajectory as valid. Finally (i.e. after
going through all arrival dates), all trajectories not marked as valid by this procedure will be
pruned out.

Algorithm 5 describes the gravity assist angular constraint pruning between phase ¢ and phase
1+ 1.

Breaking manoeuvre constraint. As well as the departure velocity constraint, it is logical
to add a constraint on the maximum breaking manoeuvre that a spacecraft can perform and
prune out trajectories with an exceedingly high fuel demand.
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Algorithm 5 Gravity assist angular constraint pruning
1: for all {; € D(I}) do
2: for all valid incoming trajectories T'(t;—1, i, k2,;) do

3: for all valid outgoing trajectories T'(ti,ti+1,k2,i+1) do

4: if the swingby for T'(t;—1,%;, k2,i) and T'(f;,tit1, k2,i41) is valid then
5: mark T'(t;—1,t;, ka,;) as valid

6: mark T(f;;,tprl, k2,¢+1) as valid

7: end if

8: end for

9: end for

10: end for

11: Invalidate all trajectories not marked as valid

5.3 The LTGASP Algorithm

Having stated the different pruning techniques we are now able to state the complete pruning
algorithm. Given an MLTGA problem (5.2), the LTGASP algorithm for the search space
reduction reads as follows:

(0) perform the initialisation process.
(1) perform the AV pruning, departure velocity pruning as well as the forward pruning (one
" phase shift") for phase 1.
(2) fori=2,...,n—1
(a) perform the AV pruning for phase .
(b1) perform the backward pruning from phase [ downto phase 1.
(b2) perform the forward pruning from phase 1 up to phase [ + 1.
(c) perform the gravity assist pruning for phases [ — 1 and [.
(d) perform the angular constraint pruning for phases [ — 1 and .
(3) perform all the pruning steps described in step (2) plus the breaking manoeuvre constraint
for phase n.

Remark. This is just one possible way to combine the different pruning techmiques. Note
that the steps 2(a), 2(b) and 2(c) can be interchanged, and that the outcome of the resulting
pruning algorithm depends on this choice. However, since the angular constraint pruning is the
most time consuming technique (see subsequent sections), it is logical to apply this technique
at last in each phase. Further, it is also possible e.g. to apply the backward/forward pruning
after each crucial pruning criterion (such as the angular constraint pruning). This technique
is typically quite effective and has — in general — a running time which is almost negligible
compared to the other pruning criteria.

6 Time and Space Complexity for the LTGASP Algorithm

This section determines the time and space complexity of the LTGASP algorithm. It will be
shown that LTGASP scales quadratically in space and quintic in time with respect the number
of gravity assist manoeuvres considered. For simplicity, the following analysis assumes that
the initial launch window and all phase times are the same.

6.1 Space Complexity

Consider a launch window, a mission phase time, and the range of the kis discretised into [
bins. Thus, for the first phase [> Lambert problems have to be sampled. Since the number of
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possible times the planet may be arrived at in phase i, ¢ = 1,...,n, can be assumed to be
(i + 1)l (see [11]) the i-th phase will require an amount of (i +1)[-1-1 = (i 4+ 1){* Lambert
function evaluations (given by the discretisations of the departure times, the time of flight
and ks). This gives the series

3 _ l3”(1 +n)
B 2
Therefore, the amount of space required for n phases is only of order O(n?), rather than

O(k?"*1) for full grid sampling. Similarly, the space complexity with respect to the resolution
lis O(I?).

P42+ ... 4l = O(n?).

6.2 Time Complexity

The memory space requirement is directly proportional to the maximum number of Lambert
problems that must be solved, and hence the time complexity of the sampling portion of the
LTGASP algorithm must also be of the order O(n?).

For the further time complexity analysis we make the following assumptions (see above):

DI =+l i=0,...,n,

D(L,) (63)

=l 1=1,...,n.
AV constraint complexity. The i-th step requires on the order of %[> operations since by
(6.3) it follows that |D(Z*_,)|-|D(Z;)| - |D(Ix,,)| = i*I>. Thus, the time complexity applying
the AV constraint is O(n?) with respect to the dimensionality and O(I3) with respect to the
resolution.

Forward and backward pruning complexity. The forward pruning requires on the order
of 7213 flops for one “phase shift” (i.e. the pruning of the deptarture times for phase i + 1
by analysing the data of phase 7). Since for every phase i there are ¢ such phase shifts (i.e.
after the AV pruning of phase i and after the backward pruning), for this pruning criterion

an amount of ,
n 7 n L. .
. +1)(2j+1)
Sy er-ry Y
j=1 0

j=1 i=1

flops is required. Thus, the complexity of the forward pruning is O(n?*) with respect to the
dimensionality and O(I3) with respect to the resolution. Analogously, the complexity of the
backward pruning is of the same order.

Gravity assist thrust constraint complexity. The i-th step requires of the order of 2i2[3
operations. Thus, the time complexity applying the gravity assist thrust constraint is O(n?)
with respect to the dimensionality and O(I3) with respect to the resolution.

Gravity assist angular constraint complexity. The i-th step requires of the order of 2i3°
operations. Thus, the time complexity applying the gravity assist angular constraint is O(n?)
with respect to the dimensionality and O(I°) with respect to the resolution.

Overall time complexity. The overall complexity, taken from the most complex part of the
algorithm (the gravity assist angular constraint), is quintic with respect to the resolution and
quartic with respect to the dimensionality.
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7 Testing LTGASP

In this section we show the results for four different example missions. The computations were
done on an Intel Xeon 3.2 Ghz processor.

7.1 Sequence EVE

First we consider the sequence Earth — Venus — Earth. As critical parameters we have chosen
the ones shown in Table 1. The MATLAB commands for the execution of the pruning read as
follows:

P=1tgasp([3,2,3], [4745 5840], [100 200;300 400],[80 100 120],
[0.01 2; 0.01 2],[20 20], [5 5],[30 30], 6750, 1);
pplot3 (P);

Figure 14 shows the resulting 'candidate set’, i.e. the set of points which were not pruned out
by the LTGASP algorithm?, and Table 2 shows the corresponding running times.

Table 1. Parameter settings for the pruning of the EVE sequence.

number of celestial bodies : 3

sequence . Earth — Venus — Earth
launch window . [4745,5840] (days after 01.01.2000)
time of flight phase 1 : [100,200] (days)

time of flight phase 2 : [300,400] (days)
D) . 80

|D(Z7)| : 100

|D(Z3)| ;120

range of ka1 : [0.01, 2]

range of ka2 : [0.01, 2]

|D([k‘2,1 )‘ 020

|D(Ik2,2 )‘ 020

VAN i : 5 (m/s)

AV : 5 (m/s)

max. departure velocity  : 30 (m/s)

max. terminal velocity 2 30 (m/s)

TPmin Venus : 6750 (m)

7.2 Sequence EVEJ

Next we consider the extended sequence Earth — Venus — Earth — Jupiter. Choosing analogous
pruning parameters as in the previous example the commands for executing the LTGASP
algorithm and displaying the candidate set read as follows:

P=1tgasp([3,2,3,5], [4745 5840], [100 200;300 400;500 1500],
[80, 100, 120, 140], [0.01 2; 0.01 2;0.01 2],
(20, 20, 20], [5, 5], [100, 100, 100], [6750, 6750], 1);

pplot3 (P);

Figure 15 and Table 4 show the resulting candidate set and the corresponding running time
respectively.
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Table 2. Number of function calls and running time for sequence EVE

Function calls :
exposin-calls . 14,379
gravity assists 1 42,467

Running times :
AV pruning 1. phase : 429.37 sec.

AV pruning 2. phase : 335.93 sec.
backward /forward pruning : 0.02 sec.
max. thrust pruning : 6.45 sec.
ang. constr. pruning : 3475.93 sec.
2nd backward/forward pruning : 0.02 sec.
final backw./forw. pruning : 3.87 sec.
total running time : 4251.59 sec.

0.8
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k2,

0.4

0.2

°
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86800
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Fig. 14. Numerical result of the LTGASP algorithm on the EVE sequence.

Then more realistic values for the departure and arrival velocities were used and the launch
date was extended (see Table 5). Table 6 shows the resulting running time.

7.3 Sequence EVEIJE

As the third example we make another extension of the previous one and consider the sequence
EVEJE. Again similar settings for the pruning parameters were used. An application of the
LTGASP algorithm leads to a candidate set which is displayed in Figure 16. The corresponding
running times are shown in Table 7.

7.4 Sequence EVM

Finally we consider the sequence Earth — Venus — Mercury. Using the pruning parameters
shown in Table 8 the following MATLAB commands have to be used to display the candidate
set (see Figure 17):

2 This set is obviously in general a strict superset of the feasible set, but hopefully a good approximation of it.



Table 3. Parameter settings for the pruning of the EVEJ sequence: first test.

number of celestial bodies : 4

sequence
launch window

time of flight phase 1
time of flight phase 2
time of flight phase 3

. Earth — Venus — Earth — Jupiter

. [4745,5840] (days after 01.01.2000)
: [100,200] (days)

: [300,400] (days)

: [1000,2000] (days)

D(T3)] . 80
|D(Z7)| : 100
\D(Z3)| : 120
|D(Z3)| : 100
range of ka1 : [0.01, 2]
range of k22 : [0.01,2]
range of k23 : [0.01, 2]
|D(Ik2,1 )‘ 020
|D([k2,2)‘ 020
|D([’€2,3)‘ 020
Avmer : 5 (m/s)
AVgnes : 5 (m/s)
AVgme : 5 (m/s)
max. departure velocity  : 30 (m/s)
max. terminal velocity 2 30 (m/s)
TPmin Venus : 6750 (m)
TPmin Earth : 6750 (m)

Table 4. Number of function calls and running time for sequence EVEJ: first test.

Function calls :
exposin-calls : 24317
gravity assists : 4543

Running times :
AV pruning 1. phase : 431.56 sec.

AV pruning 2. phase : 340.24 sec.
backward /forward pruning : 0.03 sec.
max. thrust pruning : 5.06 sec.
ang. constr. pruning : 3475.93 sec.
backward /forward pruning : 3.87 sec.
AV pruning 3. phase : 1710.13 sec.
backward /forward pruning : 0.05 sec.
max. thrust pruning : 9.14 sec.
ang. constr. pruning 1 2373.77 sec.
backward /forward pruning : 0.06 sec.
final backw./forw. pruning : 5.60 sec.

total running time : 8355.70 sec.



Table 5. Parameter settings for the pruning of the EVEJ sequence: second test.

number of celestial bodies : 4

sequence . Earth — Venus — Earth — Jupiter
launch window . [3650, 7300] (days after 01.01.2000)
time of flight phase 1 : [100,200] (days)
time of flight phase 2 : [300,400] (days)
time of flight phase 3 : [1000,2000] (days)
|D(Z3)| : 1040

|D(Z7)| : 100

|D(Z3)| : 100

|D(Z3)| : 100

range of ka1 : [0.01, 2]

range of ka2 : [0.01, 2]

range of k23 : [0.01,2]

|D(Ik2,1 )‘ 020

|D([k2,2 )‘ 020

|D([’€2,3)‘ 120

Avmer 2 15 (m/s)

AVgnes 2 15 (m/s)

AVgrer 2 15 (m/s)

max. departure velocity  : 5 (m/s)

max. terminal velocity 2 30 (m/s)

TPmin Venus : 6750 (m)

TPmin Earth : 6750 (m)

Table 6. Number of function calls and running time for sequence EVEJ: second test.

Function calls :
exposin-calls : 43497
gravity assists : 55964

Running times :
AV pruning 1. phase : 2361.43 sec.

AV pruning 2. phase : 120.35 sec.
backward /forward pruning : 0.3 sec.
max. thrust pruning : 35.57 sec.
ang. constr. pruning : 35127.82 sec.
backward /forward pruning : 0.35 sec.
AV pruning 3. phase : 473.83 sec.
backward/forward pruning : 0.34 sec.
max. thrust pruning : 4.15 sec.
ang. constr. pruning : 730.98 sec.
backward/forward pruning : 0.31 sec.
final backw. /forw. pruning : 3.675 sec.

total running time : 38857.20 sec.
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Fig. 15. Numerical result of the LTGASP algorithm on the EVEJ sequence.

P = 1ltgasp([3,2,1],[700 1300], [100 800;500 1500], [100,120,140],
[.01 2;.01 2], [20 20], [5,5],[50,100], 750, 1);

pplot3 (P);

8 Optimization

In this section we address the optimization problem. In particular, we propose how the pruning
techniques can be integrated efficiently into the optimization process. Hereby we consider both
the 'classical’ scalar optimization problem described above as well as a related multi-objective
optimization problem.

8.1 Scalar Optimization

In the following we consider the MLTGA problem (5.2). In the course of the study the opti-
mization process was performed by following the subsequent steps:



Table 7. Number of function calls and running time for sequence EVEJE

Function calls :
exposin-calls : 14,379
gravity assists : 42,467

Running times :
AV pruning 1. phase : 423.82 sec.

AV pruning 2. phase : 338.61 sec.
backward /forward pruning : 0.04 sec.
max. thrust pruning : 6.62 sec.
ang. constr. pruning . 3582.48 sec.
backward /forward pruning : 0.04 sec.
AV pruning 3. phase : 1688.62 sec.
backward/forward pruning : 0.08 sec.
max. thrust pruning : 9.09 sec.
ang. constr. pruning : 2364.60 sec.
backward/forward pruning : 0.08 sec.
AV pruning 4. phase : 2575.04 sec.
backward /forward pruning : 0.10 sec.
max. thrust pruning : 19.40 sec.
ang. constr. pruning : 7471.00 sec.
backward /forward pruning : 0.10 sec.
final backw. /forw. pruning : 7.65

total running time : 18487.37 sec.

Table 8. Parameter settings for the pruning of the EVM sequence.

number of celestial bodies : 3
sequence : Earth — Venus — Mercury
launch window : [700,1300] (days after 01.01.2000)

time of flight phase 1
time of flight phase 2
D(Z3)]

ID(T))

D(Z3)]

range of ko 1

range of ka2

|D (ks )]

‘D(Ik2,2)|

AV me®

AVeE

max. departure velocity
max. terminal velocity
TPmin Venus

: [100,800] (days)
. [500,1500] (days)
¢ 100

: 120

: 140

: [0.01,2]

. [0.01,2]

0 20

0 20

: 5 (m/s)

: 5 (m/s)

: 50 (m/s)

: 100 (m/s)

: 6750 (m)
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Fig. 16. Numerical result of the LTGASP algorithm on the EVEJE sequence.

Table 9. Number of function calls and running time for sequence EVM.

Function calls
exposin-calls
gravity assists

Running times

AV pruning 1. phase

AV pruning 2. phase
backward /forward pruning
max. thrust pruning

ang. constr. pruning

2nd backward/forward pruning :

final backw. /forw. pruning

156,864
36,534

3940.79 sec.
3884.91 sec.
0.03 sec.
15.15 sec.
9613.19 sec.
0.03 sec.
5.93 sec.

total running time

. 17460.03 sec.

(1) Perform the LTGASP algorithm. Denote the resulting candidate set by C.
(2) Construct a box collection R starting from C, i.e. every element B € R is of the form

B=B(cr)={z eRY : |z;—¢| <rifori=1,...,N}.

This box collection should certainly cover C. Further, in order to speed up the computation,
it is desired that (a) the volume of R is small, and (b) the number of boxes is small. The
elements of R can for instance be detected by looking at the connected components of
the logical 3-dimensional matrices A; which correspond to the i-th phase: set a;i; = 0
if T(t;,tk, ko,) is not valid for the underlying sequence, where ¢; is the j-th element of
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Fig. 17. Numerical result of the LTGASP algorithm on the EVM sequence.

|D(Z;1)| (tx and ko, analogous); else set aj; = 1. The boxes can e.g. be selected by
taking the minimal and maximal coordinate values of each connected component (see
Figure 18 for an example). The amount of boxes® can be reduced by merging neighboring
connected components.

(3) Perform a preliminary analysis on all boxes of R. This can e.g. be done by running a
(separate) global scalar optimization algorithm on every box. Since these boxes were con-
structed after an application of the pruning algorithm, the optimization problem within
each box can be (roughly) regarded to be unconstrained. Thus, in principle every global
optimization algorithm which can handle box constraints can be applied.

In this study we have performed the preliminary analysis by executing a Differential Evo-
lution algorithm ([25]) of short running time.

(4) Continue the search on the boxes which are 'promising’ after the preliminary analysis in
Step (3) (e.g., by considering the best found function value in the box, and/or the volume
of the box, etc.).

Remark. Since the number of boxes can get large, it would be desirable to be able to perform
one run of a global optimization algorithm on the entire box collection (as it was done in the
multi-objective case, see below). Unfortunately, there was not enough time within this project
to develop an efficient algorithm adapted to this particular case. However, this could be an
interesting task for further studies.

As an example we consider the sequence EVEJ using the constraints and pruning parameters
described in Section 7.2. An application of Step (2) leads to an amount of 11 boxes (using
Q_label3.m). The preliminary analysis (prune_and eval.m) detected the following interval
as the best one:

interval 1:

t_0: [5548.924051, 5770.696203]
t_1: [5702.020202, 5858.939394]
t_2: [6026.470588, 6255.000000]

3 Using the method described above up to several hundreds of boxes have been obtained for some settings.
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algorithms.

t_3: [6949.352518, 7725.359712]

volume: 6171502693.164243

bestval: 0.920646

bestmem: 5624.269722 5755.441374 6103.010469 7136.829305

In a longer DE run on this interval the best value could be improved significantly (from
J1 = 0.920646 to Jo = 0.72786). The best parameters found are:

(o, t1, ta, t3) = (5571.18, 5765.25, 6118.45, 7426.74)

8.4
(ka.1, ka2, ko 3) = (0.5780,0.8084,0.6312). (8.4)
In an analogous run where different bounds for the pruning were used the following parameters
were detected

(to, t1, 1o, t3) = (3875.53,4088.72, 4495.98)

NP e (8.5)
(Ko, , Koy, ko.3) = (0.8,0.8,0.5),

corresponding to a mass fraction of J = 0.6845.

8.2 Multi-Objective Optimization

In addition to the (scalar) MLTGA problem defined in Section 5.1 we have considered the
related multi-objective optimization problem (MOP, see e.g. [6] or [3] for an introduction),
since their solution sets (so-called Pareto sets) typically offer much more information to the
decision maker (DM) of the design process. To be more precise, in the current case it could
be interesting to take in addition to the mass fraction also the transfer time into into account
since it seems to be more and more crucial for current space missions to have cheap and fast
transfers (this problem has also been considered by [4] and [12]). Thus, the following MOP
has to be considered:
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find: X eI”
J(X)
minimizing: (8.6)
tny — to

subject to:  7,(X) > Tyin.

In order to obtain the Pareto set of a given multi-objective MLTGA problem we have followed
the first two steps of the optimization process described for the scalar case. That is, we have
constructed box collections on the base of the candidate sets. In the next step, we have used
the subdivision technique proposed in [8] for the computation of the Pareto sets since for this
algorithm the boxes can directly be used (in fact, the algorithm generates a sequence of box
collections which converge toward the Pareto set under certain assumptions).

Figures 19 and 20 show the Pareto fronts for two sequences. In both cases we have taken
the same setting as in Section 7. The results indicate that it definitely worth looking at the
corresponding multi-objective optimization problem since the fronts cover a significant range
according to both objective values.
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Fig. 19. Pareto front for the EVM sequence.

9 An Alternative Approach: The Pseudo-Equinoctial Shaping

A low-thrust arc can be modeled as a variation of a purely conic arc. For a conic arc the
position vector of a spacecraft can be written by means of non-singular equinoctial elements
al =1p, f, 9,0k, L]:

cos L + (h* — k?*) cos L + 2hksin L)
sin L + (h* — k?)sin L + 2hk cos L) (9.7)
hsin L — kcos L)

r
1+h24+E2 (
T
1+h2+k2 (

2r (
1+h24+k?
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Fig. 20. Pareto front for the EVEJ sequence.

The expression in (9.7) was derived assuming that the orbital parameters were osculating.
On the other hand we can see (9.7) as a particular parameterization of the position vector
in terms of an arbitrary set of functions of L that we call pseudo-equinoctial elements al =
D, .G, h, k, L]. These elements are here called pseudo-equinoctial because they do not satisfy
exactly Gauss' planetary equations unless the thrust is zero. Every pseudo-element can be
expressed as a function of L in the following form:

a = ap + da. (9.8)

From the definition of r, velocity v and accelerations a can be computed by differentiation:

_dr_drdL
dt  dLdt’
dv  dvdL
or 004Z 8r
8&1 8L

In order to obtain the set of pseudo-elements that satisfies exactly the conditions at the
boundaries, the following nonlinear programming problem must be solved:

r(a(Lo), Lo) = 7o, (9.10)
r(a(Ly), Ly) =ry. (9.11)

On the other hand, for small values of the acceleration it is sufficient to solve the easier linear

problem
a(Ly) = ap. (9.12)

Of course the thrust profile, though constrainable, is a direct consequence of the shape and
must be considered only as a first guess useful for a further, more refined optimization. The
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optimality of the thrust profile depends on the imposed shape. In previous studies [18] two
shapes were proposed, an exponential one:

o = ag; + ay e =15 (9.13)
with Ay = A3 and Ay = A5, and a linear trigonometric one:
(873 :Oéo’i—i-OéLi(L—Lo)+/\iSil’l(L—L0+¢), 1= 1,...,5, (914)

again with Ay = A3 and \; = A5 and v a constant value.

For each set of pseudo-elements a different trajectory can be generated, connecting two points
in state space. The necessary controls to achieve the imposed shape of the trajectory and the
resulting mass expenditure can be obtained with the following formulas:

g r(a(L))
e = L — 9.15
a. = Fo(L) + s (9.15)
Lr la.| at
m, =1—ex —/ C—L>. 0.16
' o(- ) i (616)
The total time of flight can be computed from the time rate of the true longitude L:
Lrat
At = —dL. 17
| (0.17)

The actual time of flight At must be equal to the required time of flight, therefore the
following physical constraints must hold:

At — TOF = 0. (9.18)

Table 10 reports a comparison between the solutions found with the pseudo-equinoctial ele-
ments and the optimal control solution for a direct Earth-Mars transfer. The optimal solution
was computed by the Mission Analysis section at ESOC for the CDF study of the mission
Exomars. As can be noticed the pseudo-elements are estimating both the time of flight and
the propellant consumption very well.

Table 10. EM: Comparison with Optimal Control Solution

Data EM-1 EM-2 EM-3 CDF
Launch 06,/03/07|03/03/07|14/03/07|18/0.3/07
TOF (day) 745 764 751 873
Prop. Mass Ratio| 0.168 0.167 0.162 0.156

9.1 Solution of the Lambert’s problem with the Pseudo-Equinoctial Elements

The proposed shaping technique needs to define the value of three shaping parameters for
each thrust arc. Each shaping parameter controls a group of orbital parameters. In order to
solve the Lambert problem and get a physical trajectory connecting two points in space we
have to find the right set of shaping parameters that strictly satisfy (9.18). The algorithm for
the solution of the Lambert’s problem with the pseudo-elements is represented in Fig. 21.
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Fig. 21. Algorithm for the solution of the Lambert's problem with the pseudo-elements

Unlike the exponential sinusoid, the pseudo-equinoctial model requires the definition of the
values of the velocity vectors at the boundaries. The required input is therefore made of the
two position vectors at the boundaries r; and r,, the two velocity vectors at the boundaries
vi and vy, the time of flight and the number of revolutions. In the first part of the loop
the time constraint is solved and the propellant mass is minimised by changing the values
of the shaping parameters. The output is the thrust profile and the propellant mass fraction.
Since the value of the velocity vectors at the boundaries can be specified, there is no need
for a powered swing-by model for the gravity manoeuvre. We use a linked conic model that
satisfies exactly the physical conditions for a gravity assist manoeuvre, for more details about
this gravity assist model, the interested read can refer to [18].

As stated above, the first part of the loop requires the solution of the time constraint. Fig.
22 shows the At as a function of A\; and Ay, the two shaping parameters controlling the
semimajor axis and the eccentricity of the orbit, for a fixed value of A\3. The surface is smooth
and monotonic and its intersection with the plane at the desired TOF can be seen in Fig.
23. All the points along the red line in Fig. 23 represent feasible solutions for the Lambert's
problem. One of them minimises the propellant mass consumption, therefore the problem
becomes to find the values of A\; and A\, that minimise the propellant consumption and satisfy
(9.18).

Table 11 reports the computational cost for the solution of the minimum mass Lambert’s
problem for different times of flight. The problem was solved in Matlab with the function
fmincon. The computational time T, represent the time required to converge to an optimal
solution on an Athlon 64 under Linux.

The minimum mass Lambert problem was solved following two approaches. Approach one, in
the table, solves boundary constraints (9.11) while approach two solves boundary constraints
(9.12). In the latter case the mass consumption is underestimated since the conditions on the
velocity at the boundaries are not perfectly matched, on the other hand the computational
time is even up to 50 lower than in the former case.

Table 11. EM: Computational Cost for the Lambert Problem

TOF (Day) Approach 1 Approach 2
600 Mp=257.4 kg Teonv=12.625\m,=209.72 kg Tcony=9.38s
700 mp=234.4 kg Teony=10.53s|m,p=195.31 kg Tcony=8.76s
800 mp=229.4 kg Toonv=7.41s |mp=200.25 kg Tcon»=3.85s
900 mp=219.4 kg Teonv=7.25s |m;,=192.13 kg Teonv=7.72s
1000 | mp=210.3 kg Tronv=7.825 |1mp=192.51 kg Toons=9.71s
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10 An Alternative Approach: Search Through EPIC

The effectiveness of the pruning technique has been compared to other search methods that
are not making any use of problem dependent information. We compare the output of the
combination of the pruning technique and Differential Evolution (DE) to a multistart applica-
tion of DE. Finally we apply a hybrid approach implemented in the software code EPIC [14,

18,32].
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EPIC combines a stochastic search with a deterministic domain decomposition technique. The
decomposition of the solution space is driven by the outcome of the stochastic search.

The stochastic part of the algorithm deploys a number of virtual agents [13] in the search
space. Each agent applies a number of behavioral rules in order to take actions and share
information with the other agents.

The result of the exploration by the agents is passed to the domain decomposition part of the
algorithm that takes decisions on how to decompose the domain and where (in which portion
of the domain) to deploy other agents for a further exploration. All the three approaches were
applied to the EVEJ transfer in the following way:

(1) Pure DE: strategy 6, 40 independent runs, 20000 function evaluations each for a total of
800000 function evaluations, 20 individuals;

(2) DE+Pruning: 20000 function evaluations on each of the feasible sets, 20813 exposin eval-
uations for pruning the search space, 7 generated intervals, 20 individuals;

(3) EPIC: 20000 function evaluations for each domain exploration, Maximum 10 explored
domains, 20 agents.

The result of these three tests can be seen in Table 12. Though the combined Pruning-+DE
makes use of only a fraction of the function evaluations in comparison to the multistart DE the
solution is comparable. Furthermore the interesting thing is that the interval launch dates and
encounter times identified by the pruning contains all the solutions reported in the table. EPIC
performs well though with a total number of function evaluations higher than the combined
Pruning+DE.

Table 12. EVEJ: Comparison with Alternative Search Methods

Pruning+DE|Multistart DE| EPIC
0.6681 0.6374 |0.6349

11 Optimality Analysis

In this section we test the optimality of the solutions that can be obtained with the two
different shape-based methods. We compare the exponential sinusoid approach to the pseudo-
element approach. The solutions from the two approaches are used both to initialize a direct
transcription method and to initialize an indirect transcription method.

According to optimal control theory, the solution of the optimal control problem equivalent to
the exponential sinusoid yields the optimality conditions for the thrust steering angle and the
thrust modulus represented in Fig. 24 and Fig. 25, respectively. Fig. 24 represents the optimal
steering law and the steering law provided by the exponential sinusoid for a direct Earth to
Mars transfer. As can be clearly seen the control law provided by the exponential sinusoid is
far from being optimal.

Fig. 25 represents the thrust modulus. Even in this case the optimal solution is far from the
one provided by the exponential sinusoid. The two thrust laws are so different that it was not
possible to initialize the solution of the necessary equations for optimality. The first guess for
the optimal control laws in the previous figures was actually computed with a direct collocation
method.
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Fig. 24. Optimality Condition on the steering angle for the Exponential Sinusoid.

Unlike what can be obtained with the exponential sinusoid with the pseudo-elements the
estimation of the control laws could be used to solve the necessary conditions for optimality.
The comparison between the optimal solution and the shaped one can be seen in Figs. 26,
27 and 28 for the three components of the thrust vector. As can be seen, in this case the
estimated law and the optimal one are very similar, in particular they have the same frequency
and similar amplitude.

Therefore, though the pseudo-elements require a higher computational cost in comparison to
the exponential sinusoid they provide a suboptimal solution that is closer to the local optimal
one. This is true for the specific case of the solution of the minimum control problem but it
holds also true for minimum mass problems. Of course in the latter case the optimal solution
is generally, if no singular arcs occur, a switched control law, i.e. the engine is switched on
and off, and this type of structure can not be reproduced either with the pseudo-elements nor
with the exponential sinusoid.

Table 13. EM: Comparison with DITAN

Data Pseudo Elements|DITAN
TOF (day) 800 800
Prop. Mass Ratio 0.1704 0.1681

If the solution of the exponential sinusoid was not useful as first guess to solve the necessary
conditions for optimality, it was, on the other hand, effective in initializing a direct collocation
method. Here we used the software code DITAN to optimize a multiple gravity assist low-
thrust transfer to Jupiter. The GA sequence is Venus-Earth and the departure date, transfer
time and planetary encounter dates have been estimated through the pruning approach com-
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Fig. 25. Optimality Condition on the thrust for the Exponential Sinusoid.

bined with differential evolution. The combination of pruning and differential evolution (called
pruning+DE in the tables) provided a number of solutions, two of the best were used to
initialize DITAN and the result can be read in Table 14. The objective function is the integral
of the square of the modulus of the control and the departure dates has been constrained
to remain in a small interval containing the value provided by the exponential sinusoid while
the transfer times have been left free. As can be read the optimized solution is similar to the
first guess though the gain in propellant (last row) is quite significant. The huge difference
of the propellant mass fraction in the last column with respect to the third one is due to
the following reason. The Av manoeuvres for the powered-swingbys in the first solution com-
puted with the exponential sinusoid are not zero nor close to zero. The optimized solution,
therefore, has to compensate for the mismatched entry and exit conditions for each swing-by.
On the other hand the second first guess has the Av manoeuvres at every powered-swingbys
almost zero. The optimized solution, therefore, simply improve the thrust arcs. The gain in
propellant confirm that the exponential sinusoid is far from providing an optimal control law
for low-thrust arcs.

12 Conclusions

This study proposed an incremental branch and prune algorithm that can improve the MLTGA
problem by reducing the search space in polynomial time when the low-thrust arcs are modeled
through the exponential sinusoid and a powered-swingby model is used for the gravity assist
manoeuvres.

The first part of the study showed how the structure of the solution space for low-thrust
transfers is only partially different from the structure of a bi-impulsive transfer. The main
effect due to low-thrust arcs is to blur the basins of attraction of the minima that already
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Table 14. EVEJ: Minimum Control Problem
Parameter Pruning+DE 1|Pruning+DE 2| DITAN 1 DITAN 2
400mN 300mN Min Control | Min Control
Launch Date (MM-DD-YY)|June 27, 2010 | June 27, 2018 |June 27, 2010|July 01, 2018
Departure Velocity (km/s) 0.54119 1.118 0.54 1.1
Venus TOF (day) 199.78 148.6 268.79 153.84
Flyby Altitude (km) 200 6347.3 300 11428
Earth TOF (day) 400 365.5 419.88 498.87
Flyby Altitude (km) 6000 5675 15026 300
Jupiter TOF (day) 1097.7 1056.1 1196 860
Arrival Velocity v;n f 4.43 4.56 3.87 5.77
TOF (day) 1697.5 1570.1 1884.7 1512.7
Prop. Mass Ratio 0.534 0.529 0.421 0.1786

exist in the bi-impulsive transfer. This is directly related to the physics of the problem since
a low-thrust is supposed to produce a perturbation of the keplerian motion. The difference
between the two becomes more and more evident as the number of spirals for the low-thrust
arc are increased. In fact as the number increases the minima are shifted and the basins
of attraction are stretched. It is interesting to notice that for a fixed value of the shaping
parameter and for a fixed number of spirals the distribution remains unchanged. On the other
hand the convergence analysis reveals that the shaping and the number of spirals play an
important role in augmenting the number of local minima. Moreover the exponential sinusoid
model introduces an additional difficulty since not all the transfers are physical. Non-physical
transfers are regarded as unfeasible and for given values of the shaping parameter, number of
spirals and transfer times no feasible solutions exist. This is understandable since for a given
transfer time it is not physically possible to accommodate more than a certain number of
spirals.
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Table 15. EVEJ: Minimum Mass Problem

Parameter Pruning+DE 1|Pruning+DE 2| DITAN 1 DITAN 2
400mN 300mN Min Mass Min Mass
Launch Date (MM-DD-YY)| June 27, 2010 | June 27, 2018 |June 21, 2010|July 01, 2018
Departure Velocity (km/s) 0.54119 1.118 0.54 11
Venus TOF (day) 199.78 148.6 291.09 154.3
Flyby Altitude (km) 200 6347.3 300 1147.0
Earth TOF (day) 400 365.5 409.55 501.5
Flyby Altitude (km) 6000 5675 9026 300
Jupiter TOF (day) 1097.7 1056.1 1024.13 812.42
Arrival Velocity v;n f 4.43 4.56 3.87 6.28
TOF (day) 1697.5 1570.1 1724.7 1468.2
Prop. Mass Ratio 0.534 0.529 0.327 0.138
Table 16. EVEJ: Comparison with the Literature
Parameter STOUR-LTGA|IMAGO+EPIC| DITAN Pruning+DE
Launch Date (MM-DD-YY)| May 09, 2015 | Apr. 14, 2015 |Apr. 21, 2015|Apr. 23, 2015
Departure Velocity (km/s) 2.0 1.8 1.8 0.713
Venus TOF (day) 119 184 177 185.76
Flyby Altitude (km) 4481 8816 2431 200
Earth TOF (day) 345 386 439 361.1
Flyby Altitude (km) 4219 5964 300 300
Jupiter TOF (day) 1027 901 888 1000
Arrival Velocity v;n f 5.97 4.53 5 6.23
TOF (day) 1491 1471 1504 1546
Prop. Mass Ratio 0.485 0.48 0.18 0.56

In the second part of the study we develop an incremental branch and prune algorithm that
exploits problem information to reduce the search space. The resulting algorithmic complexity
is quintic in the discretisation and quartic in the number of phases. Therefore though the
algorithm is polynomial the exponent of the polynomial is significantly higher than for the
MGA case. This is essentially due to the additional degree of freedom introduced by the
shaping and thus by the low-thrust arc.

In the third part of the study the optimality of the solutions obtainable with the exponential
sinusoid and with alternative methods has been analysed. The result of this analysis is that the
solution of the exponential sinusoid is, in general, far from satisfying the necessary conditions
for optimality. Nonetheless when it is used to initialise a direct approach it provides a correct
estimation of the launch dates and of the encounter dates with the swingby planets. The non-
optimality of the exponential sinusoid can be seen from the difference between the estimated
propellant mass and the optimised one. On the other hand it should be underlined that when
no Aw correction is required at the GA planet (i.e. the swingby is unpowered) the estimation
of the propellant is close to the optimal value for the minimum control problem.

As an alternative to the exponential sinusoid we considered a shaping technique based on
pseudo-equinoctial elements. This approach provides solutions that are closer to the optimal
one than the exponential sinusoid, but the computational cost is considerably higher. However
this approach can be significantly improved by speeding up the root-finding process to solve
the time constraint. Furthermore the pseudo-equinoctial approach is more flexible at shaping
low-thrust arcs and at accommodating constraints of different nature both on the thrust profile
and on the boundary conditions.

We conclude with a conjecture. If the number of local optima is finite, the granularity of the
sampling is sufficient to have a proper representation of the solution space and the pruning is
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pushed to the limit, the algorithm will be able to reduce the search space to a neighborhood of
the global solution or to a finite set of local solutions that contains the global one. Therefore,
no matter the number of samples, since the algorithm is polynomial we can say that the
solution of the problem can be obtained in polynomial time and therefore the complexity of
the problem is polynomial.
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