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Introduction and Motivations

Interplanetary optimization problems have alwayseneed a considerable attention in the
trajectory optimization community. Present and pasthods focused essentially on the use of
local optimizers through the resolution of a twanpdoundary value problem (Maximum
Principle), or through a parametric problem, eitfegrlow thrust or impulsive trajectory de-
sign.

Introducing swing-by maneuver can permit to redineevalue function. However the use of
more and more swing-by bodies brings a mathematlwalenge as the dimensionality of the
problem increases.

This approach leads to such an increase in the auaibbocal minima, that a global approach
becomes imperative. Some works have already beea do the subject for the particular
cases of direct multi — gravity assist trajectdvfGA) for the ballistic or the low thrust case.
However, MGA trajectory does not represent the gdrigpe of trajectory, since for impul-
sive trajectories, deep space maneuvers (DSM) haee proved to be of great use. Deep
space maneuvers allow a gain of controllability peomit to reduce the consumption.

Multi gravity assist trajectory with Deep Space Mawver (MGADSM) need more variables
than the MGA case, and finding a global optimumonee even more complex.

The best way to find the global optimum is to dgrial sampling. However these techniques
are usually intractable, or very expensive. In ordesimplify those costly algorithms, it is
essential to prune the search space either wigh ef €onstraints or with domain knowledge.

Our main objective is to find an automated apprdael can reduce the computation cost of a
search algorithm in order to provide MGADSM traggats.

Study objectives

After the studies [2][3][4] considering the prunin§the search space for multi gravity assist
trajectories, the problem is extended to the caserevDeep Space Manoeuvres (DSM) are
included between the gravity assists. The primacy$ of the study is to assess the possibility
of pruning part of the search space in case desmgespanoeuvres are considered.

Although the subject is related to global optimizat few efforts are done on locating global
optimum. Rather, we focus on how:

- Locating interesting sub-spaces of the decisiomorespace

- Performing efficient local optimization

A pruning policy would allow quickly finding a glal optimum neighbourhood and thus lim-
iting the resource needed to find a global optimum.

Local optimization techniques are helpful to tactle global optimization problem. A sto-
chastic initialization procedure combined with lboatimization tools can provides a good
set of locally optimal solutions. An element ofstisiet can possibly be also a global optimum.
Eventually, a specific step is needed to assesgldihbal optimality of the solution founds.



Outline

The present report is decomposed into three parts:

1. The first part (chapter 1) is devoted to generakdption of the multi gravity as-
sist problem considering deep space manoeuvreter&it Deep Space Manoeu-
vres model are described as well as swing-by modléés briefly investigate the
complexity of the MGADSM problem in a strictly egalent approach to GASP.
We also describe reference test cases that wilsbewithin the report.

2. The second part, including chapters 2 and 3, facaselocal optimization tech-
nique for the general multi gravity assist problem.
We derive an optimal control problem using an iedirformulation. The key
properties on the Primer Vector theory are recallde case of multiple DSM on
a single leg is considered. The Primer Vector thé®ithen extended to the case
considering intermediate swing-bys. Several exampfeoptimal MGADSM tra-
jectory are presented.

3. The last part (chapter 4) is our pruning algorithims an extension of the GASP
algorithm to the DSM case. Only one DSM is consdeper leg. The problem is
then decoupled into several sub-problems. To opé@ngach sub-problems indi-
vidually, the sub-problem decision vector is insexh with specific variables
which ensure that each sub-problem optimum is @lathe overall problem opti-
mum. The computational complexity is reduced, aoigirpmial.
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1 Introduction

1.1 DSM models

1.1.1 Introduction

Planets’ orbits

Keplerian motion

2 point boundary value prob-
lem (Lambert)

Figure 1. Trajectory illustration

A Deep Space Manoeuvre (DSM) is an impulsive maweeut represents change of velocity
at a particular date and place of the space.
Since the location and date of a deep space manatevendependent, it is described by at
least 3 variables:

= Date of the maneuver

= Position of the DSM

= Velocity increment vector

There are different formulations that can be u$edeed, any model that can give a full de-
scription of the DSM can be considered, but itscdpon should have at least a 4 dimen-
sional space description.
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Figure 2. DSM model

1.1.2 Descriptions and DSM models

The DSM description and model is of particular imipoce. The choice of the variables has
an influence on the convergence properties of gtenization algorithm.

Some models use:
- simplicity: some model only necessitates to solvalgebraic equation at each
step, other requires integration.
- applicability: some model needs adding explicitstoaints in the problem
- robustness: bounded or unbounded variables, ...

The choice of the model is problem dependant. Hewefor global optimization algorithm
simplicity and robustness are the most interestagure.

The Date-Position model considers a poigtiRfrom the space and a datgy, where we
apply an impuls@V pgy.
The resolution of such a problem can be done thr@ufprmulation of 2 Lambert’s problems

[1] .

Lamber{r,,r..,,At) - V", Vi,
AVipen = Vi:—l -V

RDSM = r.i+l

The Date-Velocity model uses only the informatiantbe velocity increate and the date of
the DSM. Since DSM trajectories are only compodeidhpulsive manoeuvres, the trajectory
is a Keplerian trajectory almost everywhere. Tlange every manoeuvres,{AV;} are given
and the initial stateR,Vo, to] provided, one can propagate the initial st&gVo+AVo, to]
from one impulsive manoeuvre date to the next.s Timopagation provides the full descrip-
tion of all the R;,V;, t].

10



dv U
—=—r
dt | !
v(0)=v;
a _, (1.1)
dt
r (O) =T
And:
o =r(At)
Vi_+1 = V(Ati )

AV; = Vi++1 ~Vig (1.2)

Opposite to the Date-Position model, this modetieeeconstraint for the final position.

Table 1 summarizes the features of both models.

Table 1
Date - Position Date - Velocity
Variables T.RR, R T, Vo, Vy, V,
Constraints on the swing-by altitude on the finadiion
on the swing-by altitude
Transfer resolution Algebraic equation Propagati@yuation

Besides choosing between a position or a velo@scdption, the choice of the coordinates is
also or importance. In this study, we mainly foomsSun centered dynamics. The most suit-
able coordinates can be rectangular (or Cartesuamgr or spherical.

In rectangular coordinates, position and velocity described by their natural values and
provide a-priori unbounded variables. Only the ekpeint of view can limit the range for the

different values.
In polar coordinates, the variables are amplitatéude and a polar angle. Again, this set of
variable can only be bounded with expertise butlierangle variable which can be limited to

the [0,277] interval.
The spherical coordinates provide the most interg@stet of variables. These variables are the
amplitude (radius or velocity amplitude), the azimangleo, and the elevation angfe The

angleso. andp are limited respectively t{)0,2771 and [—7—27%1 The amplitude can also be

restricted to the positive line"RAN upper bound can be found with reasonable asgons
and expertise.

11



1.1.2.1DSM swing-by description

The Date-Position and Date-Velocity models do a&etinto account the gravity assist feasi-
bility, which express the maximum deviation on thgerbolic excess velocity vector, ac-
cording to the minimum allowed hyperbola pericerditude. Both models need an addi-
tional constraint for the swing-by minimum pericemtadius.

However, another description is possible. It actetime gravity assist feasibility by assigning
a variable to the altitude.
We have the following description vector:

x=[t h 7|

Wheret is the duration of the first coast att,is the altitude of the pericenter, andis the

B-plane inclination. The B-plane is perpendicutatite trajectory plane.
This approach however can only allow exactly on&/Or transfer leg. In addition, it is not
suitable for direct transfer which does not inclsgeng-bys.

12



1.2 Swing-By
1.2.1 Physical interpretation

Newton physics permits to explain the gravity assieenomenon. During the encounter of a
spacecraft with a planet, the sum of their kinetiergies before and after the encounter is the
same, as is that of their linear momentum. Butinduthe encounter, the planet’s gravitational
interaction with the spacecraft produces a changbe velocity of the spacecraft. The even-
tual gain in kinetic energy of the spacecraft sHom equal to the eventual loss in kinetic
energy of the planet. Since the spacecraft magsnerally meaningless compared to the pla-
net mass, the change in the planet velocity isllysoeaningless too.

The trajectory of the spacecraft relative to thengwy body is a hyperbola. The relative
hyperbolic velocity is defined by:

V., =Vg.c—V, (1.3)

This hyperbolic velocity is the same in modulehat input and output of the gravisphere of
the planet (e.g sphere of influence), for non p@deswing-by.

SOl frontier Trajectory Plane Projection

Toward the

Sun

Figure 3. Swing-By model

In the literature, swing-bys are also referred r@vitational assistance, gravity assist, fly by,
or also, but mistakenly to gravitational slingshot.

The physic can be simplified if we do not consitiee dynamics of the spacecraft into the
Sphere of Influence during the swing-by. The tinmidlight in the sphere of influence of the
swing-by body is small compared to the total missituration. Consequently, it is usually
considered as a punctual phenomenon. Consequtrglperturbation maneuver is supposed
instantaneous. This is often referred as the PdtClomic approximation.

13



1.2.2 Simplified Swing-By

Following the patched conic approximation, thereriy/ a change of angle betwe&h, " and
V., . If we take 2 the angle betweet, * andV., we get [1]:

Sin5=% (14)
140
M,

Wherer  is the periapsis of the hyperbola during the entauand 4, is the gravitational

constant of the swing-by body.
The rotation is done in the plane defined by tleiming relative velocity and the pericenter
radius vector.

The velocity increase due to the swing-by is singlen by:

AV =|v -V =2v,siné (1.5)

There are limitations o@d and AV , given by the minimum radius which could not berér
than the planet radius; <r, and:

planet

Sindmax :ﬁ (16)

If 1 e < T, WE Say that the swing-by is feasible. The genssaktraints to respect, for a
feasible swing-by, are then:

T,

\Y,

22— —SIiN20
w=||vofv- @
v =lve]
The outgoing velocity vector from a swing-by canchéulated using:
YA V°° _V°°y_ _ Voox_vooz_
™ V., V., -
> = [ cod20)
. _ - V)V, V,, V.., .
Vo =|V,, E — sin(20)cos7 (1.8)
_ o = |l sin(29)sinz
VooZ O Vooxy -

Where:

14



V] =|

Ve

_ - \2 _\2

Voy =yaf +{vs)

And 20 ands are respectively the deviation angle and the Bigiaclination with respect
to the ecliptic.

1.2.3 Simplified Powered Swing-By model

If the gravity assist is not feasible, an impulsmaneuver permits to correct the hyperbola
pericenter altitude. More specifically, in this dguwe can consider post-swing-by correction
maneuver.

We apply the impulse after each gravity assist:

V

00

Ve )-va)

av = (v(t)-v, @) 1- (1.9)

The gravity can be free i(\/(t*)—VD (t))—Vm+ =0.

Placing a manoeuvre after the gravity assist, asessed in the formula, allow considering
the maximum available rotation of the hyperbolidoegy vector, without radius violation,
and make a correction with an additioA®l to match the heliocentric output velocity vector.

Thus, simply:
AV =V ()= (v, 1) +Vv.") (1.10)
WhereV," respects the maximum rotation constraint.

Another option would have been to place the impalsthe pericenter of the gravity assist.
This would have been more efficient, but complexifg method.

This model has the advantage of decoupling thelgnolby considering several transfer arcs,
where an arc is the patched legs joining 2 plariéis property, used in [2][3], allowed the

MGA problem to have a polynomial space complexity.

1.2.4 Trajectory approximations

There are different models available:
= The Matched Conic approximation is one of the nagsurate since it does not exhibit
any velocity discontinuity in either velocity or giion at the sphere of influence. The
dynamics are integrated through the sphere ofenfte and outside, with appropriate
jump conditions at the boundary of the sphere fdi@gmce when changing the referen-
tial from heliocentric to planetocentric and vicersa.

15



= The Patched Conic approximation has the same ¥glpooperty, it does not allow
discontinuity in the velocity, but allows a discioniity in the position at the sphere of
influence. The position is considered to be thatjwsof the planet.

= Other models exist like the mass less planet metath avoid the notion of sphere of
influence. In the present study it is therefore plaeched conic model which is of in-
terest.

1.3 Impulsive Multi Gravity Assist problem

1.3.1 Problem Formulation

The problem is the one of finding the optimal ingad that allows reducing the characteristic
velocity (AV budget) of a multi gravity assist trajectory.
The impulses are initially totally unknown, and pibéy they may not be necessary.

The objective function to minimize for this probleran be written:
3 =[ave| +|av | +>[aVosuq| (1.11)
i=1

With the initial conditions at the launch date

Under the constraints:

r(tf)_rf
wl(tf ): Hv(tf )_Vf H
t, —t, —tof

‘/lz(tf )=r(ti)_rB(i)(ti)

We give the gravity assists planet sequ@eébl,bz,...,bN} whereb is a Solar system pla-
net. The date of passagieat eachb, defines the mission scenario.

The dynamics is the spacecraft, under the soleg&ntational influence, is given by:

16



dr _

dt

dv _ u Jol p

—=-=r+gq—=u 1.12
dt rs g m (1.12)
dm__

dt

Wherer defines the Cartesian position,the velocity, 4 the Sun gravitational constant;
the mass of the spacecraff,the spacecraft fuel mass flousp the specific impulse of the
spacecraft thruster and is the unit thrust direction.

The optimization variables are thus the date obantert, with the planets, the Deep Space
Maneuvers (DSM) model variables, and possibly #scdption of the swing-bys.

1.4 Problem complexity

1.4.1 Simple MGA problem complexity

According to [2][3], it is possible to have a potynial complexity in space and time for the
multi gravity Assist interplanetary transfer (MGA).

Indeed, this can be verified with the following @sgtions:
= there is less than one revolution for each trandfer=1

= transfer directions are all in the same directjpos(grade or retrogrades) =1

* Jaunch window and mission phase time have the shsceetization step.
= the Gravity Assist sequence is fixed.

This permits a grid sampling of the search spacé,vath the use of constraints, allows find-
ing an optimum solution at a very low computatioc@dt.

1.4.2 MGADSM problem complexity

As for the MGA problem, we can investigate the eMpicomplexity of the extended problem
using Deep Space Maneuvers (DSM). As this is tha mmtivation of this work, we can
wonder if the GASP [2] approach also leads to gmpmhial complexity.

As it has been written before, the model of a DSMdat least 4 independent variables.

Consider an n-GA trajectory with only one DSM peg,l and a launch window discretized
into k bins of equal length, as well as each leg phasm f; to t,, andt,g, tot,
Thus:

1% phase: Tleg k?
2%eg 2k?
2" phase: Tleg 3k?

17



2%eg 4K?

n" phase: T leg (2n-1)k?
29%eg 2nk?

This gives the sum:

Or also:
c=k’(aM?+Mm)

The space required forM phases problem with one DSM per phase is of tdercnfo(kz).

In addition, since all phases may not require a D8I computational cost may be pessimis-
tic. The precedent approach can still be used etitiie complexity.

Although the computational cost appears polynomidhe multiplicative factor
4M? + M should not be considered negligible. For exampl€aasini like mission, with up
to 5 gravity assist, need a space of the ord&éo8k?.

However, the same approach cannot be followedherspace complexity. Opposite to date
and planet positions in the MGA case, the positems the date of the DSM are independent.
Simple assumptions show that the space complexitiearly not polynomial.

But we can benefit from the time complexity and rappiate local optimization methods to
efficiently find a good trajectory. If our local itieds prove to be efficient, the overall com-

putational cost has great chance to be polynoﬁ)(kil‘), wheren still needs to be defined.

In addition, the MGA problem has an advantage eerMGADSM problem. In the MGA
case we have a good description of the decisiotokeas we only use the planet. In the
MGADSM case, we are not sure if a DSM is necessanyot, which may need unpromising
sampling of the search space.

For the MGA problem, each phase was described dpnec, and hence the sensitivity of the
cost function with respect to the date and positibthe planets is low compared to the full
MGADSM case. Indeed, one can easily notice theedfice in cost according to the place of
the DSM. The size of the bins used to describedB® date must then be small compared to
the phase time length.

1.5 References cases and examples of MGADSM trajectories

Along this report, we will consider mainly 3 testses. Those are interplanetary transfer prob-
lems, known to be difficult. They are usually wedferenced in the literature.
In most case, we only consider one DSM per leg.

18



1.5.1 Earth Venus Earth Jupiter

The EVEJ trajectory does not follow any missionsrent or past.

Table 2.
EVEJ mission variables bounds
Lower bound Upper bound
Tref 01 Jan 2001
TO (days) Tref -1000 Tref + 1000
tof (days) 0 1500
Tgsn/tof ratio 0.1 0.9
AVO0 (m/s) 0 5000

1.5.2 Cassini Trajectory

Cassini spacecraft was launched on October 15, &89 mission to Saturn and Titan. It is
one of the most impressive missions, as the ti@jgas one of the most complex one ever
done for real. At the time of writing, Cassini shibget an encounter with Titan in about 6
days.

Its trajectory has multiple swing-bys to reduce thel expenditure, but in addition several
design constraint were given, such as the limigesh¢h hyperbolic velocity due to an impor-
tant mass budget of the spacecraft. There is atamstraint on the final velocity because the
spacecraft need to get inserted into orbit arouatdr8.

CASSINI
INTERPLANETARY TRAJECTORY

e SATURAN ARRIVAL
. 1 JUL 2004 \
VENUS SWINGEY . \
[ 26 APH 1988 v

VENUS SWINGEY
e 24 JUN 1533

EARTH SWINGE
18 ALIG 1500  JUPITER SWINGEY
! 30 DEC 2000

¢
& PERIHELIA

27 MAR 1992 p.E7 AU
28 JUM 1999 0,72 AU

Figure 4. Cassini Mission (© NASA/JPL)

Table 3.
Original Cassini mission events[5]
Event Date (days from Tp) Real date Velocities, altitudes

19



[26]

Launch 06/10/1997 (0) 15/10/1997 3 €18.1 km?/s?

DSM1 16/03/1998 (162) - AV=0 m/s

Venus Swing-by 21/04/1998 (197) 27/04/1998 H=300Wp%11.8 km/s
DSM2 02/12/1998 (423) 26/11/1998 AV=466 m/s

Venus Swing-by 20/06/1999 (622) 25/06/1999 H=226,/Mn¥13 km/s
Earth Swing-by 16/08/1999 (679) 18/08/1999 H=500¥i3%19.1 km/s
Jupiter Swing-by 30/12/2000 (1181) 06/01/2001 H=1639/,=11.8 km/s
Phoebe flyby 12/06/2004 (2441) - D=52000km

Saturn Insertion 01/07/2004 (2460) 30/07/2004 AV=613 m/s

Titan flyby 27/12/2004 (2609) H=1500 km,.¥5.9 km/s

End of Mission

01/07/2008 (3921)

According to [5], the global optimum solutions nee@s between 35 and 55 km?/s2, which is
not possible in practice. There is thus a condtram the initial launch velocity of about
4km/s.

In order to comply with the Cassini mission reqoesnt, we set the following search box and
constraint:

Table 4.
Cassini mission variables bounds
ATg[d, MID2000]  ATy[d] AT,[d] ATsd] AT,jd]  ATgd]
Lower bound -1000 100 100 30 400 800
Upper bound 0 400 500 300 1600 2200

1.5.3 ROSETTA mission

The ROSETTA mission purpose is to understand tiggnoof the Solar System. As the most
primitive objects in our solar system, comets avedgcandidate for the ROSETTA mission.
The mission was initially planned to rendezvouswveibmet 46P/Wirtanen but will eventually
rendezvous with comet 67P/Churyumov-Geresimenlar aftLO years journey.

Comet 67P/Churyumov-Gerasimenko

Figure 5. 3D view of the comet

The mission does not present any Deep Space Margduu the trajectory is very complex
with multiple Earth gravity assist, one Mars grg\assist and 2 comet flybys, before the final
rendezvous.

20



Assistance gravitationnelle
Terre 2 - 11/2007

Assistance gravitationnelle
Terre 3

Orbite de la Terre
Orbite de Mars

ssistance gravitationnelle
Mars - 02/2007

Trajectoire de Rosetta
= Lancement — AGT 1
AGT 1—=AGM
= AGM —AGT 2
= AGT 2—+AGT 3—+ETPICG

Trajectoire de Rosetta

Figure 6. Rosetta trajectory (source: cnes.fr)

Table 5.
Original ROSETTA mission events[5] [6]

Event Date (days from Ty) [26] Velocities, altitudes
Launch 02/03/2004 3067kg,.¥3.515km/s
DSM 1 10/05/2004 158m/s
Earth SwingBy 04/03/2005 (367)

DSM 2 28/09/2006 32m/s
Mars SwingBy 25/02/2007 (723) 2260m/s
DSM 3 25/04/2007 7 m/s
Earth SwingBy 13/11/2007 (261)

Ast. Steins flyby 05/09/2008 (297)

DSM 4 19/03/2009 7m/s
Earth SwingBy 13/11/2009 (434)

Ast. Lutetia flyby 10/07/2010 (239)

DSM 5 23/01/2011 789 m/s
Rendezvous 22/05/2014 (1412) 794 m/s

End of Mission ..[112/2015

The mission scenario was selected according tanteghproblem issue. As a consequence,
swing-bys and flybys close to the sun were notvadid, and the launcher readiness was too
risky for other scenario.

The DSM1 and DSM2 are actually callefiV' gravity assist” by [6] as they permit to create

Earth swing-by with an increased arrival velocttgmpared to the others which only permit

to flyby the selected asteroids.

Table 6.
ROSETTA mission events[5] optimized without DSM
Event Date (days from Ty) [26] Velocities, altitudes
Launch 02/03/2004

21



Earth SwingBy
Mars SwingBy
Earth SwingBy
Ast. Steins flyby
Earth SwingBy
Ast. Lutetia flyby
Rendezvous

04/03/2005 (367)
25/02/2007 (723)

13/11/2007 (261)
05/09/2008 (297)
13/11/2009 (434)
10/07/2010 (239)

./05/2014 (>1391)

End of Mission ..112/2015

1.6 Final Remarks

We introduce the different DSM model and the swiryygmodel used in the patched conic
approximation. These models are important becawseviV essentially refer to these one
when computing a multi gravity assist with Deep @&pilaneuver trajectory (MGADSM)

We also introduce the dynamics system which wilubed later on to formulate the optimiza-
tion problem.

We briefly investigate the cost function for a slmPSM case. This example gives us some
insight about the behavior of the cost functiord #me problem we might encounter, although
the example was not by itself exhaustive.

In this study, we will try to take benefit of thecent promising results about the polynomial
complexity of the MGA problem.

The following chapter deals with the well know PeinVector theory. This theory will help
us estimating the placement of the DSM, and gigea initial guess for the local solver.
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2 Primer Vector theory

2.1 Introduction

The patched conic approximation leads to an inéetiary trajectory, by solving intermediate
2-body transfer problems. It is generally usedifopulsive transfers; therefore the legs be-
tween each body along the trajectory are purelycso\ccording to Lambert’s problem and
Gibbs theory, the solutions to this problem arejuaiand easily computed.

When minimizing the characteristic velocity, itgessible to reduce the cost of the MGA so-
lution, by considering additional intermediate irfgms. The problem becomes more difficult.
The search space is bigger and it is not an eakytdeget a good initial guess.

Lawden theory brings us key elements to optimineudtiple impulse trajectories. It introduc-
es a dual problem from the calculus of variatiozotly to seek the optimal impulses.

We will first introduce to the optimization problerand provide a brief description of the
Lawden Primer Vector theory. We will show how thigory can help us estimate the DSM
position and amplitude. Also, an important featof¢he theory is its ability to automatically
find an optimum number of impulses. With this thetaral basis, we will introduce our search
algorithm that manages to optimize any initial Juises trajectory by adding optimal inter-
mediate impulses.

2.2 Primer Vector Theory

2.2.1 Optimal control problem

Consider the problem of transferring a spacecminfthe stateX(t,) = [ro,vo,mo] to the
rendezvous conditionEsf ,vf] in a given time of flightof =t, —t, > 0 The spacecraft carte-

sian position and velocity vector and the spacearsss are given by the state vector
isX:[r,v,m]. The problem control variables comprise the més& fate g and the unit
thrust directioru. The spacecraft dynamics are given by:

dr

— =V

dt

dV /j gO sp

—=-=r+q——-u 2.1
dt r3 g m (2.1)
am__,

dt

Wherer defines the Cartesian positionthe velocity,u the Gravitationnal constanty the
mass of the spacecradtthe fuel mass flowisp the specific impulse of the spacecraft thruster
andu is the unit thrust direction.

In addition we have the following constraints oa tontrol variables:
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Q(Opex —9) 2 0

Ju] =1 22)

Such that we have a variable bounded mass flowQatg < g, . Of course, for impulsive
thrust we have either a thrusting force approacimfigity g, — « or a thrust time of the
burns going to 0.

The objective function to maximize is:
3=-m,) (2.3)

Because of Tolstoiski formula, this is equivalenitinimize the characteristic velocity of the
mission:

3=[av, |+ Z}”AV‘ || (2.4)

Wheren is the number of Deep Space Maneuvers (DY, is the initial impulse and

|av, | is the rendezvous manoeuvre impulse.

We introduce the Lagrange variablgs [LR,LV,Am] for the state vectoX :[R,V,m] and

U= [,ul,,uz] for the control constraints. We also introducdagls variableo for handling the

inequality constraints on the mass flow rgtél'he Hamiltonian of the optimal control prob-
lem is:

dr dv dm
H=hg i mawl(Q(qmax-Q)-az)wzQIUIl-l) e
25
Ay ol d
- q(%u + /qumax] g d—rt 5 e+ ol -+ ot -a7)

The necessary conditions of optimality permitsebthe Lagrange variables equations:

oH
6[u,q,a] =0

Thus:

di, _

dt R

di
e o,

(2.6)

The Maximum Principle gives the optimal control,igis:
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U=t if gz0 andy, 20 (2.7)

]

The vectork, is called the primer vector, and it is the coestatthe velocity.

The %3 gradient gravity matrixs for two-body motion along a reference or(]i,tr) is given
by [1]:

Gltr)=A (3ra -|r1,)

Irl"

This matrix is usually evaluated around a referenagctory, as (2.1) and (2.7) cannot be
integrated concurrently (see 2.5.1.1).

Note also:
oft)=-L5r(t)

Il

We can then introduce the switching functi®n

d
H=asviy -5t v pul-2)+ e -a?) (2.8)
With:
- gOISp( T Hq m]
S=0seiy Ty + Fmacs (2.9)
m golsp

The switching function permits to describe theanstof switching of the control.
And for the optimal control’”, S=S*:

S>0=q=0,.
S<0=qg=0
S =0= singularcontrol

Indeed, for the impulsive case, we have either gitmam thrust arc of a null thrust arc. In-
termediate thrust arcs (singular arc) only permget variable thrust.

2.2.1.1General Application of Primer Vector Theory

If we now study the case where we have an impililse.switching functiors crosses zero.
We have then:

{H(}‘)-H(tf)=0 (2.10)
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This implies that the primer vector is perpendictdeits derivative:h,, Ay .
And:

dS: golspi

dt m dt

d
Gill=0

[

Integrating this last equation gives:

The constantnst is the normalization constant @f, or also the magnitude (HRV” for all
impulses. We can choose to ufiit| at impulses.

Now, following the approach of Jezewski [7], we estigate the case where we need to add
an impulse. Adding a new impuls&V ., perturbs the nominal trajectory. We get the new
value function:

J=|Av, + vy +|av, -av, |+ Z;:HAVi O = +]AV,.|

(2.12)
The relative change in the value function due tdragithe new impulse is then:
AV, N, AV, oAV (v -av)
dJ=—2—"0- + LAz L+ AV [+ ol V|1V [, | DV
v v ey vl ol el

This expression can be rewritten to first order:

n T + _ -
dJ =)\«VOTNO _)\‘Vde/f +ZAVi (d\/| d/i )+||AVn+1

= v (2.12)

Because the Hamiltonian is constant over eachinégb two successive impulses, the 2 first
terms on the right hand side can be related tanteemediate impulses with the use of the
primer vector and relative perturbatidnof the impulses position.

v+ TE] " =0

The first term of (2.10) vanishes because of the iianian and the position trajectory conti-
nuity, and:
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dd =|dv,, -V,

_ T d‘/n_+ _d\/r:r+
(1 o Ha/ni—av:j

(2.13)

For example, if[Ay,.,
reduce the cost.

exceeds unity, then the differential cost beconeggatives and we can

2.2.2 Conditions for a primer optimal trajectory

According to the former development, we have 4 dants for a ballistic trajectory to be
optimal [7]. They are resumed below.

Property 2.1:
1. the primer vector and its derivative should be canus

2. if there is an impulse, the primer vector is aligneith the impulse, and its module is
1.

3. the primer vector module should not exceed 1.

4. the derivative of all intermediate impulse is zero.

It is important to emphasize one of the major draekis of Lawden theory. In order to opti-
mize a trajectory it is necessary to have at [2astpulses. More precisely, we can only com-
pute trajectory where we can evaluate the bounsléoiethe transversality conditions).

To compute the primer vector history, it is thugortant to evaluate its value at one boun-
dary.

2.3 Boundary conditions

2.3.1 Calculus of Variation

From the value functiod (2.3) and general boundary constraifitsve can construct the
performance index:

L(x,u,A)=J+v" Gplx(t, ))+tJf'AT [ﬁf(x,u;t)—%)dt (2.14)

Where f (x,t) is the problem state dynamical equatidnis the costate vector ands the
Lagrange multiplier associated to the constraints.

With:
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The state vectaX includes the position vectorof the spacecraft according to the cen-
tral/reference body position, the velocitpf the spacecraft according to the reference frame

The first differential becomes:

dL=dJ+...

ek, ) vy (e, )
+hy (tf )de —hy (to)dvo to

t
+.[ (XR'*'dkvjm/'*'()vva_G-l'dXij dt+...
: dt o dt ) | (2.15)
ti- T
+| (xR+deju§/+(xva—G+dejm dt+...
ol dt or dt |
+>{du, +di dt+di |
i=1
And for conciseness:
Le =k ()R, =27 (t7 )R}
TV’ T dR” Tdv” TdR”
|_ti :()“V W*‘)\.R at J_(;\,V T-'-)\‘R W] (216)

tia T T
di, = | (xwd“] uﬁ/+(vaa—G+d7‘Rj & |dt
dt or  dt

Wheren is the number of DSMt,}._, . are the date of the DSM,, =t .
If there is no DSM, the last term vanishes andt’ =t .

2.3.2 Boundary constraints handling

2.3.2.1Rendezvous problem

The rendezvous is given by the conditions:

There are no constraintg:= .0
Thus:
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Vv, [Av,| )17
03 __ AV, (217)
o, |av]
whereAV, =V, -V_, andAV, =V, -V,
Then, to get an optimum point we should get:
_ AV,
}‘v (to) - ”AVO” (2-18)
AV,
M\ 2.19
L™ e

Note that the position constraints are implicithtisfied since the trajectory is a solution of a
Lambert’s problem.

2.3.2.2Constraint on the initial velocity

Consider the initial constraint:

Wlto)=Vo Vit ) - Ve (2.20)
Differentiating ¢ gives:
V,-V
dy =—2—5dv (2.21)
”Vo B VDO” i

The stationnarity of the Lagrangian (2.13) perrtotget the initial condition on the primer
vector:

o (to) =v e~ Ve

"N Vad oo

Wherev is the Lagrange scalar associated to the constrain

The same expression can be calculated for a cantstrathe final velocity. Thus we simply
have in this case:
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(2.23)

Wherev is the Lagrange scalar associated to the constrain

These expressions (2.18, 2.19) will be useful wéwrsidering MGA-DSM primer optimal
trajectories (see 3).

2.4 Optimizing with the Primer vector

2.4.1 Solution initial guess

If a multipleimpulse trajectory is not Primer optimal and needbé optimized, a good start-
ing guess is to use the time where the primer isirmam. This guess is actually good to first
order, for improving the reference trajectory.

Jezewski [7] proposes an approadhich estimates the error in position. Howevers thp-
proach is only valid when the linear developmemn¢sraspected.

A
dR =cA' — (2.24)

Vi

With:
A=, )0, (0t )- 0, t)0, 6 t) (2.25)
And:

lav,flav (52, -aTh,-1)
- [ 2 T 2) (2 T 2) (2.26)
I8V ol - (o7 J+ v Bl - (672, ) )

Where:

AV,
v,

Ay =

AV,

o
- lav

Vi

_ 4 A
a=P, 1(ti 'to)A lT

Vi
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Iy
B= qDz_l(ti A )A_lTw

Vi

The scalac is the magnitude of the intermediate impulse.

2.4.2 Algorithm

The primer vector approach for the optimizationraérplanetary trajectory presents a num-
ber of disadvantages.
Indeed, we cannot integrate the primer vector aedstate dynamics simultaneously with the

initial condition X(t,)={R,,V,} and A(to)z{ko,io}, and solve the TPBVP to find an opti-

mal trajectory, for the following reasons:

- the number of impulses is unknown and may vary foma iteration to another.

- the amplitude of the impulses are unknown, andeswe do not know the number
of impulse, the dimension of the search space rhagge from one iteration to the
next.

- the impulses impose a discontinuity on the veloaitgd hence the computation of
the trajectory is numerically extremely sensitive.

Note also, that the calculus of variation theoryirea provide the DSM amplitude. This is
because the mass flow rate is a linear term in,(arf& we are considering an impulsive con-
trol.

The algorithms presented avoid these difficult\@® proceed in 2 stages. We first compute
the trajectory with the known control (impulses)using a Lambert’s problem formulation or
integrating the state equations. Once the trajgétocomputed, we can integrate the co-state
eguation along the state trajectory using the gppate boundary conditions (see 2.3) on the
primer vector.

With 2.2.2, the primer vector history informs uoabthe optimality of the trajectory. We

also have an information of the optimal numbemapulse for the current nominal trajectory.
Note that we can provide information on the gratlien

The algorithm (Table 7) consists of locally optimg a trajectory using the initial/estimated
guess given by the primer vector. After each lamatimization, we check the criterions of
optimality and loop with a new initial guess if jhare not satisfied.

Table 7. Algorithm
Step 1.Compute the trajector(t) ={R(t), V(t)}

Step 2.Evaluate Primer Vectok(t)

Step 3.If optimality criterions are satisfied, stop
Otherwise, estimate the number of D&¥ku and bsu, and
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return to Step 1.

2.4.3 Comments on the algorithm

The primer vector history is only computed once peration, and Lawden theory is only
used as a verification and estimation tool, whilritical to ensure the convergence of the
algorithm.

In order, to improve convergence, we do not alleducing the number of DSM during the
process, but instead, each maximum (above or ur)dae considered as potential impulses.

It is important to mention that for multi-revolutidransfer, the primer vector tends to add one
or two impulse per revolution, such that the Lamisetver is always looking for less than
one revolution solutions. There is no need to $pé¢lae number of revolution or the branch to
select in the Lambert’s problem solver.

Numerical issue
The primer vector theory suffers of singulariti®. [n addition, when the very first impulse

is almost 0, it is numerically tricky to comp AVO||' As the formulation needs initial and
0

final boundary value for the primer vectay, , we can consider to switch from the impulse
AV, to the first DSM impulseAV, . Indeed, for a rendezvous problemrjf#r, we must

have J >||AV,| such that we have at least 2 impulses in thecti@jg. The primer vector his-
tory is then always well defined.

2.5 Numerical Analysis
2.5.1 Primer Vector Computation

2.5.1.1TPBVP approach

For a transfer problem from(to) =r, to r(tf): r., under the dynamics given by (2.1) and
(2.4), a Two Point Boundary Value Problem (TPBV&) be formulated as follow:
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dh.
=Gy (2.27)

di,
dt

r(to)= ro’r(tf ):rf

”)‘v (to )" = lH)‘v (tf l‘ =1

- R

We can get the primer vector history using any pemt boundary value (TPBVP) solver. A
shooting method or a collocation technique canes@9).

2.5.1.2Transition matrix approach

Another approach is to consider the use of tramsitnatrix. This allows calculating the solu-
tion of a linear TPBVP. In this case the trajectonyst be known beforehand. This is done by
the appropriate use of a Lambert’s problem sol¥@nce the state trajectory is known, the co
state dynamical equations can be linearized artlumdtate trajectory.

Let’s briefly recall the symplectic property of ttransition matrix [1]:

0o |1
P Ip=J WhereJ={ I O}

And also:
cb: ch (DZ
d, P,

ol= q)4 _ch
_CD3 (Dl

q)_l(t’to) = q)(to’t)

Equation (2.12) can then also be written:
Thus:
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x(t) = Iamberl(ro, re,ty, by )

=

hoalty) = 0,72t 1o )t ) -t 8 ey (85)) (2.28)
dg; =Gt ),

FR

Where:

) :[ 0 I3*3jcl>(t,t0)

dt G{t) o
®(t,,t,)= |

(2.29)

In this case, one can integrate (2.13) and (2.b#rurrently, and then compute the primer
vector.

2.5.2 Computation of the gradient

The results of Jezewski [7] can be extended to NAD&jectories [9]. Then:

+T T

0 _d' . @

Moy d dt
0J _dn"_dr

N ogn Ot dt

(2.30)

And:

- aJ 0] aJ
atDSM(l) atDSM(n) axDSM(l) atDSM(n)

The state transition matrices can also be usedrtypate the gradient, as it will be explained
in the next section.

2.5.3 Simple study of optimality
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Primer vector AV

Primer vector \V
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Time (day)

80
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Time (day)

Figure 7. Non optimal trajectories

Norm of Primer Vector history

Primer vector AV

104

Time (day)

Figure 8. Optimal trajectories
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Using the 4 conditions provided in 2.2.2, the primector theory provides a visual assess-

ment of the optimality of a trajectory.



Table 8.
Primer Vector, Earth Mars transfer

2.6.1 Earth — Mars direct transfer

2.6 Applications
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Figure 9. Non optimal Earth Mars transfer
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X(A.U.)

Figure 10. EM optimal 1-impulse trajectory

Primer vector AV

me (day)

Ti

Figure 11. Direct primer optimal Earth-Mars trajec tory

The optimization process had one impulse and mahtgeeduce both the initial and the final

impulsive manoeuvres.

2.6.2 Earth — Venus

Table 9. Primer Vector, Earth - Venus transfer

OPTIMIZED

NON OPTIMAL

31/05/2007
05/02/2008
250 days

Departure
Arrival
Duration
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[Earth] -> [Venus]
T

AV,
DSM #1

DSM #2

RendezVous maneuver
Total AV

250.0 days (JD: 2454251.500)

28.61 km/s

2.66 km/s

- T0+75.6 days, 0.356 km/s, 0.87AU
- T0+145.0 days, 2.832 km/s,

37.520 km/s
66.129 km/s

0.72AU
0.011 km/s
5.861 km/s

Z (AU)

Yau) 1 X (A.U.)
Figure 12. EV optimal 2-impulse trajectory
Norm of Primer Vector history
1.05 T T ‘ T
| | | |
| | | |
e = S Ao IS [t
‘ l l
0.95F - -4 - — — — — — T 4L - - L - - —
l l l
09—~~~ e T B e
| | |
| | |
~< 085 -——-—--—-— === === - - - - - et vl
l l l
08F---—-—— [ [ [T W
l l l
075 ———— —— e T e et T
| | |
| | |
0.7 ———-—-—-— I—== === A== === R A N
| | | |
| | | |
0.65 1 1 1 1
o 50 100 150 200

Figure 13. EV primer optimal trajectory
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This example is particularly interesting as thesrefice case is a highly energetic trajectory.
Actually the date has been chosen such that tjeztoay is almost perpendicular to the eclip-

tic. Adding impulses typically bring back the tretery close to the ecliptic. The reduction of

the cost is here quite significant.

This example also emphasizes the necessity toswadtimes more than one impulse.

2.6.3 Earth — Mars global optimization

We propose to globally optimize a simple EM (Eavthrs) direct transfer, with rendezvous
conditions.

The purpose is to illustrate the efficiency of thanerical method, as well as demonstrating
that solution considering more than one DSM cahdipful.

Table 10. Search Box

Lower bound Upper bound Step
Launch date 2557 2957 10 days
(MJD2000)
ToF (days) 100 500 10

100

° Data

90 Pareto Front

80+ -
8.
708

60 ®

501 ®%ees

Cost (km/s)

401°% e, , ooy ‘00, °

0 | | | | | | | |
2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
Launch Date (MJD2000)

Figure 14. Global optimization of an EM transfer
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Because we search in a grid, instead of randomdyuating point, the points on Figure 14
seem actually ordered. There is however little ckame miss good points in this search space
according to the smooth shape of the Pareto front.

35
30 NERRRCEEEEREREEEEEREEEERCRERE I IO 4
25| 4
20! 4
15| 4
10 4
I o DSM
1 DSM
5 2DSM |
B > 2 Ds™m
L]

0
2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
Launch Date (MJD2000)

Figure 15. Distribution of DSM solutions for an EMtransfer.

Figure 15 shows the distribution of the solutiore Wvestigate the number of DSM for each
point of Table 10. As one can notice, most of theetthe cost can be reduced with DSM.
There are few 2 DSM solutions, and no solution witbre than 2 DSM. Indeed, 2 DSM solu-
tions generally appear to high inclination transéerwhen the transfer is closed to the
singularity of the Lambert’s problem. For example can expect solutions with more than 2
DSM for direct EY transfers.

2.7 Conclusions

We introduce the primer vector theory. The minirtima of the characteristic velocity of a
leg can be done through the use of a local optitoizasolver. The number of DSM is free
and optimally found be the algorithm.

Beside the fact that the Primer vector theory adlalae use of multiple DSM on single leg, it
indicates before all, if we need to place DSM. Tawsids placing unpromising DSM on the
trajectory. This point is of great importance, hesawithout the primer vector theory one is
able to find an optimum for a given and fixed numbgimpulses. However, this optimum,
although it verifies the necessary and eventualfficsent conditions of optimality, as little
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chance to be the global optimum if this one needsenimpulses. So far, major algorithms
and code seek optimal trajectories with a condt@irthe number of impulses.

Thus as stated earlier, the approach we propdseat However this approach is still valid
for global optimization as long as we are capablinding the basin of attraction of the glob-
al optimum. It permits to find the global optimwas its formulation does not make any con-
straint on the number of impulses. Indeed, dirggr@ach may be sub-optimal, whereas our
indirect approach could not.
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3 Primer Optimal MGA trajectories

3.1 Solution method

We can tackle the MGADSM problem with the primecteg theory. The usual approach is to
compute the primer vector straight frogid t, using the boundary condition at the swing-by.
As for the simple transfer case, the maximurih above 1 determine the impulse to add.

This method may be attractive since it uses thdoakand algorithms introduced beforehand.
However, one should notice that for multiple grg\assist trajectory, the global Two Point
Boundary Value Problem (TPBVP) might become vensgeve.

The method followed here, performs trajectory dggosition and breaks the original trajec-
tory at points of swing-by into separate legs. &abently, it optimizes each legs independ-
ently, using the primer vector theory, and with rappiate boundary conditions. These
boundary conditions allow to communicate betweenstib problems.
This method follows 2 steps:

- formulation of sub problems of lesser size thanitiiteal problem (= decomposition)

- set up of an exchange process between the sukeprablorder to comply with the

initial problem (= coordination)

Using the optimization problem defined in 2.2, weead the primer vector theory to multi

gravity assist trajectories. In particular, we stilde condition of optimality at the swing-by,

on the primer vector. The conditions of optimahtythe swing-by [16] have rarely been dis-
cussed.

The purpose is to get the optimum of the initiadigem. The trajectory decomposition per-
mits to remove the sensibility of the problem, afdws solving simpler sub problems.

3.2 Primer vector at Swing-By

To compute the primer vector history on the whadgettory, 2 approaches may be followed.
- We can consider the free swing-by case. The t@jgaontains only DSM between
the swing-by. In this case, the primer vector impated in a whole and optimization
is done following the same technique as for thepkenteg transfer. The drawback of
this approach is the sensitivity of the trajectatyen computing the primer vector for

a TPBVP.

- We can consider powered swing-by. In this casedemmpose the whole trajectory
in order to have legs that start and end with apuise, and we can apply the same
technique as for the simple leg transfer. In addijtive should coordinate the different
leg optimisation to get the optimal trajectory.

As for the direct transfer case, we need suffickenindary conditions to evaluate the primer

vector history. The swing-by constraint introduoesv conditions on the primer vector.

3.2.1 Swing-by and sphere of influence
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To study the influence of a swing-by over the primector, we initially consider the sphere

of influence and proceed in 3 steps. We study titagy when entering the sphere of influ-

ence, then the traversing of the sphere and firmaditing the sphere of influence.

For each of this step, we make a change of coaelohze to the different dynamics, since the
central body switches from the Sun to the Plandtvéce versa.

Following the approach of [9][10], we note the imdng and outgoing velocities at the sphere
of influence:

V' : = Vin_ +Vp| (tin) and Vout_ = Vout+ _Vpl (tout) (31)
This transformation takes into account the charfgeoordinate and the planet velocity. The
planet velocity should be evaluated for both thee @d input and output in the Sphere of In-
fluence.

Also at the crossing, the continuity of the Harmiien gives:

R AR R =h, TN by R (3.2)

The case when exiting the sphere of influenceastidal except that we must exchange the
indices.

We then get the following relationship betweenitte@ming and the outgoing co-state vec-

tors:
. (%) (1 B _
A (xj(o IjA 33)

With:

B = R

dy,. -
in RTV a (Vin - Vin - Vpl (tin )) (34)

If we leave the sphere of influence, or we entergphere of influence:

R d

B = el
ot RTV dt

(V e Vo_ut + V pl (tout )) (35)

out
out

See [10] for more details on (3.3).

Now even though a swing-by doesn't last long, weusth compute the trajectory in the
Sphere of Influence. With the transition matBx d)(tin ,tout) computed in the planet centered

dynamics fromt,, tot,, we have:

A=A, (3.6)
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If the swing-by were powered, the impulse would méhke reation simpler. There would not
be a explicit relation between,,” and A,

We deduce a relation linking the primer vector befand after the swing-by, considering the
real influence of the planet:

A, =WA’ (3.7)

out

I Bin I Bout
W_(O Ijs[o Ij 38)

Equations (3.4), along with the Property 2.1 prewvide following properties.

Property 3.1:
We have 3 conditions for a ballistic trajectorytt® optimal at a swing-by:

= the primer vector is continuous before, after andry a swing-by
= there is a discontinuity of the primer derivativeem crossing the sphere of influence,
due to a change of coordinate

= if the swing-by is fregp| <1
These conditions, with the conditions on the privestor for a planet to planet transfer to be

optimal, allow constructing a primer optimal MGA BSrajectory.

3.2.2 Boundary conditions for the patched conic app roximation

We consider the patched conic approximation, witssiess swing-by planets. Thus, there is
a trajectory break where we have to patch 2 cdoigsther. But patching the costate trajecto-
ries is less obvious as they do not define physiesle. We define boundary conditions,
which are a simplification of the result of sect@2.1.

For the problem of minimization, with the objectiumction:

N
=3 Javi| 39)
i=1
And the constraints for the swing-by:
R =R"=R
vV =Q(B)V. (3.10)
V' =V, +V]

We get the augmented value function:

1=J+ t“AT OF (x,t)dt+ [ AT TF (x,t)dt + " R -R7)+vT(v:-Q(BV:) (3.11)
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With:

Note that we do not include the control in F, as dlready included in J. Consequently the
Hamiltonians do not depend explicitly on the cohtro

Taking the differential of the value functibnwe get:
dl =dJ+27{t, Jav, -t )av,

#urrg ) R =) R
+v+af)lavs - (7 (s) +a ) avs

+f’ d!ATCiI:(x,t)!dXdHfjd!ATif(x,t)!dth

(3.12)

The necessary conditions for optimaligyi(= ), @ermits to get the known results:

AV, A
it )= o] andf(t,) = ||AVZ||
R
But also:

(3.13)

Those last conditions give the boundary conditianthe swing-by.
And:

)= %%x(t) (3.14)

00 00

For a non-powered swing-by, we have| =V
in module. Different expression can be found in lite¥ature according to the expression of
the constraint used for the swing-by model. (seen@drf[10], Konstantinov Fedotov Petuk-

hov[11]).

, such that the primer vector is continuous
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These boundary conditions, however forbid us to disectly the transition matrix directly
from tp to . We must use the intermediate matrix:

| 0
W = V. Ve (3.15)

Vel V-

The overall transition matrix, describing the MGAR$roblem, is written:

oft;,t) = Ot ton) WV @ (ten o) (3.16)

To get the value ok att,,” ort,, , we use a transition matrix development:

(l _(q_zl(to'1:<3A_)Q1(t0’tGA_)gql(tGA+ L )ﬂz(tf ’tGA+ ))%(tGA_)Z ﬂ_zl(to’t_x}"o _ﬂl(to'tf );"f ]
dt

(3.17)
)= o))
Where:
Ao =to)
o=l )
And:

The properties 3.1 remain valid in the patched capproximation.

3.3 Resolution of MGA trajectory

3.3.1 Interaction Prediction Principle
In the most general case, wheis additive we can write:

) =2 ()

Then we simply have to solve:

rrllj‘in(Ji (u,)) fori=1..n

Under the constraints:
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Y, =3 —¢,
Cu = Z‘//ji
J#
Where 3, is the constraint for the sub problepc, is the complementary part provided by

the other sub problems. The constraints are whatamecall essential constraints, since they
are necessary to communicate between the sub prebkeach sub problems has a responsi-
bility in the global problem resolution.

The calculus of variation gives the expressiorhefltagrangian for the global problem:
N

cocusl=3 3 uenls -2 0,03, |

i=1 j#i

The necessary conditions of optimality give an u@darmula for the coordination parame-
ters:
oL _

acw.

6_L:Cw —Z%(U)=0

ac, #

Applying this method to our problem gives sub-pewh$ where we simply have to solve di-
rect transfers.

Instead of the fixed point algorithm, one can useae appropriate modified Uzawa algo-
rithm or the Arrow — Hurwicz algorithm.

Arrow-Hurwicz Algorithm
Consider the minimisation problem:

min f (x)

c(x

From an initial pointx’ OR",A° OR™, and &,a OR*. Consider the projectiorp(/l) on R".
We iterate:

X< = xX —E(Df (xk)+?(x")/l"j

X
et = p(/1k +O’C(Xk ))

Thus to find the saddle point, without constraimts,use:
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W ] w
dc,
oL

Cpk+1 Cpk _ gwa_

C

Wheree andn must be considered as small positive scalar. Wlentake them vary through
the iterations.

However, to work well this method supposes thetertse of a saddle point that would permit
to minimize the primal problem and maximize theldurablem in indifferent order (min-max
or max-min).

In [12][13], the authors present other efficienpegach as improvement of the Arrow — Hur-
wicz algorithm and the use of the appropriate teenathe update formulas.

Practically, to improve convergence, we add a Isoaler which solves the complete problem
using the results of the decomposition steps.

3.3.2 Application to MGADSM space trajectory proble ms
3.3.2.1General constraints and hypothesis

Each body to body transfer is considered as a safliggn. We use here non powered swing-
bys, but impulses are allowed immediately after $heng-by. The constraints on the state
represent the conditions at the swing by. Accordmthe patched conic approximation, with
a massless planet, the position is continuous gudl&o the heliocentric planet position. The
swing-by is not powered such that the constraity ancounts for the energetic conservation
and the feasible swing-by altitude.

Noting that we are not actually interested by tlam@ of rotation of the swing-by defined by
n, we have simply:

rit’ _rlj(ti)
rit _rD(ti)
O I 8

= ol v ) o

Ve

The function,[;’(rp,HV;H) gives the angle of deviation for a given radifiperiapsisr, and a

given incoming relative velociﬁwgu. The variablep is an unknown of the general problem.

The constraint on the incoming and outgoing reatiglocity can also be expressed using the
rotation matrixQ(rp,Vw,fy), however this relation would introduce an addialbmariables

which is of no interest here.
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3.3.2.2Control

For a body to body transfer, the leg is describgdhle initial and final positions, and tine
DSM description. According to chapter 1.1, a DSMiescribed by 4 variables which can be
either position or thaV velocity vector and the date of the impulse.

The decision vector used is:
Z= [t et o

The date of the DSM are sortgg<t, <...<t, <...<t, <t;.

Describing the impulses with their positions insp& appealing as we could use a Lambert’s
problem solver. The Lambert’s problems are resttidb be less than a revolution to ensure
the existence, uniqueness and reliability of tHetsm found. This restriction does not limit
the number of DSM-leg revolution, and encouragestiieer to add revolutions when increas-
ing the number of DSM. Plus, it model simplifieg tonstraints Eq. (3.18).

Remark:

Another model such as the date-velocity model, s¢ednclude the final position constraint
which provides an additional Lagrange multipliehisr additional Lagrange multiplier how-
ever, provides interesting information on the optity of the current trajectory when the
primer vector at the one of the end cannot be ew@atuproperly. This description is better and
more general for multiple revolution transfers agdldes not need to specify the number of
revolution. The major drawback is the evaluatiothef derivatives.

In this paper only the time-position approach v considered in the following develop-
ments.

3.3.2.3Multi gravity assist formulation

Suppose we are solving a multi DSM transfer witbhases, an¥; DSM for the {' phase.
The launch date,, the arrival datet, and the planet encounter ddtedefine the scenario.

We then write a new Lagrangian function for thermpt control problem:
V+

00,i+1

[Vail -

n-1

ey )= 500 80 Vo Vi gt 1)

i=1
V-

0,

(3.19)

M;
The value functiond, (z)=>"|AV,| is the cost of each phase and the impaise,; stands
=1

for the [" impulse of the' phase. The 2x1 vectons are the constant Lagrange variable as-

sociated to the swing by constraint. As illustrabedFig. 1, the decomposition is done at each
intermediate body (where a swing-by occurs).

S P
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Where z, is the decision vector of thé"lsub-problem or phase. We considéndependent

sub-problems.

To stay consistent with the optimality of the ovepaoblem, we create a coordination varia-
ble for each missing information. Thus, for t&dub problem, a coordination varialolg is
associated to Lagrange variables correspondingeswing-by constraint, and coordination
variablesc, x are associated to the incoming or outgoing hyperleacess velocity. When we
decompose and isolate a leg, all the informaticeded to compute an optimum of the origi-
nal problem is given by the coordination variables.

The sub problems to solve are described by thelragrangian merit functions (see Fig. 1 for
notation description):

M,
U B AR A
i=1

Vsl e
T -
+V1 \H/\c:ilc‘?l _Coiﬂ(rp‘llu\/;’lu)) (320)
01

My
RSO £ of YA RE v P
i=1
HCOO’n _Hvo:n
) 3.21
#oun| CeaVan _codgle el .
le-.
My
L (Zk 1M k11 Cukr Coo s Coo,k‘rl) = ZHAVi'kH ¥
i=1
Ve
+y, V. «Co, N
LAY [
ool =V
;
+C,, C""'kv‘:’: _ Cos(ﬂ(rp’k_l,ucmykﬂ ))
Je.sca

These expressions stand respectively for the liphiase, the final phase, and the intermediate
phasesk 0{2,...,n—1}. As one can notice, the equations (3.21) and Y3rk2ude coordina-
tion parameters which stand for the coupling retagidefined by Eq. (3.18). Because of these
extended functions the optimal solutions of EqR{3- 3.22) are not the solutions which are
optimal with respect to the sum of impulse overldgebut they are optimal solutions for the
overall problem defined by Eq. (3.19). At converge of the algorithm, if one sum up the
equations (3.20 — 3.22) it would result in thegg@hMGADSM function cost with interme-
diate swing by constraints.
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k=n-1

I(Z ' r.p ' V) = ’Ti(zll r.p,k—l' COO,l) + 1;1 (Zn ’ r.p,n—ll Cv,n ' Coo,n)+ Z Ik (Zk ' rp,k—ll Cv,k ’ Coo,k ' Coo,k+1)

k=2

3.3.2.4Boundary conditions

The primer vector module history is provided by slaene boundary values on the primer vec-
tor. At the initial time of the leg this value isquided by the coordination variable or the ini-
tial impulse for the first leg. At the final timd the leg the boundary value on the primer vec-
tor is given by the Lagrange variable of the fioahstraint.

Leg
B body

Figure 16. lllustration of the Decomposition step

Comparing the OCP with the POP, for the initial pubblem att =t, we have:

AV
)=
oV 529
v -
A (t‘)— v, —2
VvV \1 l‘voo’o H
For the final sub problem we have:
+ Voo n+
xv(tn):cv v —
on (3.24)
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_ AV,
7“v (tf )_ HAVf H

The boundary conditions necessary to initializepthmer vector come from the necessary
conditions of optimality for the intermediate sulplplems. Thus:

At =G, —
(k ) C x V., 325

)‘(tk+1_ ) =Vy Vm,k+

3.3.2.5Coordination step

After each iteratiom of the algorithm (section D.I) the coordinatiorsupdates the coordina-
tion variables. The coordination formulas are pded by:

At =(1-g,)ch, +&, v,

ch —(1 £ )c‘ +E,V o\

T (3.26)

The coordination variable{s;vyk ,cw’kcw’kﬂ} along With{vk,V(,;k ,V;’kﬂ} allow respecting the
swing by constraint and force the sub-problemstswia toward the overall problem solution.

Following Lawden primer vector theory, an importpotnt should be made for the primer
vector optimal MGA-DSM trajectory. For a MGA-DSMajectory to be optimal, we must

have|v|<1. Indeed, if|v| exceed 1, according to the equations (3.23, 3.24), the primer
vector also exceed one. As the primer vector hestdor each sub problem can be patched

together according to Egs. (3.20, 3.21, 3.22)pttehed primer vector history couldn’t be
optimal for the complete problem.

Interestingly, we can note that adding impulsesnitsrto lower the Lagrange variable mod-
ule |v|. According to the Hamilton-Jacobi theory [34], kagge variables represent the sensi-
tivity of the constraint with respect to the dearsivector. Thus, the more impulses we have,
the more robust is the trajectory. This can alsmte¥preted considering that the final con-

straint relies on many intermediate impulses wittak contributions, rather than on a single
impulse with a high contribution.
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3.3.2.6Convergence

To improve the convergence of the program, we reartbe angular deviation constraint on
the velocity for the swing by in Eq. (3.19). We ykEkep the energetic conservation of swing-
by. Once the energetic constraint is respectedsamefurther check for the swing-by angular
deviation. We can re-optimize the solution with themimum swing by altitude constraint.

As the primer vector theory predicts, we do notaaisvneed to insert deep space maneuvers
on a leg. In this case, as the intermediate l¢lgassolution of a Lambert’s problem, the con-

straints cannot always be satisfied. The initiad &inal hyperbolic excess velocity, and

V," are imposed by the Lambert solution and the digggpaind arrival planet velocities. It is
not possible to get a Lagrange variahleas it is required in Egs. (3.23, 3.24, 3.25), thet

final hyperbolic excess velocity constraint on theg has to be satisfied to respect the free
swing-by condition. In this case, the Lagrancealalg v, is chosen free to minimize the La-

grangian which indirectly provides a non optimal ks the primer vector module is likely to
exceed unity at boundaries. We then considereccases. When the constraints are satisfied,

the Lagrange variable, is free. Its value is chosen to be the one ofptteeeding iteration

and kept unchanged until the next iteration. Whendonstraints are not satisfied, an inter-
mediate impulse is added to reduce the cost. BRigeiis only a transient issue because the
algorithm has not reached a steady state. Whedysteanstraints are satisfied.

3.4 Numerical Analysis

3.4.1 Algorithm

Using the decomposed Lagrangian, and the coordmatiriable update formulas, we can
construct the following algorithm.

Table 11.
Algorithm

Step 0 Initialization of coordination variables.
Choosec?, ¢ ,} for all kOfL,...,n}
Sei= 0

Step 1.Resolution of thenitial problem Withcix,,l to getx, .

Resolution of thatermediateproblemsk with {civyk,cw’k,cwykﬂ}
to getx, forall kO{1,...,n} .
Resolution of thitnal problem with{c, ,,c., .} to getx, .

v,n? ~oo,n

Step 2.Update coordination variables.
i i+ 1and{c,,.c.,}.

Step 3.Resolution of global problem witk =[x, ,x,,....x,| as initial

guess and test of optimality. Go baclStep 1if it is has not con-
verged.

53



Each sub problem can be solved with a SQP minimoizagolver. After each iterate we can
try to solve the global problem because we shoufibet the sub problems solutions to be
“near” or in the basin of attraction of the complgroblem solution. It improves convergence
of the fixed point algorithm and assures we areatiifely near a minimum and not simply an
extremum.

3.4.2 Analytical derivatives

As SQP solvers tend to converge faster and easien \gradients are provided, we calculated
the gradient on the constraint on the hyperbolaees velocity.

Unfortunately, we cannot express the objective tioncgradient with the primer vector and
its derivative at the switching point. This comenfr the fact that in most cases the final
boundary conditions are expressed with a Lagranglé@pier which is not necessarily avail-
able during the optimization, but also becausehef éxpression of the final boundary, the
objective function differential cannot be expresssda scalar product between the gradient
and the elemental deviation.

oavi| . 1 (av(tf)_aV(ti_)}(V(ti+)_V(ti—)) (3.27)

ox Hv(ti + )— V (ti - M ax ax

The constraints formulation expressed at each étitedegs permit to express the gradient of
the constraint with the final leg velocity Jacobraatrix.

_ ov(t, )
%f‘uv(tf)_lvu(tfm axt (it )-valt,) (3.28)

Note that (34) and (35) might mathematically présersingularity when the denominator
tends toward 0. This case can only happen for ¢o@ateon (34) and the initial and final im-
pulses only. The primer vector theory should awades where impulses are 0. Because of
(27), (35) cannot become singular as in practieehyperbolic excess velocity at swing-by
should never reach 0.

The gradients are computed using the state transiiatrix approach. The transition matrix is

defined by the dynamical system similar to (7) asohg G(t,r). We have then:

{a‘r(ti)}_{@(tntf) @(ti,tf)}[&(tf)}

d/(ti) ) @(ti’tf) (Dél(ti'tf) d/(tf) (3:29)

As we are solving a fixed time problem, the ini@ald final position perturbations are zero:
ad,=0, d, =0.Achange in the final velocity induces a change¢hie position, velocity
and date of the intermediate impulgesv, ,t,). The state transition matrix allows calculating

the first order perturbation on the state and thiues useful information for computing the
derivatives. However, the state transition matar only describe perturbations between two
instant where the spacecraft equation of motiorcanéinuous.

54



Using the following general expressions:

& =@ o gl t)a ], i=iva (3.30)
& =gt )X -altt)x ] k=i-1 (3.31)
and:
Mo =0ttt (3.32)
&, =i, 1, )&, (3.33)

Indeed, because of the DSM model used and the L&sipeoblem definition, an impulse
AV, can be described only by the preceding and themaroeuvre position and da(ite,ri )

We get the following derivatives:

‘2\?: =gt,.t), a(;'ri: =-0t, .t Jalt, 1) (3.34)
66\?: =g N, agt:* ==t gl v (3:35)
%w‘l(t,-,ti)' %Lrii_=—@'1(t,-,ti)¢1(t,-,ti) (3.36)
H—a ol D= tal (3.37)

3.5 Applications
3.5.1 Earth Venus Mars (EVM)

An Earth — Venus — Mars transfer is considered.firhe of flight is fixed, as well as the
launch date.
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Table 12.
Optimal EVM MGA trajectory description

NON OPTIMIZED OPTIMIZED

Departure 08/06/2004 00:00:00

Arrival 14/05/2005 00:00:00

Duration 340 days

[Earth] -> [Venus]

T 165.0 days (JD: 2453164.500)

AVq 4.628 km/s 4.591 km/s

DSM - T0+96.08 daysAV = 68.7 m/s

Swing-By around Venus

Date 20-Nov-2004

Pericenter Altitude 7938.96 km

Swing-by AV 3.84 km/s -

Post swing-by AV 75.9 m/s -

[Venus] -> [Mars]

T 175.0 days (JD: 2453329.500)

DSM - -

Rendezvous Manoeuvre 6.142 km/ 6.126 km/s

Total AV 10.847 km/s 10.786 km/s
Trajectory

Figure 17. EVM optimized trajectory

This example shows a priori little gain in the alecost. This is probably due to the refer-
ence case which is already a good solution to thkB8M EVM transfer.

However, the reference case includes a post swyngrnoeuvre. The reference case is in-
deed more expensive. The EV swing-by permits tasdjorrectly the swing-by conditions.

3.5.2 Earth Venus Earth Jupiter (EVEJ)

For this trajectory, we fix the departure and tifecent time of flight of each phase.
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The MGA trajectory specifications are given on téiele below:

Table 13.
EVEJ MGA trajectory. Primer Optimal comparison.
NON OPTIMIZED OPTIMIZED

Departure 18/09/2016 00:00:00
Arrival 24/10/2021 00:00:00
Duration 1862 days
[Earth] -> [Venus]
T 348.0 days (JD: 2457649.500)
AV 4.59845 km/s 3.476 km/s
DSM #1 - T0+95.64 daysAV = 0.008 m/s
DSM #2 - T0+214.25 days)V = 595.613 m/s
Swing -By around [V e-
nusj
Date 01-Sep-2017
Arrival Vrel 8.184 km/s
Pericenter Altitude 2220.86 km
Swing-by AV 6.05 km/s
Post swing-by AV 2.65 km/s 20.134 m/s
[Venus] -> [Earth]
T 576.0 days (JD: 2457997.500)
DSM #3 - T0+475.64 days)V = 0.001 m/s
DSM #4 - T0+843.14 days)dV = 2.358 m/s
Swing -By around Earth
Date 31-Mar-2019
Arrival Vrel 12.362 km/s
Pericenter Altitude -277.45 km
Swing-by AV 7.40 km/s
Post swing-by AV 0.64 m/s 2.894 m/s
[Earth] -> [Jupiter]
T 938.0 days (JD: 2458573.500)
DSM - -
Rendezvous Manoeuvre | 6.19018 km/s 6.1902 m/s
Total AV 10.792 km/s 10.267 km/s
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X(A.U)

Figure 18. Non optimal EVEJ trajectory
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Trajectory

Figure 19. Optimal EVEJ trajectory

The gain is negligible (0.5 km/s), but the advaatagthe optimised trajectory comes the re-
duced launch energy.
We notice that the optimal and non optimal trajgctaatch very closely.

3.5.3 Cassini Trajectory

The objective function to minimize is the sum dftak AV, plus the rendezvous manoeuvre
and the initial hyperbolic excess velocity.

To illustrate the method, we use the phasing ofakneolutions [32], to check if we can fur-
ther decrease the value function

Table 14. Search boxes

To (MJD 2000) h(days) B(days) (days) L (days) _ (days)
Case 1 -811.3 196.9 423.1 55.4 533.7 1573.8
Case 2 07/10/1997 197.334  425.171 56.8856 578.523 067.98
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Table 15. Search Space Domain

Lb Ub
Tosm / ToF (days) 0.1 0.9
Xpsm, Yosw (AU -8.0 8.0
Zosw (A.U.) 0.5 0.5

The best cost is reported to be 9.247 km/s (we cbedp9.366 km/s) for the first case, and
9.06 km/s for the second case.

X 10 Trajectory
i — =

Figure 20. CASSINI trajectory (reference case 1)

Table 16.
Solution 1 Solution 2

(TO+days)AV (m/s) (TO+days)AV (m/s)
LaunchAV, 0 0 0 3906
DSM #1 29.85 3209 22.8 266.6
DSM #2 159.6 569.7 - -
Venus Swingby 196.9 197.33
DSM #3 423.17 425.5 438.3 415
DSM #4 - - - -
Venus Swingby 620 622.51
DSM #5 - - 662.87 -
DSM #6 - - - -
Earth Swingby 675.4 22.5 679.39
DSM #7 - - 730.80 -
DSM #8 - - - -
Jupiter Swingby 1209.1 8.6 1257.91
DSM #9 - - - -
RendezvouaV; 2782.9 4709.7 3325.89 4289.2
TOTAL COST 8.947 km/s 8.877 km/s

DSM of less than 1 m/s are not reported.
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Trajectory

Figure 21. Cassini optimal MGADSM trajectory (optimized case 1)

This well reference example permits to show thatrttethod is actually quite efficient. We
manage to find about the same solution in the eefes case 1.

3.6 Conclusions

We introduced the MGADSM problem. Our optimizatiapproach permits the use of the
results presented in the simple DSM case and iheepwector theory. Through a decomposi-
tion — coordination technique, the complete probisnsolved by solving sub problem and
finding their corresponding primer optimal trajegtdor the given boundaries and constraints.

The method applied to known examples shows to fii@egft as it permits to find the reported
solution of the literature. Most importantly, theetinod use local optimization techniques and
does not need any specification on the number dfl DSonsequently, the decision vector of
the problem is only the date of departure and #itesdof encounter as was done in the above
example where these dates permit to find the goadisn.

The method has however a slow (linear) convergence.
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4 Automated approach for MGADSM trajectories

4.1 Partitioning method

4.1.1 Solution method description

The optimization method performs trajectory decosijoan and breaks the original trajectory
at points of swing-by into separate legs. We foatailsub-problems of lesser size than the
initial problem which permits to remove the sengipiof the problem, and allow solving
simpler sub problems. Subsequently, we optimizé sab-problem independently under spe-
cific boundary conditions which allow to communedietween the sub problems.

We are actually computing all possible extrematsefich sub problems. Eventually, we com-
pute a complete trajectory using those extremalsagpropriate intermediate constraints.

4.1.2 Separable problems

In the most general case, let us suppose the nzaiion problem:
rP[LnJ(u)

Where Uisin R

In our problem, J is additive, such that we cartewri
J(U):ZJi(Ui) (4.1)

Whereu = [u1 ..... u
Then we simply have to solve:

min(z J (ui)j fori=1..n
Under the constraint of swing-by feasibility.

Unfortunately, the problem is not equivalent to/xaornin(\]i (ui )) for each i if the problem is

not separable.

Definition 4.1:
A nonlinear separable problem is a problem such:tha

min{ $3.(0)] =Umina (o)
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The minimization of a multivariable function is vegd to the simultaneous and independent
minimization of multiple sub-problems.

The simplest example of separable problem is desaiby additive function.

4.1.3 Setting the partitioned problems

Duplication of variables

Consider the general minimisation problem:

min J(X) (4.2)

xooM

Whereld is a & continuous function. We do not consider constsaint

Following, the number of phase or a natural decaitipm, we duplicate each boundary vari-
able and assign a copy to every process that ribedsriginal. The decision vectot DO
turns intoX OO, We divide X into n blocks{x,,...x,} wherex, 00", andnN =K and

K =M +D where D is the number of duplicated variables.rétae as much duplication as
junction and junction variables.

Setting linking conditions

Now let's find COM (0), « such that we have an equality condition betweerbtundary
duplicated variables and their respective originals

cl..|=0 (4.3)

The constant matrix C is needed to account fontatching condition on the duplicated vari-
ables. C is a sparse matrix with one -1 and orlerhent on each line.

No information has been lost when duplicating aadifoning the problem.

Constructing complete solutions

The original problem can thus be re-written:

min J; (x, ) (4.4)

xooN !

To construct complete solution we use the congtrmairthe duplicated variables:
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X
Ci{ I}:O (4.5)

This constraint ensures we can construct a comphgectory.

4.2 GASP like formulation

4.2.1 Initial Problem

Let us recall the objective function, for a muéigltransfer:
3 =[ave| +[av |+ 3 |aVos| (4.6)
i=1

It is straight forward that in fact, each impulss de rewritten as:

AV, =AV, (to Tosmay s Mosma )
AV, =AV, (tDSM(n) A ’rDSM(n)) (4.7)

AV psuiy =BV osw) (Voo(i) By tosway b )
With:
By =4y o)) (4.8)
And:
Vi = f(ti 'tDSM(i—l)’rDSM(i—l)’tDSM(i)’rDSM(i)) (4.9)

And wheret, is the departure date, is the arrival datet, are the date of planet encounter,
toswy are the DSM date, anglg,,,, are the DSM position.

And the decision vector is:
X= ltO’VO’aO’ﬁO’tDSM(l) ""’ti ) B(i)’tDSM(i) ""’tn—l’ B(n) ’tDSM(n) ’th

Clearly the problem is not separable. TA¥ depend on more than one variable, so is for
their derivatives, and these variables are commatterAV .

It is however possible to make tiA®/s independent. As we propose in the following sextio
we can use additional variables which a priori db provide additional information. Indeed,
these variables can decouple the problem and nmekproblem separable. The optimization
of the overall problem can be decomposed in thenagdtion of several sub-problems as it
was the case in the preceding section 3.
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4.2.2 Formulation of the sub-problems

Now applying the above decomposition to the transie can use the variables, such that:

AV, = AV, (to » Eosmay FDSM(l))
AV, =AV, (tf ’tDSM(n)’FDSM(n)) (4.10)

AV psmiy = AV psmay (B(i) Losmy )

With:
By = Ve %y To
o0 bﬁ() "0 ~p()i (4.11)
By = Vi @i o)

The variableslg(i) are a duplication of their equivalent varialiigs. They represent the

swing-by conditions. They can be directly and ecipli related to the swing-by hyperbolic
velocity vectorsV,, ;.

And the decision vector is indeed:

X= tO’VO’HO’ﬁO’tDSM(l) ) B(i)’tl""’ti ’B(i) ’tDSM(i) ' B(i+1)’ti+1""’tn—l’ B(n) ’tDSM(n) e (4.12)

initial leg legn°i final leg

with i =1..n-2.

The redundant variables must coincide, and thehave of course:

§ =B,
{ (1) (1) (413)

t =t
These are the expression of the matching conditioaach duplicated variable.
Assumption 4.1:

To simplify the search process, we removed thet@nson the angular deviation of the
swing-by. This allows removing, , B, from the decision vector.

Thus we cannot check if the swing-by is feasiblearand may compute swing-by infeasible
trajectories. But this is easily solved when wechahe legs together to construct complete
transfer.
For our space trajectory optimization problem,dkeision vector for each leg is then:

X, = I_ti Eosmy 1 tiss Voo ’Voofi]

Where:
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- toiis the departure date for the single leg
- tgsmis the date of the Deep Space Manoeuvre (DSM)
- t5 is the arrival date for the single leg

- V., is the hyperbolic excess velocity at departurthefleg
- V., is the hyperbolic excess velocity upon arrival

We use the same description for each leg. Thistaildd on Figure 22.

Linking conditions

v v
c:| 2t -7 =0
¢i+1 ¢1'
Swing-by (i-1) tya o Swing-by (i+1)
{or departure if i=0)
‘e | DSM (i+2)
[ 2
DSM (i+1) [ ot ]
L ] rDSnll
f;;al ti+l tﬂl
V2|1 swingby @il | V2"
;pi junction r:'
¢i ¢1+l
SUB-PROBLEM i+1 SUB-PROBLEM i+2

Figure 22. MGADSM partionning

4.2.3 Solving the problems

The simplify the solving of the sub-problems, letnsider discrete and continuous variables
of the sub-problem decision vector.
The discrete variables are:

Xe = ltO’tDSM e ,VmO,me Legi
The continuous variables are:
X, :[a’ﬁ]legi

The local problem to solve onog, is given is:
minAV,,, (X<, X, ) (4.14)
Under the constraint:

v =y, -Vt |-V (4.15)

66



Where V; is the arrival planet velocity at tndeed,V,; is a constraint for the leg. The vec-

tor V., :[Vwo,ao,ﬂo] is an initial condition for the leg. It can alsesgribe the output of a
swing-by manoeuvre.

This local problem must be solved for all pointsie# map defining,; .

Remark:

We now have to solve M problems in a search spaden@ension N, whereas in the initial
approach we solved 1 problem in a search spacenoémnsiodM + 2, where M is the num-
ber of phase, and N is the size of the decisiotowéar each sub problen{s! =9).

This approach starts to be beneficial when M>1,tbatbenefits become great for high num-
ber of legs.

More importantly, with this approach we did not reany assumption that would prevent us
from finding the global optimum, except that we staint the body to body legs to have ex-
actly one DSM.

This approach permits to apply pruning methodshensub problems, before constructing the
solution. In addition the complexity is reduced qared to the initial problem.

4.2.4 Scheme

s r ' e
X = 6.V, . Boctpsurgye T Vagn « oo Bpsmacp oo Bucts Ve @ +F oo Iosasgy o £

fist kg i leg Estleg

By, =[V..60.7,] Transformation

X= [f:. : Vg: . ﬁg: fp_e_-,;.g:. S B.;;':. B f};j:',,f{;j. S Y :B.;n:. B f}jj_'.;{n:. B r'r ]

ﬁ-:i:- =B,
7=z, Duplication

X, = [’-:n Vit g Byt oy EL?-;J:n 4 X = [’.—=B.- Aoz gy EL?-;.—J:n ’.——Jl X.= [’=-J=B==’psu-;=:-=’,f]

Simplification

Xy= ["-J Vol oz gy E::=.g;.=?1 X.= [’ Veiibomegy f;=.;.—1;.= E—] ] Xua= [r"]: If.:‘:!mw':{”!'{]

Figure 23. Splitting Scheme
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4.2.5 Complexity

For each phase, consider the following grid:

Variable Number of bins
To k

Tof k

tbsm j

Voo n

Voo|: n

Each phase has thus the following complex@y= jk*n?.

However, as we use the same discretizationmfaandtof, if the first phase has bins onT,
andtof the second phase h2sbins, the third ha8k bins, etc ... Indeed, each phase contrib-
utes to increase the TO space by adding k new bins.

The overall complexity can then be written:

N+L a2 (4.16)

i=1

Where N is the number of phase, a phase beingdhsfér between 2 consecutive planets in
the sequence.

4.2.6 Pruning

Assumption 4.2:
We suppose we find the global optimum of each saliigms for the different boundary con-
dition.

This assumption is important if we want to prune torrect part of the space. Indeed, for a
given set of interior point boundary conditionse tflobal optimum is described by the global
optimum of each sub problems. This can easily bgqut considering the cost is additive and
we have unpowered swing-bys.

We have 6 pruning strategies:

1. Initial hyperbolic excess velocity pruning/e can prune the space with the boundary
on the global variables, far,_,for the initial and final leg.

2. Final hyperbolic excess velocity pruningfe can prune the space with the boundary
on the global variabl®_; for the final leg.

3. Time of flight pruninglt is also possible to allow a minimum time agHft for each
leg (transfer between 2 subsequent planets ofcireasio).
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4. Swingby pruningNVe can allow a minimur,, for the swingby.
5. DSM4V pruning: We can prune leg with a DSMV above a given limit. This permit
also to remove point of the next phase matchingraoeg toV,,,T, .

6. Forward pruning if on the phasethere is no solution arriving at a given date an th
planeti, we remove the date as a launch date for the phasd@he same apply on the
velocity.

To improve convergence of the local solver, wevalibtolerance oV, and provide accu-
rate gradient using the development of 2.5.

It is likely that most of the pruning is done oreftimitial and final phase. Pruning on the in-
termediate phases can merely be done througfithe of flight,the DSM 4V and theFor-
ward pruning.

4.2.7 Discussion

It is important to be sure that this scheme is isteist with the global optimization problem,
i.e. that the optimum found is effectively at leastoptimum of the whole trajectory problem.

To allow this, we actually added a constragt(10) which permit to « communicate » be-
tween the leg (this is similar to the interactiaedgiction principle). In forward direction, all
subsequent legs need to know Wewhich permit to have a feasible swing-by or evahyu
evaluate a post swing-by correction manoeuvre.

Since we do not take care about the rotation ofMMpevector, and since we evaluate different

values oV, and take the best optimum for each local problenw® do not miss solutions.

4.3 Applications

4.3.1 EM transfer

Table 17.
EM DSM-GASP variables bounds and constraints
EVM transfer

Variable Lower limit Upper limit Step size
T, (days) 01/01/2001 01/06/2004 +300 10
T (days) 100 300 10
V (m/s) 500 15000 500
Constraints

Voma (M/S) (PRUNE 1) 3000

Vimax (M/S) (PRUNE 2) 5000

Tmin (days) (PRUNE 3) 100 On the leg length
Tmar (days) (PRUNE 3) 250 On the leg length
AVpsy (M/s) (PRUNE 4) Inf

Tolerance om\Vpgy (M/S) 250 AV pgm +/- tol

(PRUNE 4)

Local Opt. Max Nb. Iteration 300

(PRUNE 4)
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[051.01.52.0253.03.54.04.55.0] km/s

0.500000 km/s, V_,

3->4: Vml

(days MJD2000)

&

ty (days MJD2000)

5 km/s, sum oAV < 10 km/s.

0

ol =

Figure 24. Example of slice contour for EM transferwith V
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[051.01520253.0354.04.55.0] km/s

2.000000 kmis, V_,

3>4V

500

t (days MJD2000)

ty (days MJD2000)

Figure 25. Example of contour slice for EM transferwith V ,; = 2km/s, sum ofAV < 10 km/s.
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4.3.2 EVM transfer

Table 18.
EVM DSM-GASP variables bounds and constraints

EVM transfer

Variable Lower limit Upper limit Step size

T, (days) 01/06/2004 01/06/2004 +100 10
T (days) 180 250 10
V (m/s) 500 10000 500
Constraints

Voma (M/s) (PRUNE 1) 3000

Vimax (M/S) (PRUNE 2) 5000

Vemar (M/S) (PRUNE 1) 8000 Minimumd/ for swing-by
Tmin (days) (PRUNE 3) 140 On the leg length
Tmar (days) (PRUNE 3) 250 On the leg length
AVpsm (M/s) (PRUNE 4) Inf

Tolerance om\Vpgy (M/S) 250 AV pgm +/- tol

(PRUNE 4)

Local Opt. Max Nb. Iteration 100

(PRUNE 4)

On a Pentium 3Ghz computer, 1Gb RAM, running MATL@Bnder Windows XP, this ex-
ample took about 3h40 of computation time.

However, after the computation, we have a compteap on which we can apply the pruning
policy. We do not need to compute again the mageithange the pruning parameters.

Best solution on the grid:

Table 19.
EVM DSM-GASP best grid solution

EVM transfer

Event date Comment

To T0=2453097.5 V=2 km/s

Tasn 1 TO+18

T, TO+180 (Swingby) V. = 6.0 km/s
Tasn 2 T0+205 (T1+125)

T; T0+430 (T1+250) \ =4.5 km/s

TOTAL 430 days 8.94 km/s

72



[707.58.08.59.09.510.010.511.011.5 12.0 ] km/s

1.000000 kms, V_,

Vet

25

350

300

250

(days MJD2000)

&

ty (days MJD2000)

[7.07.58.08.59.09.510.010.5 11.0 11.5 12.0 ] km/s

3.000000 km/s, V_,

Vo1

4.6

4.4

—4.2

3.8

3.6

3.4

350

t (days MJD2000)

t, (days MID2000)

Figure 26. EVM, phase EV AV +AVpsy < 5km/s
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[051.01.52.0253.0354.0455.0] km/s

7.000000 km/s, V_,

Vet

(spws) &

t, (days MID2000)

ty (days MJD2000)

[051.01.52.0253.0354.04.55.0] km/s

9.000000 km's, V_,

Vel

(s A

t (days MJD2000)

t, (days MID2000)

Figure 27. EVM, phase VM,AVpsy +AVE< 10 km/s
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As we computed all possible legs on the grid, vee abmputed the extremals on the global
optimum.

380

300

g : : : =
S 250 F e e 5
& =
o o
S )
= =
o w
) )
= 200 =
- « 350

150

W 20 3 40 50 B0 70 80 90 100 160 170 180 190 200 210 220 230 240 250 280 270
1ty (days MID2000) ty (days MJD2000)

Figure 28. EV phase AV<5 km/s, 66 boxes) and VM phaseANv<5 km/s, 159 boxes), Pruned space

Of course this is not a good representation as dwmres are superimposed and the display
lack information on the subspace that containshbies. However, this is still the most intui-
tive one.

The darker the colour, the more superimposed bthvezs are.

A more accurate representation would be like tloese

V,, = 7.000000 kmis, V_, =[0.51.0 152.0253.035404550] kmis V., = 7.500000 ks, V_, =[0.51.0152.0253.03.5404550] km/s
W‘_vr =T
4 j =L ; [ o ENE ”
o )74‘;\‘ | ; i 0.9 T _ //i}‘ R 0.9
| Jo 1 | e | a5 _ L - ‘
5 J = R (R 0.8 | 8 “‘//» ‘ 08
~ _ s al 4 - }/ 3
45 | — ‘L === T 1 : | '/“//» 4
| 4ot SN 35 _ - b< / 07
‘ ‘//T | T z 3 L ‘//» !
25 /: S —:, — :* ‘:‘ | E r < //w 0.6
-7 B | 25 L - ‘ > )
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t, (days MID2000)

t, (days MID2000)

Figure 29. Multi-D representation of the non prunedspace.

On Figure 29 we only displayed 2 projections oftidtidimensional solution space.
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4.3.3 EVEJ transfer

Table 20.

EVEJ DSM-GASP variables bounds and constraints

EVEJ transfer

Variable Lower limit Upper limit Step size

T, (days) 4745 5840 10
T (days) 100 1000 20
V (m/s) 500 10000 500
Constraints

Voma (M/s) (PRUNE 1) 3000

Vimax (M/S) (PRUNE 2) 5000

V emar (M/S) (PRUNE 1) 10000 Minimumcdv for swing-by

Tmin (days) (PRUNE 3)
Tumas (days) (PRUNE 3)

[100, 300, 1000]
[200, 400, 1000]

On the leg langt
On the leg langt
|

AVpsy (M/s) (PRUNE 4) Inf

Tolerance om\Vpgy (M/S) 250 AV pgm +/- tol

(PRUNE 4)

Local Opt. Max Nb. Iteration 300

(PRUNE 4)

Table 21.
EVEJ DSM-GASP statistics

EVEJ transfer
Statistic value
Solver calls 3138762
Ephemeris Gen. calls 295
Local Solution for phase[1] 57553
Local Solution for phase[2] 348872
Local Solution for phase[3] 671526
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Figure 30. EV @AV<5km/s, 145 boxes), VEAV psy<3km/s, 637 boxes), EJXV<3km/s, 1085 boxes)

On this example, and despite th¥psy pruning constraint the phase 2 appears to be a low
energetic part. We hardly manage to prune the spp@Emember however, that the method do
not make any assumption in the pruning proceskeontap construction. It is a true represen-
tative of the real map.
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4.4 Conclusions

We demonstrate that under weak assumption the gaobbmplexity can be polynomial and
of order 5. The complexity is polynomial with respéo the discretization and the variable
used. We can compute MGADSM which any number osphaith a quite reasonable com-
putational cost, even though one might emphasiaettte polynomial exponent is still high
and only advance in computer design and engineeangive reasonable computational time
(< day) for a preliminary design tool. It is likethat the complexity cannot be further de-
crease unless under strong assumptions.

A strong drawback of this approach is the posgsible feasibility of the swing-by. In order to
reduce the complexity and the dimension of thectespace from 9 to 5, we make a assump-
tion that does not permit to ensure the swing-lagifality. But this can be check out when
constructing a trajectory or pruning decision vesigace.

Going back to the 9 dimension formulation can givere usable results, but as a preliminary
approach we consider that the swing-by feasibiltyiot a major concern has we can still
prune the non feasible solution. Note that the @ggnt does permit to find also all the feasible
solution on the search space grid.
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5 Conclusions

In this study we tried to propose different apptascto tackle the problem of multiple gravity
assist — deep space manoeuvre (MGADSM) space pynablem.

We first introduce the primer vector theory foredit planet to planet transfer, and then extend
the theory to multi gravity assist trajectories.eTimethod allows to automatically find the
optimal deep space manoeuvres (DSM), as well asdpgmal number. As shown with the
example, the decision vector is in this case rediticghe dates of encounter with the planets.
Although the method has a linear convergence aged lagal optimization techniques, it per-
forms well and managed to find the good solutions.

Following an experimental intuition, we then trieduse a local — global approach. Our intui-
tion told us that some part of the decision vecian be optimized locally, whereas the re-
maining part needs a global optimization schemés &pproach permits to remove the “hard”
part of the decision vector to the global optimi@atalgorithm. The examples show that this
approach, when used with a heuristic algorithm [ké#erential Evolution (DE) permits to
reduce the search space for each chromosome (tixl@arand then ease the search for an
optimal solution.

The last approach followed was in part inspiredhsy GASP algorithm and the decomposi-
tion — coordination algorithm expressed earliedeked, it splits up the problem into sub prob-
lems. Each sub problems can then be solved indepégdf we span different boundary
conditions. When each sub problem has producedehef potential extremals, we patch
each sub solution according to specific boundaryd@mns to construct a complete trajec-
tory. This also permits to efficiently prune thdwmn space, as we can constraint the hyper-
bolic excess velocity, the DSM amplitude for eaety, the dates, ....

As the decision vector size for each sub problemedsiced compared to the decision vector
size of the complete problem, we reduce the coniyles well. We demonstrated that we
have a polynomial complexity.

Each of the 3 approaches brings a solution torttiali question of MGADSM space pruning.
However, they should all be improved by speedinghgpconvergence of the local optimiza-
tion process. All of the approaches proposed neeeffecient local optimization algorithm,
and manage to find a solution even for harsh proble
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