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Introduction and Motivations 
 
Interplanetary optimization problems have always received a considerable attention in the 
trajectory optimization community. Present and past methods focused essentially on the use of 
local optimizers through the resolution of a two point boundary value problem (Maximum 
Principle), or through a parametric problem, either for low thrust or impulsive trajectory de-
sign.  
 
Introducing swing-by maneuver can permit to reduce the value function. However the use of 
more and more swing-by bodies brings a mathematical challenge as the dimensionality of the 
problem increases.  
This approach leads to such an increase in the number of local minima, that a global approach 
becomes imperative. Some works have already been done on the subject for the particular 
cases of direct multi – gravity assist trajectory (MGA) for the ballistic or the low thrust case.  
However, MGA trajectory does not represent the general type of trajectory, since for impul-
sive trajectories, deep space maneuvers (DSM) have been proved to be of great use. Deep 
space maneuvers allow a gain of controllability and permit to reduce the consumption.  
 
Multi gravity assist trajectory with Deep Space Maneuver (MGADSM) need more variables 
than the MGA case, and finding a global optimum become even more complex.  
The best way to find the global optimum is to do a grid sampling. However these techniques 
are usually intractable, or very expensive. In order to simplify those costly algorithms, it is 
essential to prune the search space either with a set of constraints or with domain knowledge. 
 
Our main objective is to find an automated approach that can reduce the computation cost of a 
search algorithm in order to provide MGADSM trajectories. 
 
 

Study objectives 
 
After the studies [2][3][4] considering the pruning of the search space for multi gravity assist 
trajectories, the problem is extended to the case where Deep Space Manoeuvres (DSM) are 
included between the gravity assists. The primary focus of the study is to assess the possibility 
of pruning part of the search space in case deep space manoeuvres are considered. 
 
Although the subject is related to global optimization, few efforts are done on locating global 
optimum. Rather, we focus on how: 

- Locating interesting sub-spaces of the decision vector space 
- Performing efficient local optimization 

 
A pruning policy would allow quickly finding a global optimum neighbourhood and thus lim-
iting the resource needed to find a global optimum. 
 
Local optimization techniques are helpful to tackle the global optimization problem. A sto-
chastic initialization procedure combined with local optimization tools can provides a good 
set of locally optimal solutions. An element of this set can possibly be also a global optimum. 
Eventually, a specific step is needed to assess the global optimality of the solution founds. 



 7

 
 

Outline 
 
The present report is decomposed into three parts: 
 

1. The first part (chapter 1) is devoted to general description of the multi gravity as-
sist problem considering deep space manoeuvres. Different Deep Space Manoeu-
vres model are described as well as swing-by models. We briefly investigate the 
complexity of the MGADSM problem in a strictly equivalent approach to GASP. 
We also describe reference test cases that will be use within the report. 
 

2. The second part, including chapters 2 and 3, focuses on local optimization tech-
nique for the general multi gravity assist problem. 
We derive an optimal control problem using an indirect formulation. The key 
properties on the Primer Vector theory are recalled. The case of multiple DSM on 
a single leg is considered. The Primer Vector theory is then extended to the case 
considering intermediate swing-bys. Several examples of optimal MGADSM tra-
jectory are presented.  

 
3. The last part (chapter 4) is our pruning algorithm. It is an extension of the GASP 

algorithm to the DSM case. Only one DSM is considered per leg. The problem is 
then decoupled into several sub-problems. To optimise each sub-problems indi-
vidually, the sub-problem decision vector is increased with specific variables 
which ensure that each sub-problem optimum is part of the overall problem opti-
mum. The computational complexity is reduced, and polynomial. 
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List of Symbols 
 

c Coordination variable 

0g  Gravity constant ( 2
0 ms 8069 −= .g ) 

spI  Specific impulse 

m  Spacecraft mass 
q Mass flow rate 
h   Swing-by periapsis altitude  

pr   Swing-by periapsis radius 

⊗r  Planet position 

( )βQ  Swing-by rotation matrix 
r  Spacecraft position  
t  Date or time 
V , CSV /  Spacecraft velocity  

inV   Swing-by incoming velocity 

outV  Swing-by outgoing velocity 

∞V  Hyperbolic excess velocity 

∞V  Hyperbolic excess velocity module 
X State vector 
µ  Gravitational constant ( 23m 20183271244001.1 −⋅= seSUNµ ) 

ε  Relaxation parameter 
η   Swing-by B-plane inclination. 
λ   Co state vector 

Vλ   Primer Vector 

ν  Lagrange multiplier for constraints 

0V∆  Departure velocity impulse 

fV∆  Braking maneuver velocity impulse 

 
 
Subscripts 

(·)0, (·)f value at initial and final time 
(·)i  impulse number 
(·)·,k  phase or sub-problem number 

 
Superscripts 

(·)* optimal state 
(·)+ state after an impulse 
(·)- state before an impulse 
(·)i  iteration number 

 
 
Vectors are in bold. 
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1 Introduction 

1.1 DSM models 

1.1.1 Introduction 
 
 

 
Figure 1. Trajectory illustration 

 
A Deep Space Manoeuvre (DSM) is an impulsive manoeuvre. It represents change of velocity 
at a particular date and place of the space. 
Since the location and date of a deep space maneuver are independent, it is described by at 
least 3 variables: 

� Date of the maneuver 
� Position of the DSM 
� Velocity increment vector 

 
 
There are different formulations that can be used. Indeed, any model that can give a full de-
scription of the DSM can be considered, but its description should have at least a 4 dimen-
sional space description. 
 
 

∆VGA 

t0 

t1 
αT 

∆V
2 

2 point boundary value prob-
lem (Lambert) 

Keplerian motion 

∆VDSM 

Planets’ orbits 
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Figure 2. DSM model 

 

1.1.2 Descriptions and DSM models 
 
The DSM description and model is of particular importance. The choice of the variables has 
an influence on the convergence properties of the optimization algorithm.  
 
Some models use:  

- simplicity: some model only necessitates to solve an algebraic equation at each 
step, other requires integration. 

- applicability: some model needs adding explicit constraints in the problem 
- robustness: bounded or unbounded variables, … 

 
The choice of the model is problem dependant. However, for global optimization algorithm 
simplicity and robustness are the most interesting feature. 
 
The Date-Position model considers a point RDSM from the space and a date tDSM, where we 
apply an impulse ∆VDSM. 
The resolution of such a problem can be done through a formulation of 2 Lambert’s problems 
[1] . 
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The Date-Velocity model uses only the information on the velocity increate and the date of 
the DSM. Since DSM trajectories are only composed of impulsive manoeuvres, the trajectory 
is a Keplerian trajectory almost everywhere. Thus, once every manoeuvres {ti, ∆V i} are given 
and the initial state [R0,V0, t0] provided, one can propagate the initial state [R0,V0+∆V0, t0] 
from one impulsive manoeuvre date to the next.  This propagation provides the full descrip-
tion of all the [Ri,V i, ti].  
 

  

ti+2 
VDSM-=V-

VDSM+=V+
 

RDSM=ri+1 

 

tDSM=ti+1= ti+∆ti 

ti 
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Opposite to the Date-Position model, this model needs a constraint for the final position. 
 
Table 1 summarizes the features of both models.  
 
 

Table 1 

 Date - Position Date - Velocity 
Variables T, Rx, Ry, Rz T, Vx, Vy, Vz 
Constraints on the swing-by altitude on the final position 

on the swing-by altitude 
Transfer resolution Algebraic equation Propagation + equation 

 
 
 
Besides choosing between a position or a velocity description, the choice of the coordinates is 
also or importance. In this study, we mainly focus on Sun centered dynamics. The most suit-
able coordinates can be rectangular (or Cartesian), polar or spherical. 
In rectangular coordinates, position and velocity are described by their natural values and 
provide a-priori unbounded variables. Only the expert point of view can limit the range for the 
different values. 
In polar coordinates, the variables are amplitude, altitude and a polar angle. Again, this set of 
variable can only be bounded with expertise but for the angle variable which can be limited to 
the [ ]π2,0  interval. 
The spherical coordinates provide the most interesting set of variables. These variables are the 
amplitude (radius or velocity amplitude), the azimuth angle α, and the elevation angle β. The 

angles α  and β  are limited respectively to [ ]π2,0  and 




−
2

,
2

ππ
. The amplitude can also be 

restricted to the positive line R+. An upper bound can be found with reasonable assumptions 
and expertise. 
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1.1.2.1 DSM swing-by description 
 
The Date-Position and Date-Velocity models do not take into account the gravity assist feasi-
bility, which express the maximum deviation on the hyperbolic excess velocity vector, ac-
cording to the minimum allowed hyperbola pericenter altitude. Both models need an addi-
tional constraint for the swing-by minimum pericenter radius. 
  
However, another description is possible. It accounts the gravity assist feasibility by assigning 
a variable to the altitude.  
We have the following description vector: 

[ ]ηht=X  
 
Where t  is the duration of the first coast arc, h  is the altitude of the pericenter, and η  is the 
B-plane inclination. The B-plane is perpendicular to the trajectory plane. 
This approach however can only allow exactly one DSM per transfer leg. In addition, it is not 
suitable for direct transfer which does not include swing-bys. 
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1.2 Swing-By  

1.2.1 Physical interpretation 
 
Newton physics permits to explain the gravity assist phenomenon. During the encounter of a 
spacecraft with a planet, the sum of their kinetic energies before and after the encounter is the 
same, as is that of their linear momentum. But, during the encounter, the planet’s gravitational 
interaction with the spacecraft produces a change in the velocity of the spacecraft. The even-
tual gain in kinetic energy of the spacecraft should be equal to the eventual loss in kinetic 
energy of the planet. Since the spacecraft mass is generally meaningless compared to the pla-
net mass, the change in the planet velocity is usually meaningless too. 
 
The trajectory of the spacecraft relative to the swing-by body is a hyperbola. The relative 
hyperbolic velocity is defined by: 

 ⊗∞ −= VVV CS/  (1.3) 

This hyperbolic velocity is the same in module at the input and output of the gravisphere of 
the planet (e.g sphere of influence), for non powered swing-by.  
 

 
Figure 3. Swing-By model 

 
 
In the literature, swing-bys are also referred as gravitational assistance, gravity assist, fly by, 
or also, but mistakenly to gravitational slingshot. 
 
The physic can be simplified if we do not consider the dynamics of the spacecraft into the 
Sphere of Influence during the swing-by. The time of flight in the sphere of influence of the 
swing-by body is small compared to the total mission duration. Consequently, it is usually 
considered as a punctual phenomenon. Consequently, the perturbation maneuver is supposed 
instantaneous. This is often referred as the Patched Conic approximation. 
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1.2.2 Simplified Swing-By 
 
Following the patched conic approximation, there is only a change of angle between  V∞ 

+ and 

V∞
-. If we take 2δ the angle between V∞ 

+  and V∞
-
 we get [1]: 

 

2

2

1

1
sin

µ

δ
∞+

=
Vrp

  (1.4) 

Where pr  is the periapsis of the hyperbola during the encounter and pµ  is the gravitational 

constant of the swing-by body.   
The rotation is done in the plane defined by the incoming relative velocity and the pericenter 
radius vector.  
 
The velocity increase due to the swing-by is simply given by:  

 δsin2 ∞
−+ =−=∆ VV VV   (1.5) 

 
There are limitations on δ and V∆  , given by the minimum radius which could not be lower 
than the planet radius,  pplanet rr <  and:  

 2
min

maxsin
∞+

=
Vrµ

µδ   (1.6) 

 
If pplanet rr < , we say that the swing-by is feasible. The general constraints to respect, for a 

feasible swing-by, are then: 
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The outgoing velocity vector from a swing-by can be calculated using: 
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Where: 
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And δ2  and η  are respectively the deviation angle and the B-plane inclination with respect 
to the ecliptic. 
 

1.2.3 Simplified Powered Swing-By model 
 
If the gravity assist is not feasible, an impulsive maneuver permits to correct the hyperbola 
pericenter altitude. More specifically, in this study we can consider post-swing-by correction 
maneuver.  
We apply the impulse after each gravity assist: 

 ( ) ( )( ) ( ) ( ) 













−
−−=∆

⊗
+

−
∞

⊗
+

tt
tt

VV

V
VVV 1   (1.9) 

The gravity can be free if: ( ) ( )( ) 0=−− +
∞⊗

+ VtVtV .  

 
Placing a manoeuvre after the gravity assist, as expressed in the formula, allow considering 
the maximum available rotation of the hyperbolic velocity vector, without radius violation, 
and make a correction with an additionalV∆  to match the heliocentric output velocity vector. 
 
Thus, simply: 

 ( ) ( )( )+
∞⊗

+ +−=∆ VVVV tt  (1.10) 

Where +
∞V  respects the maximum rotation constraint. 

 
Another option would have been to place the impulse at the pericenter of the gravity assist. 
This would have been more efficient, but complexify the method.  
This model has the advantage of decoupling the problem by considering several transfer arcs, 
where an arc is the patched legs joining 2 planets. This property, used in [2][3], allowed the 
MGA problem to have a polynomial space complexity. 
 

1.2.4 Trajectory approximations 
 
There are different models available:  

� The Matched Conic approximation is one of the most accurate since it does not exhibit 
any velocity discontinuity in either velocity or position at the sphere of influence. The 
dynamics are integrated through the sphere of influence and outside, with appropriate 
jump conditions at the boundary of the sphere of influence when changing the referen-
tial from heliocentric to planetocentric and vice versa. 
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� The Patched Conic approximation has the same velocity property, it does not allow 
discontinuity in the velocity, but allows a discontinuity in the position at the sphere of 
influence. The position is considered to be the position of the planet. 

� Other models exist like the mass less planet model which avoid the notion of sphere of 
influence. In the present study it is therefore the patched conic model which is of in-
terest. 

 
 
 

1.3 Impulsive Multi Gravity Assist problem 

1.3.1 Problem Formulation 
 
The problem is the one of finding the optimal impulses that allows reducing the characteristic 
velocity (∆V budget) of a multi gravity assist trajectory. 
The impulses are initially totally unknown, and possibly they may not be necessary. 
 
The objective function to minimize for this problem can be written: 

 ∑
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∆+∆+∆=
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i
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1
)(0 VVV   (1.11) 

With the initial conditions at the launch date 0t : 
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We give the gravity assists planet sequence{ }NbbbB ,...,, 21=  where ib  is a Solar system pla-

net. The date of passage it  at each ib  defines the mission scenario. 

 
The dynamics is the spacecraft, under the sole Sun gravitational influence, is given by: 
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Where r  defines the Cartesian position, v  the velocity, µ  the Sun gravitational constant, m  
the mass of the spacecraft, q  the spacecraft fuel mass flow, Isp the specific impulse of the 
spacecraft thruster and u  is the unit thrust direction. 
 
The optimization variables are thus the date of encounter it  with the planets, the Deep Space 

Maneuvers (DSM) model variables, and possibly the description of the swing-bys. 
 
 

1.4 Problem complexity 

1.4.1 Simple MGA problem complexity 
 
According to [2][3], it is possible to have a polynomial complexity in space and time for the 
multi gravity Assist interplanetary transfer (MGA). 
 
Indeed, this can be verified with the following assumptions: 

� there is less than one revolution for each transfer: 1=iN  

� transfer directions are all in the same direction (posigrade or retrograde): 1=is  
� launch window and mission phase time have the same discretization step. 
� the Gravity Assist sequence is fixed. 

 
This permits a grid sampling of the search space, and with the use of constraints, allows find-
ing an optimum solution at a very low computational cost. 
 

1.4.2 MGADSM problem complexity 
 
As for the MGA problem, we can investigate the a-priori complexity of the extended problem 
using Deep Space Maneuvers (DSM). As this is the main motivation of this work, we can 
wonder if the GASP [2] approach also leads to a polynomial complexity. 
As it has been written before, the model of a DSM need at least 4 independent variables.  
 
Consider an n-GA trajectory with only one DSM per leg, and a launch window discretized 
into k bins of equal length, as well as each leg phase, from it  to DSMit  and DSMit  to 1+it  

Thus: 
 1st phase:  1st leg   2k  
    2nd leg   22k  
 
 2nd phase:  1st leg   23k  
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    2nd leg   24k  
 
 nth phase:  1st leg   ( ) 212 kn −  

    2nd leg   22nk  
 
 
This gives the sum:  

 ( )∑
=

−=
M

n

knC
1

214  

Or also: 

 ( )MMkC += 22 4  

The space required for a M phases problem with one DSM per phase is of the order of ( )2kO . 
In addition, since all phases may not require a DSM, this computational cost may be pessimis-
tic. The precedent approach can still be used on the time complexity. 
Although the computational cost appears polynomial, the multiplicative factor 

MM +24 should not be considered negligible. For example, a Cassini like mission, with up 
to 5 gravity assist, need a space of the order of 2105k . 
 
However, the same approach cannot be followed for the space complexity. Opposite to date 
and planet positions in the MGA case, the positions and the date of the DSM are independent. 
Simple assumptions show that the space complexity is clearly not polynomial. 
But we can benefit from the time complexity and appropriate local optimization methods to 
efficiently find a good trajectory. If our local methods prove to be efficient, the overall com-
putational cost has great chance to be polynomial ( )nkO , where n still needs to be defined. 
 
In addition, the MGA problem has an advantage over the MGADSM problem. In the MGA 
case we have a good description of the decision vector, as we only use the planet. In the 
MGADSM case, we are not sure if a DSM is necessary or not, which may need unpromising 
sampling of the search space.  
 
For the MGA problem, each phase was described by a conic, and hence the sensitivity of the 
cost function with respect to the date and position of the planets is low compared to the full 
MGADSM case. Indeed, one can easily notice the difference in cost according to the place of 
the DSM. The size of the bins used to describe the DSM date must then be small compared to 
the phase time length. 
 
 

1.5 References cases and examples of MGADSM trajectories 
 
Along this report, we will consider mainly 3 test cases. Those are interplanetary transfer prob-
lems, known to be difficult. They are usually well referenced in the literature. 
In most case, we only consider one DSM per leg. 
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1.5.1 Earth Venus Earth Jupiter 
 
The EVEJ trajectory does not follow any missions, current or past. 
 

Table 2.  
EVEJ mission variables bounds 

 Lower bound Upper bound 
Tref 01 Jan 2001 

T0 (days) Tref -1000 Tref + 1000 
tof (days) 0 1500 

Tdsm/tof ratio 0.1 0.9 
∆V0 (m/s) 0 5000 

 

1.5.2 Cassini Trajectory 
 
Cassini spacecraft was launched on October 15, 1997 for a mission to Saturn and Titan. It is 
one of the most impressive missions, as the trajectory is one of the most complex one ever 
done for real. At the time of writing, Cassini should get an encounter with Titan in about 6 
days. 
Its trajectory has multiple swing-bys to reduce the fuel expenditure, but in addition several 
design constraint were given, such as the limited launch hyperbolic velocity due to an impor-
tant mass budget of the spacecraft. There is also a constraint on the final velocity because the 
spacecraft need to get inserted into orbit around Saturn. 
 
 

 
Figure 4. Cassini Mission (© NASA/JPL) 

 
 

Table 3.  
Original Cassini mission events[5] 

Event Date (days from T0) Real date  Velocities, altitudes 
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[26] 
Launch 06/10/1997 (0) 15/10/1997 C3 = 18.1 km²/s² 
DSM1 16/03/1998 (162) - ∆V=0 m/s 
Venus Swing-by 21/04/1998 (197) 27/04/1998 H=300km, V∞=11.8 km/s 
DSM2 02/12/1998 (423) 26/11/1998 ∆V=466 m/s 
Venus Swing-by 20/06/1999 (622) 25/06/1999 H=2267km, V∞=13 km/s 
Earth Swing-by 16/08/1999 (679) 18/08/1999 H=500km, V∞=19.1 km/s 
Jupiter Swing-by 30/12/2000 (1181) 06/01/2001 H=139Js, V∞=11.8 km/s 
Phoebe flyby 12/06/2004 (2441) - D=52000km 
Saturn Insertion 01/07/2004 (2460) 30/07/2004 ∆V=613 m/s 
Titan flyby 27/12/2004 (2609)  H=1500 km, V∞=5.9 km/s 
End of Mission 01/07/2008 (3921)   

 
According to [5], the global optimum solutions need a C3 between 35 and 55 km²/s², which is 
not possible in practice. There is thus a constraint on the initial launch velocity of about 
4km/s. 
 
In order to comply with the Cassini mission requirement, we set the following search box and 
constraint: 

 
Table 4.  

Cassini mission variables bounds 
 ∆T0[d, MJD2000] ∆T1[d] ∆T2[d] ∆T3[d] ∆T4[d] ∆T5[d] 

Lower bound -1000 100 100 30 400 800 
Upper bound 0 400 500 300 1600 2200 

 

  

1.5.3 ROSETTA mission 
 
The ROSETTA mission purpose is to understand the origin of the Solar System. As the most 
primitive objects in our solar system, comets are good candidate for the ROSETTA mission. 
The mission was initially planned to rendezvous with comet 46P/Wirtanen but will eventually 
rendezvous with comet 67P/Churyumov-Geresimenko after a 10 years journey.  
 

 
Figure 5. 3D view of the comet 

 
The mission does not present any Deep Space Manoeuvre, but the trajectory is very complex 
with multiple Earth gravity assist, one Mars gravity assist and 2 comet flybys, before the final 
rendezvous. 
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Figure 6. Rosetta trajectory (source: cnes.fr) 

 
 

Table 5.  
Original ROSETTA mission events[5] [6] 

Event Date (days from T0) [26] Velocities, altitudes 
Launch 02/03/2004 3067kg, V∞=3.515km/s 
DSM 1 10/05/2004 158m/s 
Earth SwingBy 04/03/2005 (367)  
DSM 2 28/09/2006 32m/s 
Mars SwingBy 25/02/2007 (723) 2260m/s 
DSM 3 25/04/2007 7 m/s 
Earth SwingBy 13/11/2007 (261)  
Ast. Steins flyby 05/09/2008 (297)  
DSM 4 19/03/2009 7m/s 
Earth SwingBy 13/11/2009 (434)  
Ast. Lutetia flyby 10/07/2010 (239)  
DSM 5 23/01/2011 789 m/s 
Rendezvous 22/05/2014 (1412) 794 m/s 
End of Mission ../12/2015  

 
 
The mission scenario was selected according to technical problem issue. As a consequence, 
swing-bys and flybys close to the sun were not allowed, and the launcher readiness was too 
risky for other scenario. 
The DSM1 and DSM2 are actually called “∆V gravity assist” by [6] as they permit to create 
Earth swing-by with an increased arrival velocity, compared to the others which only permit 
to flyby the selected asteroids. 
 
 
 

Table 6.  
ROSETTA mission events[5] optimized without DSM 

Event Date (days from T0) [26] Velocities, altitudes 
Launch 02/03/2004  
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Earth SwingBy 04/03/2005 (367)  
Mars SwingBy 25/02/2007 (723)  
Earth SwingBy 13/11/2007 (261)  
Ast. Steins flyby 05/09/2008 (297)  
Earth SwingBy 13/11/2009 (434)  
Ast. Lutetia flyby 10/07/2010 (239)  
Rendezvous ../05/2014 (>1391)  
End of Mission ../12/2015  

 
 
 

1.6 Final Remarks 
 
We introduce the different DSM model and the swing-by model used in the patched conic 
approximation. These models are important because we will essentially refer to these one 
when computing a multi gravity assist with Deep Space Maneuver trajectory (MGADSM) 
 
We also introduce the dynamics system which will be used later on to formulate the optimiza-
tion problem. 
 
We briefly investigate the cost function for a simple DSM case. This example gives us some 
insight about the behavior of the cost function, and the problem we might encounter, although 
the example was not by itself exhaustive. 
 
In this study, we will try to take benefit of the recent promising results about the polynomial 
complexity of the MGA problem.  
 
The following chapter deals with the well know Primer Vector theory. This theory will help 
us estimating the placement of the DSM, and give a good initial guess for the local solver.  
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2 Primer Vector theory 

2.1 Introduction 
 
The patched conic approximation leads to an interplanetary trajectory, by solving intermediate 
2-body transfer problems. It is generally used for impulsive transfers; therefore the legs be-
tween each body along the trajectory are purely conics. According to Lambert’s problem and 
Gibbs theory, the solutions to this problem are unique and easily computed.  
When minimizing the characteristic velocity, it is possible to reduce the cost of the MGA so-
lution, by considering additional intermediate impulses. The problem becomes more difficult.  
The search space is bigger and it is not an easy task to get a good initial guess.  
Lawden theory brings us key elements to optimize a multiple impulse trajectories. It introduc-
es a dual problem from the calculus of variation theory to seek the optimal impulses. 
 
We will first introduce to the optimization problem, and provide a brief description of the 
Lawden Primer Vector theory. We will show how this theory can help us estimate the DSM 
position and amplitude. Also, an important feature of the theory is its ability to automatically 
find an optimum number of impulses. With this theoretical basis, we will introduce our search 
algorithm that manages to optimize any initial 2 impulses trajectory by adding optimal inter-
mediate impulses. 
 

2.2 Primer Vector Theory 

2.2.1 Optimal control problem 
 
Consider the problem of transferring a spacecraft from the state ( ) [ ]00 ,, mt 00 vrX =  to the 

rendezvous conditions [ ]ff vr ,  in a given time of flight 00 >−= tttof f . The spacecraft carte-

sian position and velocity vector and the spacecraft mass are given by the state vector 
is [ ]m,,vrX = . The problem control variables comprise the mass flow rate q and the unit 
thrust direction u. The spacecraft dynamics are given by: 

 


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sp ur
v

v
r

0

3

µ
 (2.1) 

Where r defines the Cartesian position, v the velocity, µ the Gravitationnal constant, m the 
mass of the spacecraft, q the fuel mass flow, Isp the specific impulse of the spacecraft thruster 
and u is the unit thrust direction. 
 
In addition we have the following constraints on the control variables: 
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( )

1

0max

=
≥−

u

qqq
  (2.2) 

Such that we have a variable bounded mass flow rate max0 qq ≤≤ . Of course, for impulsive 

thrust we have either a thrusting force approaching infinity ∞→maxq  or a thrust time of the 

burns going to 0. 
 
The objective function to maximize is: 

 ( )ftmJ −=   (2.3) 

Because of Tolstoïski formula, this is equivalent to minimize the characteristic velocity of the 
mission: 

 ∑
=

∆+∆=
n

i
ifJ

0

VV   (2.4) 

Where n is the number of Deep Space Maneuvers (DSM), 0V∆  is the initial impulse and 

fV∆  is the rendezvous manoeuvre impulse. 

 
We introduce the Lagrange variables [ ]mVR λ,,λλλ =  for the state vector [ ]m,,VRX =  and 

[ ]21,µµµ =  for the control constraints. We also introduce a slack variable α for handling the 
inequality constraints on the mass flow rate q. The Hamiltonian of the optimal control prob-
lem is: 
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The necessary conditions of optimality permits to get the Lagrange variables equations: 
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=
∂

∂
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H
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Thus: 
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 (2.6) 

 
The Maximum Principle gives the optimal control, which is: 
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v

v

λ

λ
u =*   if 0≠q  and 02 ≠µ   (2.7) 

The vector vλ  is called the primer vector, and it is the co-state of the velocity. 

The 3×3 gradient gravity matrix G for two-body motion along a reference orbit ( )r,t  is given 
by [1]:  
 

( ) ( )d
Tt Irrr

r
rG

2

5
3, −⋅= µ

 

 
This matrix is usually evaluated around a reference trajectory, as (2.1) and (2.7) cannot be 
integrated concurrently (see 2.5.1.1 ). 
Note also: 

( ) ( )tt r
r

g
3

µ−=  

 
We can then introduce the switching function S: 

 ( ) ( )22
123

1 αµµµ −+−+−+= q
rdt

d
qSH TT urλ

r
λ VR   (2.8) 

With: 
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The switching function permits to describe the instant of switching of the control. 
 
And for the optimal control *u , *SS = : 
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Indeed, for the impulsive case, we have either a maximum thrust arc of a null thrust arc. In-
termediate thrust arcs (singular arc) only permit to get variable thrust. 
 

2.2.1.1 General Application of Primer Vector Theory 
If we now study the case where we have an impulse. The switching function S crosses zero. 
We have then: 
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This implies that the primer vector is perpendicular to its derivative: RV λλ ⊥ . 

And: 
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Integrating this last equation gives: 

 ( )1
0 cnst
m

Ig
S sp += vλ  

The constant 1cnst  is the normalization constant of vλ  or also the magnitude of vλ  for all 

impulses. We can choose to unit vλ  at impulses.  

 
 
Now, following the approach of Jezewski [7], we investigate the case where we need to add 
an impulse. Adding a new impulse 1+∆ nV  perturbs the nominal trajectory. We get the new 

value function: 
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The relative change in the value function due to adding the new impulse is then: 
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This expression can be rewritten to first order: 
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 (2.12)  

Because the Hamiltonian is constant over each leg linking two successive impulses, the 2 first 
terms on the right hand side can be related to the intermediate impulses with the use of the 
primer vector and relative perturbation δr  of the impulses position.  
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The first term of (2.10) vanishes because of the Hamiltonian and the position trajectory conti-
nuity, and: 
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For example, if 1+Vnλ  exceeds unity, then the differential cost becomes negatives and we can 

reduce the cost. 
 

2.2.2 Conditions for a primer optimal trajectory 
 
According to the former development, we have 4 conditions for a ballistic trajectory to be 
optimal [7]. They are resumed below. 
 
Property 2.1: 

1. the primer vector and its derivative should be continuous 
2. if there is an impulse, the primer vector is aligned with the impulse, and its module is 

1. 
3. the primer vector module should not exceed 1. 
4. the derivative of all intermediate impulse is zero. 

 
 
It is important to emphasize one of the major drawbacks of Lawden theory. In order to opti-
mize a trajectory it is necessary to have at least 2 impulses. More precisely, we can only com-
pute trajectory where we can evaluate the boundaries (or the transversality conditions). 
To compute the primer vector history, it is thus important to evaluate its value at one boun-
dary. 
 

2.3 Boundary conditions 

2.3.1 Calculus of Variation 
 
From the value function J (2.3) and general boundary constraintsψ , we can construct the 
performance index: 
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Where ( )txf ,  is the problem state dynamical equation, Λ  is the costate vector and ν is the 
Lagrange multiplier associated to the constraints. 
 
With: 
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The state vector X includes the position vector r of the spacecraft according to the cen-
tral/reference body position, the velocity v of the spacecraft according to the reference frame.  
 
The first differential becomes: 
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And for conciseness: 
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Where n is the number of DSM, { } niit ..1=  are the date of the DSM, fn tt =−

+1 . 

If there is no DSM, the last term vanishes and −+ == iii ttt .  

 
 

2.3.2 Boundary constraints handling 

2.3.2.1 Rendezvous problem 
 
The rendezvous is given by the conditions: 
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There are no constraints: 0=ψ . 
Thus: 
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where 000 ⊗−=∆ VVV  and fff VVV −=∆ ⊗  

 
Then, to get an optimum point we should get: 
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Note that the position constraints are implicitly satisfied since the trajectory is a solution of a 
Lambert’s problem. 
 

2.3.2.2 Constraint on the initial velocity 
 
Consider the initial constraint: 
 

 ( ) ( ) ∞−−= Vtt 00 VV0ψ   (2.20) 

 
Differentiating ψ gives: 
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The stationnarity of the Lagrangian (2.13) permits to get the initial condition on the primer 
vector: 
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Where ν  is the Lagrange scalar associated to the constraint ψ. 
 
The same expression can be calculated for a constraint on the final velocity. Thus we simply 
have in this case: 
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Where ν  is the Lagrange scalar associated to the constraint ψ. 
 
These expressions (2.18, 2.19) will be useful when considering MGA-DSM primer optimal 
trajectories (see 3). 
 
 

2.4 Optimizing with the Primer vector 

2.4.1 Solution initial guess 
 
If a multiple impulse trajectory is not Primer optimal and need to be optimized, a good start-
ing guess is to use the time where the primer is maximum. This guess is actually good to first 
order, for improving the reference trajectory. 
 
Jezewski [7] proposes an approach which estimates the error in position. However, this ap-
proach is only valid when the linear developments are respected. 
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The scalar c is the magnitude of the intermediate impulse. 
 
 

2.4.2 Algorithm 
 
The primer vector approach for the optimization of interplanetary trajectory presents a num-
ber of disadvantages. 
Indeed, we cannot integrate the primer vector and the state dynamics simultaneously with the 

initial condition ( ) { }000 ,VRX =t  and ( )






=

•

000 ,λλΛ t , and solve the TPBVP to find an opti-

mal trajectory, for the following reasons: 
- the number of impulses is unknown and may vary from one iteration to another. 
- the amplitude of the impulses are unknown, and since we do not know the number 

of impulse, the dimension of the search space may change from one iteration to the 
next. 

- the impulses impose a discontinuity on the velocity and hence the computation of 
the trajectory is numerically extremely sensitive. 

 
Note also, that the calculus of variation theory cannot provide the DSM amplitude. This is 
because the mass flow rate is a linear term in (2.9), and we are considering an impulsive con-
trol.  
 
The algorithms presented avoid these difficulties. We proceed in 2 stages. We first compute 
the trajectory with the known control (impulses) by using a Lambert’s problem formulation or 
integrating the state equations. Once the trajectory is computed, we can integrate the co-state 
equation along the state trajectory using the appropriate boundary conditions (see 2.3) on the 
primer vector.  
With 2.2.2, the primer vector history informs us about the optimality of the trajectory. We 
also have an information of the optimal number of impulse for the current nominal trajectory. 
Note that we can provide information on the gradient. 
 
The algorithm (Table 7) consists of locally optimizing a trajectory using the initial/estimated 
guess given by the primer vector. After each local optimization, we check the criterions of 
optimality and loop with a new initial guess if they are not satisfied. 
 

 

Table 7. Algorithm 
Step 1. Compute the trajectory ( ) ( ) ( ){ }ttt VRX ,=  

 

Step 2. Evaluate Primer Vector ( )tλ  

 
Step 3. If optimality criterions are satisfied, stop 
            Otherwise, estimate the number of DSM, RDSM and tDSM, and 



 32

return to Step 1. 
 
 

2.4.3 Comments on the algorithm 
 
The primer vector history is only computed once per iteration, and Lawden theory is only 
used as a verification and estimation tool, which is critical to ensure the convergence of the 
algorithm. 
 
In order, to improve convergence, we do not allow reducing the number of DSM during the 
process, but instead, each maximum (above or under 1) are considered as potential impulses. 
 
It is important to mention that for multi-revolution transfer, the primer vector tends to add one 
or two impulse per revolution, such that the Lambert solver is always looking for less than 
one revolution solutions. There is no need to specify the number of revolution or the branch to 
select in the Lambert’s problem solver. 
 
Numerical issue 
The primer vector theory suffers of singularities [8]. In addition, when the very first impulse 

is almost 0, it is numerically tricky to compute
0

0

V
V

∆
∆

. As the formulation needs initial and 

final boundary value for the primer vector Vλ , we can consider to switch from the impulse 

0V∆  to the first DSM impulse 1V∆ . Indeed, for a rendezvous problem, if frr0 ≠  we must 

have 2V∆>J  such that we have at least 2 impulses in the trajectory. The primer vector his-

tory is then always well defined. 
 
 

2.5 Numerical Analysis 

2.5.1 Primer Vector Computation 

2.5.1.1 TPBVP approach 
 
For a transfer problem from ( ) 0rr =0t  to ( ) frr =ft , under the dynamics given by (2.1) and 

(2.4), a Two Point Boundary Value Problem (TPBVP) can be formulated as follow: 
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We can get the primer vector history using any two point boundary value (TPBVP) solver. A 
shooting method or a collocation technique can solve (2.9).  
 

2.5.1.2 Transition matrix approach 
 
Another approach is to consider the use of transition matrix. This allows calculating the solu-
tion of a linear TPBVP. In this case the trajectory must be known beforehand. This is done by 
the appropriate use of a Lambert’s problem solver.  Once the state trajectory is known, the co 
state dynamical equations can be linearized around the state trajectory. 
 
Let’s briefly recall the symplectic property of the transition matrix [1]: 
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Equation (2.12) can then also be written: 
Thus: 
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Where: 
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In this case, one can integrate (2.13) and (2.14) concurrently, and then compute the primer 
vector. 
 

2.5.2 Computation of the gradient 
 
The results of Jezewski [7] can be extended to N-DSM trajectories [9]. Then:  
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And: 
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The state transition matrices can also be used to compute the gradient, as it will be explained 
in the next section. 
 

2.5.3 Simple study of optimality 
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Figure 7. Non optimal trajectories 
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Figure 8. Optimal trajectories 

 
Using the 4 conditions provided in 2.2.2, the primer vector theory provides a visual assess-
ment of the optimality of a trajectory. 
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2.6 Applications 

2.6.1 Earth – Mars direct transfer 
 

Table 8.   
Primer Vector, Earth Mars transfer 

 NON OPTIMAL OPTIMIZED 
Departure 01/04/2001 12:00:00 
Arrival 28/10/2001 12:00:00 

Duration 210 days 
[Earth] -> [Mars]  

∆V0 3.30 km/s 2.73 km/s 
DSM #1  T0+100.5days, 0.524 km/s, 1.23AU 

RendezVous maneuver 3.54 km/s 3.22 km/s 
Total ∆∆∆∆V 6.843 km/s 6.475 km/s 
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Figure 9. Non optimal Earth Mars transfer 
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Figure 10. EM optimal 1-impulse trajectory 
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Figure 11. Direct primer optimal  Earth-Mars trajec tory 

 
The optimization process had one impulse and managed to reduce both the initial and the final 
impulsive manoeuvres. 
 

2.6.2 Earth – Venus 
 

Table 9. Primer Vector, Earth - Venus transfer 
 NON OPTIMAL OPTIMIZED 

Departure 31/05/2007 
Arrival 05/02/2008 

Duration 250 days 
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[Earth] -> [Venus]  
T 250.0 days (JD: 2454251.500) 

∆V0 28.61 km/s 2.66 km/s 
DSM #1 - T0+75.6 days, 0.356 km/s, 0.87AU 
DSM #2 - T0+145.0 days, 2.832 km/s, 

0.72AU 
RendezVous maneuver 37.520 km/s 0.011 km/s 

Total ∆∆∆∆V 66.129 km/s 5.861 km/s 
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Figure 12. EV optimal 2-impulse trajectory 
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Figure 13. EV primer optimal trajectory 
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This example is particularly interesting as the reference case is a highly energetic trajectory. 
Actually the date has been chosen such that the trajectory is almost perpendicular to the eclip-
tic. Adding impulses typically bring back the trajectory close to the ecliptic. The reduction of 
the cost is here quite significant.  
This example also emphasizes the necessity to need sometimes more than one impulse. 
 

2.6.3 Earth – Mars global optimization 
 
We propose to globally optimize a simple EM (Earth-Mars) direct transfer, with rendezvous 
conditions. 
The purpose is to illustrate the efficiency of the numerical method, as well as demonstrating 
that solution considering more than one DSM can be helpful. 
 

Table 10. Search Box 

 Lower bound Upper bound Step 
Launch date 
(MJD2000) 

2557 2957 10 days 

ToF (days) 100 500 10 
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Figure 14. Global optimization of an EM transfer 
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Because we search in a grid, instead of randomly evaluating point, the points on Figure 14 
seem actually ordered. There is however little chance we miss good points in this search space 
according to the smooth shape of the Pareto front. 
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Figure 15. Distribution of DSM solutions for an EM transfer. 

 
Figure 15 shows the distribution of the solution. We investigate the number of DSM for each 
point of Table 10. As one can notice, most of the time the cost can be reduced with DSM. 
There are few 2 DSM solutions, and no solution with more than 2 DSM. Indeed, 2 DSM solu-
tions generally appear to high inclination transfer or when the transfer is closed to the π-
singularity of the Lambert’s problem. For example, we can expect solutions with more than 2 
DSM for direct EY transfers. 
 

2.7 Conclusions 
 
We introduce the primer vector theory. The minimization of the characteristic velocity of a 
leg can be done through the use of a local optimization solver. The number of DSM is free 
and optimally found be the algorithm. 
 
Beside the fact that the Primer vector theory allows the use of multiple DSM on single leg, it 
indicates before all, if we need to place DSM. This avoids placing unpromising DSM on the 
trajectory. This point is of great importance, because without the primer vector theory one is 
able to find an optimum for a given and fixed number of impulses. However, this optimum, 
although it verifies the necessary and eventually sufficient conditions of optimality, as little 
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chance to be the global optimum if this one needs more impulses. So far, major algorithms 
and code seek optimal trajectories with a constraint on the number of impulses. 
Thus as stated earlier, the approach we propose is local. However this approach is still valid 
for global optimization as long as we are capable of finding the basin of attraction of the glob-
al optimum.  It permits to find the global optimum as its formulation does not make any con-
straint on the number of impulses. Indeed, direct approach may be sub-optimal, whereas our 
indirect approach could not. 
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3 Primer Optimal MGA trajectories 

3.1 Solution method 
 
We can tackle the MGADSM problem with the primer vector theory. The usual approach is to 
compute the primer vector straight from t0 to tf, using the boundary condition at the swing-by. 
As for the simple transfer case, the maximum of λ above 1 determine the impulse to add. 
This method may be attractive since it uses the method and algorithms introduced beforehand. 
However, one should notice that for multiple gravity assist trajectory, the global Two Point 
Boundary Value Problem (TPBVP) might become very sensitive. 
 
The method followed here, performs trajectory decomposition and breaks the original trajec-
tory at points of swing-by into separate legs. Subsequently, it optimizes each legs independ-
ently, using the primer vector theory, and with appropriate boundary conditions. These 
boundary conditions allow to communicate between the sub problems. 
This method follows 2 steps: 

- formulation of sub problems of lesser size than the initial problem (= decomposition) 
- set up of an exchange process between the sub problem in order to comply with the 

initial problem (= coordination) 
 
Using the optimization problem defined in 2.2, we extend the primer vector theory to multi 
gravity assist trajectories. In particular, we study the condition of optimality at the swing-by, 
on the primer vector. The conditions of optimality at the swing-by [16]  have rarely been dis-
cussed.  
The purpose is to get the optimum of the initial problem. The trajectory decomposition per-
mits to remove the sensibility of the problem, and allows solving simpler sub problems. 
 

3.2 Primer vector at Swing-By 
 
To compute the primer vector history on the whole trajectory, 2 approaches may be followed. 

- We can consider the free swing-by case. The trajectory contains only DSM between 
the swing-by. In this case, the primer vector is computed in a whole and optimization 
is done following the same technique as for the simple leg transfer. The drawback of 
this approach is the sensitivity of the trajectory when computing the primer vector for 
a TPBVP. 

- We can consider powered swing-by. In this case, we decompose the whole trajectory 
in order to have legs that start and end with an impulse, and we can apply the same 
technique as for the simple leg transfer. In addition, we should coordinate the different 
leg optimisation to get the optimal trajectory. 

 
As for the direct transfer case, we need sufficient boundary conditions to evaluate the primer 
vector history. The swing-by constraint introduces new conditions on the primer vector. 
 

3.2.1 Swing-by and sphere of influence 
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To study the influence of a swing-by over the primer vector, we initially consider the sphere 
of influence and proceed in 3 steps. We study the primer when entering the sphere of influ-
ence, then the traversing of the sphere and finally exiting the sphere of influence. 
For each of this step, we make a change of coordinate due to the different dynamics, since the 
central body switches from the Sun to the Planet and vice versa. 
 
Following the approach of [9][10], we note the incoming and outgoing velocities at the sphere 
of influence: 

 ( )inplinin tVVV += −+  and ( )outploutout tVVV −= +−   (3.1) 

This transformation takes into account the change of coordinate and the planet velocity. The 
planet velocity should be evaluated for both the date of input and output in the Sphere of In-
fluence. 
 
Also at the crossing, the continuity of the Hamiltonian gives: 

 −−−−++++ +=+ RλVλRλVλ RVRV δδδδ
TTTT

  (3.2) 

The case when exiting the sphere of influence is identical except that we must exchange the 
indices. 
 
We then get the following relationship between the incoming and the outgoing co-state vec-
tors: 
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With: 

 ( )( )inplinin
in

Tin t
dt

d
VVV

VR
R

B −−= −+   (3.4) 

If we leave the sphere of influence, or we enter the sphere of influence: 

 ( )( )outploutout
out

Tout t
dt

d
VVV

VR
R

B +−= −+   (3.5) 

See [10] for more details on (3.3). 
 
Now even though a swing-by doesn’t last long, we should compute the trajectory in the 
Sphere of Influence. With the transition matrix ( )outin ttS ,Φ=  computed in the planet centered 

dynamics from int  to outt  we have: 

 −+ = outin SΛΛ  (3.6) 
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If the swing-by were powered, the impulse would make the reation simpler. There would not 

be a explicit relation between +
inΛ  and −

outΛ . 

 
We deduce a relation linking the primer vector before and after the swing-by, considering the 
real influence of the planet: 

 +− = outin WΛΛ   (3.7) 

 















=

I

BI
S

I

BI
W outin

00
 (3.8) 

 
Equations (3.4), along with the Property 2.1 provide the following properties. 
 
Property 3.1: 
We have 3 conditions for a ballistic trajectory to be optimal at a swing-by: 

� the primer vector is continuous before, after and during a swing-by 
� there is a discontinuity of the primer derivative when crossing the sphere of influence, 

due to a change of coordinate 
� if the swing-by is free, 1<λ  

 
These conditions, with the conditions on the primer vector for a planet to planet transfer to be 
optimal, allow constructing a primer optimal MGA DSM trajectory. 
 

3.2.2 Boundary conditions for the patched conic app roximation 
 
We consider the patched conic approximation, with massless swing-by planets. Thus, there is 
a trajectory break where we have to patch 2 conics together. But patching the costate trajecto-
ries is less obvious as they do not define physical value. We define boundary conditions, 
which are a simplification of the result of section 3.2.1. 
 
For the problem of minimization, with the objective function: 
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i
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And the constraints for the swing-by: 
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We get the augmented value function: 
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With: 
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Note that we do not include the control in F, as it is already included in J. Consequently the 
Hamiltonians do not depend explicitly on the control. 
 
Taking the differential of the value function I, we get: 
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The necessary conditions for optimality ( 0=dI ), permits to get the known results:  
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Those last conditions give the boundary conditions at the swing-by.  
And: 

 ( ) ( )−
−
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−
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−
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+
∞+ = tt λ

V

V

V

V
λ   (3.14) 

For a non-powered swing-by, we have +
∞

−
∞ = VV , such that the primer vector is continuous 

in module. Different expression can be found in the literature according to the expression of 
the constraint used for the swing-by model. (see Glandorf[10], Konstantinov Fedotov Petuk-
hov[11]). 
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These boundary conditions, however forbid us to use directly the transition matrix directly 
from t0 to tf. We must use the intermediate matrix: 
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The overall transition matrix, describing the MGADSM problem, is written: 

 ( ) ( ) ( )00 ,,, ttWtttt GAGAff Φ⋅⋅Φ=Φ   (3.16) 

To get the value of λ  at +
GAt  or −

GAt , we use a transition matrix development: 
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Where:  

 
( )00 tλλ =

  

 
( )ff tλλ =

 
And: 
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The properties 3.1 remain valid in the patched conic approximation. 
 

3.3 Resolution of MGA trajectory 

3.3.1 Interaction Prediction Principle 
 
In the most general case, when J is additive we can write: 

 ( ) ( )∑=
i

iiJJ uu  

Then we simply have to solve: 

 ( )( )iiJ
i

u
u

min  for i=1..n 

Under the constraints: 



 47

 ∑
≠

=

−=

ij
jii

iiii

c

c

ψ

ϑψ

ψ

ψ

 

Where iϑ  is the constraint for the sub problem i, icψ  is the complementary part provided by 

the other sub problems. The constraints are what we can call essential constraints, since they 
are necessary to communicate between the sub problems. Each sub problems has a responsi-
bility in the global problem resolution. 
 
The calculus of variation gives the expression of the Lagrangian for the global problem: 

 ( ) ( ) ( )∑ ∑
= ≠
























−++−+=

N

i ij
jiipiiiiiiiip cccJccL

1

,,, ψϑψµµ ψψψ uu  

 
The necessary conditions of optimality give an update formula for the coordination parame-
ters: 
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Applying this method to our problem gives sub-problems where we simply have to solve di-
rect transfers. 
Instead of the fixed point algorithm, one can use a more appropriate modified Uzawa algo-
rithm or the Arrow – Hurwicz algorithm. 
 
Arrow-Hurwicz Algorithm 
Consider the minimisation problem: 
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From an initial point mn RRx ∈∈ 00 ,λ , and +∈ Rαε , . Consider the projection ( )λp  on +R . 
We iterate: 
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Thus to find the saddle point, without constraints, we use: 
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Where ε and η must be considered as small positive scalar. We can make them vary through 
the iterations. 
 
However, to work well this method supposes the existence of a saddle point that would permit 
to minimize the primal problem and maximize the dual problem in indifferent order (min-max 
or max-min). 
In [12][13], the authors present other efficient approach as improvement of the Arrow – Hur-
wicz algorithm and the use of the appropriate iterate in the update formulas. 
Practically, to improve convergence, we add a local solver which solves the complete problem 
using the results of the decomposition steps. 
 

3.3.2 Application to MGADSM space trajectory proble ms 

3.3.2.1 General constraints and hypothesis 
 

Each body to body transfer is considered as a sub problem. We use here non powered swing-
bys, but impulses are allowed immediately after the swing-by. The constraints on the state 
represent the conditions at the swing by. According to the patched conic approximation, with 
a massless planet, the position is continuous and equal to the heliocentric planet position. The 
swing-by is not powered such that the constraint only accounts for the energetic conservation 
and the feasible swing-by altitude.  
 
Noting that we are not actually interested by the plane of rotation of the swing-by defined by 
η , we have simply: 
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The function ( )−
∞V,prβ   gives the angle of deviation for a given radius of periapsis rp and a 

given incoming relative velocity −
∞V . The variable rp is an unknown of the general problem. 

The constraint on the incoming and outgoing relative velocity can also be expressed using the 
rotation matrix ( )η,, ∞VrQ p , however this relation would introduce an additional variable η 

which is of no interest here. 
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3.3.2.2 Control 
 
For a body to body transfer, the leg is described by the initial and final positions, and the m 
DSM description. According to chapter 1.1, a DSM is described by 4 variables which can be 
either position or the ∆V velocity vector and the date of the impulse.  
 
The decision vector used is: 

[ ]pnn rtt ,,,...,,, 11 rrz =  

The date of the DSM are sorted fni ttttt <<<<<< ......10 .  

Describing the impulses with their positions in space is appealing as we could use a Lambert’s 
problem solver. The Lambert’s problems are restricted to be less than a revolution to ensure 
the existence, uniqueness and reliability of the solution found. This restriction does not limit 
the number of DSM-leg revolution, and encourage the solver to add revolutions when increas-
ing the number of DSM. Plus, it model simplifies the constraints Eq. (3.18). 
 
Remark: 
Another model such as the date-velocity model, needs to include the final position constraint 
which provides an additional Lagrange multiplier. This additional Lagrange multiplier how-
ever, provides interesting information on the optimality of the current trajectory when the 
primer vector at the one of the end cannot be evaluated properly. This description is better and 
more general for multiple revolution transfers as it does not need to specify the number of 
revolution. The major drawback is the evaluation of the derivatives. 
 
In this paper only the time-position approach will be considered in the following develop-
ments. 
 

3.3.2.3 Multi gravity assist formulation 
 

Suppose we are solving a multi DSM transfer with n phases, and Mi  DSM for the ith phase. 
The launch date 0t , the arrival date ft  and the planet encounter date it  define the scenario. 

We then write a new Lagrangian function for the optimal control problem: 
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The value function ( ) ∑
=

∆=
iM

j
ijiJ

1
,Vz  is the cost of each phase and the impulse ij ,V∆  stands 

for the jth impulse of the ith phase. The 2x1 vectors iν  are the constant Lagrange variable as-

sociated to the swing by constraint. As illustrated on Fig. 1, the decomposition is done at each 
intermediate body (where a swing-by occurs).  

 [ ]nk zzzz ,...,,...,1=  
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Where kz  is the decision vector of the kth sub-problem or phase. We consider n independent 

sub-problems.  
To stay consistent with the optimality of the overall problem, we create a coordination varia-
ble for each missing information. Thus, for the kth sub problem, a coordination variable cν,k is 
associated to Lagrange variables corresponding to the swing-by constraint, and coordination 
variables c∞,k are associated to the incoming or outgoing hyperbolic excess velocity. When we 
decompose and isolate a leg, all the information needed to compute an optimum of the origi-
nal problem is given by the coordination variables.  
The sub problems to solve are described by the new Lagrangian merit functions (see Fig. 1 for 
notation description):  
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These expressions stand respectively for the initial phase, the final phase, and the intermediate 
phases { }1,...,2 −∈ nk . As one can notice, the equations (3.21) and (3.22) include coordina-
tion parameters which stand for the coupling relations defined by Eq. (3.18). Because of these 
extended functions the optimal solutions of Eqs. (3.20 – 3.22) are not the solutions which are 
optimal with respect to the sum of impulse over the leg but they are optimal solutions for the 
overall problem defined by Eq. (3.19).  At convergence of the algorithm, if one sum up the 
equations  (3.20 – 3.22) it would result in the general MGADSM function cost with interme-
diate swing by constraints. 
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3.3.2.4 Boundary conditions 
 

The primer vector module history is provided by the same boundary values on the primer vec-
tor. At the initial time of the leg this value is provided by the coordination variable or the ini-
tial impulse for the first leg. At the final time of the leg the boundary value on the primer vec-
tor is given by the Lagrange variable of the final constraint.  
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Figure 16. Illustration of the Decomposition step 

 

Comparing the OCP with the POP, for the initial sub problem at 0tt =  we have: 
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For the final sub problem we have: 
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The boundary conditions necessary to initialize the primer vector come from the necessary 
conditions of optimality for the intermediate sub problems. Thus: 
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3.3.2.5 Coordination step 
 

After each iteration i of the algorithm (section D.I) the coordination step updates the coordina-
tion variables. The coordination formulas are provided by: 
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The coordination variables { }1,,, , +∞∞ kkkv ccc  along with { }+

+∞
−
∞ 1,, ,, kkk VVν  allow respecting the 

swing by constraint and force the sub-problems solutions toward the overall problem solution.  
 
Following Lawden primer vector theory, an important point should be made for the primer 
vector optimal MGA-DSM trajectory. For a MGA-DSM trajectory to be optimal, we must 
have 1≤ν . Indeed, if ν  exceed 1, according to the equations (3.23, 3.24, 3.25), the primer 

vector also exceed one. As the primer vector histories for each sub problem can be patched 
together according to Eqs. (3.20, 3.21, 3.22), the patched primer vector history couldn’t be 
optimal for the complete problem.  
 
Interestingly, we can note that adding impulses permits to lower the Lagrange variable mod-
ule ν . According to the Hamilton-Jacobi theory [34], Lagrange variables represent the sensi-

tivity of the constraint with respect to the decision vector. Thus, the more impulses we have, 
the more robust is the trajectory. This can also be interpreted considering that the final con-
straint relies on many intermediate impulses with small contributions, rather than on a single 
impulse with a high contribution. 
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3.3.2.6 Convergence 
To improve the convergence of the program, we remove the angular deviation constraint on 
the velocity for the swing by in Eq. (3.19). We only keep the energetic conservation of swing-
by. Once the energetic constraint is respected, we can further check for the swing-by angular 
deviation. We can re-optimize the solution with the minimum swing by altitude constraint.  
As the primer vector theory predicts, we do not always need to insert deep space maneuvers 
on a leg. In this case, as the intermediate leg is the solution of a Lambert’s problem, the con-

straints cannot always be satisfied. The initial and final hyperbolic excess velocity −
∞V  and 

+
∞V  are imposed by the Lambert solution and the departing and arrival planet velocities. It is 

not possible to get a Lagrange variablekν  as it is required in Eqs. (3.23, 3.24, 3.25), but the 

final hyperbolic excess velocity constraint on that leg has to be satisfied to respect the free 
swing-by condition. In this case, the Lagrance variable kν  is chosen free to minimize the La-

grangian which indirectly provides a non optimal leg as the primer vector module is likely to 
exceed unity at boundaries. We then considered two cases. When the constraints are satisfied, 
the Lagrange variable kν  is free. Its value is chosen to be the one of the preceding iteration 

and kept unchanged until the next iteration. When the constraints are not satisfied, an inter-
mediate impulse is added to reduce the cost. This issue is only a transient issue because the 
algorithm has not reached a steady state. When steady, constraints are satisfied. 
 
 

3.4 Numerical Analysis 

3.4.1 Algorithm 
Using the decomposed Lagrangian, and the coordination variable update formulas, we can 
construct the following algorithm. 
 

Table 11.  
Algorithm 

Step 0. Initialization of coordination variables.  
            Choose { }0

,
0
, , kkv ∞cc  for all { }nk ,...,1∈  

            Set 0=i  
 
Step 1. Resolution of the initial  problem with i

1,∞c  to get 1x . 

            Resolution of the intermediate problems k with { }i
k

i
k

i
kv 1,,, ,, +∞∞ ccc  

to get kx  for all { }nk ,...,1∈  . 

            Resolution of the final problem with { }i
n

i
nv ,, , ∞cc  to get nx . 

 
Step 2. Update coordination variables. 
             1+← ii  and { }i

k
i

kv ,, , ∞cc . 

 
Step 3. Resolution of global problem with [ ]nxxxx ,...,, 21=  as initial 

guess and test of optimality. Go back to Step 1 if it is has not con-
verged. 
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Each sub problem can be solved with a SQP minimization solver. After each iterate we can 
try to solve the global problem because we should expect the sub problems solutions to be 
“near” or in the basin of attraction of the complete problem solution. It improves convergence 
of the fixed point algorithm and assures we are effectively near a minimum and not simply an 
extremum. 
 

3.4.2 Analytical derivatives 
 
As SQP solvers tend to converge faster and easier when gradients are provided, we calculated 
the gradient on the constraint on the hyperbolic excess velocity.  
Unfortunately, we cannot express the objective function gradient with the primer vector and 
its derivative at the switching point. This come from the fact that in most cases the final 
boundary conditions are expressed with a Lagrange multiplier which is not necessarily avail-
able during the optimization, but also because of the expression of the final boundary, the 
objective function differential cannot be expressed as a scalar product between the gradient 
and the elemental deviation.  
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The constraints formulation expressed at each end of the legs permit to express the gradient of 
the constraint with the final leg velocity Jacobian matrix.  
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Note that (34) and (35) might mathematically present a singularity when the denominator 
tends toward 0. This case can only happen for the equation (34) and the initial and final im-
pulses only. The primer vector theory should avoid cases where impulses are 0. Because of 
(27), (35) cannot become singular as in practice the hyperbolic excess velocity at swing-by 
should never reach 0.  
The gradients are computed using the state transition matrix approach. The transition matrix is 
defined by the dynamical system similar to (7) and using ( )rG ,t . We have then: 
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As we are solving a fixed time problem, the initial and final position perturbations are zero: 
00 =rδ ,   0=frδ . A change in the final velocity induces a change in the position, velocity 

and date of the intermediate impulses ( )iii t,,vr . The state transition matrix allows calculating 

the first order perturbation on the state and thus gives useful information for computing the 
derivatives. However, the state transition matrix can only describe perturbations between two 
instant where the spacecraft equation of motion are continuous. 
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Using the following general expressions: 

 ( ) ( )[ ]iijjiji tttt rrv δφδφδ ,, 1
1

2 −= −+ , 1+= ij  (3.30) 

 ( ) ( )[ ]iikkiki tttt rrv δφδφδ ,, 1
1

2 −= −− , 1−= ik  (3.31) 

and: 

 ( ) 101
1

20 , rv δφδ tt−=  (3.32) 

 ( ) nfnf tt rv δφδ ,1
2

−=  (3.33) 

Indeed, because of the DSM model used and the Lambert’s problem definition, an impulse 

iV∆  can be described only by the preceding and the next manoeuvre position and date ( )iit r, . 

 
We get the following derivatives: 
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3.5 Applications 

3.5.1 Earth Venus Mars (EVM) 
 
An Earth – Venus – Mars transfer is considered. The time of flight is fixed, as well as the 
launch date. 
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Table 12.  
Optimal EVM MGA trajectory description 

 NON OPTIMIZED OPTIMIZED 
Departure 08/06/2004 00:00:00 
Arrival 14/05/2005 00:00:00 
Duration 340 days 
[Earth] -> [Venus]  
T 165.0 days  (JD: 2453164.500) 
∆V0 4.628 km/s 4.591 km/s 
DSM - T0+96.08 days, ∆V = 68.7  m/s 
Swing-By around Venus  
Date 20-Nov-2004 
Pericenter Altitude 7938.96 km  
Swing-by ∆V 3.84 km/s - 
Post swing-by ∆V 75.9 m/s - 
[Venus] -> [Mars]  
T 175.0 days  (JD: 2453329.500) 
DSM - - 
Rendezvous Manoeuvre 6.142 km/ 6.126 km/s 
Total ∆∆∆∆V 10.847 km/s 10.786 km/s 
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Figure 17. EVM optimized trajectory 

 
This example shows a priori little gain in the overall cost. This is probably due to the refer-
ence case which is already a good solution to the no-DSM EVM transfer. 
However, the reference case includes a post swing-by manoeuvre. The reference case is in-
deed more expensive. The EV swing-by permits to adjust correctly the swing-by conditions. 
 
 

3.5.2 Earth Venus Earth Jupiter (EVEJ) 
 
For this trajectory, we fix the departure and the different time of flight of each phase. 
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The MGA trajectory specifications are given on the table below: 
 

Table 13.  
EVEJ MGA trajectory. Primer Optimal comparison. 

 NON OPTIMIZED OPTIMIZED 
Departure 18/09/2016 00:00:00 
Arrival 24/10/2021 00:00:00 
Duration 1862 days 
[Earth] -> [Venus]   
T 348.0 days  (JD: 2457649.500) 
∆V 4.59845 km/s 3.476 km/s 
DSM #1 - T0+95.64 days , ∆V = 0.008  m/s 
DSM #2 - T0+214.25 days, ∆V = 595.613 m/s 
Swing -By around [V e-
nus] 

 

Date 01-Sep-2017 
Arrival Vrel 8.184 km/s  
Pericenter Altitude 2220.86 km  
Swing-by ∆V 6.05 km/s  
Post swing-by ∆V 2.65 km/s 20.134 m/s 
[Venus] -> [Earth]   
T 576.0 days  (JD: 2457997.500) 
DSM #3 - T0+475.64 days, ∆V = 0.001 m/s 
DSM #4 - T0+843.14 days, ∆V = 2.358 m/s 
Swing -By around Earth    
Date 31-Mar-2019 
Arrival Vrel 12.362 km/s  
Pericenter Altitude -277.45 km  
Swing-by ∆V 7.40 km/s  
Post swing-by ∆V 0.64 m/s 2.894 m/s 
[Earth] -> [Jupiter]   
T 938.0 days  (JD: 2458573.500) 
DSM - - 
Rendezvous Manoeuvre 6.19018 km/s  6.1902 m/s 
Total ∆∆∆∆V 10.792 km/s  10.267 km/s 
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Figure 18. Non optimal EVEJ trajectory 
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Figure 19. Optimal EVEJ trajectory 

 
The gain is negligible (0.5 km/s), but the advantage of the optimised trajectory comes the re-
duced launch energy.  
We notice that the optimal and non optimal trajectory match very closely. 
 
 

3.5.3 Cassini Trajectory 
 
The objective function to minimize is the sum of all the ∆V, plus the rendezvous manoeuvre 
and the initial hyperbolic excess velocity. 
To illustrate the method, we use the phasing of known solutions [32], to check if we can fur-
ther decrease the value function  
 
 

Table 14. Search boxes 
 T0 (MJD 2000) T1 (days) T2 (days) T3 (days) T4 (days) T5 (days) 
Case 1 -811.3 196.9 423.1 55.4 533.7 1573.8 
Case 2 07/10/1997 197.334 425.171 56.8856 578.523 2067.98 
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Table 15. Search Space Domain 

 Lb Ub 
TDSM / ToF (days) 0.1 0.9 
XDSM, YDSM (A.U.) -8.0 8.0 
ZDSM (A.U.) -0.5 0.5 

 
 
The best cost is reported to be 9.247 km/s (we computed 9.366 km/s) for the first case, and 
9.06 km/s for the second case. 
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Figure 20. CASSINI trajectory (reference case 1) 

 
 

Table 16. 
 Solution 1 

(T0+days) ∆V (m/s) 
Solution 2 

(T0+days) ∆V (m/s) 
Launch ∆V0  0 0 0 3906 
DSM #1 29.85 3209 22.8 266.6 
DSM #2 159.6 569.7 - - 
Venus Swingby 196.9  197.33  
DSM #3 423.17 425.5 438.3 415 
DSM #4 - - - - 
Venus Swingby  620  622.51  
DSM #5 - - 662.87 - 
DSM #6 - - - - 
Earth Swingby 675.4 22.5 679.39  
DSM #7 - - 730.80 - 
DSM #8 - - - - 
Jupiter Swingby 1209.1 8.6 1257.91  
DSM #9 - - - - 
Rendezvous ∆V f 2782.9 4709.7 3325.89 4289.2 
TOTAL COST 8.947 km/s 8.877 km/s 
   

 
DSM of less than 1 m/s are not reported. 
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Figure 21. Cassini optimal MGADSM trajectory (optimized case 1) 

 
This well reference example permits to show that the method is actually quite efficient. We 
manage to find about the same solution in the reference case 1. 
 
 

3.6 Conclusions 
 
We introduced the MGADSM problem. Our optimization approach permits the use of the 
results presented in the simple DSM case and the primer vector theory. Through a decomposi-
tion – coordination technique, the complete problem is solved by solving sub problem and 
finding their corresponding primer optimal trajectory for the given boundaries and constraints. 
 
The method applied to known examples shows to be efficient as it permits to find the reported 
solution of the literature. Most importantly, the method use local optimization techniques and 
does not need any specification on the number of DSM. Consequently, the decision vector of 
the problem is only the date of departure and the dates of encounter as was done in the above 
example where these dates permit to find the good solution. 
The method has however a slow (linear) convergence. 
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4 Automated approach for MGADSM trajectories  
 

4.1 Partitioning method 

4.1.1 Solution method description 
 
The optimization method performs trajectory decomposition and breaks the original trajectory 
at points of swing-by into separate legs. We formulate sub-problems of lesser size than the 
initial problem which permits to remove the sensibility of the problem, and allow solving 
simpler sub problems. Subsequently, we optimize each sub-problem independently under spe-
cific boundary conditions which allow to communicate between the sub problems.  
We are actually computing all possible extremals for each sub problems. Eventually, we com-
pute a complete trajectory using those extremals and appropriate intermediate constraints. 
 

4.1.2 Separable problems 
 
In the most general case, let us suppose the minimization problem: 

 ( )u
u

J
U∈

min  

Where U is in Rn. 
 
In our problem, J is additive, such that we can write: 
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Where [ ]nuuu ,...,1= . 

Then we simply have to solve: 
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Under the constraint of swing-by feasibility. 
 
Unfortunately, the problem is not equivalent to solve: ( )( )iiJ
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not separable. 
 
Definition 4.1: 
A nonlinear separable problem is a problem such that: 
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The minimization of a multivariable function is reduced to the simultaneous and independent 
minimization of multiple sub-problems. 
 
 
The simplest example of separable problem is described by additive function. 
 

4.1.3 Setting the partitioned problems 
 
Duplication of variables 
 
Consider the general minimisation problem: 

 ( )X
X

J
Mℜ∈

min  (4.2) 

Where J is a C2 continuous function. We do not consider constraints. 
 
Following, the number of phase or a natural decomposition, we duplicate each boundary vari-
able and assign a copy to every process that needs the original. The decision vector Mℜ∈X  

turns into Kℜ∈X
~

.  We divide X
~

 into n blocks { }nxx ,...,1  where N
i ℜ∈x , and KnN = and 

DMK +=  where D is the number of duplicated variables. There are as much duplication as 
junction and junction variables. 
 
 
Setting linking conditions 
 
Now let’s find ( ) KDMC ,ℜ∈  such that we have an equality condition between the boundary 

duplicated variables and their respective originals: 

 0...
1

=
















n

C

x

x

 (4.3)  

The constant matrix C is needed to account for the matching condition on the duplicated vari-
ables. C is a sparse matrix with one -1 and one 1 element on each line.  
 
No information has been lost when duplicating and partitioning the problem. 
 
 
Constructing complete solutions 
 
The original problem can thus be re-written: 

 ( )iiJ
N

i

x
x ℜ∈
min  (4.4) 

To construct complete solution we use the constraint on the duplicated variables: 
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This constraint ensures we can construct a complete trajectory. 
 

4.2 GASP like formulation 

4.2.1 Initial Problem 
 
Let us recall the objective function, for a multi leg transfer: 

 ∑
=

∆+∆+∆=
n

i
iDSMfJ

1
)(0 VVV   (4.6) 

It is straight forward that in fact, each impulse can be rewritten as: 

 

( )
( )

( )iiDSMiiiDSMiDSM

nDSMfnDSMff

DSMDSM

ttB

rtt

rtt

,,,

,,

,,

)()()()()(

)()(

)1()1(000

∞∆=∆

∆=∆

∆=∆

VVV

VV

VV

  (4.7) 

With:  

 [ ])()()( , ipii rB φ=   (4.8) 

And:  

 ( ))()()1()1()( ,,,, iDSMiDSMiDSMiDSMii tttf rrV −−∞ =  (4.9) 

And where 0t  is the departure date, ft  is the arrival date, it  are the date of planet encounter, 

)(iDSMt  are the DSM date, and )(iDSMr  are the DSM position. 

 
And the decision vector is: 

 [ ]fnDSMnniDSMiiDSM ttBttBttVt ,,,,...,,,,...,,,,, )()(1)()()1(0000 −= βαX  

Clearly the problem is not separable. The V∆  depend on more than one variable, so is for 
their derivatives, and these variables are common to other V∆ .  
It is however possible to make the Vs∆  independent. As we propose in the following section, 
we can use additional variables which a priori do not provide additional information. Indeed, 
these variables can decouple the problem and make the problem separable. The optimization 
of the overall problem can be decomposed in the optimization of several sub-problems as it 
was the case in the preceding section 3. 
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4.2.2 Formulation of the sub-problems 
 
Now applying the above decomposition to the transfer, we can use the variables, such that:  
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With: 
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The variables )(

~
iB  are a duplication of their equivalent variables)(iB . They represent the 

swing-by conditions. They can be directly and explicitly related to the swing-by hyperbolic 
velocity vectors )(i∞V . 

 
And the decision vector is indeed: 

 

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°
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~

,,,,, fnDSMnniiiDSMiiiDSM ttttttttVt BBBBX βα   (4.12) 

 
with 2...1 −= ni . 
 
The redundant variables must coincide, and then we have of course: 
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ii
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tt~

~
)()( BB
  (4.13) 

These are the expression of the matching condition for each duplicated variable. 
 
Assumption 4.1: 
To simplify the search process, we removed the constraint on the angular deviation of the 
swing-by. This allows removing ff βα ,  from the decision vector.  

 
Thus we cannot check if the swing-by is feasible or not and may compute swing-by infeasible 
trajectories. But this is easily solved when we patch the legs together to construct complete 
transfer. 
 
For our space trajectory optimization problem, the decision vector for each leg is then: 

 [ ]fiiiiDSMii Vttt ∞∞+= ,,,, 01)( VX  

Where: 
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- t0i is the departure date for the single leg 
- tdsm is the date of the Deep Space Manoeuvre (DSM) 
- tfi is the arrival date for the single leg 
- iV∞  is the hyperbolic excess velocity at departure of the leg 

- fiV∞  is the hyperbolic excess velocity upon arrival 

 
We use the same description for each leg. This is detailed on Figure 22. 
 

 
Figure 22. MGADSM partionning 

 
 

4.2.3 Solving the problems 
 
The simplify the solving of the sub-problems, let’s consider discrete and continuous variables 
of the sub-problem decision vector. 
The discrete variables are:  

 
[ ]

legiffDSMG VVttt ∞∞= ,,,, 00x
 

The continuous variables are:  

 
[ ]legil βα ,=x

 
The local problem to solve once Gx  is given is: 

 ( )lGDSMV
l

xx
x

,min∆  (4.14) 

Under the constraint: 

 ( ) fff Vt ∞⊕ −−= VVψ   (4.15) 
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Where f⊕V is the arrival planet velocity at tf. Indeed, fV∞  is a constraint for the leg. The vec-

tor [ ]0000 ,, βα∞∞ = VV  is an initial condition for the leg. It can also describe the output of a 

swing-by manoeuvre. 
 
This local problem must be solved for all points of the map defining Gx . 

 
Remark: 
We now have to solve M problems in a search space of dimension N, whereas in the initial 
approach we solved 1 problem in a search space of dimension 24 +M , where M is the num-
ber of phase, and N is the size of the decision vector for each sub problems( )9=N .  
 
This approach starts to be beneficial when M>1, but the benefits become great for high num-
ber of legs. 
More importantly, with this approach we did not make any assumption that would prevent us 
from finding the global optimum, except that we constraint the body to body legs to have ex-
actly one DSM. 
 
This approach permits to apply pruning methods on the sub problems, before constructing the 
solution. In addition the complexity is reduced compared to the initial problem.  
 

4.2.4 Scheme 
 
 

 
Figure 23. Splitting Scheme 
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4.2.5 Complexity 
 
For each phase, consider the following grid: 
 

Variable Number of bins 
T0 k 
Tof k 
tDSM j 
V∞0 n 
V∞F n 

 
Each phase has thus the following complexity: 22njkCi = . 

 
However, as we use the same discretization for T0 and tof, if the first phase has k bins on T0 
and tof the second phase has 2k bins, the third has 3k bins, etc … Indeed, each phase contrib-
utes to increase the T0 space by adding k new bins. 
 
The overall complexity can then be written: 

 22

1
1 2

1
kjn

N
NiCC

N

i
∑

=

+==  (4.16) 

Where N is the number of phase, a phase being the transfer between 2 consecutive planets in 
the sequence. 
 

4.2.6 Pruning 
 
 
 
Assumption 4.2: 
We suppose we find the global optimum of each sub problems for the different boundary con-
dition. 
 
This assumption is important if we want to prune the correct part of the space. Indeed, for a 
given set of interior point boundary conditions, the global optimum is described by the global 
optimum of each sub problems. This can easily be proved considering the cost is additive and 
we have unpowered swing-bys. 
 
 
We have 6 pruning strategies: 
 

1. Initial hyperbolic excess velocity pruning: We can prune the space with the boundary 
on the global variables, for 0∞V for the initial and final leg. 

2. Final hyperbolic excess velocity pruning: We can prune the space with the boundary 
on the global variable fV∞ for the final leg. 

3. Time of flight pruning: It is also possible to allow a minimum time of flight for each 
leg (transfer between 2 subsequent planets of the scenario). 
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4. Swingby pruning We can allow a minimum ∞V  for the swingby. 
5. DSM ∆V pruning : We can prune leg with a DSM ∆V above a given limit. This permit 

also to remove point of the next phase matching according to 00,TV∞ . 

6. Forward pruning: if on the phase i there is no solution arriving at a given date on the 
planet i, we remove the date as a launch date for the phase i+1 . The same apply on the 
velocity. 

 
To improve convergence of the local solver, we allow a tolerance on fV∞  and provide accu-

rate gradient using the development of 2.5. 
 
It is likely that most of the pruning is done on the initial and final phase. Pruning on the in-
termediate phases can merely be done through the Time of flight, the DSM ∆V and the For-
ward pruning. 
 
 

4.2.7 Discussion 
 
It is important to be sure that this scheme is consistent with the global optimization problem, 
i.e. that the optimum found is effectively at least an optimum of the whole trajectory problem. 
 
To allow this, we actually added a constraint ψ  (10) which permit to « communicate » be-
tween the leg (this is similar to the interaction prediction principle). In forward direction, all 
subsequent legs need to know the ∞V  which permit to have a feasible swing-by or eventually 
evaluate a post swing-by correction manoeuvre.  
Since we do not take care about the rotation of the ∞V  vector, and since we evaluate different 

values of fV∞ and take the best optimum for each local problem (9), we do not miss solutions.  

 

4.3 Applications 

4.3.1 EM transfer 
 

Table 17.  
EM DSM-GASP variables bounds and constraints 

EVM transfer  
Variable Lower limit Upper limit Step size 
T0 (days) 01/01/2001 01/06/2004 +300 10 
T (days) 100 300 10 
V (m/s) 500 15000 500 
Constraints 
V0max (m/s) (PRUNE 1) 3000   
V fmax (m/s) (PRUNE 2) 5000   
Tmin (days) (PRUNE 3) 100 On the leg length 
Tmax (days) (PRUNE 3) 250 On the leg length 
∆VDSM (m/s) (PRUNE 4) Inf   
Tolerance on ∆VDSM (m/s) 
(PRUNE 4) 

250 ∆VDSM +/- tol 

Local Opt. Max Nb. Iteration 
(PRUNE 4) 

300  
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Figure 24. Example of slice contour for EM transfer with  V∞∞∞∞1 = 0.5 km/s, sum of ∆∆∆∆V < 10 km/s. 
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Figure 25. Example of contour slice for EM transfer with V ∞∞∞∞1 = 2km/s,  sum of ∆∆∆∆V < 10 km/s. 
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4.3.2 EVM transfer 
 

Table 18.  
EVM DSM-GASP variables bounds and constraints 

EVM transfer  
Variable Lower limit Upper limit Step size 
T0 (days) 01/06/2004  01/06/2004 +100 10 
T (days) 180 250 10 
V (m/s) 500 10000 500 
Constraints 
V0max (m/s) (PRUNE 1) 3000   
V fmax (m/s) (PRUNE 2) 5000   
V∞max (m/s) (PRUNE 1) 8000 Minimum V∞ for swing-by 
Tmin (days) (PRUNE 3) 140 On the leg length 
Tmax (days) (PRUNE 3) 250 On the leg length 
∆VDSM (m/s) (PRUNE 4) Inf   
Tolerance on ∆VDSM (m/s) 
(PRUNE 4) 

250 ∆VDSM +/- tol 

Local Opt. Max Nb. Iteration 
(PRUNE 4) 

100  

 
On a Pentium 3Ghz computer, 1Gb RAM, running MATLAB® under Windows XP, this ex-
ample took about 3h40 of computation time.  
However, after the computation, we have a complete map on which we can apply the pruning 
policy. We do not need to compute again the map if we change the pruning parameters. 
 
 
Best solution on the grid: 
 

Table 19.  
EVM DSM-GASP best grid solution 

EVM transfer   
Event date Comment 
T0 T0=2453097.5 V∞ = 2 km/s 
Tdsm 1 T0+18  
T1 T0+180 (Swingby) V∞ = 6.0 km/s 
Tdsm 2 T0+205 (T1+125)  
Tf T0+430 (T1+250) V∞ =4.5 km/s 
TOTAL 430 days 8.94 km/s 
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Figure 26. EVM, phase EV, ∆∆∆∆V0+∆∆∆∆VDSM < 5km/s 
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Figure 27. EVM, phase VM, ∆∆∆∆VDSM +∆∆∆∆VF< 10 km/s 
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As we computed all possible legs on the grid, we also computed the extremals on the global 
optimum. 
 
 

 
Figure 28. EV phase (∆∆∆∆V<5 km/s, 66 boxes) and VM phase (∆∆∆∆V<5 km/s, 159 boxes), Pruned space  

 
Of course this is not a good representation as some boxes are superimposed and the display 
lack information on the subspace that contains this boxes. However, this is still the most intui-
tive one.  
The darker the colour, the more superimposed boxes there are. 
A more accurate representation would be like these one: 
 

120 140 160 180 200 220 240 260 280

300

400

500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
f
 (days MJD2000)

 V
∞1

 = 7.000000 km/s, V
∞2

 = [0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ] km/s

t0 (days MJD2000)

V
∞

2 (
km

/s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

120140160180200220240260280

250
300

350
400

450
500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t
0
 (days MJD2000)

 V
∞1

 = 7.500000 km/s, V
∞2

 = [0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ] km/s

tf  (days MJD2000)

V
∞

2 (
km

/s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
Figure 29. Multi-D representation of the non pruned space. 

 
On Figure 29 we only displayed 2 projections of the multidimensional solution space.
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4.3.3 EVEJ transfer 
 
 
 

Table 20.  
EVEJ DSM-GASP variables bounds and constraints 

EVEJ transfer  
Variable Lower limit Upper limit Step size 
T0 (days) 4745 5840 10 
T (days) 100 1000  20 
V (m/s) 500 10000 500 
Constraints 
V0max (m/s) (PRUNE 1) 3000   
V fmax (m/s) (PRUNE 2) 5000   
V∞max (m/s) (PRUNE 1) 10000 Minimum V∞ for swing-by 
Tmin (days) (PRUNE 3) [100, 300, 1000] On the leg length 
Tmax (days) (PRUNE 3) [200, 400, 1000] On the leg length 
∆VDSM (m/s) (PRUNE 4) Inf   
Tolerance on ∆VDSM (m/s) 
(PRUNE 4) 

250 ∆VDSM +/- tol 

Local Opt. Max Nb. Iteration 
(PRUNE 4) 

300  

 

 
Table 21.  

EVEJ DSM-GASP statistics 
EVEJ transfer  
Statistic value 
Solver calls 3138762 
Ephemeris Gen. calls 295 
Local Solution for phase[1] 57553 
Local Solution for phase[2] 348872 
Local Solution for phase[3] 671526 
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Figure 30. EV (∆∆∆∆V<5km/s, 145 boxes), VE (∆∆∆∆VDSM<3km/s, 637 boxes), EJ (∆∆∆∆V<3km/s, 1085 boxes) 

 
On this example, and despite the ∆VDSM pruning constraint the phase 2 appears to be a low 
energetic part. We hardly manage to prune the space. Remember however, that the method do 
not make any assumption in the pruning process or the map construction. It is a true represen-
tative of the real map. 
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4.4 Conclusions 
 
We demonstrate that under weak assumption the problem complexity can be polynomial and 
of order 5. The complexity is polynomial with respect to the discretization and the variable 
used. We can compute MGADSM which any number of phase with a quite reasonable com-
putational cost, even though one might emphasize that the polynomial exponent is still high 
and only advance in computer design and engineering can give reasonable computational time 
(< day)  for a preliminary design tool. It is likely that the complexity cannot be further de-
crease unless under strong assumptions. 
A strong drawback of this approach is the possible non feasibility of the swing-by. In order to 
reduce the complexity and the dimension of the search space from 9 to 5, we make a assump-
tion that does not permit to ensure the swing-by feasibility. But this can be check out when 
constructing a trajectory or pruning decision vector space. 
Going back to the 9 dimension formulation can give more usable results, but as a preliminary 
approach we consider that the swing-by feasibility is not a major concern has we can still 
prune the non feasible solution. Note that the approach does permit to find also all the feasible 
solution on the search space grid. 
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5 Conclusions 
 
In this study we tried to propose different approaches to tackle the problem of multiple gravity 
assist – deep space manoeuvre (MGADSM) space pruning problem. 
 
We first introduce the primer vector theory for direct planet to planet transfer, and then extend 
the theory to multi gravity assist trajectories. The method allows to automatically find the 
optimal deep space manoeuvres (DSM), as well as their optimal number. As shown with the 
example, the decision vector is in this case reduced to the dates of encounter with the planets. 
Although the method has a linear convergence and uses local optimization techniques, it per-
forms well and managed to find the good solutions. 
 
Following an experimental intuition, we then tried to use a local – global approach. Our intui-
tion told us that some part of the decision vector can be optimized locally, whereas the re-
maining part needs a global optimization scheme. This approach permits to remove the “hard” 
part of the decision vector to the global optimization algorithm. The examples show that this 
approach, when used with a heuristic algorithm like Differential Evolution (DE) permits to 
reduce the search space for each chromosome (or particle), and then ease the search for an 
optimal solution. 
 
The last approach followed was in part inspired by the GASP algorithm and the decomposi-
tion – coordination algorithm expressed earlier. Indeed, it splits up the problem into sub prob-
lems. Each sub problems can then be solved independently if we span different boundary 
conditions. When each sub problem has produced the set of potential extremals, we patch 
each sub solution according to specific boundary conditions to construct a complete trajec-
tory. This also permits to efficiently prune the solution space, as we can constraint the hyper-
bolic excess velocity, the DSM amplitude for each leg, the dates, ….  
As the decision vector size for each sub problem is reduced compared to the decision vector 
size of the complete problem, we reduce the complexity as well. We demonstrated that we 
have a polynomial complexity.  
 
Each of the 3 approaches brings a solution to the initial question of MGADSM space pruning. 
However, they should all be improved by speeding up the convergence of the local optimiza-
tion process. All of the approaches proposed need an efficient local optimization algorithm, 
and manage to find a solution even for harsh problems. 
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