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Abstract

It has been recently shown that the solution space of multiple gravity assist
optimization problems can be pruned considerably in polynomial time. The
basic idea behind this technique is to reduce the problem into a cascade of
two dimensional subproblems and to prune the design space by evaluating
the objective function and the constraints on a grid which samples the de-
sign space. When deep space maneuvers are introduced the complexity of
the problem increases considerably due to the necessarily added dimensions,
and to the larger number of local minima introduced. This study consid-
ers differential algebraic techniques as an effective tool to attach this more
demanding problem. As far as differential algebra is used, the objective func-
tion and the constraints of the problem are represented by Taylor series of
desired order, over boxes in which the design domain is split. Thanks to the
polynomial representation of the function and the constraints, a coarse grid
can be used and an efficient design space pruning can be performed. Fur-
thermore, once the domain has been pruned, a suitable manipulation of the
polynomials can ease the subsequent local optimization process, so avoiding
the use of any stochastic optimiser. These two aspects, connected with an
efficient management of the list of boxes in which the design space can be
decomposed, make differential algebraic techniques a powerful tool for the
design of multiple gravity assist transfers including deep space maneuvers, so
supporting the achievement of a further step to fully automate the trajectory
design problem. Additional effort is devoted to develop alternative strategies
for the ultimate goal of optimizing multiple gravity assist transfers involv-
ing deep space maneuvers, and to investigate the performances of validated
global optimization techniques on typical space trajectory design problems.

Key words: Global optimisation, solution space pruning, differential alge-
braic techniques, multiple gravity assist, deep space maneuver.
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Chapter 1

Introduction

Interplanetary space trajectories are usually designed in the frame of the
patched-conics technique. In this context, different conic arcs, solutions of a
number of Lamberts problems, are linked together to define the whole transfer
trajectory suitable for the mission considered. The patched-conics method
is based on a two-body representation of the dynamics and on instantaneous
velocity changes provided by chemical high thrust engines.

The patched-conics method allows the designer to define multiple grav-
ity assist (MGA) transfers: complex trajectories made up by a sequence of
planet-to-planet transfers in which the spacecraft exploits each planet en-
counter to achieve a velocity change. This method is well established in
astrodynamics, and several past missions have used MGA trajectories to
reach both inner and outer planets. It is remarkable the case of the Voyager
spacecraft that flew-by Jupiter, Saturn, Uranus, and Neptune exploiting a
“lucky” configuration of these planets to leave the Solar System. The first
MGA trajectories were designed by hand with ad hoc methods developed
for a specific mission. In these cases, it was important to find a solution to
the problem, rather than to find the best solution. This was due to the high
degree of complexity given by the relative motion of the planets. The more
planets were encountered, the more difficult was to find a feasible solution.

In the last two decades, mission designers have exploited the benefits of
approaching complex MGA problems from a global optimization standpoint.
Nowadays, the aim of the trajectory design is not only to find a solution,
but also to find the best solution in terms of propellant consumption, while
still achieving the mission goals. In the formalism of global optimization,
this means that the problem consists in looking for the optimal solution
in those regions of the search space that satisfy the problem constraints.
Unfortunately, the MGA problems are characterized by an objective function
with a large number of clustered minima, which are prevalently associated
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to the complex relative motion of the planets involved in the transfer, and
to the nonlinearities governing the simple Kepler’s problem. This causes
local optimization gradient—based methods to converge to one of these local
minima. Hence, despite their efficiency, Newton—based methods should be
avoided when looking for the global minimum of a MGA problem, at least
in the first stage of the search process. This means that global optimization
algorithms should be used to find the best solution to a MGA problem.
However, such algorithms might be computationally inefficient if used as
“black box” tools due to the high dimensions of the search space, and to the
landscape of the objective function cited above. Thus, the key point would
be the use of a global optimization algorithm, able to exploit the structure
of the search space and the nature of the MGA problem itself.

It has been shown that the solution space of a MGA optimization prob-
lem can be pruned considerably in polynomial time. This observation was
successfully coded in the gravity assist space pruning (GASP) algorithm [23].
The basic idea behind this algorithm is reducing the problem into a cascade
of two—dimensional sub—problems, and pruning the design space by eval-
uating the objective function and the constraints on a sampling grid. In
this way, the search space is pre—processed, and further global optimization
algorithms are employed in the reduced domain. This procedure showed
better performances if compared with the standard implementation of some
stochastic global optimization solvers over the entire search space. Conse-
quently, the combination of a systematic technique (space pruning) and a
stochastic global optimiser (differential evolution, multiple or simple parti-
cle swarm optimization, genetic algorithm) produces remarkable numerical
burden reduction.

Further improvements are obtained by formalizing the problem in terms
of epochs, so avoiding redundant ephemeris evaluations. For instance, by
sampling a two—dimensional search space into £ cells in each dimension only
2k ephemeris evaluations are required and only k? Lambert’s problems need
to be solved. Furthermore, the search space can be remarkably reduced (i.e.
pruned) by approaching the problem as a cascade of two-dimensional sub-
problems: inequality constraints are evaluated over the grid characterising
each sub-problem, and unfeasible regions are propagated forward and back-
ward and pruned from the whole search space. It is worth noting that this
technique cannot be applied to any global optimization problem, but it has
been developed exploiting the structure of MGA problems.

Unfortunately, the class of MGA transfers so formulated do not cover all
the possible trajectories for a chemical propelled spacecraft. An important
feature to take into account is the possibility to perform deep space maneu-
vers (DSM) that are usually carried out to improve the performances of a



Introduction 5

N =
Orbit E Mercury Orbit
Insertion (MOI)

P
/
,/ Venus AV =0.867 km/s
/‘/ Orbit "\ Mercury Flyby 3
/ DSM 1 . _ (200 km altitude
/ - all 3 flybys)
// \. i 2 \ Mercury Flyby 2
/ ~ * '\Mercury Flyby 1
[ > \ \
7 \
[ X
3 |
\ —Y
|
/

\\
\
\

7
Earth at Mercury g§ ( i
Orbit Insertion | y Sun
DSM2-——»o /
Venus Flybys 1 and 2 —_\ £
(3040 and 300 km alttide) > S M / /
/\('. Orbit )4
DSM 3 \ Earth Flyby //
DSM 4/ /1:347 km altitude) X,/
NDsits < Launch
N _~77C, = 16.4 km?/s?
DSM = Deep Space Maneuver R — 3 e
DSM 1 DSM2 DSM3  DSM4 DSM 5
' (PN P! >
@—’@ S —38 ® @ @

8/03/04 8/02/05 10/24/06  6/6/07  1/14/08 10/6/08 9/30/09 3/18/11
Earth Earth Venus  Venus  Mercury  Mercury Mercury Mercury

Figure 1.1: The Messenger MGADSM trajectory.

particular trajectory. When DSM are included into a MGA transfer, the
resulting trajectory is usually referred to as MGADSM.

The importance of MGADSM is illustrated with an example. Figure 1.1
shows the nominal transfer trajectory for the NASA’s Messenger spacecraft
that is intended to insert into an orbit around Mercury in 2011 after flying-by
the Earth (one time), Venus (two times), and Mercury itself (three times).
Finding a feasible solution to such a problem is one of the most challenging
tasks in astrodynamics. Probably, the solution would not have been possible
if several DSM had not been included. As clearly shown in Figure 1.1, the
nominal solution involves five DSM to be performed during the whole trans-
fer. The aim of each DSM is the correction of the trajectory to get an optimal
approach with the body to be encountered. The idea is that the gain given
by this optimal flyby is worth the propellant spent in the maneuver. It is
clear that the introduction of DSM, for chemical propelled spacecraft, gives
some degrees of freedom that can be exploited not only to perform better
gravity assists, but also to have encounters that would not be possible oth-
erwise. A problem so formulated would cover all the possible trajectories for
a chemical propelled spacecraft. Furthermore, a MGADSM trajectory can
be applied as first guess solution for the design of low-thrust gravity assist
transfers, where the thrust arcs can spread the impulsive velocity changes
given by the DSM. In any case, if the solution space of a MGADSM problem
could be pruned, the reward would be enormous. It would be possible to
define a trajectory having an arbitrary number of ballistic arcs, deep space
maneuvers, and low-thrust arcs (if exponential sinusoids [22] are included in
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the formulation of the problem).

Nevertheless, pruning the solution space when deep space maneuvers are
included is not a trivial task. First of all, the dimension of the search space
increases because the generic trajectory leg is described by four or even five
variables if out-of-plane maneuvers are included. Consequently, difficulties
are introduced in the maneuver modelling as well as in the definition of
suitable bounds for the introduced variables.

Another feature associated to the MGADSM problem is the proliferation
of local minima, that makes difficult the detection of big prunable regions. It
has been shown that the search space can be pruned in regions far from the
local minima where the inequality constraints are not satisfied. In a MGA
problem these are large regions that can be pruned in each two—dimensional
problem. These regions can become even larger when forward and backward
constraining are applied, reducing sensibly the final search space. When
MGADSM is considered, the problem has a much greater number of local
minima than a simple MGA problem and the prunable regions are expected
to shrink.

For all the reasons discussed above, it is necessary to rethink the whole
pruning process implemented in GASP, and to reformulate it when deep
space maneuvers are included. To handle this problem, the use of differential
algebraic (DA) techniques is proposed in this study.

As better described in chapter 2, differential algebra serves the purpose
of automatic differentiation, i.e. the accurate computation of the derivatives
of functions in a computer environment. This goal is actually achieved by
replacing the classical implementation of the real algebra with the proper
implementation of a new algebra based on Taylor polynomials. Given a
generic function f of v variables, whose evaluation involves only algebraic
operations (including transcendental functions, inversion, derivation and in-
tegration), the Taylor expansion of f up to any desired order n can be easily
obtained from a computer algorithm that implements its evaluation. The
related derivatives are computed with the accuracy of the floating point rep-
resentation of the corresponding real numbers in the computer environment.

The main idea behind the introduction of DA techniques into the pruning
process is then substituting the pointwise evaluation, typical of GASP, with
the computation of the Taylor expansions of the objective and constraint
functions with respect to the design variables, around suitably selected ref-
erence points of the search space. The Taylor expansions are used to ap-
proximate the functions over proper domains. In particular, simple boxes
are used, and polynomial bounders are exploited to estimate the ranges of
the computed functions within each box.

Consequently, using DA techniques, the pointwise approach proposed in
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GASP can be substituted by a sampling process relying on box samples.
Thanks to the Taylor approximation, the computation of the tolerance re-
lated to the Lipschitzian constant of the GASP method is avoided by using
suitable bounders of the functions and the corresponding Taylor polynomi-
als on the considered domain boxes. Furthermore, as previously mentioned,
the order of the Taylor expansion can be exploited to tune the accuracy of
the approximation and the size of the grid boxes. This might result in the
possibility of enlarging the grid for the domain discretization, and reducing
considerably the computational burden.

Further interesting information can be drawn from DA computation. Sup-
pose that, after the pruning process, the box bounds that possibly enclose the
global optimum are identified. An optimization process within the identified
domain is necessary to identify the solution [21]. Savings in computational
time might be achieved by exploiting the Taylor representation of the ob-
jective function over this box. In particular, if the Taylor representation is
sufficiently accurate, the further optimization process can be faster processed:
the evaluation of the objective function can be substituted by a fast com-
putation of polynomials, so exploiting the advantages of metamodel based
global optimization algorithms [24].

Based on the previous observations, the first part of the report is devoted
to carefully describe the introduction of DA techniques into the classical
GASP algorithm, so dealing with MGA transfers without DSM. In particu-
lar, a brief survey on the theory of differential algebra is presented in chapter
2. Chapter 3 concentrates on the difficulties arising from the introduction of
differential algebra into GASP. The effort spent to overcome the discontinu-
ity problem and to expand the objective and constraint functions in Taylor
series is deeply examined. The result of this process is the definition of the
DA-based GASP algorithm, which will be referred to as GASP-DA in the
followings. The performances of GASP-DA are then assessed by presenting
the main results of an extensive test phase, relying on suitable MGA transfer
test cases.

The major goal of the work is addressed in chapter 4, which is dedicated
to the development of an effective pruning algorithm for MGA transfers in-
volving DSM. The selection of the most appropriate modeling formulation is
the core of this chapter, as it turned out to strongly affect the performances
of the pruning process. The resulting algorithm, referred to as GASP-DSM-
DA, is then submitted to a significant test phase, whose results conclude the
chapter.

However, the work has not been confined to the achievement of the origi-
nally planned scopes. First of all, an alternative strategy to solve the ultimate
goal of optimizing MGA transfers including DSM has been developed. The
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strategy is detailed in chapter 5: after a MGA space pruning process, suit-
able heuristics are implemented to decide for the introduction of DSM and
to define first guess solutions for subsequent optimization processes, aimed
at characterizing the resulting MGA-DSM transfers. A comparison analysis
of the alternative strategy with GASP-DSM-DA is reported.

Moreover, in the effort of paving the way and promoting the use of vali-
dated global optimization tools in space-related applications, the validated
global optimization of two-impulse transfers is addressed in chapter 6. Taylor
models [26] allow the designer to obtain validated enclosures of the objective
function over a box on the search space, and the tool COSY-GO [15] can be
used to get bounds of the global optimum.

Final remarks and suggestions for future developments conclude the re-
port.



Chapter 2

Notes on Differential Algebra

The theory of differential algebra presented in this chapter has been devel-
oped by Martin Berz in the late 80s, and the short summary given in the
following takes advantage of his book Modern Map Methods in Particle Beam
Physics [14].

Differential algebraic (DA) techniques find their origin in the attempt
to solve analytical problem by an algebraic approach. The DA techniques
introduced by M. Berz addressed the solution of differential equations and
partial differential equations, more specifically the efficient determination
of Taylor expansions of the flow of differential equations in terms of initial
conditions.

Historically, treatment of functions in numerics has been based on the
treatment of numbers, and the classical numerical algorithms are based on the
mere evaluation of functions at specific points. DA techniques are based on
the observation that it is possible to extract more information on a function
rather than its mere values. In particular, the Taylor coefficients of a function
can be obtained up to a specified order n, along with the function evaluation,
with a fixed amount of effort. The Taylor coefficients of order n for sums and
product of functions, as well as scalar products with reals, can be computed
from those of summands and factors; therefore, the set of equivalence classes
of functions can be endowed with well-defined operations, leading to the
so-called truncated power series algebra (TPSA) [3, 4].

Similarly to the algorithms for floating point arithmetic, the algorithm for
functions followed, including methods to perform composition of functions,
to invert them, to solve nonlinear systems explicitly, and to treat common
elementary functions [7, 13]. In addition to these algebraic operations, also
the analytic operations of differentiation and integration have been developed
on these function spaces, defining a differential algebraic structure.

As DA represents the core of the algorithms developed in the frame of this
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contract, some useful notes to get familiar with these techniques are given in
the following. In particular the minimal differential algebra is explained in
details, and some hints on its extension to m variables and to n-th order are
then given. The chapter ends with the description of the solution of implicit
parametric equations, necessary to formulate a generic MGA-DSM transfer
problem.

2.1 The Minimal Differential Algebra

The simplest nontrivial differential algebra is here described. Consider all
ordered pairs (qo,q1), with go and ¢; real numbers. The addition, scalar
multiplication, and vector multiplication are defined as follows:

(g0, q1) + (ro,m1) = (g +ro,q1 +11)
t-(qo, 1) = (t-qo.t-q) (2.1)
(g0,q1) - (ro,71) = (qo-70,G0o 71+ ¢q1-70).

The ordered pairs with the arithmetic are called ; D;. The first two operations
are the familiar vector space structure of R?, whereas the multiplication is
similar to that in the complex numbers; except here (0,1) - (0,1) does not
equal (—1,0), but rather (0,0). The multiplication of vectors is seen to have
(1,0) as the unity element. The multiplication is commutative, associative,
and distributive with respect to addition. Together, the three operations
defined in (2.1) form an algebra. Furthermore, they do form an extension of
real numbers, as (r,0)+ (s,0) = (r+s,0) and (r,0)-(s,0) = (r-s,0), so that
the reals can be included.

However 1D; is not a field, as (qo, ¢1) has a multiplicative inverse in D,
if and only if ¢g # 0. If go # 0 then

(q0,q1)"" = (i —ﬂ) - (2.2)

o g

If o is positive, then (g, ¢1) € 1D; has a root

Vi = (Vi %) 7 23)

as simple arithmetic shows.

One important property of this algebra is that it has an order compatible
with its algebraic operations. Given two elements (qg, ¢1) and (ro,71) in 1Dy,
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it is defined
(qo,q1) < (ro,r1) if qo<ro or (g =roandq <ry)
(90, q1) > (ro,71) if  (ro,m1) < (g0, q1) (2.4)
(q0,q1) = (ro,m1) if qo=r¢and ¢ = 71.
As for any two elements (qo,q1) and (r,71) only one of the three relation
holds, 1D, is said totally ordered. The order is compatible with the addition
and multiplication; for all (o, q1), (ro,71), (S0, 51) € 1 D1, it follows (qo, q1) <
(ro,m1) = (g0, q1) + (50, 51) < (r0,71) + (50, 51); and (8o, 81) > (0,0) =0 =

(g0, q1) - (50, 51) < (r0,71) - (S0, 51)-
The number d = (0, 1) has the interesting property of being positive but
smaller than any positive real number; indeed

(0,0) < (0,1) < (r,0) =1 (2.5)

For this reason d is called an infinitesimal or a differential. In fact, d is so
small that its square vanishes. Since for any (go, q1) € 1D

(90, q01) = (90,0) + (0,q1) = qo + d - qu, (2.6)

the first component is called the real part and the second component the
differential part.

The algebra in 1 D; becomes a differential algebra by introducing a map
0 from 1D; to itself, and proving that the map is a derivation. Define 0 :
1Dy — 1Dy by

g0, q1) = (0, q). (2.7)
Note that
NH(qo, @) + (ro,m1)t = 9(qo +710,q1 +11) = (0,q1 +71) 2.8)
= (0,¢1) +(0,71) = 9(q0, 1) + O(ro,71)

and

MH(qo,q1) - (ro,m)} = 0(qo 70,9 -1 +710-01) = (0,90 711 +70"q1)
= (0,q1) - (ro,m1) + (0,71) - (g0, 1)

= (9, q)} - (ro,71) + (90, 1) - {(ro,71)}
(2.9)

This holds for all (qo,q1), (r0,71) € 1D1. Therefore 0 is a derivation and
(1D4,0) is a differential algebra.
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The most important aspect of 1D is that it allows the automatic com-
putation of derivatives. Assuming to have two functions f and g and to put
their values and their derivatives at the origin in the form (f(0), /(0)) and
(9(0),¢'(0)) as two vectors in 1Dy, if the derivative of the product f - g is
of interest, it has just to be looked at the second component of the product
(f(0), f(0))-(g(0),¢'(0)); whereas the first component gives the value of the
product of the functions. Therefore, if two vectors contain the values and
the derivatives of two functions, their product contains the values and the
derivatives of the product function. Defining the operation [ | from the space
of differential functions to D; via

[f1=(£(0), £(0)), (2.10)
it holds
[f+9] = [f1+]d] (2.11)
f-91 = [f]-1d]
and
[1/9] = [1]/]g] = 1/[g] (2.12)

by using 2.2. This observation can be used to compute derivatives of many
kinds of functions algebraically by merely applying arithmetic rules on Dy,
beginning from the value and the derivative of the identity function. Consider
the example

1
= 2.13
F0)= (2.13)
and its derivative
: (1/2%) -1
=" 2.14
The function value and its derivative at the point x = 3 are
3 , 2
== =__, 2.1
)= f(3) = (2.15)

If the function 2.13 is evaluated at the identity function [z] = (x,1) at the
point 3, i.e. (3,1) =3 4 d, it results
1 1

B = B 9576) - B0+ 05 =19

N (10/31, 8/9) (%_g/%) N (%_2_25) ‘

(2.16)
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As it can be seen after the evaluation of the function, the real part of the
result is the value of the function at x = 3, whereas the differential part is
the value of the derivative of the function at x = 3. This is simply justified
by applying the relations 2.11 and 2.12

1l = || =

r+1/x x+1/x]
1 1
= Wi/ @ (217)
-

Since, for areal z, [z] = (z,1) = x+d, and [f(z)] = (f(z), f'(x)), apparently

(f(3), f'(3) = F(B+d)). (2.18)

The method can be generalized to allow the treatment of common intrinsic
functions, like sin, exp, by setting

g:([f]) = lg:(f)] or

(2.19)
9i((q0,q1)) = (9i(q0), 119i(q0))-

By virtue of equations (2.1) and (2.19) any function f representable by
finitely many additions, subtractions, multiplications, divisions, and intrinsic
functions in 1D, satisfies the important relationship

[f(@)] = f(l«]). (2.20)

Note that f(r+d) = f(r)+d- f'(r) resembles f(x+ Azx) =~ f(x)+ Az f'(x),
in which the approximation becomes increasingly more refined for smaller
Azx. Here, as the Az is infinitely small, the error turns out to be zero.

The differential algebra ; D, allows to compute the first derivative of every
function f along with the function evaluation. This has an important con-
sequence when the numerical integration of an ordinary differential equation
is performed by means of an arbitrary integration scheme. Any integration
scheme is based on algebraic operations, involving the evaluations of the ODE
right hand side at several integration points; therefore the ;D; algebra can
be exploited to compute the first order expansion of the flow of the ODE. As
an example consider the first order ordinary differential equation

&= f(x)
{ 2(0) = 24 (2.21)
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and the simple first order forward Euler’s scheme
Tp = Tp_1+ At - f(l’k_l). (222)

If the initial value zg is substituted by [zo] = (29, 1) = zo+dz € 1D and the
iteration scheme is evaluated using 1D algebra, the output of the numerical
integration at the k-th step is (zy, 0z /0x).

By extending the algebra ;D to order n and v variables, the expansions
of the flow of a dynamical systems can be computed up to order n with fixed
amount of effort.

2.2 The Differential Algebra , D,

The algebra described in this section was introduced to compute the deriva-
tives up to an order n of functions in v variables. Similarly as before, it is
based on taking the space C™(R"), the collections of n times continuously
differentiable functions on R". On this space an equivalence relation is in-
troduced. For f and g € C"(R"), f =, g if and only if f(0) = ¢g(0) and all
the partial derivatives of f and g agree at 0 up to order n. The relation =,
satisfies

f=nf foral f €C"(R"),
f=ng=g=pf foral f g eC"R"), and (2.23)
f=ngandg=,h= f=,h foral f gh €C"(R).

Thus, =, is an equivalence relation. All the elements that are related to f
can be grouped together in one set, the equivalence class [f] of the function f.
The resulting equivalence classes are often referred to as DA vectors or DA
numbers. Intuitively, each of these classes is then specified by a particular
collection of partial derivatives in all v variables up to order n. This class is
called ,,D,,.

If the values and the derivatives of two functions f and g are known,
the corresponding values and derivatives of f 4+ ¢ and f - g can be inferred.
Therefore, the arithmetics on the classes in ,, D, can be introduced via

[f1+ gl = [f + 4] (2.24)
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Under this operations, ,, D, becomes an algebra. For each k € 1,..., v, define
the map 0, from , D, to ,D, for f via
of
0 = - 2.27
= e 2], (227
where
pk(xl,...,a:k) = Tk (228)

projects out the k-th component of the identity function. It’s easy to show
that for all k =1,...,v and for all [f], [¢] € »D,

O[]+ [9]) = Okl f] + Oklg] (2:29)
(1]~ 1g]) = [f1- (Olg]) + (O[f]) - [9]- (2.30)
Therefore, 0y, is a derivation for all k, and hence (,,D,, 0, ..., 0) is a differ-

ential algebra.
The dimension of ,, D, is now assessed. Define the special numbers d as
follow:

dk = [[L’k] (2.31)

Observe that f lies in the same class as its Taylor polynomial 7 of order n
around the origin; they have the same function values and derivatives up to
order n. Therefore,

[f] = [T}]. (2.32)

Denoting the Taylor coefficients of the Taylor polynomial T of f as ¢;,, .,
it follows

Tr(z1,...,2) = Z Ciroy = T - oI (2.33)
Jit+jes<n
with
1 gittiv f
Cji’ ey ij = - T 7 . i o (234)
Jite ot Oxyt - - Oy
and thus
f1=1Ty] = Z Cirrmne T T
Jitetiv<n (2.35)
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where, in the last step, the properties [a + b] = [a] + [b] and [a - b] = [a] - [b]
have been used. Therefore, the set {1,dy : k = 1,2,...,v} generates ,,D,,
as any element of , D, can be obtained from 1 and the d;’s via addition and
multiplication. Therefore, as an algebra, ,, D, has (v+ 1) generators, and the
terms d]' - --dJ» form a basis for the vector space ,D,. It is shown in [14]
that the number of basic elements is (n 4 v)!/(n!v!), which is the dimension
on ,D,.

Similar to the structure 1D, ,D, can be ordered, and the dj, being
smaller than any real number, are infinitely small or infinitesimal. Further-
more, by applying the fixed point theorem for contracting operators on M C
2D, that map M into M, the square root, the quotient, and map inversion
in ,D, can be obtained by iteration in a finite number of steps. Once the
function composition and the elementary functions, i.e. exp, sin, and log,
are introduced in the DA ,, D,, the derivatives of any function f belonging to
C™(R") can be computed up to order n in fixed amount of effort by applying

[f(z,. . x)] = f(len, . me]) = fler +dyy .o 2 + dy). (2.36)

The DA sketched in this section was implemented by M. Berz and K. Makino
in the software COSY INFINITY. The software and all the related documen-
tations are available free of charge for non-commercial use online at

http : //bt.pa.msu.edu/index_cosy.htm.

2.3 Solution of Parametric Implicit Equations

As it will be explained in the next chapter, the formulation of a MGA transfer
optimization problem (either with or without DSM) requires the solution of
parametric implicit equations. This is indeed necessary whenever we want
to solve the Kepler’s equation, the Lagrange’s equation, and the bending
angle equation for the ephemerides evaluation, the Lambert’s problem and
the powered gravity assist problem solution, respectively.

The algorithm developed for the solution of a scalar parametric implicit
equation using DA is described; the generalization to the m dimensional case
is straightforward.

We are searching for the solution of

f(z,p) =0 (2.37)

for p € [pr, pu) with f € C*™'. This means that = x(p) satisfying

f(z(p),p) =0 (2.38)
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is sought. The first step is to consider a point value of the parameter p° and to
compute the point value of the solution 2 by means of a classical numerical
method, e.g by Newton’s method. The variable x and the parameter p are
then initialized as n-th order DA variables, i.e.

2] = 2%+ 6z

] = p°+0p, (2.39)

and the implicit equation (2.37) is expanded up to the n-th order, delivering
the map

df = My (b, 6p). (2.40)

Note that the map has no constant part as 2% is the solution of the implicit
equation for the nominal value of the parameter p°. The map (2.40) is then
augmented by introducing the identity map dp = Z,(0p), ending up with

(i) = () () e

The n-th order map (2.41) is inverted using COSY INFINITY built-in
tools, obtaining

5T\ (M [(of
(529) N (Ip ) <5p ' (242
As the goal is to compute the n-th order Taylor expansion of the solution

manifold x = z(p), the map (2.42) is evaluated for 6f = 0. From the first
row we have

ox = Msy=0(dp), (2.43)
which is the n-th order Taylor expansion of the solution manifold, i.e.
dx = 0x(dp). (2.44)

For every value of p € [p;, p,| the approximate solution of f(x,p) = 0 can be
easily computed by evaluating the Taylor polynomial (2.44).



18

Notes on Differential Algebra




Chapter 3

GASP-DA: Analysis and
Implementation

This chapter is devoted to the accurate description of the introduction of
the differential algebraic techniques into GASP algorithm. The basic idea is
taking advantage of the possibility of expanding the constraint and objective
functions with respect to the optimization variables. Unfortunately, this is
not an easy task and several problems must be faced. This chapter takes
charge of illustrating such problems and their proposed and implemented
solutions.

In particular, section 3.1 describes the procedure to obtain the Taylor
expansion of the constraint and objective functions by expanding the solu-
tion of the involved implicit equations. Section 3.2 highlights the presence
of discontinuities on objective functions typically optimized in MGA trans-
fers. Rationales for the presence of such discontinuities are supplied, and an
extensive analysis is carried out to introduce the proposed solution to the
problem. The mathematical formulation of a typical MGA transfer prob-
lem is not unique and a careful selection of the design variables has to be
performed. This is the aim of section 3.3, where the reason of the selection
of the so-called absolute times formulation is pointed out. Some ideas to
further improve the performances of the optimization process are presented
in sections 3.4 and 3.5. Finally, section 3.6 assesses its performances on test
problems of various complexity.

3.1 DA-evaluation of the objective function

For the sake of a clear description of the topics addressed in this section,
and without loss of generality, consider the classical problem of transferring
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Figure 3.1: An Earth—Mars transfer.

a spacecraft from Earth to Mars by means of two impulsive maneuvers (see
Figure 3.1). The typical objective function for this problem is the overall
amount of AV that must be supplied to the spacecraft to carry out the
transfer. Two design variables suffices to this aim. In particular, a possible
and classical choice is selecting the departure epoch from Earth, Tg, and
the time of flight from Earth to Mars, tgy,. Given Tg and tgy, the arrival
epoch at Mars, T);, can be easily computed, and the position and velocity
of Earth and Mars at the beginning and the end of the transfer are obtained
through ephemerides. Then, given the initial and final positions, and the
time of flight, the corresponding Lambert’s problem is solved to compute the
heliocentric initial velocity, v, the spacecraft must be supplied with at Earth
in order to reach Mars in the given time of flight, as well as the resulting
heliocentric velocity at Mars, vo. The initial relative velocity of the spacecraft
with respect to Earth, AV, and the final relative velocity with respect to
Mars, AV 4, are readably assessed. A typical optimization problem for this
simple planet-to-planet transfer involves the minimization of the overall AV,
which is computed as the sum of the magnitude of the relative velocities at
the beginning and the end of the transfer:

AV = [AV ]| + [[AV,f| = AVi + AV, (3.1)

subject to usual constraints on the maximum allowed magnitudes of the
relative velocities at the beginning and the end of the transfer:

AV < AVimax
AV < AV max

(3.2)

As already pointed out in chapter 2, behind the introduction of differ-
ential algebraic techniques is the substitution of the pointwise evaluation of
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Figure 3.2: Search space sampling for the Earth—Mars transfer.

the objective function with a DA-based evaluation. Consequently, instead
of dealing with classical point values of the objective function, the DA-based
GASP algorithm handles its Taylor expansions around suitably selected ref-
erence points of the search space. Referring to Figure 3.2, the classical point-
wise sampling of the search space implemented in GASP is here replaced by
a subdivision of the whole search space in boxes. Then, differential algebraic
techniques allows to compute the Taylor expansion of the constraint and ob-
jective functions within each box around a reference point, e.g. the center of
the box. The Taylor expansions are bounded to estimate the range of the
constraint and objective functions within the box. The range is then used in
the pruning process. Before detailing the pruning algorithm for this simple
planet-to-planet transfer, it is worth observing that Taylor expanding the
constraint and objective functions, even for this relatively simple problem,
does not lie in a mere DA-based evaluation. The solution of implicit equa-
tions is involved in the computation, which poses some additional problems.

3.1.1 Parametric implicit equations

Three implicit equations appear in the evaluation process of constraint and
objective functions for typical MGA transfers. Two of them can be identi-
fied by analyzing again the previously introduced Earth-Mars transfer. The
evaluation of the ephemerides of the involved planets is first required. An
analytical ephemeris model is used within this work, which is based on third
order polynomial fits of the orbital elements of the planets (see Figure 3.3).
The fitting procedure is performed on a set of accurate values, delivered by
JPL ephemeris evaluations. In particular, the analytical model is then able
to supply the eccentricity of the planet orbit, e, and the mean anomaly of
the planet, M, as a function of the input epoch. At this point, the Kepler’s
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Figure 3.3: Orbital elements.

equation
f(E)=FE—esinE—M=0 (3.3)

must be solved. This is a first implicit equation, which allows to compute
the eccentric anomaly, F, from e and M. Therefore, the resulting F is used
to assess the planet position and velocity by mere algebraic relations.

Given the positions of Earth and Mars, and the time of flight between
the two planets, the Lambert’s problem must be solved to gain the ini-
tial and final heliocentric velocities of the spacecraft. Several algorithms
are available in literature, which tackle this issue from different perspec-
tives, and offer solutions based on different numerical techniques. An un-
published algorithm developed by Izzo is used within this work, which is
freely available to download in MATLAB and C++ format from the website:
http://www.esa.int/gsp/ACT /inf/op/globopt.htm. The algorithm involves
the solution of the so-called Lagrange’s equation for the time of flight, that
concisely reads

f(x)=A(x)—t=0 (3.4)

where x is related to the semi—major axis of the resulting transfer orbit, A is
a function depending on x and some geometrical properties of the transfer,
and ¢ is the transfer time between the involved planets. The solution of this
second implicit equation allows to compute the initial and final heliocentric
velocities of the spacecraft, by means of algebraic relations and the evaluation
of transcendental functions.
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Figure 3.4: Powered gravity assist.

The third implicit equation can be identified only within interplanetary
transfers involving one gravity assist at least. As highlighted in [21], in
the patched-conics approximation, two subsequent heliocentric ellipses must
be matched using the gravity assist maneuver. This means the pericenter
radius of the hyperbolic planetocentric trajectory linking the two heliocentric
arcs must be evaluated. To this aim, the classical powered gravity assist
maneuver is implemented: the spacecraft is allowed to provide an impulse at
the pericenter of the incoming hyperbola, tangential to the trajectory (see
Figure 3.4). The planetocentric trajectory is therefore made by two arcs of
hyperbola patched together. Within this model, the angle «, usually referred
to as bending angle, between the incoming and the outgoing velocities, v

and v? respectively, is related to the pericenter radius via
. a . a’
f(r,) = arcsin + arcsin —a=0 (3.5)
a”+1m at +ry
where ¢~ = 1/(v - v™) and a™ = 1/(v - v2). Given the two heliocentric

arcs to be connected by the powered gravity assist maneuver, the angle «
can be easily computed through geometrical relations. The solution of the
third implicit equation (3.5) delivers the pericenter radius of the planetocen-
tric trajectory. The planetocentric velocities 'v;" and vg“t at the pericenter,
corresponding to the incoming and outgoing hyperbolic arcs respectively, are
evaluated using r,, v, and v2“*. Then, the required impulsive maneuver at
the pericenter, Awv,, is the mere difference between 'vg“t and 'v;”.

If a pointwise evaluation of the objective and constraint functions is of

interest, as in GASP algorithm, a classical numerical method for the solution
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of implicit equations can be used, e.g. the Newton’s method. Unfortunately,
the previous implicit equations become parametric implicit equations when
the Taylor expansion of the objective and constraint functions is of inter-
est. Without loss of generality, consider the Kepler’s equation. In particular,
referring to the previous Earth—Mars transfer, the objective function evalua-
tion process involves the computation of the planetary ephemerides of Earth
and Mars. If the Taylor expansion of the objective function with respect
to the design variables is needed, the expansion of the position and velocity
of the planets has manifestly to be achieved. The Taylor expansion of the
planetary orbital elements with respect to the epoch can be easily obtained
by initializing the epoch as a DA variable

[T] =Ty + 6T = (Ty, 1), (3.6)

where Ty is a point reference epoch, and performing a DA—based evaluation
of the analytical ephemeris model. Thus, the Taylor expansions 7 of the
eccentricity and the mean anomaly with respect to the epoch are readily
available:

e(6T) = T.(5T)

(3.7)
M@T) = Ty(5T).

The next step is solving the Kepler’s equation to compute the corresponding
eccentric anomaly E. However, interest is not in a mere point value of E in
this case, but rather in the Taylor expansion of the solution E with respect
to the parameter T'. Indeed, the explicit dependence of e and M on T must
be kept and Kepler’s equation reads

F(E,8T) = E — e(5T) sin E — M(5T) = 0. (3.8)

The solution of this parametric implicit equation is attained in terms of the
Taylor expansion E(6T) = Tg(6T) using techniques illustrated in chapter
2. Once E(0T) is available, the Taylor expansions of the planet position
and velocity are readily obtained by carrying out the remaining algebraic
manipulations in the DA framework. Clearly, the accuracy of the expansion
depends on the order of the DA computation as well as on the size of the
interval on the epoch, i.e. on §T. Figure 3.5 and Figure 3.6 study this accu-
racy referring to Mars ephemerides. In particular, the reference epoch 1456
MJD is selected, which corresponds to the arrival date of Mars Express. The
Taylor expansion of Mars position and velocity around the reference epoch
is computed using differential algebra. Considering an interval of 40 days
around the reference epoch, for each 67, the position and velocity of Mars
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Figure 3.5: Accuracy of the Taylor Figure 3.6: Accuracy of the Taylor
expansion of the planet position. expansion of the planet velocity.

are evaluated using both the Taylor expansions and the pointwise evalua-
tions. Figure 3.5 and Figure 3.6 report the error of the Taylor expansions
with respect to the pointwise evaluation, in terms of the maximum norm
of the difference vectors between the corresponding positions and velocities,
respectively. The figures clearly show that, although the accuracy of the
Taylor expansion decreases while moving away from the reference date, it
can be effectively kept to a suitable level increasing the expansion order. It
is worth mentioning that the fast wiggling of the curve in the vicinity of the
reference epoch is due to the tolerance set for the Newton method, which is
used in the classical pointwise ephemeris evaluation.

Similar statements hold for the solution of the Lagrange’s equation (3.4)
and for the bending angle equation (3.5). In particular, the ephemeris eval-
uation and the solution of the Lambert’s problem, allow to compute the
overall AV for the simple Earth-Mars transfer. For the sake of a more com-
plete analysis of the accuracy of the DA computations, Figure 3.8 illustrates
an instance of the error of the Taylor expansion of the AV with respect to
its point evaluation. The reference epoch 1249 MJD for the departure from
Earth and the reference transfer time of 207 days are selected, which corre-
spond to the data of Mars Express. An interval of 40 days is considered for
each variable, representing a box centered on the previous reference point
in the search space. Similarly to the previous analysis, the overall AV is
evaluated by a pointwise computation as well as using a 10th order DA com-
putation. The error is then estimated as the absolute difference. The figure
shows that the 10th order DA computation is sufficiently accurate over the
entire box. Figure 3.7 reports the objective function values of both the point
and the DA computation: the two corresponding surfaces overlap, confirm-
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ing the great accuracy of the DA computation. Finally, as indicative of the
computational time, it is worth reporting that the 10th order DA evaluation
of the objective function requires about 0.016 seconds on a Pentium IV 3.06
GHz laptop.

3.2 The discontinuity problem

The previous section was devoted to describe how the Taylor expansion of
the constraint and objective functions with respect to the design variables
can be obtained using differential algebraic techniques. The complete exten-
sion of GASP algorithm should now be possible in a straightforward manner.
This would be the case for pruning and optimization problems where regular
constraint and objective functions are involved. Unfortunately, significant
discontinuities characterize these functions in typical MGA transfer opti-
mization problems, which are mainly related to geometrical considerations.
In order to introduce the discontinuity problem, consider the following
typical pruning algorithm for the representative Earth-Mars transfer:

1. Subdivide the search space in boxes (refer to Figure 3.2).
2. For each box [X] = {[T&], [tem]}:

i. initialize [Tg| and [tgy] as DA variables and compute the Taylor
expansion of AV (see Figure 3.1) on [X];

1270
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ii. bound the polynomial expansion of AVy on [X'], i.e. estimate its
minimum AVy and mazimum AV on [X];

iii. if AV4 > AV] e = discard the current box [X] and analyze the
next in the list;

iv. compute the Taylor expansion of AVy (see Figure 3.1) on [X] ;

v. bound the polynomial expansion of AV, on [X], i.e. estimate its
minimum AV, and mazimum AV on [X];

vi. if AVy > AV ee = discard the current box [X] and analyze the
next in the list;

—

vii. keep [X| in the list.

It is worth mentioning that bounding the Taylor expansions, as required in
steps 2.ii and 2.v of the previous algorithm, is not a trivial task. Although
a non-validate quadratic estimation process is suggested in section 3.5, the
basic tool used within this work, and for the example reported in this sec-
tion, is the Linear Dominated Bounder described by Makino in the Ph.D.
dissertation [26].

The previous algorithm has been implemented in COSY—Infinity and ap-
plied to the Earth-Mars transfer. In particular, as summarized in Table 3.1,
a search space of 5000 days on the departure epoch and 500 days on the
transfer time is selected. Figure 3.9 reports the overall AV over the defined
search space. Quasi-periodicities can be identified on the figure, especially
on the departure date, which can be easily related to the synodic period of
the Earth—Mars system. In fact, based on the mean planetary orbital ra-
dius and in the hypothesis of coplanar circular orbits, the synodical period
of the Earth-Mars system is assessed to be about 2.14 years, which can be
clearly identified as the period of the oscillations in Figure 3.9. After one
synodical period, the relative geometrical configuration of Earth and Mars

variable | lower bound ‘ upper bound ‘ amplitude ‘ units ‘
Tk 1000 6000 50 MJD
tem 100 600 50 MJD

Table 3.1: Bounds and box-size for the design variables of the Earth—Mars
transfer.
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approximately recurs, so that the objective function values repeat, leading
to a quasi-periodic function. Figure 3.10 reports instead the search space
remaining after inferring the following pruning constraints on AV; and AVj:

AV; < 5km/s

(3.9)
AV, < 5km/s.

Let now the pruning algorithm illustrated above be applied to this rela-
tively simple problem. In particular, as reported in the third column of Table
3.1, the search space is uniformly subdivided in boxes, using 50 x 50 days
boxes on the two design variables. The pruning process is then performed
using the constraints (3.9). The boxes remaining after pruning are reported
in Figure 3.11 on the pruned search space of Figure 3.10, which is aimed to
be enclosed by the algorithm. Figure 3.11 clearly shows that the accuracy of
the attained enclosure is not satisfactory. Specifically, even if the remaining
boxes enclose the desired portion of the search space, some boxes remain after
pruning, which should have been pruned away. To better achieve rationales
on this behavior, Figure 3.12 reports the same remaining boxes on the objec-
tive function plot over the overall search space. As can be clearly seen, these
unsought remaining boxes tend to lie on lines over the search space, which
can be related to well known discontinuities of this problem. Such disconti-
nuities correspond to the so-called transitions from the “short-way” to the
“long—way” solutions of the Lambert’s problem, and viceversa (see Figure
3.13). A geometrical overview of the problem is reported in Figure 3.14 for
a sample transition from the short—way to the long—way solution. Transfer
trajectories for a planet-to-planet transfer are plotted, moving from the left
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Figure 3.13: Discontinuities on the AV for the Earth-Mars transfer.

side of the discontinuity to the right side. On the left side of the discontinuity
the short—way solutions are selected by the Lambert’s solver. Moving toward
the right side, the orbital plane inclination of the transfer trajectories tends
to increase. The discontinuity occurs when the transfer trajectory is exactly
perpendicular to the ecliptic. Just after the occurrence of the discontinuity,
in order to keep dealing with prograde solutions of the Lambert’s problem,
the long—way solution is suddenly selected. Corresponding to the previous
transition, a plot of the overall AV with respect to the departure epoch is
reported in Figure 3.15: AV goes up close to the discontinuity, where the
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difference between the inclinations of the planetary orbital planes and of
the transfer trajectory increases; a small discontinuity occur exactly at the
pick, which can not be detected on the figure. Well known theoretical argu-
ments show that Taylor polynomial expansions fail when discontinuities on
the processed function occur. This can be deemed the cause of the presence
of undesired boxes after pruning: Taylor expansions within boxes lying on
the discontinuity do not accurately approximate constraint functions; con-
sequently bounds of the corresponding ranges are wrongly estimated, and
the boxes tend to be kept in the list of admissible solutions. Intensive work
has been devoted to overcome the discontinuity problem, and to improve the
accuracy of the enclosure of the pruned search space. A first attempt was
based on the use of box-reshaping and box-splitting techniques, which are
briefly illustrated in section 3.2.1. The actual solution finally implemented
in GASP-DA is instead illustrated in section 3.2.2.

3.2.1 Box-reshaping and box-splitting

A first attempt to solve the discontinuity problem is based on the observation
that the discontinuity lines tend to follow a straight path on the search space
(see Figure 3.16). In particular, it can be easily assessed that, if Earth and
Mars followed circular and coplanar orbits, the discontinuity lines would be
exactly straight line, with a common slope «, which could be related to the
planetary orbital periods by

Py
t =— -1 3.10
ana =5 — 1, (3.10)
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where Py, and Pg are the orbital periods of Mars and Earth, respectively.

Based on the previous observation, boxes could be suitably reshaped in
order to reduce the number of boxes lying on the discontinuity, remaining
after the pruning process. Referring to Figure 3.17, suppose the reported
box lying on the discontinuity is being processed. As already pointed out,
the box is represented by the vector of DA numbers

[X] = {[Te], [tend]} = {Te + 6T, toar + Stpar). (3.11)
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Using the approximate slope « of equation (3.10), the new box
[X] = {TE+5TE+(1/tana) '5tEM7tEJ\/[+5tEM} (312)

can be gleaned out, which matches up the reshaping procedure depicted in
Figure 3.18: two sides of the original box are made approximately parallel
to the discontinuity line. As highlighted in the figure, the sample box would
not lie on the discontinuity after reshaping, so avoiding the problem of the
associated Taylor expansions.

As could be easily objected, the expedient of box-reshaping alone can
not solve the discontinuity problem, as boxes lying on the discontinuity line
still occur even after reshaping. This is illustrated in Figure 3.19, where the
pruning algorithm is applied to the previous Earth-Mars transfer problem
using 50 x 50 days reshaped boxes: even if the number of boxes lying on the
discontinuities decreases if compared with those of Figure 3.11, the accuracy
of the enclosure of the pruned search space is still inadequate.

A box-splitting process has then been added to the previous reshaping
technique, which is schematically presented in Figure 3.20 and 3.21. Suppose
that, after reshaping, the box reported in Figure 3.20 is being processed. The
algorithm for box-splitting is based on the following steps:

1. Moving on a horizontal line, passing through the center of the box (red
line), identify a point lying on the discontinuity.
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Figure 3.20: Identification of the Figure 3.21: Reshaped boxes after
splitting lines. the splitting procedure.

2. Enclose the discontinuity within a strip (magenta lines).
3. Identify two discontinuity-free boxes (see Figure 3.21).
4. Replace the original box with the two identified boxes.

Unfortunately, despite the simplicity and the theoretical effectiveness of this
technique, some critical issues can be identified.

First of all, for the sake of computational time containment, the identifi-
cation of the point lying on the discontinuity involved in step 1 is performed
by processing the Taylor expansions of the related geometrical quantities.
However, as already pointed out, Taylor expansions do not accurately rep-
resent such quantities within these regions. Consequently, the identification
of the desired point turns out not to be accurate enough for the splitting
purposes.

Secondly, the definition of the enclosing strip of step 2 requires some
heuristics for the suitable assessment of the width of the region to be ex-
cluded. Evidently, the corresponding tolerances depend on the planetary
system under study, since the deviation of the discontinuity lines from the
approximating straight line strongly depends on the planetary orbital ele-
ments. A sharp enclosure of the discontinuity is however necessary, since
good local minima and the global optimum lie close to the discontinuities
from the short—way to the long—way solution of the Lambert’s problem in
this planet-to-planet transfer. Consequently, good regions are often thrown
away because of bad estimates of the tolerances.
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Finally, a computational time increase follows. Besides the additional op-
eration required by the previous algorithm, an evident cause can be detected
in step 4. Indeed, every box lying on the discontinuities is replaced by two
boxes, both of which must be processed again.

The previous considerations led to the decision of adopting the alternative
strategy to solve the problem, which is discussed in next section.

3.2.2 Planar planetary model

The implemented solution for the discontinuity problem is based on the ob-
servation that the unfavorable discontinuity lines, i.e. the lines close to good
local minima, correspond to the transition from the short-way to the long-way
solution of the Lambert’s problem. The previous discontinuity do not occur
if a planar planetary model is used instead of the actual three-dimensional
model associated to the ephemeris evaluator. This can be easily recognized
by analyzing again Figure 3.14. The discontinuity is related to the ambi-
guity on the inclination of the orbital plane, when a perpendicular transfer
occurs. In this situation, the definition of prograde and retrograde transfers
is singular, and the inclination of the corresponding transfer orbit is charac-
terized by sign ambiguity, i.e. £90deg. The previous ambiguity vanishes if
a planar planetary model is used: the orbital plane of the connecting Lam-
bert’s arc is uniquely determined as coinciding with the ecliptic, and the
transition from the short—way to the long—way solution is continuous. It is
worth observing that this is not the case for the transition from the long—way
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to the short—way solution (see Figure 3.22 and Figure 3.23): the ambiguity
on the transfer plane vanishes, but a geometrical discontinuity remains. The
disappearance of the first discontinuity is clearly confirmed in Figure 3.24,
where the overall AV reported in Figure 3.15 is compared with the same plot
in case the planar planetary model is used. Figures 3.25 and 3.26 address a
similar comparison, by plotting the AV over the whole search space in the
two planetary models. The discontinuities corresponding to the transition
from the short-way to the long-way solutions disappear, whereas the other
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discontinuities still occur.

A major observation can be stated, which is the main driver for the
following decisions. A careful analysis of the difference between the AV
in the three-dimensional, AVsp, and the two-dimensional, AV,p, planetary
models over the entire search space has been performed. It turns out that
the error AV,,., = AVsp — AVyp > 0 everywhere, i.e.

AVzp > AVap (3.13)

on the whole search space. This is confirmed by the comparison analysis in
Figure 3.24, and the AV3p and AV,p values in Figure 3.25 and 3.26. The
main consequence of relation (3.13) is that, given the same constraints on
AV; and AV,, the pruned search space in the two—dimensional planetary
model encloses the pruned search space in the three-dimensional planetary
model. This is illustrated in Figure 3.27 and Figure 3.28, where the pruned
search spaces corresponding to the two planetary models are compared. Con-
sequently, if the pruning process is performed in the two-dimensional plane-
tary model, no branches of the feasible domain in the real three-dimensional
planetary model are lost.

Given the previous considerations, a planar planetary model is adopted
in the DA-based GASP algorithm to perform the pruning process. No math-
ematical proof is supplied about the validity of this conservative hypothesis
for a general transfer. The low inclination of all planetary orbits, and ge-
ometrical considerations, led to the decision of conjecturing its validity for
interplanetary transfers in the Solar System. Although more rigorous math-
ematical considerations should be sought in future works, the fairness of the
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hypothesis has been confirmed by the test phase illustrated in section 3.6:
all the best-known solutions of typical MGA transfer problems have been
identified to lie in the boxes remaining after the pruning process. It is worth
anticipating that the previous approximation is only used within the pruning
process, whereas the subsequent necessary optimization process is performed
within the actual three-dimensional planetary model. As a further proof of
the validity of the approximation, the performances of the pruning algorithm
for the case of the Earth-Mars transfer in the two-dimensional planetary
model are analyzed in Figure 3.29 and Figure 3.30. The boxes remaining af-
ter the pruning process sharply enclose the pruned search space of both the
two-dimensional and the three-dimensional models. A plain improvement in
the enclosure accuracy can be detected in the three-dimensional model by
comparing Figure 3.30 with Figure 3.11.

3.3 The dependency problem

The previous considerations are based on analyses performed within the
framework of a planet-to-planet transfer, i.e. an Earth-Mars transfer, where
the departure epoch from Earth and the transfer time from Earth to Mars
are selected as design variables. However, an alternative problem formula-
tion is preferable. In particular, substituting the arrival epoch at Mars to the
transfer time from Earth to Mars in the set of the design variables has al-
ready shown important advantages from a computational point of view [21].
The use of this second formulation turns out to significantly reduce the num-
ber of ephemeris evaluations required by the pruning algorithm, allowing the
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whole process to gain a polynomial complexity. Further reasons of selecting
this second formulation can be outlined, which are important alike for the
DA-based GASP, especially if actual MGA transfers are studied.

Without loss of generality, consider the scheme of an Earth-Mars—Jupiter
transfer, reported in Figure 3.31. The set of design variables usually selected
for this MGA transfer is composed of the departure epoch from Earth, T, the
transfer time from Earth to Mars, tg)s, and the transfer time from Mars to
Jupiter, ;7. For the sake of clarity, this formulation is referred to as “relative
times formulation ” in the following. The evaluation of the overall AV will
generally start from the analysis of the first connecting arc from Earth to
Mars. Suppose the relative times formulation is being used. Thus, referring
to Figure 3.32, the quantities related to the first arc are characterized in the
Tr —tgy plane. As both Ty and tg), are design variables, in the framework
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of the DA-based GASP, a box is readily identified by the DA representation
of both variables, and the computation goes on as depicted in the previous
sections. Suppose now the first arc has been processed, and the second arc
from Mars to Jupiter is of interest. The quantities associated to the second
arc are characterized in the T, —t);; plane, where T}, is the arrival epoch at
Mars. However, T, is not a design variable in the relative times formulation,
and it is computed as Ty = Tg + tgy. Even if t),; is a design variable, the
size of the corresponding interval on T), is the sum of the box size on Tg
and tgy in the DA-based GASP. The previous considerations can be easily
inferred to MGA transfers involving more than three planets: the box size
of the departure epoch from each planet increases along the transfer. This
effect is strongly related to the dependencies associated to the relative times
formulation: the last departure epoch of an MGA transfer depends on all the
design variables associated to the previous arcs, and the box size increases
accordingly.

The dependency problem is better highlighted in Figure 3.34. Focusing
on the dependence of the planetary ephemerides on the design variables, the
position of Earth, rg, depends only on the departure epoch Tg. The posi-
tion of Mars, r,,, is evaluated using the epoch at Mars T,,. Consequently,
ry, will depend on the two variables Ty and tgy,. Similarly, the depen-
dence of the position of Jupiter on the three variables T, Ty, and tgy, is
highlighted. Thus, in a MGA transfer involving n planets, the position of
the i-th planet will depend on the departure epoch from Earth, and all the
transfer times associated to the prior ¢ — 1 connecting arcs. Therefore, the
dimensionality of the dependency increases along the transfer, reaching its
maximum corresponding to the last connecting arc, where quantities, e.g. the
planet position, will depend on all n variables. Similar arguments hold for
the associated AV, on which inequality constraints are usually set.

The previous dependency problems can be overcome if the alternative
strategy suggested by Izzo et al. is used [21]. In particular, the departure
epoch from Earth is kept within the set of design variables, whereas the
transfer times are now replaced by the epoch at each remaining planet of the
MGA transfer. Referring again to the Earth-Mars—Jupiter transfer, the new
set of variables will include the epochs at Earth, T, Mars, T),, and Jupiter,
T;. In contrast to the relative times formulation, the new formulation is
referred to as the “absolute times formulation” in the following.

A review of the previous analyses will be of help to gain a valuable in-
sight on the advantages of the new formulation. Consider again Figure 3.32
and Figure 3.33. Using the absolute times formulation allows both arcs to
be characterized within planes that are directly defined by design variables.
Thus, no box size increase occurs along the transfer. Referring instead to Fig-
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Figure 3.34: Dependency problem for the Earth—Mars—Jupiter transfer.

ure 3.34, the planetary ephemerides will depend on the epoch of the planet,
which is now included in the set of design variables. If the AV associated to
the whole transfer are of interest (which is the case in the pruning process
of GASP), it can be easily shown that the maximum dimensionality of the
dependency correspond to the AV of the powered gravity assist maneuvers,
which will depend on three design variables.

The outcomes of the previous analysis led to the decision of adopting the
absolute time formulation as the baseline approach in GASP-DA. For the sake
of completeness, Figure 3.35 and Figure 3.36 report both the search space
and the overall AV of the Earth—Mars transfer, which have been investigated
in Figure 3.9 and Figure 3.10, on the new plane Tx — T),.

3.4 Semi-analytical approximation

In the effort to further improve the algorithm performances in terms of com-
putational time required by the pruning process, semi-analytical approaches
to solve the implicit equations analyzed in section 3.1 have been investigated.
The main idea is avoiding the iterative methods usually adopted for the so-
lution of the implicit equations, i.e. Newton’s method, using either suitable
expansions of the equations or clever variable changes. The following sections
are devoted to detail the techniques introduced for each equation.

3.4.1 Kepler’s equation
For the sake of clarity, Kepler’s equation 3.3 is reported again:

f(E)=E —esinE — M =0 (3.14)
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This equation relates the planetary eccentricity, e, and mean anomaly, M,
which are readily available from the analytical ephemeris model, to the ec-
centric anomaly F. An extensive analysis of this important equation can
be found in literature, and several methods have been developed to solve it.
Among all the available methods, the semi-analytical techniques are deemed
particularly interesting for the current purpose. Battin [2] illustrates how
a useful solution of equation (3.14) can be obtained by expanding it with
respect to the eccentricity e. Such kind of solution turns out to be partic-
ularly appropriate in the framework of the ephemeris evaluation, since all
the planetary orbits in the Solar System are characterized by relatively low
eccentricity values. Consequently, a third order expansion of equation (3.14)
is used to gain the explicit relation for £

esin M 1( esin M )3

E~M+ (3.15)

l—ecosM 2\1—esinM
The computed eccentric anomaly E is then used to evaluate planetary
positions and velocities, through classical algebraic manipulations. Figure
3.37 and Figure 3.38 investigate the error of the semi-analytical approach
with respect to the iterative process of a classical Newton’s method. In
particular, referring to a sample interval epoch of one Martian year, Figure
3.37 reports the difference between the position vectors resulting from the
two approaches on the z—y plane. The maximum error is of the order of 1000
km. A similar analysis is addressed in Figure 3.38 for the velocity vector,
where a maximum error of the order of 0.1 m/s is detected. This error is
acceptable, even though the orbital eccentricity of Mars is not negligible.
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3.4.2 Lagrange’s equation

The AV evaluation requires the solution of the Lambert’s problem. As al-

ready pointed out in section 3.1, the Lagrange’s equation for the time of
flight,

f(z) =A(z) —t =0, (3.16)
must be solved, where (see [2] for details)

Alw) = a(2)*?((a(z) —sin(a(z))) = (B()))- (3.17)
The functions o and 3 are related to x via the relations

1 1
sin? —q = — sin® =3 =
2 2a 2

s—c
2a '

(3.18)

where s and ¢ are geometrical parameters defined in [2], and a is the semi-
major axis of the resulting conic arc. The semimajor axis is a direct function
of x:

S
a=—-". 3.19
2(1 — 22?) (3.19)
As suggested by Izzo, equation (3.16) can be suitably manipulated to improve
the convergence performances of the iterative algorithms. In particular, the
solution of the equation

f=logA(z) —logt =0 (3.20)
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is sough, which replaces the original equation. Moreover, the following vari-
able change is adopted:

T=log(l+x). (3.21)

Using the new variable Z, the curve associated to equation (3.20) is well
approximated by a straight line. Consequently, a first order expansion of the
equation can be used to approximate the solution. In particular, the solution
is then approximated by

7= gy L5 (3.22)
f'(Zo)

where f’ (Zo) is computed analytically. The heuristics for the selection of the
reference point Ty is based on the identification of a circular orbit, whose
angular velocity is equal to the mean angular velocity of the spacecraft on
the actual connecting arc. More specifically, the transfer time t, as well as
the angle between the initial and final position vectors Af, are input to the
Lambert’s solver. The radius Ry of a circular orbit is sough, which solves the
equation

o
— t=A6. 2

The radius Ry is then used to compute the reference point z, through the
relations (3.19) and (3.21).

Once the solution Z of equation (3.20) is obtained, the solution of the
original equation (3.16) can be readily computed using again the previous
relations. Figure 3.39 reports the overall AV for the Earth-Mars transfer,
which is compared with the same AV resulting from the semi-analytical so-
lutions of both Kepler’s and Lagrange’s equations, reported in Figure 3.40.
Once again, it is worth anticipating that all the semi-analytical approxima-
tions here introduced are only used within the pruning phase of the overall
optimization process.

3.4.3 Bending angle equation

As described in section 3.1, in the framework of MGA transfers, the planeto-
centric trajectories at the gravity assists are made by two arcs of hyperbola
patched together. Within the powered gravity assist model, the pericenter
of the hyperbola is evaluated by solving the implicit equation
a~ . at
+ arcsin
a” +rp at 4+,

f(rp) = arcsin —a=0 (3.24)
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transfer. transfer: semi-analytical approach.
where a= = 1/(v™ - v™) and a™ = 1/(v2% - v9"). Similarly to the previous

case, a suitable variable change is looked for to allow equation (3.24) to be
well approximated by a linear expansion. The variable change

i=1/r, (3.25)

has been identified to properly serve this purpose. Once again, using the new
variable z, the first order expansion of the equation is used to approximate
the solution by

f(Zo)
f(%0)’

where f'(Zg) is computed analytically. The reference point Z; is chosen using
information associated to both incoming and outgoing hyperbola. In partic-
ular, the incoming and outgoing hyperbolic arcs are processed separately to
compute the corresponding pericenter radii, which make the spacecraft span
the whole bending angle «, without any AV corrections at the pericenter.
The two radii are then averaged to obtain the mean radius

(3.26)

Lf':i'o—

a~(b—1)+at(b—1)
2 7

Tpo = (327)
where b = 1/sin(a/2). The reference point %y is then computed through
relation 3.25 using the radius 7,9. Once the solution 7 of equation f(Z) = 01is
available, the actual pericenter radius of the powered gravity assist maneuver
can be computed using again equation 3.25.
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Figure 3.41: Bending angle equation: error of the semi-analytical approxima-
tion w.r.t. Newton’s method corresponding to random gravity assist samples.

The accuracy of this semi-analytical approximation is investigated in Fig-
ure 3.41. Gravity assist samples are generated by randomly selecting values

of o, v2% and v within the ranges

vt v € [6,40] km/s

o (3.28)
a € [0,60] deg.

For each sample, the corrective AV within the powered gravity assist model
is computed by solving equation (3.24), using both Newton’s method and the
previous semi-analytical approach. The relative error is then plotted for each
sample. The maximum relative error is about 3.5%, even if most samples are
characterized by an error less than 0.1%. This is confirmed even in more
complex MGA transfers. For example, the overall AV of the best-known
Cassini-like transfer reported in section 3.6 is

AV = 4.930710687853622 km//s. (3.29)
Using the semi-analytical approach, the same evaluation yields
AV = 4.931949452024911 km//s, (3.30)

matching a relative error of 0.025%.
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3.5 Quadratic polynomial bounder

As already pointed out, the Linear Dominated Bounder (LDB) has been used
to estimate the range of the constraint functions over each box in the pruning
processes of the previous examples. The LDB algorithm was introduced by
Berz and Makino [26] in the framework of Taylor Models, which can be
considered as the result of a joining process between differential algebraic
techniques and interval analysis [29], aimed at performing computer—assisted
validated computations (see chapter 6). Without loss of generality, suppose
a polynomial of one variable has to be bounded within an interval /. LDB is
based on the observation that, if d is the width of the domain interval, then
the widths of the I* are expected to scale as

width(I*) ~ d". (3.31)

Hence, the dominating part of the total bounds of a polynomial are expected
to come from the linear part. A rigorous enclosure of the range is then
obtained by suitably derived methods to bound higher order parts.

However, a careful analysis of the pruning process in MGA transfers has
shown that polynomial bounding based on LDB is not as effective as desired.
The reason of such behavior is schematically described in Figure 3.42. Within
the pruning process, suppose a box [X] can be pruned away if

r%%}nf > fcut()ff7 (332)

where f is the constraint function under analysis, and feuopf is its maxi-
mum allowed value. The validated LDB uses the linear part of the Taylor
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expansion of f around a reference point to get rigorous bounds of the Taylor
expansion. Unfortunately, due to accuracy problems on the bounding process
of nonlinear terms, the resulting interval enclosure overestimates the exact
range. If LDB were used in the example of Figure 3.42, the box [X] would
not be pruned away, even if evidently satisfying inequality (3.32). This over-
estimation problem leads to ineffective pruning processes, and more boxes
remain after pruning than expected from classical GASP results.

In order to overcome the previous difficulty, a non—validated quadratic
bounder has been implemented, which uses the quadratic part of the Tay-
lor expansion to get non—validated interval enclosures of the range of f over
[X]. The process is illustrated in Figure 3.43. Second order information are
added to the previous analysis. If the resulting quadratic polynomial turns
out to be positive defined, its minimum is easily estimated by locating the
zero-gradient point, and checking its inclusion within [X]. Only linear infor-
mation are kept to estimate the minimum in case of lack of positive defini-
tion properties. In the example of Figure 3.43, the introduced non—validated
bounder would correctly prune away the box. An evident drawback is that,
in contrast to the validated LDB, the non—validated quadratic bounder could
underestimate the exact interval enclosure. However, an extensive test phase
confirmed the validity of the introduced approximations: using the resulting
DA-based GASP algorithm, the best solutions available in literature for ev-
ery test case reported in section 3.6 turn out to lie in the boxes remaining
after pruning. This result is confirmed in Figure 3.44 and Figure 3.45, where
the performances of GASP-DA are illustrated for the Earth—Mars transfer:
the remaining boxes accurately enclose the pruned search space.

3.6 Test cases

In this section, significant test cases are addressed to properly assess the
performances of the resulting DA-based GASP algorithm. Before reporting
the results of the test phase, section 3.6.1 describes the philosophy adopted
for the optimization process following the GASP-DA pruning process, which
is evidently necessary to serve the purpose of optimizing the overall AV. Test
cases are then reported, ordered by increasing complexity. In particular,
relatively simple planet-to-planet transfers are addressed in sections from
3.6.2 to 3.6.4. MGA transfers involving three (sections 3.6.5 and 3.6.6), and
four (section 3.6.7) planets follow. Finally, a Cassini-like transfer is optimized
in section 3.6.8. The structure of each transfer is fixed and specified a priori
in all test cases, i.e. the planets sequence of each transfer is fixed, thus not
included in the set of design variables.
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Figure 3.44: Performances of the Figure 3.45: Performances of the
non—validated quadratic bounder on non-validated quadratic bounder:
the Earth-Mars transfer problem. detail of Figure 3.44.

For each test, the problem is first defined. The search space isidentified by
lower and upper bounds on each variable. Referring to the box-wise approach
of GASP-DA, the size of the sampling box corresponding to each variable
is reported. The cutoff values set for the departure and arrival AV, as well
as for the corrective AV at each gravity assist are indicated. Pertaining
instead the minimum allowed pericenter radii for the powered gravity assist
maneuvers, a common philosophy has been adopted for all planets: given
the mean radius of the generic planet P, Rp, the corresponding minimum
allowed pericenter radius is set to 1.05 Rp.

Thus, the results of the pruning process are reported in terms of the total
number of boxes, the number of feasible boxes remaining after pruning, and
the CPU time required by the pruning process. It is worth observing that the
total number of boxes is meant to give an idea on the dimension of the search
space, and it is different from the number of processed boxes. The computa-
tional time is relative to a PC, 1.9 GHz CPU, 512 Mb RAM. Second order
expansions are used in all test cases. As far as the subsequent optimization
process is concerned, the best identified AV is reported, together with a plot
of the corresponding optimal transfer. The values of the minimum pericenter
radii considered for the GA throughout the report are given in Table 3.2.

Table 3.2: Minimum pericenter radii.

\% E M J S
roe [km]  6353.55 6689.55 355845 73406.55 61143.36
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3.6.1 The optimization process

The outcome of the pruning process carried out by GASP-DA is a list of
boxes, all fulfilling the requirement that a portion of them at least satisfies the
feasibility conditions related to the constraining AV values and the minimum
allowed pericenter values. An optimization process is then necessary to locate
the minimum of the objective function, which is the purpose of the original
optimization problem. This section is dedicated to the description of the
philosophy adopted for this optimization phase.

Two approaches have been studied. The first approach is based on the
use of the validated global optimizer COSY-GO, that is a branch-and-bound
optimization algorithm, which takes advantage of Taylor models to bound
the objective function value over the processed boxes [15]. Further details
on COSY-GO can be found in chapter 6. Unfortunately, some general draw-
backs can be identified which led to the decision of avoiding its use. First of
all, the current version of COSY-GO can not manage constraints explicitly,
which forces to either implement tailored techniques to handle constraints or
to add them to the objective function as penalty terms. Moreover, due to
the lack of the embedded possibility of exploiting the cascade structure of
the MGA transfer problem, the computational time exponentially increases
with the dimensionality.

The previous considerations have been of main influence for the decision
of utilizing other approaches. In particular, multiple runs of a local optimizer
have been exploited. The philosophy is based on the following steps:

1. The non-validated bounding process described in section 3.5 returns
estimates of the minimum of the objective function, including its loca-
tion, within each box.

2. The boxes are sorted based on the minimum objective function values
estimated in step 1.

3. A certain number of boxes are suitable selected.

4. Starting from the estimated location of the minimum, a local optimiza-
tion run is performed within each selected box.

The introduced optimization philosophy worths some comments. As al-
ready anticipated in the previous sections, different models and methods for
the constraint and objective functions evaluation are implemented in the two
main phases of the previous algorithm, i.e. search space pruning and total AV
optimization. In particular, the planar Solar System model, and the semi—
analytical approaches to the solution of the implicit equations are used within
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Figure 3.46: Heuristics for box selection.

the search space pruning phase only. This decision relies on the conserva-
tive hypothesis pertaining the planetary model depicted in section 3.2.2, and
on the observation that the semi-analytical approaches deliver sufficiently
accurate solutions of the implicit equations. The previous approximations
are all abandoned in the subsequent optimization process of step 4, where
the actual three-dimensional Solar System model, and the iterative Newton’s
method are used to evaluate the planetary ephemerides and to compute the
solutions of the implicit equations.

Moreover, the boxes selection phase (step 3) is based on the following
heuristics. Referring to Figure 3.46, suppose the overall objective function
range is available, which is computed on all the minima identified within
each box in step 1. The interval corresponding to 5% of the overall range is
evaluated. The boxes whose estimated local minimum belongs to this interval
are selected for the subsequent analyses. The 5% value is purely based on
the experience gained during the extensive test phases. The parameter is
anyway kept settable by the user.

The local optimization processes involved in step 4 are carried out within
each box. This means that the identified local minima are interior to the fea-
sible boxes, as well as the finally estimated global minimum. Consequently,
if a minimum is identified to coincide with the best known solution available
in literature, this turns out to lie in the boxes remaining after the prun-
ing process based on GASP-DA. The local optimization processes are per-
formed using the Matlab function “fmincon”, which implements a sequential
quadratic programming algorithm. No particular motivations underlie the
selection of fmincon, which was mainly driven by the availability of interface
tools between COSY-INFINITY and Matlab.
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3.6.2

EM

Table 3.3: Search space and best identified solution for the EM transfer.

planet | variable | lower bound | upper bound | size | cutoff (10) | solution
[days] [days] [days] | [km/s] [days]

E Ty 1000 6000 50 ) 3573.188

M tem 100 600 50 ) 324.047

The first test case is the Earth-Mars transfer. The search space is defined
in Table 3.3. It is worth observing that bounds on the departure epoch from
Earth, Tk, and on the transfer time from Earth to Mars, tgy, are given.
Consequently, the search space definition is made within the relative times
formulation. However, as stated in section 3.3, the pruning processes are
carried out in the absolute times formulation. This observation holds for
all the following test cases. The box size along each epoch is indicated in
the fifth column. The cutoff values for the maximum allowed departure and
arrival AV are reported in the last column. A further constraint is imposed
to the maximum allowed overall AV, which is reported within round brackets
on the head row.

The main results pertaining the performances of GASP-DA are summa-

Figure 3.47: Trajectory of the best identified EM transfer.
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rized in the following:

e Total number of boxes: 1000

e Feasible boxes: 64 (6.4%)

e CPU time: 0.220 s

e Best identified AV: 5.6673 km/s

The reported value of the best identified AV refers to the results of the
optimization process described in section 3.6.1, which follows the pruning
process of GASP-DA. The last column of Table 3.3 lists the values of the
design variables corresponding to the best identified solution, whereas Figure
3.47 reports a two—dimensional plot of the related trajectory.

3.6.3

EV

Table 3.4: Search space and best identified solution for the EV transfer.

planet | variable | lower bound | upper bound | size | cutoff (10) | solution
[days] [days] [days] | [km/s] [days]

E Tg 1000 6000 50 5! 2706.421

\Y tey 100 500 50 ) 151.754

A further planet-to-planet transfer test case is here analyzed, selecting
Venus as the arrival planet. Similarly to the previous case, the search space
and the main parameters are defined in Table 3.4. The cutoff values for the
maximum allowed departure and arrival AV are reported in the last column,
and a further constraint of 10 km/s is added to the overall AV.

The main results pertaining the performances of GASP-DA are summa-
rized in the following:

Total number of boxes: 800

Feasible boxes: 78 (9.7%)

e CPU time: 0.492 s

Best identified AV: 6.0638 km/s

Figure 3.48 reports a two—dimensional plot of the best identified trajectory,
whose solution vector is stated in the last column of Table 3.4.
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3.6.4

=
® 10

Figure 3.48: Trajectory of the best identified EV transfer.

EJ

Table 3.5: Search space and best identified solution for the EJ transfer.

planet | variable | lower bound | upper bound | size | cutoff (16) | solution
[days] [days] [days] | [km/s] [days]

E Tp 1000 10000 50 8 6198.093

J try 100 5000 100 8 1097.004

A last planet-to-planet transfer test case is here addressed. Jupiter is
now the arrival planet, and the search space, together with the main algo-
rithm settings, are defined in Table 3.5. A much larger launch window is
considered in this case to better highlight the performances of the algorithm
in terms of computational time, through comparison with the previous test
cases. It is worth observing that a larger box size is used for T;: the greater
orbital period and the slower dynamics associated to the outer regions of the
Solar System allows the user to select a wider sampling interval on the corre-
sponding design variables, without significant loss of accuracy. A maximum
allowed overall AV of 16 km/s is used as overall cutoff value.

Again, the main results pertaining the performances of GASP-DA are
summarized in the following:
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Figure 3.49: Trajectory of the best identified EJ transfer.

e Total number of boxes: 8820

e Feasible boxes: 46 (1.0%)

e CPU time: 2.116 s

e Best identified AV: 14.4197 km/s

The best solution found is identified by the values of the design variables
reported in Table 3.5. Figure 3.49 illustrates a two—dimensional plot of the
corresponding trajectory.

3.6.5

EVM

Table 3.6: Search space and best identified solution for the EVM transfer.

planet | variable | lower bound | upper bound | size | cutoff (12) | solution
[days] [days] [days] | [km/s] [days]

E Tk 1000 6000 50 5 5611.480

\Y tey 100 500 50 2 157.603

M tv 100 1000 50 5 255.596
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The study of actual MGA transfer starts from this section. In particu-
lar, one planet is added to the planets sequence, where a powered gravity
assist maneuver is performed. In particular, an Earth—Venus—Mars transfer
is investigated. The search space is defined in Table 3.6. Whereas the cutoff
values at Earth and Mars are still related to the departure and arrival AV,
the cutoff value of 2 km/s at Venus now refers to the maximum allowed cor-
rective AV at the pericenter of the corresponding hyperbolic trajectory, as
provided by the powered gravity assist model.

The main performance parameters are reported in the following, whereas
the last column of Table 3.6 reports the optimal solution identified at the
end of the pruning and optimization processes. A two-dimensional plot of
the corresponding trajectory can be found in Figure 3.50.

e Total number of boxes: 14400

e Feasible boxes: 165 (1.1%)

e CPU time: 1.8321 s

e Best identified AV: 8.5226 km/s

Figure 3.50: Trajectory of the best identified EVM transfer.

Although the total number of boxes is greater than in the previous test case,
the required CPU time for the search space pruning turns out to be lower.
This might be deemed affecting the correctness of the results. However, as



56 GASP-DA: Analysis and Implementation

already pointed out, the reader must notice that the total number of boxes
does not coincide with the number of boxes actually processed by GASP-DA,
thanks to forward and backward constraining of GASP scheme [21].

3.6.6 EMJ

Table 3.7: Search space and best identified solution for the EMJ transfer.

planet | variable | lower bound | upper bound | size | cutoff (20) | solution
[days] [days] [days] | [km/s] [days]

E Ty 1000 6000 50 10 3543.787

M tEMm 100 1200 50 ) 1121.130

J targ 100 2000 100 10 1109.307

A further MGA transfer involving three planets is investigated in this
section. In particular, after departure from Earth, a powered gravity assist
is performed at Mars before the arrival at Jupiter. The search space of
the resulting Earth—-Mars—Jupiter transfer is defined in Table 3.7. Cutoft
values of 10, 5, and 10 km/s respectively are used at each planet, whereas a
maximum value of 20 km/s constraints the overall AV.

y [k]

X 'IDQ
Figure 3.51: Trajectory of the best identified EMJ transfer.

The performances of GASP-DA are analyzed in the following:
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e Total number of boxes: 41800

e Feasible boxes: 329 (0.7%)

e CPU time: 2.640 s

e Best identified AV: 13.4165 km/s

Figure 3.51 plots the trajectory corresponding to the lowest AV found, whose
solution vector is reported in Table 3.7.

3.6.7 EVME

Table 3.8: Search space and best identified solution for the EVME transfer.

planet | variable | lower bound | upper bound | size | cutoff (15) | solution
[days] [days] [days] | [km/s] [days]

E Tg 3000 4000 50 6 3985.096

\Y tepy 25 525 50 2 160.500

M tvar 20 520 50 2 168.941

E tue 25 525 50 6 301.615

Two gravity assists are here introduced for an Earth—Venus-Mars—FEarth
transfer. Four planets are then involved, so leading to a four-dimensional
optimization problem. The search space of this EVME transfer is defined in
Table 3.8. A maximum value of 15 km/s is allowed for the overall AV,

The main results pertaining the performances of GASP-DA are summa-
rized in the following, whereas Figure 3.52 reports a two-dimensional plot
of the trajectory corresponding to the best identified solution. The related
solution vector is supplied in Table 3.8.

e Total number of boxes: 20000

e Feasible boxes: 26 (0.1%)

e CPU time: 0.2 s

e Best identified AV: 12.4431 km/s
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Figure 3.52: Trajectory of the best identified EVME transfer.

3.6.8 EVVEJS

This section is devoted to a complex MGA transfer problem, which has been
already analyzed in the past [21, 16]. The arrival planet Saturn is reached
after four gravity assists. Thus, the overall transfer involves six planets, so
leading to a six-dimensional optimization problem. The sequence is fixed to
Earth—Venus—Venus—Earth—Jupiter—Saturn. The previous sequence can be
clearly related to the sequence of the Cassini mission, except no deep space
maneuvers are allowed, whose introduction will be considered in the next
chapter. Before presenting the results for this test case, some notes must
be reported about a further necessary expedient which had to be added in
case of MGA transfers where resonances might play an important role in the
optimization, as in the case of the EVVEJS transfer.

As already pointed out in section 3.2, the discontinuity problem has been
solved by adopting a planar planetary model. This expedient eliminates the
discontinuities related to the transition from the short—way to the long—way
solution of the Lambert’s problem. Nevertheless, it is not able to solve the
same problem for the related transition from the long—way to the “short way”
solution. Consider the Venus—Venus arc of an EVVEJS transfer. Figure 3.53
shows that, when the angle between the first and second Venus encounter is
close but less than 27, the long way solution is selected. However, considering
the same transfer time, the features of the resulting transfer suddenly change
just after passing the angle 27, which discriminates between the short—way
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Figure 3.53: Venus-Venus arc: long— Figure 3.54:  Venus-Venus arc:
way to short-way solution. multi-revolution solution.

and the long—way solutions. The occurrence of this discontinuity is particu-
larly undesirable in such kind of arcs, where resonance conditions are known
to improve the overall transfer performances. The resonance occurs when the
positions of the first and second planet encounter coincide. Consequently, if
Tp indicates the orbital period of planet P, the transfer time associated to
the connecting arc must satisfy

tyv =r 1y, (3.33)

where r is a positive integer number, r > 2. The presence of the previous
discontinuity strongly affects the performances of the pruning algorithm: as
the center of the box is used to discriminate between the two Lambert’s
problem solutions, boxes containing resonance situations will turn out to be
obviously pruned away if the center of the box, which is the reference point
for the Taylor expansions, corresponds to the short—way solution of Figure
3.53.

An expedient is used to overcome the previous difficulties, which is based
on the observation that, in a planet-to-planet transfer involving only one
planet, the discontinuity disappears if multi-revolution solutions are allowed
(see Figure 3.54). In particular, given a box to be processed, is the enclosed
transfer times include the resonance condition (3.33), and the enclosed angles
between the first and second encounter include the resonance angle 2m, the
multi-revolution solution is allowed. In this manner, the EVVEJS test case
can be effectively managed by GASP-DA, as illustrated in the following test.
The search space for the corresponding optimization problem is set as defined
in Table 3.9. A maximum value of 12 km/s is used for the overall AV.

The main results pertaining the performances of GASP-DA are summa-
rized in the following:
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Table 3.9: Search space and best identified solution for the EVVEJS transfer.

planet | variable | lower bound | upper bound | size | cutoff (12) | solution
[days] [days| [days] [km/s] [days]

E Tr -1000 0 50 4 -790.605
A% teyv 10 410 25 2 159.962
\Y tyy 100 500 25 2 449.386
E tve 10 410 25 2 54.171

J tey 400 2000 200 2 1029.979

S tis 1000 6000 200 6 4560.625

Figure 3.55: Trajectory of the best
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identified EVVEJS transfer.

e Total number of boxes: 32768000

e Feasible boxes: 1085 (0.003%)

e CPU time: 1.93 s

e Best identified AV: 4.9357 km/s

Figure 3.56: EVVEJS transfer: de-
tail of Figure 3.55.

Note that the best identified AV refers to the final insertion of the spacecraft
into an orbit around Saturn of eccentricity 0.98 and periapsis 108950 km,
as considered in [21]. Figure 3.55 reports a two-dimensional plot of the
trajectory corresponding to the best identified solution, whose solution vector
is listed in Table 3.9. The identified solution turns out to be characterized
by an objective function value which is slightly higher than the known best
solution in literature [32]. Further analyses are necessary to identify the
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reason of such discrepancy, which is deemed to be related to differences on
the minimum allowed pericenter radii at each gravity assist.

3.7 Final remarks

The introduction of DA techniques into GASP algorithm has been addressed
in this chapter. The main idea was dealing with Taylor expansions of the
constraint and objective functions over boxes that sample the search space,
instead of handling point—wise evaluations as performed in the original GASP
algorithm. This turned out to pose some significant challenges. First of
all, the expansion of the solution of parametric implicit equations had to
be achieved. Moreover, proper modeling decisions had to be taken, due
to the presence of discontinuities on the constraint and objective functions.
The resulting GASP-DA algorithm turned out to perform considerably well
in typical test cases. This result is also the outcome of further important
arguments, which led to the implementation of semi—analytical approaches to
solve the implicit equations involved in the constraint and objective function
evaluation, and to the development of a non-validated quadratic bounder.
However, the planets sequence is kept fixed and specified a priori, which
represents a key point for the future development of an effective MGA transfer
optimizer.
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Chapter 4

Introduction of DSM in
GASP-DA

The GASP-DA algorithm, extensively discussed in the previous chapter, is
now modified to manage DSM. These maneuvers are usually carried out to
improve the performances of the transfer trajectories in terms of total cost.
From the trajectory optimization standpoint, each DSM involves additional
degrees of freedom that widen the search space and increase the chances of
finding better global optima than those associated with pure MGA trajecto-
ries. The mathematical formulation of this new problem is not unique, and
the final result is strongly affected by the problem transcription, especially
when working in a DA frame. In this chapter we consider two different for-
mulations of the MGA-DSM problem. We choose the strategy that better
fits the GASP-DA algorithm already developed. In particular, we implement
the GASP-DSM-DA algorithm that prunes the search space associated to
the DSM variables beside that associated to the MGA ones (epochs).

In section 4.1 we make some preliminary considerations and point out
the problems associated to the DSM introduction. Two different strategies
for the problem formulation are deeply analyzed in sections 4.2 and 4.3.
In particular, in both frameworks, the dependence of the functions on the
problem variables is studied for both a planet-to-planet and a MGA case.
The strategy that better fits the DA implementation is introduced in GASP-
DA to produce the GASP-DSM-DA algorithm (section 4.4). This algorithm
is tested for the solution of some sample cases discussed in section 4.5. Final
considerations are made in section 4.6.



64 Introduction of DSM in GASP-DA

4.1 Preliminary Considerations

In a MGA problem, the transfer trajectory is made up by a number of Lam-
bert’s arcs linked together in proximity of the planets. In this framework,
the objective function evaluation consists in the solution of a set of Lam-
bert’s problems with the positions of two consecutive planets as inputs. This
information can be extracted once the epochs of the planets encounters are
specified, and therefore the decision vector of a MGA problem consists in a
collection of epochs.

In a MGA-DSM problem, the objective function evaluation consists in
the solution of several Lambert’s problems (between two consecutive planets
or, depending on the problem structure, between a planet and a maneuver
point, and vice versa).The location of the maneuver points has to be specified
by appending new variables to the decision vector. It can be easily shown
that, for each DSM introduced, the minimum number of additional variables
is four in the 3D case and three in the 2D case. For the same reasons
discussed in the previous chapter, in this study, the search space pruning of
MGA-DSM transfers is carried out in the 2D space, whereas the subsequent
optimization deals with the full 3D space. This means that, letting np and np
be the number of planets and the number of DSM of a MGA-DSM transfer,
respectively, the decision vector for the search space pruning, in our case, is
made up by np + 3np variables.

One of the purposes of this study is the implementation and the assess-
ment of the search space pruning (of both MGA and MGA-DSM problems)
exploiting the DA formalism. In particular, the pruning process relies on in-
equality constraints, as the magnitude of the Av maneuvers and the closest
distance to a planet, usually expressed as nonlinear functions of the deci-
sion vector. Analogously to the MGA case, the pruning process of MGA-
DSM problems consists in: 1) representing these nonlinear functions, over
appropriate subsets (boxes) of the search space, as Taylor polynomials of
the decision variables; 2) bounding these functions using suitable bounders;
3) pruning away unfeasible boxes from the search space. Differently from a
point-wise approach, the whole procedure is based on the reliability of the
bounding process and, in order to efficiently prune the search space, working
with smooth functions of as few variables as possible is crucial. This means
that, in specifying the DSM point, different strategies generate functions hav-
ing different dependencies from the decision variables, and so the outcome of
the pruning process, in a DA frame, is different. This is the key that has to
be taken into account for the strategy selection.

Another consideration concerns the increased computational burden when
moving from the MGA to the MGA-DSM problem. This is not only related
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Figure 4.1: A planet-to-planet transfer.

to the increased dimension of the search space (from np to np + 3np), but
rather it is an intrinsic consequence of representing a function with its Taylor
expansion. The number of monomials needed to represent a function of v
variables up to the order n is NM = (n+wv)!/(nlv!). This means that, even if
the order is kept constant, the number of monomials necessary to deal with
a MGA-DSM problem increases with factorial law if compared to a simple
MGA problem. These monomials should be stored along the entire pruning
process, and consequently the 3np additional variables strongly affect the
algorithm performances. In particular, the time for the algorithm execution
increases since a larger amount of memory has to be allocated and a greater
number of operations is required.

The bottom line is that, in general, the complexity of a MGA-DSM prob-
lem increases if compared to a standard MGA problem. This complexity can
be circumscribed by carefully selecting the strategy for the representation of
the maneuver point. In particular, it is important to preserve the idea of the
GASP algorithm: subdivide the problem into a cascade of subproblems and
exploit the cut-off values to prune away unfeasible zones.

Let us briefly recall the statement of a planet-to-planet problem (Figure
4.1). In this simple problem, the transfer from P; to P, is considered. The
two epochs, departure and arrival, are denoted with T} and T5, respectively.
The decision vector is then x = [T7,T5]. The objective function is evaluated
by solving one Lambert’s problem. The pruning process consists in finding
the feasible subset of the search space, X, such that

Avy(x7) < Av™T Auy(x7) < AvP™, YxT € X (4.1)

The size of the departure and arrival maneuvers is denoted by Awv; and Aw,,
respectively; the two corresponding cut-off values are Av*** and AvJ***.
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4.2 Forward Propagation Strategy

In this section we show the first devised strategy for the formulation of the
MGA-DSM problem. In the forward propagation method, the location of
the maneuver point is a function of all the variables involved in transfer up
to the point considered. As it will be shown, this procedure intrinsically
exploits some problem constraints but gives rise to functions depending on
many number of variables. We show this technique, and the associated set
of 3np additional variables, by means of two examples: a planet-to-planet
transfer (with one DSM) and a MGA transfer (three planets and two DSM).

4.2.1 Planet-to-Planet Case

Let us consider the problem illustrated in Figure 4.2. A deep space maneuver,
located at the point D, is performed in the transfer between the two planets
P, and P,. In order to specify the maneuver point, we introduce two angles

a — flight-path angle: is the angle between the velocity of P;, v, and the
vector Avy;

0 — incremental anomaly: is the anomaly of the point D relative to P;.

The departure velocity, v/, can be computed once both o and Awv are assigned,
i.e. v/ = v/(vy,a,Avy). The location of D can be determined by forward
propagating, using Lagrangian coefficients [2], the new initial condition y} =
{ry,v{}T. The propagation is carried out until the incremental anomaly of
D is equal to 6. The position of D, indicated with rp, depends on

'p = rD(Th «, 97 AUI)'

In this frame it is natural to assume a decision vector made up by x =
(11, T5, o, 0, Avq]; the objective function evaluation requires one propagation
(Pi—D arc) and the solution of one Lambert’s problem (D—-P, arc). The
problem consists in finding X such that, Vx* € X, we have

Avy(x*) < A", Avp(x*) < Avp®,  Awvy(x") < Avd™*®, (4.2)

where Avp is the size of the DSM and Avj** is its maximum allowed value.
It is not difficult to derive the explicit dependencies of the functions in Eq.
(4.2) on the problem variables

Avl = A’Ul,
Avp = Avp(Th, Ty, a, 6, Avy), (4.3)
AUQ = A’UQ(Tl,TQ,OZ,Q, A’(Jl).
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Figure 4.2: Forward propagation method: the planet-to-planet case.

Even in this simple case (np = 2, np = 1), the last two functions, Avp and
Awvy, depends on all the problem variable (np + 3np). Finally, it is worth
noting that this strategy intrinsically exploits the first inequality constraint

in (4.2) since Av; is a problem variable. Assuming Av; € [0, Av]"*], the

respect of Av; < Av]*** is automatic.

4.2.2 MGA Case

As illustrated in Figure 4.3, we consider a MGA case with three planets (P,
Py, P3) and two maneuvers (D and D). In this case the decision vector is

X = [Tl, TQ, Tg, a, 91, A’Ul, 92, ’l“p, AUQ],

where the last two variables, consistent with the problem structure, are taken
in agreement with the principles of the forward propagation

rp, — pericenter radius: associated to the hyperbola of the P, gravity assist;

Avy — gravity assist burn: is the size of the maneuver carried out, parallel
to the velocity, at the hyperbola pericenter.

The pruning problem consists in finding & such that, Vx* € X', we have
Avy(x*) < Ao Avpy (x*) < AvB* ) Avg(x*) < Ao

: 4.4
Buy() € A, Avpnlo) < A, myG0 Z g,

where 7";’”” is a prescribed distance grater than P’s radius. The last con-

straint is considered to have a safe P, gravity assist.
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Figure 4.3: Forward propagation method: the MGA case.

Analogously to the previous case, we are interested in assessing the de-
pendence of the Dy and D, position vectors, rp; and rpo, on the problem
variables

'py = I'D1<T17 a, 0y, AUI)v

'p2 = rD2(T17T27a7017AU17‘927Tp7AU2>-

It can be shown that the functions to bound are

A’Ul = A’Ul,
Avpy = Avp(Th, Ty, o, 61, Avy),
A’Ug = AUQ,
(4.5)
T, = T

A'UDQ = A'UDQ(TlaTQaT?naaelaAUbeQarp)AUQ)?
A'U?) = A’U?)(TlaTQ)T?naaelaAUbeQarp)AUZ)-

The objective function evaluation requires, in this case, two propagations
(Py—D; and P,—D5 arcs) and the solution of two Lambert’s problems (D;—FP;
and Dy—Pj arcs). Three of the six constraints in (4.5) are again automatically
respected thanks to an appropriate choice of the problem variables.
Nevertheless wte note that, as in the simple planet-to-planet case, the
last two functions depend on all the np 4+ 3np variables. In general, with
the forward propagation strategy, the more planets and DSM are involved in
the transfer, the more complicated are the functions to bound. This feature
does not depend on where the maneuver is located. It holds independently
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from the problem structure. This strategy is not appropriate in a DA envi-
ronment because bounding highly nonlinear functions of many variables is
very difficult and may easily lead to incorrect results. With this strategy the
problem complexity blows-up.

It is necessary to reformulate the MGA-DSM problem in suitable coordi-
nates (for the representation of the rp;) such that the dependency chain in
Eq. (4.5) is broken. This reformulation is analogous to the passage from the
time-of-flight variables to the epochs in the transcription of the GASP-DA
algorithm (see Chapter 3). The aim is to reduce the problem complexity.

4.3 Absolute Variables Strategy

In this section we show the absolute variables strategy. The idea of this
method is to represent the maneuver points, D;, as direct functions of the
problem variables avoiding, in this way, any forward propagation. With this
approach the whole transfer trajectory is broken into a series of Lambert’s
arcs. It can be shown that the number of Lambert’s problems to solve is np+
np — 1, therefore the computational charge increases a little bit if compared
to the forward propagation strategy. We will show that this small drawback
is worth the problem simplification. The absolute variables strategy is again
illustrated by means of a planet-to-planet and a MGA transfers.

4.3.1 Planet-to-Planet Case

The planet-to-planet case, in absolute variables, is shown in Figure 4.4. Two
new variables are introduced

rp — maneuver radius: is the distance between D and the Sun;
tp — partial tof: is the time-of-flight associated to the P,—D arc.

It is straightforward that the latter is subject to the constraint tp < Ty —T7.
The location of D can be obtained by rotating r; = r1(77) of the angle § and
by taking, on this line, a point with distance rp from the origin. With this
strategy the following dependency holds

rp =1p(T1,7p,0).
The decision vector is made up by x = [T, 15, rp,0,tp] and the objective

function evaluation requires the solution of two Lambert’s problems. The
nonlinear constraints (4.2) are valid for this case as well. As already pointed
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Figure 4.4: Absolute variables method: the planet-to-planet case.

out, we are interested in the dependencies of the functions to bound on the
problem variables. In this case we have

AUI == AUI(T17TD797tD>7
Avp = Avp(Ty, Ty, 7p,0,tp), (4.6)
Avy = Avy(T,Ty,7p,0,tp).

It seems, apparently, that this strategy does not simplify the problem
as relations (4.6) are even more complicated than (4.3). (The first of (4.6)
depends on four variables; this function was trivial in (4.3).) The last two
functions still depend on np + 3np variables. The usefulness of the absolute
variables approach can be appreciated in the following case.

4.3.2 MGA Case

The MGA problem in absolute variables is illustrated in Figure 4.5. In
analogy to the MGA problem in the forward propagation strategy, this
problem has nine optimization variables. The decision vector indeed is
X = [Tl, TQ, Tg, D1, 91, tDla D2, 92, tDQ]. The last three Variables, D2, 92,
tpa2, have the same meaning of those introduced in the previous section. The
inequality for tp; still holds, whereas tpy is subject to tpy < T3 — T5. The
pruning problem is analogous to the that stated by the conditions (4.4). The
objective function evaluation requires the solution of four Lambert’s prob-
lems.
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Figure 4.5: Absolute variables method: the MGA case.

The point is that the variables useful to specify Dy are counted from P,
and so the two position vectors rp; and rps have the following dependencies

rpr = rpi(Th,7p1,0h),

rpy = Tpa(Ts, D2, 02).
It is worth comparing these relations to those obtained in the MGA prob-
lem with the forward propagation. In this case we have functions of three

variables; in the previous case we came up with functions of four and eight
variables. The functions to bound are

Avy = Av(Ty,7p1,01,tp1),
Avpy = Avpi(T1,Ts,7p1,01,tp1),
Avy = Avy(Ty, Ty, 7rp1,01,tp1,7D2, 02, tD2),
rp = rp(Th,T%,7p1,01,tp1,7D2, 02, tD2),
Avpy = Avps(Ts,7p2,02,tp2),
Avs = Avz(Ty, T3, 7p2, 02, tp2).
We now compare relations (4.5) to (4.7). First of all, we note that the
last two functions in (4.7) depend on four and five variables, respectively,
while the last two functions in (4.5) depend on nine variables. This occurs
because, in this case, the variables describing Dy (rps, 0o, tps) are taken
from P,. The only critical functions in this case are Avy and 7, (quantities

at the P, gravity assist). With the forward propagation method, Avy and r,
are problem variables, and therefore there are no dependencies at all (Egs.
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(4.5)). In this case Avy and r, are functions of eight variables. Nevertheless,
this kind of complexity (i.e. functions of 8 variables) occurs only when two
maneuvers are located across a gravity assist. In general, with the absolute
variables method, a function depends at most on 8 variables. In the former
case, the last two functions depend on np + 3np variables, independently
from the problem structure. (For instance, a simple problem with np = 4
and np = 2 produce functions of ten variables.) Finally we observe that with
the absolute variables strategy, even in complicated MGA-DSM problems, a
pure planet-to-planet arc (no DSM) simplifies the problem because it cuts
the variable dependencies in the functions to bound. A pure planet-to-planet
arc depends on two variables (two epochs). The functions defined in the
subsequent arcs do not depend on the variables defining the arcs before the
planet-to-planet one. This is not true in the forward propagation approach.

It is clear now that the absolute variables strategy involves functions
of four and five variables excepting the case when two maneuvers are lo-
cated across a gravity assists (where functions of eight variables arise). This
strategy fits the requirements of working in a DA frame since the produced
functions are easier to bound. The only drawback is the increased number
of Lambert’s problems that have to be solved. (Nevertheles, as shown in
the previous chapter, the analytic approximation reduces the solution of the
Lambert’s problem to a mere function evaluation; in this way, there is no
sensitive growing of the computational charge with the absolute variables
strategy.) It is important pointing out that in this study we have assumed
that no more than one DSM can be performed along each planet-to-planet
transfer.

4.4 Implementation of GASP-DSM-DA

The features of the two analyzed methods are summarized below.

Forward Propagation Method

Some functions depending on np + 3np variables

Solution of np — 1 Lambert’s problems

Advantages: Some cut-off (departure Av, pericenter Av, and pericenter
radius) are intrinsically respected; reduced number of Lambert’s problems.
Drawbacks: Functional dependence on all the problem variables; more com-
plicated relations between the variables and the functions to bound; problem
complexity depending on the problem structure (on “where” the maneuver
is located); problem complexity blowing-up for difficult cases.
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Absolute Variables Method

Functions depending at most on 8 variables

Solution of np +np — 1 Lambert’s problems

Advantages: Functions of at most 8 variables to bound (only in cases where
two maneuvers are located across a gravity assist); maneuver point location
specified with three variables; bounded problem complexity (the complexity
does not blow-up along the transfer); a pure planet-to-planet arc simplifies
the problem and cuts the functional dependencies.

Drawbacks: Increased number of Lambert’s problems; increased search
space (no constraints embedded in the problem formulation).

It is clear that, since the aim of working in a DA frame was having func-
tions of as few variables as possible, the absolute variables strategy has been
introduced in GASP-DA. The inclusion of DSM into this algorithm gives rise
to the GASP-DSM-DA procedure. The pruning part of the algorithm is still
based on a grid sampling on the search space and on representing the func-
tions over boxes with Taylor polynomials. As in the GASP-DA algorithm,
the box-size along each variable is chosen depending on the problem to solve.
This is valid for both the np epochs and for the 3np auxiliary variables useful
to specify the maneuver points. In next sections, we will show the results
found for some sample cases. The amplitudes of the np epochs will be given;
those of the 3np auxiliary variables are here discussed.

Table 4.1 reports both the amplitudes and the bounds for the DSM aux-
iliary variables. We have found that, for the auxiliary variables, amplitudes
like those specified in the table represent a good trade-off between the accu-
racy of the representation and the total number of boxes. The table shows
also the lower and upper bounds for these variables. These bounds are rela-
tive to a maneuver located in the transfer arc between Py and P, (Figure 4.4).
The bounds for # are trivial. The terms r; and ro, 79 > 71, stand for the mean
radii of the P, and P, orbits, respectively. Thus, the maneuver is constrained
to lie into an annular region enclosing the planets’ orbits. (If 71 > 7o, then

Table 4.1: Bounds and box-size for the 3np auxiliary variables.

variable | lower bound | upper bound | amplitude ‘ units ‘
rD 0.97 1.1ry 0.1 AU
0 0 360 10 deg
tp 0 T — 1 50 days
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rp € [r2,71].) When the maneuver is located between two encounters of the
same planet, that is P, = P, (like in EVAVEJ) we set rp € [0.971, 1.1a;.5),
where aq.5 is the semimajor axis of an orbit in 1:2 resonance with the orbit
of P (Venus). We let the partial tof, tp, to vary within ¢p € [0, Ty — T1],
where 77 and T, are the epochs at the P, and P, encounter, respectively.

Analogously to GASP-DA, in the GASP-DSM-DA algorithm a local opti-
mization is performed after the pruning process. If a box is feasible the local
optimization is carried out on a domain enclosing, with a 10% tolerance,
such box. This choice speeds-up the local optimization as the optimizer runs
over small domains. Thus the whole pruning and optimization sequence is
implemented in a deterministic way. It is worth noting that the repeatability
of the results is preserved.

4.5 Test Cases

In the next subsections we show the results found for some sample cases.
First, the classic Earth-Mars transfer, with an intermediate DSM, is discussed
(Section 4.5.1). We show that, compared to the results obtained with GASP-
DA, the DSM introduction improves the performance of the transfers. After
this simple case, four possibilities for a mission to Jupiter are taken into
account (Sections 4.5.2-4.5.5). These cases differ in the structure of the
problem but, in any case, they all deal with a single DSM. In Sections 4.5.6
and 4.5.7 transfers with two DSM are considered. The first is a transfer to
Mars via Venus; the second is an Earth-Venus-Mars-Earth transfer. The last
two cases are devoted to the Cassini-like transfers (with a single maneuver -
Section 4.5.8 - and with two DSM - Section 4.5.9).

The structure of these transfers is fixed and specified a priori. This means
that the position of the maneuvers within the planets sequence is not opti-
mized. In next chapter we show a possible way to both prune the search
space and, at the same time, compute optimum MGA-DSM transfers with
automatic introduction of DSM. (The maneuver is denoted by “d”.) For
each case we define the search space (we give the lower and upper bounds
of the time variables), we give both the total number of boxes and the num-
ber of feasible ones, the computational time, the value of the best objective
function, and, if possible, the best objective function found by GASP-DA.
In addition, we give the time vector of the optimal solution for each case
(last row of the summary table). It should be noted that the total number
of boxes gives an idea on the dimension of the search space; it is not the
number of processed boxes. The computational time is relative to a PC with
2.01 Ghz CPU and 512 Mb RAM.
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4.5.1 EdM

Table 4.2: Time bounds and amplitudes for the EAM transfer.

Tg tEm

MJD 2000 days

L, 1000 200
U, 2000 650
A 50 50

EM 1243.2 606.2

The search space, relative to the time variables only, of the EAM transfer is
shown in Table 4.2. The box amplitude along each time variable is indicated
in the last row. The whole search space takes into account the domain for the
3 additional variables (rp,0,tp) stated in Table 4.1. The GASP-DSM-DA
algorithm solves this problem in 253.2 s. We summarize below some features
of the problem (the velocities are in km/s). The best solution found is shown
in Figure 4.6.

e Problem constraints: Avg < 3, Avg < 3, Avy <3, Avgy < 7
e Total number of boxes = 388800, feasible boxes = 1603 (0.41%)
e Best objective function = 5.632 (2.77 + 2.77 + 0.07)

e Best objective function with GASP-DA = 5.667

x 10°

Figure 4.6: Optimal EdM transfer (the asterisk indicates the DSM).
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4.5.2 EMdJ

Tg teny Ty
MJD 2000 days  days
L, 1000 300 1000
Uy 3000 700 2000
A 50 50 100
EMJ 2804.7 321.9 1161.9

Table 4.3: Time bounds and amplitudes for the EMdJ transfer.

Table 4.3 states the bounds and the interval amplitudes of each time
variable of the EMdJ problem. Table 4.1 should be considered for the DSM
variables. In general, for the gravity assists, the same pericenter constraints
stated in the previous chapter have been used. A purely ballistic Mars gravity
assist can be achieved from the powered model by simply setting Awvy, = 0.
As in the previous problem, the introduction of a DSM improves the objective
function found by GASP-DA. The CPU time is 451 s.

Constraints: Avg <5, Avy <0, Avg <5, Avy <5, Avyyr < 15
Total number of boxes = 8.52¢7, feasible boxes = 323 (3.79e-4%)
Best objective function = 12.481 (3.93 + 0 + 4.16 + 4.39)

Best objective function with GASP-DA = 13.416

-10 -5 0
X [km]

Figure 4.7: Optimal EMdJ transfer.
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4.5.3 EMdMJ

Tg teny  tum Tty

MJD 2000 days days days

Ly 3650 30 330 600
Uy 7300 430 830 2000
A 50 100 100 200

EMMJ 4353.8 371.1 915.8 1129.5

Table 4.4: Time bounds and amplitudes for the EMdMJ transfer.

The time domain for the EMdMJ problem is stated in Table 4.4. In this
case the maneuver radius is search within rp € [0.97y, 1.1ay.2|, where 7,/ is
the mean radius of the Mars’ orbit whereas a;., is the semimajor axis of a
1:2 resonant orbit with Mars’ orbit. This problem is solved in 144.2 s. The
result found with GASP-DA for the same problem is once again improved.

o Avp <4, Avy <0, Avg <3, Avy <0, Avy <7, Avgyy < 12
e Total number of boxes = 9.19¢7, feasible boxes = 717 (7.8e-3%)
e Best objective function = 10.843 (3.18 + 0 + 1.01 + 2.42 4 4.21)

e Best objective function with GASP-DA = 12.864

y [km]
o

Figure 4.8: Optimal EMdMJ transfer.
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4.5.4 EVdVEJ

The five-dimensional time domain for the EVAVEJ problem is described
in Table 4.5. When joint to the domain for the DSM, the search space
results huge and subdivided into a large number of boxes (1el0). Thanks to
the GASP-DSM-DA algorithm, this problem has been solved efficiently in
2770 s. The problem constraints are shown below (Avy < 0 is valid for both
GA).

TE tev  tvv  tve 1355}
MJD 2000 days days days days
Ly 3650 80 80 80 600
U, 7300 430 830 830 2000
A 50 25 25 50 200
EVVEJ 3859.5 119.2 429.6 564.8 1244.3

Table 4.5: Time bounds and amplitudes for the EVAVEJ transfer.

The found global optimal trajectory is illustrated in Figure 4.9.
Avg < 4.5, Avy <0, Avg < 0.5, Avg <0, Avy <7, Avgy < 12

Total number of boxes = 1.85e10, feasible boxes = 3.80e4 (2.06e-4%)
Best objective function = 9.304 (3.04 + 0 + 0.26 + 0 + 0 + 5.99)

Reference solution [31] = 10.503

y [km]
o

x10°

Figure 4.9: Optimal EVAVEJ transfer.
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4.5.5 EVEdEJ

Tg tev  tve  lgEe 325}
MJD 2000 days days days days

Ly 3650 80 80 80 600
U, 7300 430 830 830 2000
A 50 25 50 50 200

EVEEJ 3863.4 128.8 288.4 713.3 1068.2

Table 4.6: Time bounds and amplitudes for the EVEdEJ transfer.

The EVEdEJ problem is stated in Table 4.6 in terms of time variables.
As the previous problem, the EVEdEJ case has a huge search space and a
grid sampling would have been impossible without a pruning algorithm. This
problem has been solved in 2392 s. The main features are listed below.

e Avg <4, Avy <0, Avg <0, Avg <3, Avg <0, Avy <7, Avgy < 12
e Total number of boxes = 9.25€9, feasible boxes = 4.84e4 (5.23e-4%)
e Best objective function = 8.670 (2.84 + 0 + 0 + 0.39 + 0 + 5.42)

e Best objective function with GASP-DA = 10.09, ref. sol. [31] = 8.680

y [km]
o

Figure 4.10: Optimal EVEdEJ transfer.
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4.5.6 EdVdM

TE tev  tvm

MJD 2000 days days

L, 0 50 200

U, 1000 400 1000
A 50 25 o0

EVM 949.4 131.1 765.8

Table 4.7: Time bounds and amplitudes for the EAVdAM transfer.

Two DSM are introduced in the EAVdAM transfer. This is the case where
the two maneuvers lie across a GA. With the absolute variables formulation
implemented in GASP-DSM-DA, the functions at the Venus GA, rp and
Avy, depend on eight variables. Nevertheless, these functions have been
efficiently bounded and the search space has been considerably pruned. The
CPU time is 2324 s. We list here below the main features of the EAVdM
problem.

e Avg <4, Avg <1, Avy <0, Avg <5, Avy < 3, Avgyy < 10

Total number of boxes = 8.70e9, feasible boxes = 1.13e4 (1.24e-4%)

Best objective function = 8.167 (2.89 + 0 + 0 + 4.37 + 0.90)

Best objective function with GASP-DA = 8.522

Figure 4.11: Optimal EAVdM transfer.
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4.5.7 EVdMdE

Tg tev  tvm  tue
MJD 2000 days days days
Ly 3000 25 20 25
Uy 4000 425 420 425
A 50 25 50 50
EVME 3985.0 160.9 172.6 427.8

Table 4.8: Time bounds and amplitudes for the EVAMdE transfer.

The EVAMAE problem is stated in Table 4.8. This is a ten-dimensional
problem with the search space split in approximately 5e10 small boxes over
which the constrained functions are represented. This problem has been
solved in 2456 s; the search space is efficiently pruned (X represents only
the 4e-5% of the whole search space). The main features of this problem are
listed below, and the optimal solution found is represented in Figure 4.12.

e Avg <5, Avy <0, Avg <2, Avy <0, Avg < 4, Avg <5, Avgy < 13

Total number of boxes = 4.97e10, feasible boxes = 2.05e4 (4.0e-5%)

Best objective function with GASP-DA = 12.443

Figure 4.12: Optimal EVAMdE transfer.

Best objective function = 10.931 (5.38 + 0 4+ 0 + 0.97 4 3.64 + 0.93)
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4.5.8 EVdAVEJS

TE tev  tvv  lve  tes  lys
MJD 2000 days days days days days

Ly, -1000 80 200 30 400 800
U, 0 430 500 180 1600 2200
A 50 25 25 50 200 200
EVVEJS -787.0 165.8 427.7 57.7 596.1 2200

Table 4.9: Time bounds and amplitudes for the EVAVEJS transfer.

The problem stated in Table 4.9 represents a Cassini-like transfer with a
DSM between the two Venus gravity assists. Even if this problem is difficult,
the GASP-DSM-DA algorithm is able to solve it in 210 s. This occurs because
the large number of two-dimensional pure planet-to-planet transfers simplify
the whole nine-dimensional problem. We constrained Auv;,; < 13.

o Avg <4, Avy <1, Avg <1, Avy <0, Avg <0, Avy; <0, Avg <5

e Total number of boxes = 3.92e8, feasible boxes = 2281 (1e-3%)
e Best obj. funct. = 8.299 (2.93 + 0.69 + 042 + 0 + 0 + 0 + 4.24)

e Best objective function with GASP-DA = 8.619

y [km]
y [km]

15 i i e =
-0.5 0

x [km] x [km]

(a) EVAVE portion. (b) Whole transfer.

Figure 4.13: Optimal EVAVEJS transfer.
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4.5.9 EVdVEJdS

We have solved another Cassini-like transfer with two DSM: the first one,
as in the previous problem, is located across the two Venus gravity assists;
the second maneuver lies in the Jupiter-Sautrn arc. The time domain is
analogous to that shown in Table 4.9 but for the last time-of-flight that now
is allowed to be t;s € [1600,3000]. Although this is a twelve-dimensional
problem, the GASP-DSM-DA algorithm is able to efficiently prune the so-
lution space as only 1e-6% of the initial domain is feasible (note that the
total number of boxes is 1el2). The ability to sample and prune this huge
domains is due to the planet-to-planet transfers that simplify the problem
and cut the variable dependencies (in the absolute variables formulation).
The CPU time is 2000 s. The main results of this problem are listed below.
The total cost of the transfer is constrained to Awv;,; < 11, whereas both the
maneuvers are constrained to Avg < 1.

e Avg <4, Avy <1, Avg <1, Avy <0, Avg <0, Avy; <0, Avg <5
e Total number of boxes = 1.41el2, feasible boxes = 2.23e4 (1.6e-6%)
e Best obj. funct. = 8.276 (2.78 + 0.89 + 0.38 + 0 + 0 + 0 + 0 + 4.22)

e Best objective function with GASP-DA = 8.619

4.6 Final Remarks

In this chapter we have introduced the DSM into the GASP-DA algorithm.
This process gives rise to the GASP-DSM-DA procedure. We have analyzed
the problem of introducing the DSM in a DA frame. In particular, we have
studied the MGA-DSM transfer formulation with two different strategies.
Since the driving requirement was having functions (to represent by Taylor
series and to bound) of as few variables as possible, we chose an absolute
variables strategy for the representation of the maneuver point. It has been
discussed that, with this strategy, functions of at most eight variables arise
and the problem complexity is bounded (the problem does not blow-up along
the transfer). The worst case occurs only when two consecutive DSM are
located across a GA. The result is that the GA variables (pericenter radius
and Av burn) depended both on eight variables.

The GASP-DSM-DA algorithm has been tested to solve several sample
problems discussed in the second part of the chapter. We have shown that the
developed algorithm is able to solve difficult problems by efficiently pruning
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Figure 4.14: Options for a transfer to Jupiter. Both the optimal MGA
(squares) and MGA-DSM (circles) solutions are shown.

the search space. The local optimization carried out within each feasible box
makes the whole procedure deterministic and gives repeatable results.

The introduction of the DSM deserves a final comment. In Figure 4.14
we have reported, in terms of objective function value, the optimal MGA
and MGA-DSM transfers, obtained with GASP-DA and GASP-DSM-DA,
respectively, for a mission to Jupiter. It is straightforward that different
transfer structures (i.e. different planets sequence) involve different results.
It is worth noting that for the cases represented in Figure 4.14, and generally
for the MGA-DSM transfers, the introduction of DSM improves the optimal
solutions. This means that, in general, the MGA-DSM transfers outperform
the pure MGA ones. We also note from the solved cases that a MGA-DSM
transfer has a total time-of-flight that is longer than the MGA ones. Finally,
the DSM considered in this chapter should not be intended as trajectory
correction maneuvers (i.e. small Av), but rather they are of the order of
1km/s. The practical implementation of this kind of maneuvers for real
missions has not been taken into account.



Chapter 5

Alternative Approach for
MGA-DSM Transfers

An alternative approach to optimize MGA-DSM transfers is presented. This
approach uses the solution set obtained with GASP-DA and by the subse-
quent local optimization as an input for the optimization of interplanetary
transfers including DSM. As the present approach is based only on GASP-
DA, the main drawbacks encountered in DSM space pruning are avoided. As
a consequence, the number of maneuvers inserted and the functional depen-
dencies have a little impact on the problem solution. Figure 5.1 resumes the
algorithmic flow of the proposed approach.

The chapter is organized as follows. The criterion for selecting the solu-
tions of GASP to be modified by the inclusion of DSM is given first. The DSM
modeling and the first guesses generation is then described in detail. Sub-
sequently the overall optimization problem is formulated and the obtained
results are discussed. Some final considerations conclude the chapter.

GASP-DA + Local DS insortion
Optimization (first g uesses
generation)
Solution Set MGA+DSM
Selection Optimization

Figure 5.1: Alternative approach algorithmic flow.
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Figure 5.2: Cassini-like transfer Figure 5.3:  Cassini-like transfer
solution set: “+”generic solution, solution set: “+7generic solution,
“”non-dominated solutions. “”solution with D; < 2.

5.1 Solution Set Selection

As described in Chapter 3, the outcome of GASP-DA and the subsequent
local optimization is a set of solutions. The present approach relies on the
consideration that good MGA solutions can be modified to obtain good first
guesses for the MGA-DSM transfers optimization. Consequently the first
problem that arises is the suitable selection of the solutions.

In Figure 5.2 the solution set obtained for a Cassini-like transfer is plotted,
using the + marker, in the time-of-flight vs. Aw plane. It is clear that a large
number of solutions is characterized by Av values that are higher than the
optimal one, and then useless for our aim. On the other hand, ranking the
solutions using only the Av information is superficial. The tradeoff between
Av and time-of-flight is an important aspect in mission design indeed.

Based on these considerations the solutions are ranked by means of dom-
inance level, using the time-of-flight and the Av as performance indexes.
Figure 5.4 shows the dominance concept for two generic solution x, and z;
and performance indexes f; and f,. Any solution plotted in Figure 5.2 can
be identified by the pair (Awv,t) and its dominance level value D;. A D; =0
characterizes a non-dominated solution, D; = 1 a single dominated solution,
and so forth.

The red dots in Figure 5.2 shows the non-dominated solution set for the
Cassini-like transfer, i.e. all the solution with D; = 0. As the number of
non-dominated solutions could be quite small, and also solutions close to the
Pareto front can yield interesting results, it is decided to choose as candidate
first guesses all the solutions with D; < 2. The blue dots in Figure 5.3 show
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this set for the Cassini-like transfer.

5.2 DSM modeling

The DSM model adopted for the present approach is based on the model
described in Vasile and De Pascale [31] with the only difference that a Av
is allowed at the pericenter of the GA. Such model, detailed below, is more
suitable for the present approach, as the dependency problem described in
Chapter 4 is now irrelevant. In fact, the latter issue arises only when the
problem of DSM space pruning is addressed, whereas here only the GASP is
necessary.

First of all it has to be stressed that a DSM in the first arc after the
launch is not allowed as the feasibility of the departure Awv is already assured
by the cutoff value considered in the GASP phase. The only limitation given
by this choice is a lower flexibility in dealing with resonance orbits with the
departure planet but, on the other hand, a reduction of the optimization
variables is gained. Concluding, a DSM can only be placed on arcs following
a GA, and that’s the case we discuss here. The reader can use Figure 5.5 as
visual aid. Note that arcs without DSM are modeled as described in Chapter
3.

The absolute incoming velocity v~ at the sphere of influence of the planet
preceding the DSM is given by the solution of a Lambert’s problem. The
incoming relative velocity is simply

V=V — U, (5.1)

where v, is the planet’s velocity. The introduction of an auxiliary angle 7 is
then necessary to define the plane of the hyperbolic passage, used to rotate
the relative velocity vector. This angle is necessary as in the linked-conic
approximation the point where the interplanetary trajectories pierces the
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Figure 5.5: DSM model: heliocentric and planetary view.

sphere of influence is not defined, thus the plane where the planetocentric
hyperbolic motion occurs remains undetermined. For a detailed definition of
this angle see Vasile and De Pascale [31].

The first part of the overall rotation angle 6; can be computed, once the
hyperbola pericenter radius r, is chosen, by

e = 142
' f (5.2)

0 = asin(1/ey),

where e; is the eccentricity of the first hyperbolic arc and p the planet’s
gravitational parameter. A corrective Avga aligned with the velocity vector
is allowed at the hyperbola pericenter, thus inserting the spacecraft into a
second coplanar hyperbolic arc. Based on the Avga, the second part of the
rotation angle dy is computed (using the equivalent equation of 5.2) as well
as the relative velocity at the exit of the sphere of influence v} . The latter
velocity vector is easily obtained rotating the vector v__ of an angle 6 = d;+0-
around a vector normal to the orbital plane. The absolute velocity at the
exit of the sphere of influence is simply obtained through

vh =vl + v, (5.3)

The DSM location is obtained by analytically propagating the spacecraft
state for the fraction € of total transfer time ¢. Finally the Avpgys is com-
puted by means of a Lambert’s arc connecting the DSM position vector and
the position vector of the successive planet. Using the described formulation
the inclusion of a DSM requires four additional variables, namely [0, r,, Av, €].
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5.3 First Guess Generation

The next step is to modify the selected MGA solutions by including DSM in
order to generate good first guesses for the MGA-DSM transfer optimization.
For each selected MGA, a MGA-DSM first guess is obtained and optimized.

Any selected trajectory involving np planets is completely defined by np
epochs, and the associated total Awv is given by the sum of the final and
arrival Av and the np — 2 Avgas. Based on these Av each trajectory is
modified to include the DSM. More specifically whenever a Avgy is greater
than a chosen threshold Avg, a DSM is inserted in the subsequent arc of the
trajectory. Thus a high Avga is considered as an index of the DSM utility,
and the DSM are used to reduce, and possibly cancel, all the Avga.

Once the Avg, (one for each GA) are chosen, the structure of each first
guess is determined; this means that the sequence of arcs with and without
DSM is given. It’s worth noting that, as the selected MGA solutions are char-
acterized by different values of Avgya, several different first guess structures
can be obtained for the same transfer at hand.

For each DSM added, the values for the four additional variables [n, r,, Av,€]
must be guessed in order to generate the first guess trajectory. The values of
n and r, are kept equal to those of the homologous MGA trajectories. The
values of the remaining variables are:

AUG A = 0
€ = 0.5. (5.4)
This choice means that in the first guess solutions the DSM are used to cancel
the pericenter burns and the DSM occur at half of each transfer.

5.4 Problem Formulation

Once the solution set selection and the first guesses generation is performed,
the formulation of DSM transfer optimization problem is straightforward.
For a trajectory with np planets and np DSM the np + 4np optimization
variables are np epochs defining the planets configurations and np subsets
(0, 7p, Av, €.

The function to be minimized is the overall Av which includes also the
Avpsy. The nonlinear constraints on pericenter radii are imposed only for
those GA which are not followed by a DSM, whereas for the others they re-
duce to simple box constraints, as r, are optimization variables. The bounds
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on the DSM variables are:

0 < n < 2m
0 < 1/r, < 1)1}
—AU*GA S A’UGA § A'UEA
0.01 < € < 0.99.

(5.5)

Note that 7 is the minimum allowed pericenter altitude which differs from
planet to planet and Avf, is the threshold used to decide whether a DSM
is required.

5.5 Test Cases

In this section some of test cases analyzed in the previous chapter are ad-
dressed. The goal is to enlighten the capability of the method to replicate
the results obtained with the DSM space pruning using only the GA space
pruning. For each transfer a table with the search space definition and the
optimal variable vector (for the departure epoch, transfer times, and €) is
given, whereas the Av values are summarized for all the cases in Table 5.3.
In the transfer definition each capital letter corresponds to a planet (e.g. E
stands for Earth, M for Mars and so forth) and the “d” to a deep space
maneuver. The third column, labeled as Avga_psar, shows the sequence of
Av associated either to gravity assists or deep space maneuvers. For each
gravity assist, the minimum pericenter radius is 1.05 times the radius of the
encountered planet.

5.5.1 EVM

The first test case is an Earth-Venus-Mars transfer. As the transfer includes
only one GA, a single DSM is allowed. Two test cases, labeled as EVM; and

Table 5.1: Time bounds and optimal solution for EVMj.

Tg tepv tvm

MJD 2000 days  days

Ly, 0 100 100
U, 2000 1200 2000

EVM, 1536.7 111.5 1250.7
€=0.55
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Table 5.2: Time bounds and optimal solution for EVM,.

Tg lpy lvm
MJD 2000 days  days
Ly 1000 100 100
Uy 6000 500 1000
EVM, 1150.1 171.3  779.2
e =0.34

EVMs, characterized by two different sets of bounds for the launch windows
and the transfer times are analyzed. This choice allows us to compare the
results with those obtained by Izzo [23] and with the solutions obtained
without DSM, respectively. As it can be seen from Figure 5.6 and Figure 5.7
it is evident that the DSM is used to inject the spacecraft into an orbit close
to the Mars’ one, thus minimizing the final Av. In both cases the effect of
the DSM is to delete the Avga as shown by the third column of Table 5.3.

The optimal Av for the EVM, is about 7.75 km/s which is lower than the
8.15 km/s obtained by Izzo [23]. (It has to be remarked that the difference
could be due to the different minimum pericenter allowed for the Mars gravity
assist). The second transfer shows that the inclusion of a DSM allows a 450
m/s saving with the respect to a GA trasfer.

x 10

y [km]
y [km]

2 -2 -1 0 1 2
x [km] x 108 X [km] X 108

Figure 5.6: EVM; optimal trajec- Figure 5.7: EVM, optimal trajec-
tory. tory.
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Table 5.3: Optimal transfers Av [km/s].

AUDep Avga—_psm Avgyr  Avrpor
EVdM; 3.428 0+ 3.521 0.802  7.752
EVdM, 2.953 0+ 3.904 1.225  8.081
EMdJ 3.930 0 + 4.046 4.418 12.394
EVdMdE 5.465 04 0.705 + 0 + 4.211 0.493 10.874
EMdMdJ 3.260 04+ ~0+ 0+ 3.195 4.513 10.968
EVEdEJ 2.834 0+0+0426+0 5.426  8.687
EVAVEJS 2.933 0.693 + 0.428 +0+ 0+ 0 4.244  8.588

EVAVEJdS 3.574 0.330 +0.330 + 0 + 0+ 0 + 2.570 0.798  7.600

5.5.2 EMJ

The second test case concerns an Earth-Mars-Jupiter transfer. The prob-
lem definition and the optimal solution found in terms of launch epoch and
transfer times is given in Table 5.4.

The trajectory of Figure 5.8 enlightens the usefulness of the DSM, used
to replicate a Mars resonance. After the Mars GA, the spacecraft is placed
into a near 1:2 resonant orbit with Mars, with the difference that the second
gravity assist of the Martian planet (which is not allowed by the structure
of the problem) is replaced with the DSM. The optimal solution has a total
Av of 12.39 km/s which is slightly better than the 12.48 km/s found with
the previous approach. Furthermore the introduction of the DSM allows to
save about 1 km/s with respect to the MGA trajectory.

Table 5.4: Time bounds and optimal solution for EMJ.

Tg tem targ

MJD 2000 days  days

Ly, 1000 100 100
Uy 6000 1200 2000

EMJ 2070.6 403.4 2000
e =045
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Figure 5.8: EMJ optimal trajec-  Figure 5.9: EMJ transfer, set of

tory. non-dominated solutions.

An interesting result that can be obtained with the present approach is
underlined by Figure 5.9. As the solution set selection described in Section
5.1 is based on the dominance level, the result of the DSM likely reproduces
the Pareto front of the problem when the total Av and the time-of-flight
are considered as performance indexes. This result can be useful in the
preliminary design of the mission, when the tradeoff between transfer time
and Awv is of particular interest.

5.5.3 EVME

The third case involves two GA, thus two DSM can be included at most.
The optimal solution found exploits both the DSM to reduce the overall Aw.
The first one is a small corrective maneuver, whereas the second injects the

Table 5.5: Time bounds and optimal solution for EVME.

TE tEV tVM tME
MJD 2000 days  days days

Ly 3000 25 20 25
Uy, 4000 525 520 525

EVME 3990.6 158.3  207.1 4424
e=0.54 €=0.48
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Figure 5.10: EVME optimal trajectory.

spacecraft into an orbit close to the Earth’s one, thus minimizing the final Av
(see Figure 5.10 ). The solution is qualitatively the same found in Chapter
5 although the overall Awv is slightly smaller.

5.5.4 EMMJ

A transfer to Jupiter exploiting a double Mars GA is now considered. Also
in this case the optimal structure of the transfer includes both the allowed
DSM, although the first one is almost negligible. On the other hand (see
Figure 5.11) the second maneuver employs a huge Av, which is used to
realize almost a Hohmann transfer to Jupiter. Also in this case the solution
found is qualitative equal to the one shown in the previous chapter and to
that of Vasile and De Pascale [31], characterized by a Av of 11.05 km/s.

Table 5.6: Time bounds and optimal solution for EMM.J.

Ty tEMm Ly 1379

MJD 2000 days days days

Ly 3650 80 330 1000
U, 5500 430 830 2000

EMMJ 5188.1 376.0 687.0 1228.3
e=021 €=0.13
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Figure 5.11: EMMJ optimal trjectory.

5.5.5 EVEEJ

The last Jupiter transfer analyzed exploits a Venus and a double Earth grav-
ity assist. It’s worth noting that the optimal solution found uses only one of
the three possible DSM, in particular to improve the Earth-Earth sequence.
Like in all the tests analyzed so far, the optimal solution exhibits ballistic
gravity assists, i.e. no pericenter Av is considered.

x 10

y [km]

8 6 4 2 0 2 4 6
X [km] x 10°

Figure 5.12: EVEEJ optimal trajectory.



96 Alternative Approach for MGA-DSM Transfers

Table 5.7: Time bounds and optimal solution for EVEEJ.

Tg lgv  tve lEE 325}

MJD 2000 days days days days

L, 3650 80 80 80 600

U, 7300 430 830 830 2000

EVEEJ 3863.1 128.8 288 7129 1064
e =10.59

5.5.6 EVVEJS

The last test case is a Cassini-like transfer, in particular two different time-
of-flight are considered for the Jupiter-Saturn arc (see Table 5.8 and 5.9). It’s
worth noting that when the shorter transfer time is considered (EVVEJS;)
the optimal structure includes only one DSM in between the two Venus GA.
On the other hand, when the longer transfer time is considered (EVVEJS,),
a DSM in the JS arc effectively reduces the transfer Av. This particular
solution enlightens the capability of the algorithm to optimize the structure
of the transfer, i.e. the number and the sequence of DSM.

The solution EVVEJS; shows similar departure epoch and transfer times
of that described in Chapter 5, unless it requires an additional Av of 300
m/s.

The second solution makes clear that the price to pay for a sensible re-
duction of the overall Av is an enormous increase in the mission duration,
thus making the optimal solution unpractical. Note, from Table 5.3, that
in both the solutions the possibility of using a small impulsive burn at the
first Venus GA is exploited. This aspect does not allow us to compare these

Table 5.8: Time bounds and optimal solution for EVVEJS;.

Tg tev  tyy lve tes  tys
MJD 2000 days days days days days

Ly, -1000 80 200 30 400 800
U, 0 430 500 180 1600 2200

EVVEJS, -788.9 176.9 4243 533  589.8 2200
e=0.53
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Table 5.9: Time bounds and optimal solution for EVVEJS,.

Tk tev tyv lve tey tys
MJD 2000 days days days days days
Ly -1000 80 200 30 400 800
U, 0 430 500 180 1600 6000
EVVEJS, -792.7 182.1 426.3  52.7 768 6000
e =0.55 e =047

results with those available in literature.

5.6 Final Remarks

In the present chapter an alternative approach has been introduced for the
MGA-DSM transfer optimization. Being based only on MGA space pruning,
all the complications arising in the DSM space pruning (i.e. dimensionality,
functional dependencies, computational time etc) are avoided. Furthermore
the computational times are kept as low as those of GASP-DA, thus allowing
to easily manage an increased number of maneuvers. Moreover the solutions
obtained with this method are comparable to those obtained in the previous
chapter, making it a promising approach for MGA-DSM transfer optimiza-
tion. It’s worth noting that as only GASP is used here, the user is not forced

x 10 x 10

y [km]
y [km]

Lo

0.5 1

-1 -0.5 0 .
x [km] x10° x [km] 9

Figure 5.13: EVVEJS; optimal tra- Figure 5.14: EVVEJS, optimal tra-
jectory. jectory.
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to select the cutoff values for the DSM; in this way one of the pitfall of the
GASP-DSM approach is avoided.



Chapter 6

Validated Optimization of
MGA Transfers

This chapter presents the attempt to solve the MGA transfer optimization
in a validated manner. The tool used to tackle this problem is the validated
global optimizer COSY-GO [15] which is based on the method of Remainder-
enhanced Differential Algebra (RDA), also known as Taylor Model (TM)
method. As this tool delivers the mathematically proven global optimum of
the problem at hand, the potentials of its application to trajectory optimiza-
tion problems are evident.

Some notes on RDA method are presented first based on the PhD thesis
of Kyoko Makino [26]. We then give some hints on how these methods can
be used to develop a validated global optimizer, as done in COSY-GO. The
global optimization of Earth-Mars and a Earth-Venus-Mars transfers is then
addressed and the achieved results critically discussed.

6.1 Differential Algebra and Interval Arith-
metic

While DA methods can provide the derivatives of functional dependencies
and solutions of ODEs to high orders, in a rigorous sense they fail to pro-
vide information about the range of the function. A simple example that
dramatically illustrates this phenomenon is the function shown in Figure 6.1

flz) = { gxp(—l/xz) ieflsxe.: ! (6.1)

The value of the function and all the derivatives at * = 0 are 0. Thus
the Taylor polynomial at the reference point x = 0 is just the constant
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0. In particular, this also implies that the Taylor expansion of f converges
everywhere, but it fails to agree with f(z) everywhere but at = = 0.

0.8

0.6

0.4

0.2

0.2 L L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 6.1: Function f(z) = exp(—1/2?) if z # 0 ; 0 else, and
its Taylor polynomial, which vanishes identically.

For the purpose of bounding functional dependencies, the methods of
interval arithmetic provides a conceptual contrast. Both extended domains
of numbers as well as individual real numbers are represented via rigorous
inclusions of floating point intervals. Arithmetic operations are introduced
on intervals such that for any numbers in the intervals, a real arithmetic
operation on the two numbers always leads to a result that is contained in
the interval obtained from the corresponding arithmetic operation on the
intervals. Table 6.1 lists some elementary properties of interval arithmetic.

By evaluating a function in interval arithmetic, it is thus possible to
carry rigorous bounds information through the operations, and in the end
obtain rigorous bounds of the function. However, while reasonably fast in
practice, interval methods have some severe disadvantages, which limits their
applicability for complicated functions. First, the width of resulting intervals
scales with the width of the original intervals; and second, artificial blow-up
usually occurs in extended calculations. Another practical limitation arises
if scanning with small intervals is needed in the case of multiple dimensions
because of the fast increase of the computational expense.

To illustrate the blow-up phenomenon with a trivial example, we consider
the interval I = [a, b], which has the width b — a. We compute the addition
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Operations 101
Table 6.1: Elementary properties of interval arithmetic; I; = [a1,b], Iy =
[ag, bg] .

Il + IQ = [a1 + ag,bl + bg]
—I = [—517 —al]
LI, = [min(a1a27a1b27b1a27 blb2)7maX(a1a27a1bzybla275152)]

If 0 ¢ Il> 1/]1 = [1/61,1/&1]

of I to itself and its subtraction from itself:

I+1 = Ja,b+[a,b] =[a+ a,b+b] = [2a,20]
I -1 = Ja,b] —Ja,b] =la,b +[-b,—a] =]a—bb—al.

In both cases the resulting width is 2(b — a), which is twice the original
width, although we know that regardless of what unknown quantity z is
characterized by I, certainly x — x should equal zero.

Polynomials under their conventional operations form a commutative al-
gebra with unity. However, interval arithmetic does not have even a group
structure for either addition or multiplication, since intervals with nonzero
width have no inverses. Furthermore, instead of distributivity, we have the
sub-distributivity,

L (L+1L)CL I+ - I (6.2)

The concepts of interval methods are discussed at length and in depth in
several sources, as in [29].

6.2 Remainder-enhanced Differential Algebraic
Operations
RAD is a method that combines the advantage of rigor of the interval ap-

proach, while largely avoiding the blow-up problem through the use of DA
techniques. The key idea is to describe the bulk of the functional dependence
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through a Taylor polynomial, and bound the deviation of the original func-
tion from the Taylor polynomial by an interval. In this endeavor, the Taylor
theorem plays an important role. .

Theorem (Taylor): Suppose that a function f : [d,b] C R — R s

- -

(n+1) times continuously partially differentiable on [@,b|. Assume Ty € [d, b].

-

Then for each ¥ € [@,b], there is 6 € R with 0 < 0 < 1 such that

1@ = Sk (@-50)-9) 1) +
+ ﬁ((f—fo)ﬁ)ﬂ f (& + (7 — 70)8) ,

RN
where the partial differential operator (h . V) operates as

LNk S

0<iy, iy <k

i1+ +iy =k

Depending on the situation at hand, the remainder term also can be cast
into a variety of well-known other forms.

Taylor’s theorem allows a quantitative estimate of the error that is to be
expected when approximating a function by its Taylor polynomial. Further-
more, it even offers a way to obtain bounds for the error in practice, based
on bounding the (n 4 1)st derivative, a method that has sometimes been
employed in interval calculations.

Roughly speaking, Taylor’s theorem suggests that in many cases the error
decreases with the order as the width of the interval raised to the order
being considered, and its practical use is often connected to this observation.
However, certain examples illustrate that this behavior does not have to
occur; one such example is (6.1) in the previous section.

For notational convenience, we introduce a parameter o to describe the
details of a given Taylor expansion, namely, the order of the Taylor polyno-
mial n, and the reference point of expansion 7y. For the purpose to derive
bounds for the remainder, it is also necessary to include the domain interval

-

[@, b] on which the function is to be considered; altogether, we have
a = (n, Ty, [d,b]). (6.3)

We now write an (n + 1) times continuously partially differentiable function

f:]a,b] C R" — R as a sum of its Taylor polynomial P, s of nth order and
a remainder €, 5 as

f(f) = Pa’f(f— f(]) -+ Ea,f(f— fg),
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where ¢, ;(Z — 7)) is continuous (even continuously differentiable) on the
domain interval and thus bounded. Let the interval I, s be such that

VT € [6, ], thf(f— f()) S [Oc,f'

VT € [CY, b], f(f) S Pa’f(f— f(]) + LLf‘ (64)

Because of the special form of the Taylor remainder term &, f, in practice
the remainder usually decreases as |Z — Tp|"™!. Hence, if | — %] is chosen
to be small, the interval I, ;, which from now on we refer to as the interval
remainder bound, can become so small that even the effect of considerable
blow-up is not detrimental. The set P, (¥ — Zy) + I, containing f consists
of the Taylor polynomial P, ¢(Z—Z,) and the interval remainder bounds I, ;.
We say a pair (P, f, I, f) of a Taylor polynomial P, ;(Z — ) and an interval
remainder bounds I, s is a Taylor model of f if and only if (6.4) is satisfied.
In this case, we denote the Taylor model by

Ta,f = (Pa,fala,f>-

We call n the order of the Taylor model, & the reference point of the Taylor
model, [c?,l;] the domain interval of the Taylor model, and a the parameter
of the Taylor model.

In the following, we develop tools that allow us to efficiently calculate
Taylor models for all functions representable on a computer. The key is
to begin with the Taylor model for the identity function, which is trivial,
and then successively build up Taylor models for the total function from
its pieces. This requires methods to determine Taylor models for sums and
products from those of the summands or factors, as well as from intrinsics

applied to functions with known Taylor model.

6.2.1 Addition and Multiplication

In this subsection, we discuss how a Taylor model of a sum or product of
two functions can be obtained from the Taylor models of the two individual
functions. This represents the first step toward the computation of Taylor
models for any function that can be represented on a computer.

-

Let the functions f, g : [@,b] C R" — R have Taylor models

Toy= (Pa,fv Ia,f) and T, 4= (Pa,gv Ia,g)v
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which entails that

VZela,b], f(@) € Puf(@—17)+1.; and
r—1a

—

0) + Lo

Then it is straightforward to obtain a Taylor model for f + g; in fact, for any

-

7elab),

[(@)+9(@) € (Poy(@—70)+ Loy) + (Poy(T —To) + Lay)
= (Pa,f(_)_ fO) + Pavg(f_ fo)) + (Iavf + Ioag)a

so that a Taylor model Ty, s1, for f + g can be obtained via
Pojrg=Pos+ P,y and I,pig=15+ 1, (6.5)
Thus we define
Tof+Tag= Pas+ Pag los+1lay),

and we obtain that Ty, f + T g = (Pa f+g, La.f+g) is a Taylor model for f+ g.
Note that the above addition of Taylor models is both commutative and
associative.

The goal in defining a multiplication of Taylor models is to determine a
Taylor model for f - g from the knowledge of the Taylor models T,  and Ty, 4

-

for f and g. Observe that for any ¥ € [d, b,

f(f) ' g(f) € (Pa,f(f_ fO) + [a,f) : (Pa,g(f_ j:‘0) + Ia,g)
C P, (& —2y) - Poy(Z— %)
_'_Pa’f(f - fO) ' [avg + Pavg(f - fo) : ‘[Clt,f _'_ Ia,f : [CE,g’

Note that P, ;- P, 4 is a polynomial of (2n)th order. We split it into the part
of up to nth order, which agrees with the Taylor polynomial P, ;., of order
n of f- g, and the extra polynomial P,., so that we have

P,Lf(f— fo) . Pa,g<f— fo) — Pa,f-g(f_ fo) + Pe(f— .f(]) (66)

A Taylor model for f - ¢ can now be obtained by finding a bound interval
for all the terms except P, f.,. For this purpose, let B(P) be bounds of the

polynomial P : [6,5] C RY — R, namely,

Vi e [a,b], P(Z)e B(P).
Apparently the efficient practical determination of B(P) is not completely
trivial; depending on the order and number of variables, different strategies
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may be employed, ranging from analytical estimates to interval evaluations.
However, thanks to the specific circumstances, the occurring contributions
are very small, and even moderate overestimation is not critical. Various
methods for determining B(P) will be discussed below.

Altogether, interval remainder bounds for f - g can be found via

Insg=DB(P.)+ B(Pay) log+ B(Pag) Lo+ lays-Lag (6.7)

Thus we define Ty ¢ - Toy = (Pa,fg) Lafg), and obtain that T, ¢ - T, , is a
Taylor model for f - g. Note that commutativity of multiplication holds,
T -Thg =T,y Ty, while multiplication is not generally associative, and
also distributivity does not generally hold.

While the idea of Taylor models of constant functions is almost trivial,
we mention it for the sake of completeness. For a constant function f(Z) = t,
the Taylor model of f is

Ta’f = Ta,t = (Pa,t7 Iavt) = (ta [07 O])

Having introduced addition and multiplication as well as scalar multipli-
cation, we can compute any polynomial of a Taylor model. Let Q(f) be a
polynomial of a function f, that is, Q(f) = to +t1f +t2f>+ - +tpf*. In
practice it is useful to evaluate Q(f) via Horner’s scheme,

R GRS CRE SR SAIN) ) Y

in order to minimize operations. Furthermore, Horner’s scheme is often of
advantage for interval related arithmetic because of the sub-distributivity
(6.2) of interval arithmetic. Assume that we have already found the Taylor
model of the function f to be T, f = (Pa.f, la,r). Then, using additions and
multiplications of Taylor models described above, we can compute a Taylor
model for the function Q(f) via

Ta = (Poqin) leaw) -

6.2.2 Intrinsic Functions

In the preceding subsection, we showed how Taylor models for sums and
products of functions can be obtained from those of the individual functions.
The computation led to the definition of addition and multiplication of Tay-
lor models. Here we study the computation of Taylor models for intrinsic
functions, including the reciprocal applied to a given function f from the
Taylor model of f.
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The key idea is to employ Taylor’s theorem of the function under consid-
eration: However, in order to ensure that the resulting remainder term yields
a small remainder interval and does not contribute anything to the Taylor
polynomial, several additional steps are necessary.

Let us begin the study with the exponential function. Assume that
we have already found the Taylor model of the function f to be T, ; =
(Pafs Lo r). Write the constant part of the function f around Zy as ¢, f,
which agrees with the constant part of the Taylor polynomial P, ¢, and write
the remaining part as f; that is,

f(@) = cay + [(@).
A Taylor model of f is then T, 7 = (P, f, I, 7), where
P, 7(¥ — &) = Po (T — To) — Cay and I, 7=l
Now we can write
exp(f(%) = exp (cas + f(T)) = exp(cay) - exp (f(2))
= exp(eas) {14 D) + G F@P 44 @)

1
(k+1)!

where 0 < # < 1. Taking k& > n, where n is the order of Taylor model, the
part

_|_

exp(Ca,f) - {1 + f(%) +

is a polynomial of f, of which we can obtain the Taylor model as outlined in
the preceding subsection. The remainder part of exp(f(Z)),

1

explea) {pm (FE)™ 4

@) e (0 7(@) b,

(6.9)

will be bounded by an interval. Since P, (7 — ) does not have a constant
part, (P, (¥ — Zo))™ starts from mth order. Thus, in the Taylor model
computation, the remainder part (6.9) has vanishing polynomial part. The
remainder bound interval for the Lagrange remainder term

1
(k+1)!

exp(Car) (f(@) exp (0 f(2))
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-

can be estimated because, for any & € [a@,b], P, (¥ — 7o) € B(P, ), and
0 <60 <1, and so

(F@)* exp (0 F(2) € (B(Paj)+ Lp) ™ exp ([0,1] - (B(Paj) + L.f)) -
(6.10)

Since the exponential function is monotonically increasing, the estimation of
the interval bounds of the part exp ([0,1] - (B(P, ) + I, 7)) is achieved by
inserting the upper and lower bounds of the argument in the exponential.

Similar procedures can be used to obtain Taylor models for square root,
multiplicative inverse of square root, sine, cosine, hyperbolic sine, hyperbolic
cosine, arcsine, arccosine, and arctanget. Altogether, it is now possible to
compute Taylor models along for any function that can be represented in
a computer environment along with the mere evaluation of the function by
simple operator overloading, in much the same way as the mere computation
of derivatives, Taylor polynomials, or interval bounds, along with the mere
evaluation of the function.

6.2.3 Derivations and Antiderivations

In the spirit of the idea of embedding the elementary operations of addition,
multiplication, and differentiation and their inverses that are defined on the
class of C'*° functions onto the structure of Taylor Models, we now come to
the mapping of the derivation operation 9 as well as its inverse 9~!. Similar
to the case of the DA, and following one of the main thrusts of the history
of differential algebra, we will use these for the solution of the initial value
problem

where F is continuous and bounded. We are interested in both the case of a
specific initial condition 75, as well as the case in which the initial condition
7o is a variable, in which case our interest is in the flow of the differential
equation

7(t) = M(7o, t).

As in the case of the conventional DA method, in order to prevent loss of
order in the differentiation process, the derivation 0 can be evaluated only
in the context of a Lie derivative L, = ¢ - 0, where ¢(7y) = 0. However,
in the case of Taylor models, an additional complication is connected to the
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fact that from the Taylor model alone, it is impossible to determine bounds
for the derivative, since nothing is known about the rate of change of the
function (f — P, ) within the remainder bounds Iy. The situation can be
remedied by a further extension of the Taylor model concept to contain not
only bounds for the remainder, but also a low-parameter bounding sequence
for all the higher derivatives that can occur. In contrast to the derivation 0,
Taylor models of its inverse 0~! are readily available.

Given an n-th order Taylor model (P, s, I, ;) of a function f : [@,b] C
R — R around the reference point & we can determine a Taylor model for
the indefinite integral 9; ' f = [ f dz; with respect to the variable z;. The
Taylor polynomial part is obviously just given by [ P,_1 ;(&)dx;. Since the
part of the Taylor polynomial P, ; that is of precise order n is P, f — P,_1 ¢,
remainder bounds can be obtained as (B(P, f — Pn—1,5) + In.s) - B(x;), where
B(x;) is obtained from the range of definition of z; as b; — a;. We thus define
the operator 9; 'on the space of Taylor models as

07 (Pugs Ing) = (Pro-1s Ino-1y)

= ([ Pesstrtn BP = P+ 1) B@) . 611

With this definition, bounds for a definite integral over variable x; from z;; to
Zjy, both in [a;, b;], the domain of validity of the Taylor model of a function,
can be obtained as

/ f (f)dl’, € (Pn,aflf(ﬂxi:u’ciu—xio) _Pn,ailf(fh'i:xil_xio)’ [n,aflf)' (6'12)
)

6.3 Examples

RDA have many applications, including global optimization, quadrature, and
solution of differential equations. We begin our discussion with the deter-
mination of sharp bounds for a simple example function using RDA. The
sharpness of the resulting bounds will be compared with the results that can
be obtained in other ways. Secondly, we show schematically how the method
compares with the interval method to obtain bound enclosures of functions
in one and two dimensional cases.

6.3.1 A Simple Function

The function under consideration is

f(z) = % + . (6.13)
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For an actual computation, we set the parameter « of (6.3) to o = (n, x, [a, b])
= (3,2,[1.9,2.1]).

As in the case of DA, the evaluation begins with the representation of the
identity function, expressed in terms of a Taylor polynomial expanded at the
reference point. This identity function ¢ has the form

i) =x=x0+ (r —x9) =2+ (v — 2).

Since this representation is exact, the remainder bound interval is [0, 0].
Hence, a Taylor model of the identity function i is

Toi = (z0+ (x — 20),[0,0]) = (2+ (x — 2),[0,0]).

The constant part of ¢ around zp = 2 is ¢,,; = ¢ = 2, and the nonconstant
part of i is i(z) = x — xg = © — 2. The Taylor model of 7 is

Toi = ((x = 20),[0,0]) = ((x = 2),[0,0]).

The computation of the inverse requires the knowledge of bounds of P, ;,
which here is readily obtained: B(FP,;) = B(z — x9) = [a — x0,b — xo] =
[—0.1,0.1].  We have furthermore B(FP,;) + I,; = [-0.1,0.1] + [0,0] =
[—0.1,0.1]. Using (6.6) and (6.7), we have for the Taylor model of (7)?

Tz = ((x —2)%,10,0]).

The Taylor model of (z)? is computed similarly: T, ;s = ((x — 2)3,[0,0]). As
can be seen, so far all remainder intervals are of zero size. The first nonzero
remainder interval comes from the evaluation of the Taylor remainder term,
which is

(i(2))* 1 . (B(PL;) + I.;)* 6.14)
5 - 5 \5
i (1+40-i(x)/cay) 3 (14 [0,1] - (B(Pag) + Loz)/0)
[0,0.0001]

—6
— 2%-(]0.95,1.05]) C [0,4.038 x 107°].

As expected, this remainder term is “small of order four”. The Taylor model
of 1/i is

11 1 , 1 , y
T,:= <§—§(:ﬁ—2)+§($—2) — 5i(e = 2),(0,4.038 x 10 ]),
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and the remainder interval is indeed still very sharp. Using (6.5), we obtain
as the final Taylor model of 1/i 4 i

7,

_ ( ) <1_%)<x_2>+ (6.16)

~(r—2)° — i(x —2)%,[0,4.038 x 10—6])

Tysi=Tor + Toi = (Palﬂ,falﬂ) (6.15)

1
23
= (2540.75(z — 2) + 0.125(z — 2)* — 0.0625(z — 2)*,[0,4.038 x 107°)..

Since the polynomial P, a1 is monotonically increasing in the domain

+1

la,b] = [1.9,2.1], the bound interval of the polynomial is

oe-l—z a—i—z a-l—z

B(P 1 ) [P L (—0.1), P, 4 (0.1)] — [2.42631,2.57618).

The width of the bound interval of the Taylor polynomial is 0.14987, and
the width of the remainder bound interval is 4.038 x 107% in the third-order
Taylor model evaluation; thus the remainder part is just a minor addition.
The size of the remainder bounds depends strongly on the order and decreases
quickly with order.

The Taylor model computation is assessed by noting the bound interval
B of the original function (6.13), which is

1 1 1
B <— + x) = [— +a, -+ b} = [2.42631,2.57619].
T a b

It is illuminating to compare the sharpness of the bounding of the function
with the sharpness that can be obtained from conventional interval methods.
Evaluating the function with just one interval yields

_
[1.9,2.1]

+ [a,b] = +[1.9,2.1] C [2.37619, 2.62631].

[a, b]
The width of the bound interval obtained by interval arithmetic is 0.25012,
and so this simple example already shows a noticeable blow-up. By dividing
the domain interval into many subintervals, the blow-up can be suppressed
substantially. However, to achieve the sharpness of the third-order Taylor
model, the domain has to be split into about 24, 000 subintervals.
Practically more important are optimization problems in several vari-
ables, and in this case, the situation becomes more dramatic. We wish first
to illustrate the computational effort necessary for an accurate calculation of
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Table 6.2: The total number of FP operations required to bound a simple
function like f() = >_.(1/z; + z;).

One Dimensional | Six Dimensional
Interval ~ 10 ~ 10
10* divided intervals ~ 10° ~ 10%
3rd order Taylor model ~ 10 ~ 10%

the result by estimating the required number of floating-point operations. We
use a simple example function of six variables such as f(7) = > _(1/z;+;) to
get a rough idea of the computational expense in the case of functions of many
variables. In the one-dimensional case, one interval calculation 1/[a, b] +[a, b]
requires two additions and two divisions. To compare with the third-order
Taylor model computation, we divide the domain into 10* subintervals, on
which additions and divisions total ~10° floating-point operations. Thus,
in the multidimensional case with six independent variables, the number of
floating-point operations explodes to (10)% x (~10) = ~10%®. Again, so-
phisticated interval optimization methods will be more favorable than these
numbers suggest, but typically there is still a very noticeable growth of com-
plexity.

To estimate the performance of the Taylor model approach, we note that
the one-dimensional Taylor model in the third-order computation involves a
total of about 35 additions, multiplications, and divisions. As we use more
variables, however, the total number of terms in the polynomial grows only
modestly. For example, order three in six variables requires only a total of 84
terms. Thus in total, the number of floating-point operations of the third-
order Taylor model is ~10*. A summary of the number of floating-point
operations is given in Table 6.2.

6.3.2 Bound Enclosures of Functions

In this subsection, we use some simple functions in one dimension and two
dimensions to show schematically how the RDA method bounds functions in
comparison with the interval method. The first function is a one dimensional
function

fx)=z(x —1.1)(x + 2)(z + 2.2)(x + 2.5)(x + 3) - sin(1.7x + 0.5).

Figure 6.2 shows the function and its bound enclosures in the domain [—0.5, 1.0].
The interval method is applied to bound the function using smaller domain
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intervals divided into 25 subintervals and 50 subintervals. The method of
Taylor models computes the polynomial part of the function and the re-
mainder bound interval. The pictures show the bands of the enclosures of
the function around its polynomial parts by the remainder bounds using 8th
order Taylor models.

Figure 6.2: One dimensional function and its bound enclosures. From top to
bottom right: the function, the bounds by the interval method with the 25
and 50 divided domain intervals, the bound by the 8th order Taylor models.

A similar schematical comparison between the interval method and the
method of Taylor models is made for a two dimensional function. We worked
on a function

f(z,y) =sin(1.72 + 0.5) - (y + 2) - sin(1.5y)

in the domain [—1,1] x [—1, 1]. Figure 6.3 shows the function enclosures by
the interval method with the smaller domain intervals divided into 10 x 10,
20 x 20, 40 x 40 and 80 x 80. Figure 6.4 shows the function enclosures around
its polynomial parts by the remainder bounds using 7th, 8th, 9th and 10th
order Taylor models. Even in this modest case of only two dimensions,



6.4 Notes on COSY-GO

113

the Taylor model approach requires much less effort to provide a similar
level of sharpness; the 1600 subintervals used to include the function are in
contrast to only 66 expansion coefficients, plus one remainder bound interval.
As dimension is increased, the number of subintervals necessary to provide
an accurate modeling increases dramatically, while the number of Taylor
coefficients grows much more slowly.
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Figure 6.3: Bound enclosures of a two dimensional function by the interval
method. From top to bottom right: The domain is divided to 10x 10, 20 x 20,
40 x 40 and 80 x 80 subintervals.

6.4 Notes on COSY-GO

COSY-GO [15] is a classical branch-and-bound optimization algorithm which

takes advantages of the bounding performances assured by TM methods.
Suppose we want to find the global minimum of a sufficiently regular scalar
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function f on a given domain A C R™. The algorithm starts with an initial
guess for the global optimum, the cutoff value, and it proceeds by analyzing
at each step a subdomain for possible elimination. At each step the following
tasks are performed.

a) A lower bound [ of the function is obtained using various bounding
schemes in a hierarchical manner. If the lower bound is above the
cutoff value, the box is eliminated; if not, the box is bisected. As a
first test the polynomial part of the objective function is evaluated
in interval arithmetic. When it fails to eliminate the box, a linear
dominated bounder (LDB) is used and possible domain reduction is
executed. If it also fails to eliminate the box, and if the quadratic part
of the polynomial representation of the objective function P is positive
definite, a quadratic fast bounding is performed.

b) The cutoff value is updated using various schemes. The linear and
quadratic parts of P are utilized to obtain a potential cutoff update.
In particular, if the quadratic part of the polynomial is positive definite,
the minimizer of the quadratic polynomial is tested. If the quadratic
part is not positive definite, the minimizer of the quadratic part in the
direction of the negative gradient is tested.

The algorithm continues to split and examine the domain until the minimum
dimension allowed is reached. The result of the otpimization is the validated
enclosure of the minimum of the problem.

6.5 Validated Solution of Implicit Equations

As seen in previous chapter the evaluation of the overall Av of a MGA trans-
fer requires the solution of implicit equations. In the first chapter we have
shown how the Taylor expansion of the solution manifold can be obtained by
means of DA. In order to address the validated optimization of MGA transfers
something additional is required. The computation involved in the objective
function evaluation must be performed in validated manner indeed, including
the solution of implicit equation. In the following the validated solution of a
scalar implicit equation is detailed, the extension to the m dimensional case
is omitted.

Let P(x)+ I be an n-th order Taylor model of the (n + 1) times differen-
tiable function f over the domain D = [—1; 1] so that

f(z) € P(x)+ I forallz € D (6.17)
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Let R be an enclosure of the range of P(x) + I over D. Assume P has
nonvanishing derivative everywhere in D; without loss of generality P is
monotonically increasing, and P'(x) > d > 0 on D.

Problem: Find a Taylor model ¢(y) + J on R such that any solution = € D
of the problem f(x) = y lies in

c(y) + J. (6.18)

Without loss of generality, we assume P(0) = 0. First, determine the poly-
nomial c(y) = cly + c2y* + ... by DA inversion of P in the well known way,
so that we have

P(c(y)) =n y. (6.19)

Indeed, ¢(y) is the n-th order Taylor polynomial of the inverse of f at the
point 0 = P(0). It has the property that for any given y it gives an ap-
proximate value x = c¢(y) that satisfies P(x) =~ y, and thus also f(z) = v,
depending on how well the inverse is representable by its Taylor expansion
over the domain R. However, it is not the true inverse: if we evaluate P(c(y))
in n-th order Taylor model arithmetic, we obtain P(c(y)) € y + J, where J
is due to the terms of orders exceeding n in P(c(y)); and thus scales with at
least order (n +1).

Next we want to find a rigorous remainder J for ¢(y) so that all solutions
of f(z) =y liein ¢(y) +J. We do this by studying the consequences of small
corrections x to c¢(y). We observe that, according to the mean value theorem,

flely) +Az) —y € Ple(y)+Az) —y+1

= Plely) +Az-P(&) —y+1
y+J+Ax-P(E)—y+1
Az -P(&)+1+J

(6.20)

N

for some suitable £ that lies between ¢(y) and c(y) + Az. However, since on
[—1; 1], P’ is bounded below by d, we observe that in [—1; 1], but outside of
the interval

I+J
d

the set Az - P'(€) + I + J will never contain zero, and thus no solution of
f(c(y) + Az) — y exist there. So we obtain:

J = (6.21)

Theorem. Any solution x € D = [—1;1] of f(x) = y lies in the Taylor
model c¢(y) + J.
Let us make some remarks.
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1) No information on the derivative f’ is needed, which is helpful in prac-
tice.

2) Indeed, if f is not monotonic, it is conceivable that c(y) 4+ J contains
multiple solutions of f(x) =y

3) For any y € [P(—1) +u(l); P(+1) + I(])], at least one solution exists
due to the intermediate value theorem.

4) For any y ¢ [P(—1) + I(I); P(4+1) + u(I)], no solution exists

As an important consequence, we obtain the following:

Corollary. If f is invertible over D, c(y) + J is a Taylor model of order
(n+ 1) of its right inverse.

6.6 Test Cases

Two test cases are addressed, the first one is a simple planet-to-planet transfer
whereas the second exploits a gravity assist. As it will be shown the addition
of a single gravity assist significantly complicates the optimization problem.

6.6.1 EM

The first test case is an Earth-Mars transfer. This problem is representative
of any planet-to-planet transfer as it involves only two ephemerides evalu-
ations and one Lambert’s problem solution. The transfer is formulated in
departure epoch and time of flight in order to deal with a rectangular search
domain, thus easing the branch-and-bound algorithm implemented in COSY-
GO. As no GA is considered, we deal with an unconstrained optimization
problem, and this is particularly beneficial as COSY-GO does not explic-
itly handle constraints. The search space and the enclosure of the optimal
solution is shown in Table 6.3.

The enclosure of the optimal Av is [5.6673264, 5.6673272] km/s which
includes the optimal solution of 5.6673270 km/s found with GASP and in-
dicated in Figure 6.5 with the red star. The price to pay for obtaining the
validated optimum solution is the computational time: the optimization pro-
cess takes 4954.39 s on a Pentium IV 3.06 GHz laptop platform. The main
reason of this result is the presence of discontinuity lines of the objective
function within the search domain. Whenever a discontinuity is found in a
box, the validated evaluation of the objective function is an algebraic failure.
In these cases the optimizer is forced to split the domain until the minimum
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Table 6.3: Time bounds and enclosure of the optimal solution for EM transfer

Tk tem

MJD 2000 days

Ly 1000 100
U, 6000 600

EM [3573.176, 3573.212] [324.034, 324.088]

box size is reached. This situation is clear by looking at Figure 6.6 which
shows that most of the iterations do not bring any improvement in the cutoff
value.

At the end of the optimization the remaining domain includes both the
box containing the optimal solution and the boxes which contains discontinu-
ities. For this reason the result can not be considered the validated enclosure
of the solution, but rather the global optimum from an engineering point
of view. Indeed it is improbable to find a better enclosure of the solution
among boxes with algebraic failures as a very small minimum box size is set.
Furthermore it’s worth noting that the objective function discontinuities are
not physical but the result of the problem formulation (Lambert’s problem
solution). In order to achieve a mathematical proven optimal solution a dif-
ferent formulation of the problem, which avoids the solution of the Lambert’s
problem, should be adopted.

6.6.2 EVM

The second test case considers a transfer to Mars and includes a Venus GA.
The simple addition of a GA makes the problem tougher as the constraint
on the minimum pericenter altitude must be considered. As COSY-GO is an
unconstrained optimizer there are two possible ways to deal with constraints:
penalty functions and space pruning. The first one consists in augmenting
the objective function with a term representative of the constraint violation.
The second one assigns an arbitrary high value to the objective function
whenever a box entirely violates the constraint. The result presented here
uses the second technique. The main advantage is that no weighting factor
must be chosen; on the other hand there’s the possibility that the optimal
solution found violates the constraint. This problem is unlikely to happen if
the minimum box dimension allowed is very small.

Table 6.4 shows the problem definition as well as the enclosure of the
optimal solution. It’s worth noting that, unless the results are presented
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Table 6.4: Time bounds and enclosure of the optimal solution for EVM
transfer

Ty tev tvm

MJD 2000 days days

Ly 5000 140 200
Uy 6000 240 400

EVM [5611.475, 5611.512] [157.592, 157.623] [255.564, 255.620]

in term of departure epoch and time-of-flights, the optimization problem is
formulated in absolute times in order to reduce the functional dependencies.
The enclosure of the optimal minimum is Av € [8.5220251, 8.5231393] km/s
which includes the optimal value of 8.5226 obtained with GASP.

The increased problem dimension has a dramatic impact on the compu-
tational time; the optimization process takes about three weeks on the same
platform used for the previous test indeed. The boxes that includes a discon-
tinuity must be split until all the three sizes are under the minimum value
allowed, thus causing a blow-up in the computational time even when a small
search domain is analyzed.

6.7 Final Remarks

The TM-based validated optimizer is a potential tool for finding the global
optimum of any MGA transfer. On the other hand, several issues must be
addressed to make its use viable for complex MGA transfers. A method for
managing the discontinuities is necessary; to this aim an ad hoc problem
formulation could be a viable option. Furthermore a more efficient and safe
method to handle the constraints is mandatory. A possible solution is rep-
resented by the explicit computation of the constraint manifold. Finally the
reduction of the computational time could be achieved by running COSY-
GO in parallel on several machines. In any case the large computational time
enlightened in the previous section is the price to pay for gaining a validated
enclosure of the optimal solution.
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Chapter 7

Conclusions and Final Remarks

This chapter is devoted to trace the work described throughout the report,
and to identify key points for possible future developments. The final remarks
pertaining the pruning and optimization of MGA transfers involving DSM
are first presented, whereas special comments are dedicated to the validated
global optimization of MGA transfers.

A version of the classical pruning algorithm GASP, based on the use
of differential algebraic techniques, has been implemented and described in
chapter 3. Significant work was aimed at addressing the discontinuity and
dependency problems. The major solution to the discontinuity problem was
the use of a planar planetary model for the Solar System. Based on the
observation that the discontinuity corresponding to the transition from the
short—way to the long—way solution of the Lambert’s problem disappears,
the planar model is used to perform the pruning process. Furthermore, con-
sidering the low inclinations of all planetary orbits, the overall AV associ-
ated to the planar model has been conjectured to be usually lower than the
corresponding AV in the actual three-dimensional model. Consequently,
no information and solutions are lost by performing the pruning process
in the planar model, and then optimizing the transfer in the actual three—
dimensional model. The dependency problem was solved by replacing the
classical relative times formulation for MGA transfer optimization problems,
with the effective absolute times formulation, based on the use of the epochs
at each planet as design variables. As demonstrated by the test phase, the
resulting algorithm GASP-DA turns out to effectively prune and optimize
MGA transfers without DSM.

Then, GASP-DA has been extended to include DSM. Chapter 3 showed
that a dependency problem still occur, which is evidently similar to the same
problem in classical MGA transfers. This led to the necessity of modeling
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the whole transfer as a sequence of Lambert’s arcs, which corresponds to
adopt a formulation, which has been again referred to as absolute variables
formulation. Several successful test cases have been carried out to assess the
performances of the resulting algorithm.

The use of the resulting GASP-DSM-DA algorithm is not free of sig-
nificant drawbacks. First of all, a problem related to the allocated memory
can be identified. In particular, as reported in chapter 2, a DA number is a
vector of (n 4 v)!/(n!v!) coefficients, where n is the order of the correspond-
ing expansion and v is the number of variables. Consequently, the vector
size quickly increases with n and v (see [14] for further details). It is worth
highlighting that many coefficients are usually equal to zero in practical com-
putations. However, the tool COSY INFINITY, that implements differential
algebra and has been used within this work, does not allow to dynamically
allocate memory. Consequently, a great amount of memory must be allo-
cated anyway at the beginning of the computation, which often increases
prohibitively in practical computations.

A further drawback is associated again to the dependency problem. Specif-
ically for MGA transfers involving DSM, three variables must be added to the
set of design variables for each additional DSM. Given the structure of the
MGA-DSM problem, and the periodicities associated to most of the entailed
variables, the multimodality of the optimization problem increases with the
number of DSM introduced, and a growing number of local minima tends
to characterize the optimization landscape. In such a complicated frame-
work, Taylor expansions tend to lose their accuracy, and smaller box sizes
are required to reach reasonable pruning performances. Alternative approx-
imation techniques might worth further investigation in this scenery, as the
use of Fourier series to replace Taylor series when periodicities occur.

The pruning process of MGA transfers, including or not DSM, is anyway
aimed at easing the subsequent necessary optimization phase. Thanks to
the imposed constraints, large parts of the search space are intended to be
pruned away. In this way, the effectiveness of the optimization algorithms
at identifying the actual global optimum of the original problem is finally
enhanced. Given the steep increase of computational burden, associated to
the pruning of MGA transfers involving DSM, alternative strategies have
been sough to solve the ultimate optimization problem, which have been
described in chapter 5. Specifically, considering the high efficiency of GASP
and GASP-DA when pruning MGA transfers without DSM, an alternative
strategy has been developed. Given the sequence of planets involved in a
MGA transfer:

1. GASP-DA is used to identify a set of good solutions for the MGA
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transfer, without considering the introduction of DSM,;

2. based on the concept of Pareto—optimality, solutions are selected from
the previous set;

3. DSM are introduced based on suitable heuristics;

4. the corresponding solutions are used as first guesses for a subsequent
optimization process.

Despite the algorithm does not rely directly on search space pruning of MGA
transfers involving DSM, it proves some important advantages when com-
pared to GASP-DSM-DA. First of all, the optimization process is carried
out in less computational time, and larger search spaces can be processed
with affordable computational burden. Moreover, the optimal solutions are
comparable in many transfers of practical interest, as shown by Table 7.1.

Table 7.1: Comparison of the three developed methods in terms of optimal
Av.

Av [m/s
GASP-DA GASP-DA DSM DSM Altern.
EVM 8.523 8.167 8.081
EMJ 13.42 12.481 12.394
EMMJ 12.864 10.843 10.968
EVEEJ 10.09 8.670 8.687
EVEME 12.443 10.931 10.874
EVVEJS 8.619 8.299 8.588

Clearly, all the implemented pruning and optimization algorithms are not
free of further possible improvements. First of all, pertaining GASP-DA, a
key-point for significant enhancements is including the automatic selection
of the optimal planets sequence within the optimization process. This would
lead to a mixed continuous—combinatorial optimization problem, whose so-
lution can be extremely difficult, especially if a high number of planets for
GA maneuvers is considered. Moreover, concerning both GASP-DSM-DA
and the alternative strategy developed in chapter 5, the possibility of insert-
ing more than one DSM per arc should be addressed. This advance serves
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the purpose using DSM to approximate low—thrust transfers at the begin-
ning of the design phase, as widely suggested in the space—trajectory design
community. Within the framework of low—thrust arcs modeling during the
preliminary phases of space—trajectory design, a further important step will
be the introduction of exponential sinusoid in GASP-DA. Based on the work
of Izzo [22], the Lagrange equation for the time of flight is substituted by
an alternative implicit equation, which needs to be solved within differential
algebra, using techniques similar to the one presented in chapter 2.

Separate comments are instead dedicated to the validated global opti-
mization of MGA transfers investigated in chapter 6. It is worth gaining
more valuable insights on the main drawbacks encountered, and proposing
possible promising solutions. As highlighted in chapter 6, the main difficulty
is identified to be related to the management of constraints in COSY-GO.
Referring to Figure 7.1, suppose the function obj must be minimized. A box
[X] is being processed and part of the box turns out to be unfeasible under
the imposed constraints. The current version of COSY—-GO does not handle
constraints automatically, especially if boxes lying on the constraint manifold
are being analyzed. Consequently, the box in Figure 7.1 would be considered
as entirely feasible if no expedients are used. Suppose now a Taylor model
evaluation of the objective function over [X]| is performed, which leads to
the range reported in Figure 7.2. The algorithm now tries to update the
cutoff value for the optimization process using the estimation from above
of the minimum of the objective function over [X]. The exact estimation
from above of the minimum within the box is reported as obj, . in Figure
7.2. However, if the whole box [X] was considered as entirely feasible, the
estimation actually used by COSY-GO would be o0bj, ;., which clearly un-
derestimate the actual feasible minimum obj, . . The main consequence is
that, if obj, ,, is used to update the cutoff value for the optimization process,
actual solutions might be pruned away. Intensive investigations must be de-
voted to overcome this problem. Besides the possibility of adding constraints
to the objective function as penalty terms, which might turn out to modify
the landscape of the original objective function within the feasible region of
the search space, an alternative solution can be outlined. Ad-hoc techniques
exist to compute validated enclosures of the constraint manifolds, which are
based on the use of Taylor models. In this way, given a box to be processed,
the validated enclosure is used to rigorously identify the feasible regions of
the box. The objective function is the evaluated over these regions only, and
the resulting estimated minimum can be correctly used to update the cutoff
value for the optimization process.

A further drawback of the use of COSY-GO for MGA transfers is the
steep increase of the computational time with the number of design vari-
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Figure 7.1: Constraint management Figure 7.2: Underestimation of the
in COSY-GO. actual minimum.

ables, which does not exploit the problem structure in the default setting, as
performed in GASP. Suitable adjustments on the current version of COSY
can be considered as viable solutions for future applications. However, it is
worth observing that the versatility of COSY-GO has an important bene-
fit: COSY-GO algorithm is fully parallelizable. This means that the same
optimization process can be distributed on an high number of processors to
significantly reduce the computational time.
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