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This report contains a critical investigation of what is now referred to as the ”Feigel process”,
the possibility to create momentum from radiation, and in particular from quantum-vacuum fluc-
tuations, by applying external electromagnetic fields. An experiment has been designed to verify a
variety of theoretical predictions, among which the original prediction, valid for an infinite homo-
geneous medium. We will also consider the Casimir geometry - two infinite parallel metallic plates,
as well as a finite magneto-electrical object.
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I. INTRODUCTION AND ROAD MAP

The Feigel process refers to a recent theoretical analysis of vacuum fluctuations in a magneto-electrically active
(ME) medium [1, 2], hereafter referred to as the "Feigel work”. In such matter light can propagate without being
absorbed, but its dispersion law is influenced by both an externally applied electric and magnetic field. We will define
this later in a more precise way, and we restrict here by the remark that in a ME medium two optical effects can occur,
among which one is believed to be crucial for the Feigel work. In particular, in ME media a difference exists between
photons with wave vector k and —k, but contrary to the Faraday effect - which needs a magnetic field only - this
difference is independent of polarization. Contrary to optical activity, which requires a broken mirror symmetry of
the matter, a fortunate property of the ME effect is that it can occur in all media subject to an electric and magnetic
field, and even occurs in the quantum vacuum as we will see.

The presence of both an electric field Eq and a magnetic field By defines a third vector (1/47)Eg x Bg = Sp. Both
under time-reversal 7, mirror reflection P, as well as under charge conjugation C this vector behaves like a momentum
density. The final result of this publication [1] is an expression for the momentum density pv (mass density p, velocity
v) of a homogeneous, infinite ME medium, in which only electromagnetic vacuum fluctuations reside,

(0" +¢e) hwax
pv = W?EOXBO

(1)

The optical constants p and € will be introduced later, x is a ME coupling parameter, and w, is a frequency introduced
in the Feigel work beyond which no ME effects are believed to occur. The major conclusion of the Feigel work is that
the matter achieves a finite momentum density from the infinite vacuum sea, determined in direction and magnitude
by the applied external fields. The press enthusiastically referred to this result as ”momentum from nothing”.

Many critical notes are in order before this surprising and important result can be appreciated and applied, and
the work reported here summarizes the critical study we have undertaken. The evident first problem is the apparent
Lorentz-variance of the final result (1). Both vectors pv and Sy as well as the frequency cut-off w, transform under a
Lorentz transformation, and any physical law should in principle be invariant under this transformation. This is not
trivially true for Eq. (1), an annoying complication especially because it was derived appealing to Lorentz-invariance
in the first place.

The Feigel effect is thus controversial to say the least. Does it exist and how big is it? A complication is that the
Feigel theory actually diverges when calculating the momentum density. This divergence originates from Lorentz-
invariance of the quantum vacuum which imposes an energy density proportional to w?® [2], whose integral diverges
brutally as w*. To circumvent this problem an ad-hoc frequency cut-off w. was introduced by Feigel. The diverging
energy density of electromagnetic vacuum fluctuations is well known, especially in the context of the Casimir effect [3].
This effect refers to the attracting force between two metallic plates in vacuum. It was predicted first by Casimir that
a nonzero attractive force exists because the vacuum energy per unit surface is affected by the boundary conditions
imposed by the metallic plates, and thus dependent on the distance L between the plates. Although the energy density
itself is clearly infinite, its variation with L is actually finite, and can be calculated using the MacLaurin formula
[2, 4] that estimates the difference between a Riemann integral and an infinite summation. Advanced regularization
techniques, such as dimensional regularization and Riemann zeta function regularization, have recently been applied
to regularize the energy density between the metallic plates [5]. It remains to be seen how these advanced methods
affect the momentum density in the Feigel process, and how they affect the discussion of Lorentz-invariance. We will
show that they provide a formula different from Eq. (1), and free from a cut-off. Not only is this mathematically
more elegant, the regularization also provides a precise prediction for the order of magnitude, and is insensitive to
unknown factors.

Finally, the Feigel work is obscured by many technical errors in both the theory and the derivations. The use of the
Lagrange method in the Feigel work to find momentum and pseudo momentum of electromagnetic fields and matter
has already been criticized elsewhere [6]. A significant number of intermediate steps is inaccurate. For instance,
angular integrals are incorrectly carried out. The intermediate result for momentum density pv + (47)"'E x H (with
E the electric field and H the macroscopic magnetic field) is subtly wrong. We will show in this report that the
vacuum expectation value for the Poynting vector (47) 'E x H actually vanishes, and which would make pv thus
also vanish. The additional incorrect use of the fluctuation-dissipation theorem for the vacuum fluctuations explains
perhaps why this error was not noticed in the Feigel work.

A part of our criticism has already appeared in literature [7]. We have mainly criticized the claim that the
Lagrange method employed in Feigel work ”settles” the one-century old ” Abraham-Minkowski” controversy|[8] about



what exactly is the momentum and angular momentum of a photon in matter. Maxwell’s macroscopic equations allow
several versions of momentum conservation, and different authors have proposed different arguments (symmetry of
stress-tensor, Planck relation between momentum density G and Poynting vector S) to make their choice. We believe
that the Feigel work does not solve this controversy. On the other hand, we think that the study of the Feigel process
is independent on this controversy.

A second criticism [7] is that stationary, homogeneous fields Eg, By do not impose - for an almost trivial reason -
the relation (1). In a published Reply [9] Feigel speculated that time-dependent fields Eq(¢), Bo(¢) might accelerate
the matter. This option is not at all covered by the Lagrangian approach, since Lorentz-symmetry becomes very
hard to capture in time-dependent, inhomogeneous media, but this remark is worth considering. This is the reason
why in the following we shall always allow time-dependent, and possibly spatially varying external fields, and finally
propose an experiment in this context. The fundamental test of Lorentz invariance, however, can only be carried out
for homogeneous and stationary media.

The road map of this report is as follows.

The first chapter deals with the theoretical description of all optical phenomena. In section A we will establish a
mathematically solid formulation of classical light propagation in bi-anisotropic media, and discuss the conservation
of momentum when light interacts with bi-anisotropic matter. In section B we shall derive a Lorentz-invariant
formulation for 4 magneto-electric optical effects, among which the Kerr effect, the Cotton-Mouton effect and the
magneto-electric optical anisotropy. The latter is the crucial bi-anisotropic property that underlies the Feigel effect.
In section C we shall address electromagnetical zero-point fluctuations in matter, and show how the fluctuation-
dissipation formula establishes a direct link between the solutions of the classical Helmholtz-equation and the quantum-
mechanical fluctuations of the electromagnetic field in vacuum. We need this to find the quantum-expectation value
for the radiation momentum density. In section D we shall address the Feigel effect in the well-known Casimir-
geometry. In this geometry we can come to regularized expressions, free from divergencies and unknown cut-offs. We
shall conclude that the Feigel effect only exists in a squeezed vacuum, that is a vacuum that has been compressed in
on of its dimensions, and is absent in the way Feigel originally proposed it. Unfortunately, the Feigel effect in such a
squeezed vacuum is too small to be observed with current techniques. Thus, finally in section E we propose a purely
classical variant for the Feigel effect, for which observation seems within reach.

The second chapter outlines briefly the results of a profound literature study that we have undertaken to find
magneto-electrically active materials, with crystal symmetries as close as possible to the one proposed originally by
Feigel, and favorable to observe the Feigel effect. We propose an experiment to observe the Feigel effect, and give
orders of magnitude for the different momenta of matter predicted by theory in our experiment. We finally conclude
on the feasibility. The experiment is not part of this study, but will soon be carried out.



II. THEORETICAL STUDY
A. Constitutive equations and conservation laws

In this section we formulate conservation laws for bi-anisotropic media. The procedure is a standard generalization
of classical electrodynamics of anisotropic media [10]. We have added this part to correct several inaccuracies in the
Feigel work, to be able to start with a solid theory.

Bi-anisotropic media are described by a general linear ”constitutive” relation between the macroscopic electromag-
netic fields D, H, and the microscopic fields E, B,

c-E+x-B
= _XTE"’,LC_l'B

D
H

(2)

The constitutive tensors ¢ and p are assumed real-valued symmetric, the constitutive bi-anisotropic tensor x is
assumed to be real-valued. This excludes the presence of optical absorption. A case similar to the Feigel effect
in the presence of atomic absorption and emission was recently discussed by us [11]. The Lorentz-invariance for
spontaneous atomic emission has very recently been discussed [12]. In inhomogeneous media all constitutive tensors
depend on the position vector r. Time-dependence can be allowed as well provided the variation is much slower
than the typical cycle oscillation of the electromagnetic fields, so that we can still work at constant frequency. The
best-known case of optical bi-anisotropy is undoubtedly rotatory power, which can be described by the symmetric
tensor x;; = gd;;, with g a pseudo scalar, induced by some microscopic chirality. In the Feigel work the anti-symmetric
choice x;; = X(E?B;-) -BY E;)) was adopted, with x a scalar. We will discuss Lorentz-invariance later. These relations
are to be combined with four Maxwell’s equations applied to harmonic fields exp(—iwt),

—iwB = +¢p - E (3)
—iwD = —¢p H —4rJ, (4)
ip-B =0 (5)
ip-D = dmp, (6)

where we have set ¢g = 1 and introduced the hermitian tensor operator ¢,m p = i€pmipr in terms of the fully anti-
symmetric, third-rank Lévi-Civita tensor and the momentum operator p = —iV; p, is the macroscopic charge density
and J, is the macroscopic charge current density, that feature here as possible electromagnetic sources. It is easy to
show the validity of the following Helmholtz equation,

[w?e —iwgp - X" +iwx dp — dp - p' - dp) - E = —dmiwd, . (7)

We can see that the terms proportional to x - being odd in p - discriminate between wave vectors k and —k. Since
X is typically a small parameter we shall treat these terms later as a first-order hermitian perturbation.

Conservation of energy will be first considered. The Maxwell equations (3) can be combined to give the well-known
relation [10],

—47J,-E = V- (ExH)+0,E-D+H-9,B

If we now insert the constitutive equations with time-independent coeflicients, and anticipate the relation J, - E =
8,5(%,01)2) for the rate of work done by the Lorentz force, we can re-arrange this into

HE+V-S =0

where

1
=—ExH
S B (9)



is the Poynting vector, and

1 1

B-. !B 10
8 8w H (10)

1
E= EpvQ—l—

is the total energy density.

Most important for this work is the momentum balance. We will consider the general situation of inhomogeneous
but non-absorbing media, possibly time-dependent, and get it here directly from the equations of motion rather than
from the Lagrange formalism. The Maxwell equations (3) combine to

0(DxB)=(VxH)xB-Dx(VxE)-J,xB
If we insert the constitutive equations, straightforward algebra leaves us with the conservation law,
0G=V-T-f, —f, (11)

with G = (47)7'D x B some momentum density of the radiation, f, = p,E + J, x B the Lorentz force density that

the electromagnetic field exerts on the macroscopic charges, the radiation force f, whose n'" component equals
1 -1
fr,n:8—(E~Vne~E+B~Vnu ‘B-2E-V,x-B) (12)
T

created by any spatial inhomogeneity of the medium, and finally the stress-tensor,
1
Tij = 4 (BiHj + DiEj) — £0i; (13)

A second relation comes from Newton’s second law applied to the matter, subject to the Lorentz force. If we write
the macroscopic matter as a microscopic sum of moving particles with mass m, and charge ¢, it follows that

Oipv(r,t) = O Z Mad(r —ra(t))ve(t)
= —V.pvv+ Z 2a0(r — 14)(Eq + va X By)
If we believe in the existence of macroscopic fields E(r), B(r), whose variation is assumed slow over typical particle
distances, we can replace the fields E, and B, at the particles by a slowly varying field,
atPV+V'pVV:pQE+JQ x B

where the index @ insists on the total charge, that is both microscopic and macroscopic (index ¢). We can now
proceed by adopting the usual relations for macroscopic media and substitute

pPQ = pg—V-P (14)
Jg = J;+0,P+V xM (15)

in terms of the microscopic polarization density P = (D — E)/47 and the microscopic magnetization density M =
(B —H)/4x. A long but straightforward calculation yields the conservation law for ” pseudo-momentum”,

O(pv —P xB) = -V -Wf, +f, (16)
with
1

The pseudo-momentum [ dr (pv — P x B) is a conserved quantity only in the absence of sources (free charges) and
in the absence of inhomogeneities. The rigourously conserved ”momentum” can be found by adding the balance
equations (11) and (16),

1
Ot <4E><B—|—pv) =V - (—pvv+Tp)
T




which contains the symmetric vacuum stress-tensor 7y, with tensor elements

1

1
To,ij = —(EiE; + BiBj) 8

o (E-E+B-B)J¢; (19)

The "momentum” [ dr (E x B/4w + pv) is conserved even in the presence of electromagnetic sources, in the presence
of spatial inhomogeneities and smooth time-dependence of the constitutive parameters. We note that the Feigel work
obtains [ dr (E x H/4m + pv) for the total momentum (see Eq. 11 of the Feigel work), i.e. H in stead of B. This is a
highly unfortunate mistake since we will show later that the quantum expectation of the Poynting vector S vanishes.
Secondly, the Feigel work is based on conservation of pseudo-momentum, which is not conserved in inhomogeneous
media, neither in the presence of sources. These complications are unavoidable in (future) experimental realizations
of the Feigel effect.

B. Lorentz-invariance of magneto-electric optics

One basic question is whether the Feigel process survives the sensitive test of Lorentz-invariance, which does not
seem to be trivially satisfied from the prediction (1). The basic problem with respect to Lorentz-invariance in the
Feigel work is the lack of reference. The reference frame with respect to which v is supposed to be measured is not
specified. Suppose that Eq and By are orthogonal (this is still a Lorentz-invariant statement). Then the momentum of
the medium as predicted by Formula (1) points in the third direction. A Lorentz-tranformation with the appropriate
co-moving velocity v along this direction yields S = Sg — 2&v in the co-moving medium, with & the energy density
associated with the externally applied electromagnetic field. We know that —p+v/1 — v2 is a Lorentz scalar so that p
transforms only to order v?. The right hand side of the Feigel formula transforms into KSo((1 — 260K/p), whose
relative change £yK/Syp can be seen to be absolutely negligible (see section II: of the order of 107%). Yet,the left
hand side changes by 100 %. This reveals the lack of a reference system in the Feigel work.

In this section we will use the term Lorentz-invariance - like Feigel - only up to orders v/cg, which actually refers
to Galilean invariance. The Lorentz transformation changes the electromagnetic field according to (y = 1/v/1 — v2),

2

E = yE+vxB)- 7 viv-EyxE+4+vxB (20)
y+1
2
B’:fy(vaxE)fVP:_lv(v~B)zvaxE (21)

The last approximations are valid when |v| < 1. Similar transformations can be proposed for the macroscopic fields
(D,H) [10]. If we insert these transformations into the constitutive equations, a little re-arranging shows that the
three tensors must transform according to,

g =c—(e-v) X" +x-(e-v) (22)
X' = x+pt(ev)—e-(ev)
W= = (e V) x X" (e )

We introduced the anti-symmetric tensor (e - v);; = €;;xVk, featuring again the Lévi-Civita tensor e;; introduced
earlier. A well-known consequence of this transformation is seen by putting 4 = 1 and by adopting a scalar dielectric
constant €. We see that x’ achieves an anti-symmetric term linear in the velocity. This leads to the so-called Fizeau
effect that different directions of light propagation achieve different indices of refraction. Physically this is due to the
Doppler effect.

The most elegant way to come to a Lorentz-invariant combination of the tensors e, u and x is to build it in from
the beginning. Two well-known Lorentz-scalars can be constructed, E2 — B2 and E-B. The second is parity-odd and
only even powers can be considered in the Lagrangian density. A Lorentz-covariant Lagrangian density can thus be
proposed as,

1 A
LE,B,v)=—pV1—-v2+ 3 (B> -B?) — (c—1)E-(vxB)+ 3 (E* — B2)2 + %(E -B)? (23)
with A, v real-valued Lorentz-scalars, depending on the material. We do not claim that all ME materials must be
described by this Lagrangian with appropriate scalar constants. We will simply show that this Lagrangian will provide
a Lorentz-invariant description of the Feigel effect.
From the Lagrangian density (23) we can get the macroscopic fields D, H from the Euler-Lagrange formalism [13],
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We have linearized the expressions so obtained into the genuine electromagnetic fields E, B, and the static, externally
applied fields Eq, By,

The end-result can be expressed as a bi-anisotropic medium (2) with tensors

gij = €0ij + 2NEZ — B3)di; + 4\Ey ;Eo j + vBo i Bo
“;jl 8ij + 2M(E§ — B})di; — 4\Bo i By ; — vEq i Eo
Xij = (€ —1)ejrvr —4NEg By ; + v(Eg - Bo)di; + By i Eo,

(24)

It is straightforward to show from the Lorentz transformation of both the external field and the relations (22) above
that these constitutive relations are invariant under Lorentz transformation. For this we need the Cotton-Mouton
effect (B2 terms) and the Kerr effect (E2 terms) in both the dielectric tensor and the magnetic permeability. The
Heisenberg-Euler Lagrangian of the quantum vacuum is known to have v = 7\ = e*h/45mm*c] [14]. The Feigel work
restricts itself to the case A = v/4, and considers the (Lorentz-invariant) geometry Eq 1By, in which case the tensor
X is fully anti-symmetric and equal to xp = € [(e — 1)v + 2vSg]. The choice by Feigel for the constitutive equations
is thus one Lorentz-invariant choice, among a much larger set, yet convenient, since in homogeneous infinite media
symmetric contributions to x do not induce the Feigel effect anyway.

So what about the Lorentz invariance of the final Feigel formula? The relations (24) hold in an arbitrary reference
frame with the external fields Eg and B expressed in the co-moving reference frame. Let us for simplicity adopt the
geometry considered by Feigel: Eq LBy and v || Eg X Bg. We choose v along the y-axis, Eq along the z-axis and By
along the z-axis. A little algebra shows that the y-tensor for a medium moving with velocity v takes the form [? ]

Y = (e — 1)(3% — %2) + 4 (—4\3% + v&X2) (So + 20&) (25)

where now the external fields are measured in the reference frame, and &y is the electromagnetic energy density
associated with the external fields. An application of the Feigel work gives, mutatis mutandis, for the radiation
momentum of the vacuum,

<o% E x BJ0) = hK [(A + 4v) (So + 2vEo) + (¢ — 1)]

with K = [ d®k/(27)® wik. This scalar is formally invariant under the Lorentz transformation k — k—vt, w — w—v-k,
but actually diverges, which was already put forward as a problem of the Feigel work. The second problem was the
obvious lack of reference in Eq. (1). We will now face both problems in the context of Lorentz-invariance. If we turn
on - adiabatically - the external fields at ¢t = 0 towards stationary final values, with the medium at an initial velocity
v(0) with respect to some reference frame, time-integration of Eq. (18) gives,

pv —pv(0) + AK (A 4+ 4v) (Sp + 2v&y) + hK (e — 1)[v —v(0)] =0 (26)

It is easily checked that this equation is Lorentz-invariant, provided some Lorentz-invariant reqularization of the scalar
K is adopted. In section D we will employ dimensional regularization to argue that K = 0 in an infinite medium.
Hence v = v(0), and the Feigel effect is not predicted to occur in an infinite medium. In section D we will investigate
the Casimir geometry and show that in this case K varies inversely with the plate distance. We remark that the
terms 2v& and (¢ — 1)[v — v(0)] do not appear in the Feigel work. The second is crucial to have Lorentz-invariance.



C. Fluctuation-dissipation theorem in bi-anisotropic media

To evaluate quantum expectation values for electromagnetic phenomena we need to express (0| E;(r) £ (r')[0), that
is the quantum expectation value for the operator E;E7 in a zero photon field. This expression is supplied by the
fluctuation dissipation theorem. Let G be the Green’s tensor associated with the classical equation of motion (7) for
the field E,

. , _ -1
G(w,p) = [w25 —iwep - xXT Fiwx - bp — Pp - - o) (27)
The following fundamental relation is deeply related to the fluctuation-dissipation theorem [15],

<O|E,;(w,r)E;(w,r')|O> = —2hw2<r|ImGij(w,p)|r’> (28)
We have replaced the real-valued electromagnetic fields by their complex-valued equivalents obtained by Hilbert
transformation and applied the familiar counter-rotating wave approximation, that removes negative frequencies.
The asterisk denotes complex conjugation. It is implicitly assumed here that vacuum fluctuations see the macroscopic
medium, i.e. that the eigenmodes of the macroscopic Helmholtz equation are the ones that undergo second quantiza-
tion. This is not at all an evident reality, and probably only true far away from microscopic absorption bands. It can
be checked that for an infinite medium the expectation value for the electromagnetic energy density (10) is given by
the familiar formula

3
(0[£]0) 2/&7:)‘3 %m}k (29)

which actually diverges, but which will be regularized to zero later. We next address the energy current density and
assert the following theorem, worked out in Appendix A. In a homogeneous medium, with the constitutive parameters
(24),

(0[S]0) = 0

(30)

where S = Re E x H*/(4) is the Poynting vector (9), describing energy flow . In "normal” and homogeneous media
this statement is trivially true, since vacuum fluctuations with wave vectors +k and —k are equally abundant. In
bi-anisotropic, and/or inhomogeneous media this becomes less evident. During the short-term study we have not
been able to prove the theorem in general (we even assert it to apply to inhomogeneous media), but we are convinced
that a more general formulation exists. The theorem is physically reasonable since in the quantum vacuum no energy
currents ought to flow.

We end this section with two remarks. First it is known that in genuine vacuum (¢ = 1, p = 1,x = 0,p = 0) an
isotropic vacuum radiation with spectral density w? is imposed by Lorentz-invariance, as can be confirmed directly
by the fluctuation-dissipation theorem. The generalization of this notion to anisotropic media is an interesting though
difficult problem, largely relevant to the present project, but still unsolved to our knowledge.

Secondly, we insist that the Feigel work adopted the vacuum spectral density of a genuine vacuum, and did not
apply the fluctuation-dissipation theorem adapted to a ME medium. This is a subtle error, because in view of a
previous mistake, a consistent application of the theorem (30) would have led to a zero value for the ”momentum
acquired from nothing”.

D. Regularized Feigel process: the Casimir geometry

Until now we have found Lorentz-invariant constitutive relations for ME effects, and concluded that the choice of
Feigel is Lorentz-invariant, provided terms of order E and B are added to ¢ and p. The next step is to address the
UV catastrophe that occurs in the Feigel theory. This catastrophe is not new. Since Lorentz invariance imposes a
spectral energy density that typically scales as w3, we get an infinite energy density when integrating over frequencies.
Introducing a frequency-cut-off solves this problem, but thisis 1.) theoretically inelegant, 2.) Lorentz-variant since the
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frequency cut-off is necessarily Lorentz-variant, and 3.) problematic when it comes to making quantitative predictions
since the cut-off is not provided by theory but nevertheless comes in as a fourth power.

The Casimir effect is well-known to be insensitive to the UV catastrophe. This effect refers to the attractive force
between two metallic plates, caused by the modified vacuum. The point is that the vacuum energy is infinite, but not
the change as the distance between the plates is varied. This ”fortunate cancellation” has encouraged theoreticians
to find a rigorous regularization of the vacuum energy density [5], in the assumption that the UV divergency has
no physical significance. In this section we will apply these methods to the Feigel effect, and come to a regularized
prediction, free of unknown constants, and obeying Lorentz-invariance for any transformation along the plates. The
Casimir geometry is shown in Figure 1.

To evaluate the Feigel process in the Casimir geometry we consider Eq. (18) and note that it can be applied when
the constitutive constants vary in either space or time. We can thus think of changing the distance between the
metallic plates, or changing the fields Eq, Bq slowly, with the ME slab initially at rest, and ask whether the latter
starts moving, achieving a finite momentum per unit surface with respect to the metallic plates when all parameters
become stationary again. Note that in this picture the plates play a triple role: they can be varied in distance and are
as such a dynamical degree of freedom, they form a reference frame for the moving middle slab (rather fortunate for
any discussion on Lorentz-invariance), and finally they provide a geometry in which divergencies have already been
regularized successfully for the Casimir effect.

In the following we will use perturbation theory to find the frequency eigenvalues for the Casimir geometry (distance
between the plates L) in the presence of a ME medium with thickness d, with the x-terms in Eq. (7). We use the
following result familiar from quantum-mechanics. If 6K is a small perturbation of the hermitian operator K with
real-valued eigenvalues w? and with complete set of orthonormal eigenfuntions |E, ), the change in eigenvalue is,

Sw? = (B, | - 6K - |E,) (31)

The eigenfunctions also change but will not be needed. The electromagnetic eigenmodes of the Casimir geometry
in vacuum can be separated into TE ("transverse electric”) and TM (”transverse magnetic”) modes. The metallic
boundary conditions impose that the tangential electric field vanishes on the plates (z = 0, L) as well as the normal
magnetic field. The TE modes are,

2
E.x(z,x) = 4/ I k x zsin k,zexp(ik - x)
B.x(z,x) = \/g Eisink z—l—ik—"f{cosk z | exp(ik - x) (32)
nk\%, - . \w n w n p

and the TM modes

2 k kn S .
Eu(z,%) = /= (“#cosk,z —i—ksink, k-
k(z,%) 7 (wzcos 2 —i—ksin z> exp(ik - x)
[2 . .
B.xk(z,x) = — 7 k X zcos k,z exp(ik - x) (33)

with dispersion law w = wpx = Vk2+ k2 and k, = nw/L: n = 1,2,--- for TE and n = 0,1,--- for TM. The
perturbation operator is obtained from the Helmholtz equation (7),

0K =w(e-p) - x" (2) —wx(2) - (€ p) +[e(2) = Uw? = (e-p) [1u(2) " = 1] (¢ - P) (34)

with x = —4\EoBg + v(Eg - Bg)I + vBoEg + (¢ — 1)(e - v). We have ignored the contribution of v&y to x as was
mentioned in Eq. (25) which is necessary for Lorentz invariance but which is in reality very small. In this short
research project we will assume that the ME slab possesses no normal polarizability but exhibits only ME effects.
Hence € = 1 and also the last "Fizeau” term disappears. The perturbation in eigenvalues can be straightforwardly
obtained from Eq. (31). Only the terms proportional to x are considered since the others, being even in p, can easily
be shown not to generate a momentum current. We will simply give the result here,

w2 (TE) = —dwk (4)\E0 - (k x 2)(Bg - 2) — vBy - (k x 2)(Eq - 2)) x % / dz sin® k2 (35)
Sw2 (TM) = —4wk (4)\B0 (k x 2) (B - 2) — vEq - (k x 2)(Bo .z)) X % / dz cos® kyz (36)

X
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where fx dz is short for the integral [ LL /;j;//; dz over the ME slab.

Equation (18) requires the evaluation of the zero-point expectation value for the ”radiation” momentum density
E* x B. The integral over z of (E* x B)/4m gives the momentum density of radiation per unit surface, which we
shall denote by the vector g. If we apply the Maxwell-relation (3) between E and B we see that (E* x B)(w); =
—€iji By (w)w™ (e p)rEi(w). Since €k (e - P)ri = dupj — d;p; we get as an intermediate step,

(0](B* x B)(w);|0) = w™ Z (O] Ej (w)piEj(w) — Ej (w)p; Ei(w) 0)

and the application of the fluctuation-dissipation theorem (28) gives us,

1 . 1 *° dw
o (0](E* x B);(r)|0) = —%h/o o wzj: {pIm Gj;(w,r) — p;,Im G;;(w,r)} (37)
where we recall that p; = —i0/0; = k — i20,. We insert the spectral decomposition of the Green’s tensor,

d2k nk * (nk ik-(x—x'
n)? El( )(z)Ej ( )(z) T (w? —wiy) e k- (=)

—ImG;j(x,2,x',2,w) = Z/
2

Since the eigenfunctions are normalized, the z -integral of the first term of Eq. (37) generates kd(w? — w?, ) and can
thus be conveniently expressed in terms of the eigenvalues only. This is unfortunately not the case for the second term,
for which we still seem to need the perturbed eigenfunctions, which are somewhat harder to get. We can however
apply the Maxwell relation V - D = 0 to the first constitutive relation (2) with ¢ = 1, to find that p- E= —p - x-B.
Since this is already proportional to y, we can use the unperturbed eigenfunctions and eigenvalues. We can re-arrange
the formula for the radiative momentum density per unit surface to

1, [ dw d?k .
ollo) = 3 | =D [ ok (@ i)
h i n . (n
- X [ | EE @0 ) (38)

We will treat the two terms separately and start with the first. We recall that the 2D vector x was defined parallel to
the slab, and the z-coordinate normal to the plates. To simplify the analysis we choose the externally applied electric
field Eg along the z-axis and the externally applied By along the x axis, such that (47)~! Eg x By = S points parallel
to the plates (Fig 1).

First term of Eq. (38).
For the TE and the TM modes we can easily check from Egs. (35) and (36) that

WA (TE) ~ k2 + (k + 8nwrI So)?

W2 (TM) = k2 + (k + 327wAIS Sp)?

where 3 = L1 fx dzsin®(k,z) and I¢ = L~! fx dz cos?(k,z). Upon an appropriate change of base in the k integral
we thus get

d’k
gl(TE) = —hv SO Z / W wnkIfL (39)
and for the TM modes

d’k
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Since I3¢ = (2L)! fx dz [1 £ sin(2mnz/L)] we see that the integrals diverge considerably in the UV. This divergence

has been subject to at lot of study in literature [5]. We will apply here a number of regularization procedures that
have recently been proposed by Kong and Ravndal [5]. The so-called dimensional regularization consists of pushing

the relation
d?k 2 2\ —Pp/2 z?7P F(
=1
[ e @)™ = taon) = i

beyond its strict domain of validity p > d. The second regularization method, called zeta function regularization,
applies to the discrete sum,

?)

l\'}

(41)

M

Yot =((s) (42)
n=0

which is continued analytically to s < 1 [16]. In particular, for the famous Casimir sum - n® — ((—3) = 1/120.
The regularization of oscillation terms is less fancy. It is easily checked that for € > 0,

o0

1 sin 0
—ne _: @g=- """ 4
Ze s 2 coshe — cosf (43)

n=0
Hence for § = 0,7 this sum equals zero if we agree to take the limit € | 0 afterwards. For the Casimir effect this
notion makes the frequency cut-off disappear [5]. If § # 0, 7 the sum gives cos(6/2)/2sin(0/2). Adapted to our needs,
some algebra establishes the following regularization

15L 0 cosmz/L
k3 kn 1+ —————
Z sin’ knz = 240L3 ( * m 0z sin® Wz/L)

This expression can be seen to diverge as 2~ near the metallic plates.

With the proposed schemes we can regularize the expressions (39) and (40). We give here the final result,

72 hdv 30L sinmd/2L
TE) = — 1 - _— 44
&1(TE) = 1450 17 ( “7d cos? 7rd/2L> So (44)
and for the TM modes
72 hd A 30L sinmd/2L
TM) = — —-— ——————|S 4
g1(TM) 360 L4 ( 7d cos® 7Td/2L> (4)

This expression has the correct dimension of momentum per unit surface.
Second term of Eq. (38).

The unperturbed eigenfunctions have been given earlier. We have to recall that A and v are discontinuous on
the slab boundaries. Using partial integration we can circumvent this problem. For the TM modes straightforward
insertion gives for the momentum current density per unit surface along the y-axis,

2k 2
g2(TM) @SO /dz Z/ d k— cos? kpz (k- §)?

2R\ d2k k2
—So/dzZ/ w—nkcoskz

where we have averaged ((k-y)2) = 1/2 over angles. The dimensional regularization puts I(2,1) = —k, /27 according
to Eq. (41). For the TE mode we get

d*k k2 K2,
—So [ d knz +4X— ky,
g (TE) = 0/ z Z/ ( o ——sin’k,z + o cos z)
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Dimensional regularization gives (2m)~? [ d*k k*w,x = k2 /67 and (27) 2 [ d’k k2 /wpx = —k3 /27 The integration
over z is similar as above, and the regularlzed contribution of the second term to the momentum density per unit
surface becomes,

7? hd 30L sinwd/2L

TM +TFE) = — —12 12 —_— 4
&(TM+TE) = 1y 7 [(” R G e e 5T B (46)
The final result is by adding the contributions (44), (45), and (46),
72hd 30L sin(wd/2L)
&= Toppa |V AN T cos3(7rd/2L)} So
(47)

for the radiation momentum of the zero-point fluctuations per unit surface. Equation (47) is the final mathematical
result of this section. Somewhat surprisingly perhaps, we infer that also the symmetric part of x - absent in homo-
geneous media - generates a small momentum per unit volume, and which is completely independent of the ME slab
thicknesses d. Yet, for ME slab thicknesses 0 < d < L it can easily be checked that the expression is dominated by
the anti-symmetric part of the magneto-electrical tensor x, proportional to v 4+ 4. It actually diverges as the plates
start approaching the ME slab, a situation that we wish to ignore in the present context, but we note that if d = L
the diverging term regularizes to zero - in view of the discussion after Eq. (43) - so that only the symmetric part of x
remains. This is for instance true for a quantum vacuum between the Casimir plates, which is known to have a ME
activity [13], with even a non-vanishing symmetric part of the x-tensor.

Discussion

We shall now discuss the physical consequences of Eq. (47). It implies a finite radiation momentum per unit surface
for a finite separation of the plates. The effect is Lorentz-invariant for any transformation along the plates, provided
the Lorentz transformation of all parameters is included (as discussed in a previous section). The transverse sizes L
and d are not affected by a Lorentz transformation horizontal to the plates.

We recall the momentum balance equation (18) for radiation 4+ matter, which was seen to be valid even for
inhomogeneous media (and the middle plate is inhomogeneous in the z-direction), and even for time-dependent
constitutive constants. Let us apply this notion to two Gedanken experiments.

First we imagine the plates to be infinitely separated (L = o), and the ME plate at rest with respect to these
plates (v(0) = 0), with the static or low frequency fields Eq and By switched on. We can now let the plates approach
with opposite momentum until a finite distance L. (As a matter of fact the zero point fluctuations will do this for
us by means of the Casimir effect, and we should actually prevent them from collapsing.) This converts vacuum
energy into kinetic energy, but no momentum is put into the system, since the Casimir plates always have opposite
momentum. Yet, the radiation momentum density g per unit surface changes, which must be compensated by the
matter momentum density per unit surface pdv. We conclude that the matter achieves the momentum density -g/d
from the zero-point sea, with g given by (47). The Feigel effect thus occurs, but only at finite L: In our approach
the diverging formula obtained by Ref. [1] for an infinite, homogeneous, and time-independent medium is completely
regularized to zero. This can also be seen by ignoring the Casimir geometry, and by regularizing directly the expression
obtained by Feigel (see also Eq. (26)),

3

1 &Pk

where the last equality follows from the dimensional regularization (41), and v(0) is the initial velocity with respect
to the plates. The Feigel effect disappears but, quite satisfactorily, the dimensional regularization leaves us with a
Lorentz invariant end-result.

We thus predict that the Feigel effect occurs only in a squeezed vacuum. An experimental verification of this
statement would not only be an observation of the ”Feigel effect” itself, it will also provide direct evidence for the
regularization technique. In this context we emphasize that the observation of the Casimir effect [17] does not provide
this support, since for the Casimir force - being the derivative of the diverging zero-point energy - the infinite constant
formally drops out.

pv —pv(0) = wx =1p(3,-1) =0
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In a second experiment the plates are kept at a finite distance, but the fields Eg and By are switched off, with the
medium at rest with respect to the plates. Upon turning on the fields slowly toward finite values Ey and By, the
total momentum per unit surface g(t) + pdv(¢) must again be constant in time, and we conclude for exactly the same
”Feigel effect” as in the previous Gedanken experiment. An experimental verification of this statement would further
support the regularization procedure, since the regularized infinity is now actually time-dependent. The equivalence
of the two Gedanken experiments avoids the occurrence of a hysteresis in the following cycle,

(SO = O,L = OO) — (SO :O,L) — (SO7L) — (So,L = OO) — (SO = O,L: OO)

where only the middle underlined stage exhibits the Feigel effect.

E. A magneto-electrically active object in classical, diffuse light

Until now we have considered the Lorentz-invariance of the Feigel effect, and investigated the infinities that occur
when considering it for zero-point fluctuations. Lorentz invariance has been an important physical test, but is not
a stringent experimental condition. Controversial as it is, the Feigel effect in vacuum is mixed up with another
controversial procedure, namely the (dimensional) regularization. In this last section we shall formulate the Feigel
process in a "normal” scattering situation, in the presence of a monochromatic diffuse field. This picture is highly
relevant for experiments, though more difficult to treat by Lorentz symmetry. One striking difference between the
quantum vacuum and a classical, random, isotropic radiation field must be emphasized: If the object is at rest and
exposed to an ”isotropic” radiation originating from its far field, the object will see a dipolar radiation once it starts
moving, by virtue of the Doppler effect. For the vacuum this is different: even moving objects see an isotropic vacuum,
because the vacuum fluctuations are Lorentz-invariant! On the other hand, a strong similarity exists as well: We can
show that field correlations obey a formula very similar to the fluctuation -dissipation formula (28). From that we can
establish the ”classical” equivalent of the Feigel effect without the need of a ”controversial” regularization procedure.

An arbitrary but finite object is placed in a stationary ”diffuse” field, which is random, but statistically isotropic
and unpolarized, with energy density £(w) in the absence of the object. We shall prove the following theorem,

(Ei(r,w)Ei(r,w)) = —27Ti<w)lm Gij(r, v w)

(48)

with G(r,r’,w) the Green’s tensor of the Helmholtz equation (7), and E;(r,w) the component ¢ of the electric field
at position r at frequency w. Note the similarity of this equation with the fluctuation-dissipation formula (28). The
proof is given in Appendix B.

The relevance of a diffuse field in the context of the Feigel effect is obvious: without the object, the momentum
of the radiation clearly vanishes. In the presence of the object, this might change if some magneto-electric activity
is induced. It would be very interesting to apply (48) to for instance a Mie sphere [19] ("a water droplet”), that is
slightly perturbed by ME effects. There is good hope that resonant effects of the sphere largely increase the Feigel
effect. This is however beyond the scope of this project. We will consider a much simpler situation which will allow
us to conclude that the Feigel effect is induced. To this end we consider a finite object whose constitutive tensors €,
and y differ only moderately from the (vacuum) environment. If Gy is the vacuum Green’s tensor of the Helmholtz
equation (7) and 6K (r, p) the perturbation (34), we see that the Green’s function in the presence of the perturbation
is approximated by,

G(w,6K) = [Gy' = 6K] ' = Go+ Go - 6K - Go + O(6K)?
If we apply Eq. (37) for the radiation momentum density, it follows that,

L )] pam Gy () - pIm Gy )] ) (49)

and upon integrating over whole space, using the above expansion for GG, we get for the total momentum density of
the radiation,

(E x B")(r,w); =

E(w 4’k
gl(w) = — 25(}2) / (277')3]{1 Im Tr Go(k) * Xkk’ * Go(k)
E(w) d3k
+ 202 / (27T)3 kj Im GO,in (k) * Xkk,nm * GO,mj (k) (50)
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containing the ME matrix element,

Xk = (k|x(p,1)[k) = V B(k)w[(e- k) - x" — x - (e- k)]

in terms of the volume V and the normalized structure factor B(k) of the object (i.e. the normalized integral of
exp(ik - r) over the object, thus B(0) = 1). We emphasize that here the vector g stands for radiation momentum per
unit volume, and not per unit surface as in the previous section. As for the Casimir geometry, we identify again two
terms, the second being longitudinal (i.e. with k-G # 0) . We encounter no UV catastrophes. The vacuum Green’s

function [20] is Go(w,p) = (I — pp) [(w + i0)* — p?] ~'. The first term gives rise to the momentum integral,

3
[ YEpe—
(2) [(w+i0)2 —p2*> 87

and the second term uses,

/ B g 1 _ 1.
(2m)? (w+i0)2—p2  4rm

The final result reads,

§i(w) = ~ =€)V B@eipn
- éf)(w)B(w) {47r(4)\ +1)Sp +2(1 — s)c‘;}i (51)

In the second equality we have inserted the constitutive equation (24) for x. As in the previous section we apply the
momentum conservation law (18) to conclude that

pv(t) + E(w,t)B(w) {(4)\ +v)Eg x Bo(t) + 2(1 — €)v<t)} = constant = 0 (52)

487TC() Co

We have re-introduced factors ¢y that had been put to unity for convenience, and put the constant equal to zero if we
assume that v = 0 at the moment of switching on the field. Since the law (18) was seen to be valid in the presence
of time-dependent sources and/or time-dependent constitutive parameters we were allowed to introduce slow time
dependence in both the source and the fields Eg and Bg. The constant in Eq. (52) is put to zero if on the moment of
switching on either the source or the fields, the object is at rest. We conclude that the object starts moving along the
vector Sq(t) as soon as both are switched on. The Feigel effect thus also exists for a ME object subject to an external
field and placed in an isotropic radiation field. Note that here only the asymmetric part of the tensor x comes in. We
will estimate orders of magnitude later.

To obtain Eq. (52) we have considered the total radiation momentum accumulated around and in the object, but
it is physically reasonable to assume that this momentum is localized around the object, and dragged along as the
object starts moving. We have already seen that the momentum conservation Eq. (18) is valid for inhomogeneous
external field, and thus for an inhomogeneous Sy(r,t). It is thus attractive to generalize Eq. (52) to inhomogeneous
fields as follows,

v(R,t)
co

1
pv(R,t) +
(’) ]8

ﬂ_COS(w, t)B(w) {(4)\ +v)Eg x Bo(R,t) +2(1 —¢)

} = constant = 0 (53)

to be combined with dR/dt = v. This would imply that the object starts moving along the field lines of the vector
So(R,t), with controllable speed. A fascinating idea with potential applications for optical tweezers, whose validity
will be a topic of future research.
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III. EXPERIMENTAL PERSPECTIVES

The major experimental challenge is to establish if the prediction by the Feigel work that a magneto-electric (ME)
medium acquires linear momentum from the vacuum radiation field, is within reach of experimental verification.
The Feigel work considers the case of an isotropic dielectric that is rendered magneto-electric by externally applied
crossed static electric and magnetic fields. We propose replacing this medium with a ferrimagnetic, piezo-electric
magneto-electric crystal that has identical forms for its constitutive tensors, but with much stronger effects. To
detect the induced momentum, we propose mounting this crystal on an existing cantilever with a piezo-resistive
readout (see Figure 2) subject to an alternating saturating magnetic field, and to detect phase sensitively the torque
induced by the time-varying induced momentum. Phase-sensitive detection is a well-known method for measuring
small induced effects, and has been successfully applied by us in many other situations. Below we will determine what
type of magneto-electric crystal is suitable, and what detection limit of the Feigel effect is achievable under realistic
conditions.

Secondly, we wish to establish if the regularized prediction, derived by us above for the Casimir geometry, in
Eq.(47), can be experimentally verified by using the same material and setup as proposed for the verification of the
original Feigel prediction, and by adding the plates.

Lastly, we wish to estimate the magnitude of the classical Feigel effect of ME diffusive scattering predicted by Eq.
(52).

A. Induced magneto-electric effect in isotropic dielectrics

Using the Helmholtz equation Eq. (7) and the constitutive parameters Eq. (24), we can find out how different light
polarizations propagate in different directions. If Eg is along the z-direction, By is along the z-direction we find for
light propagating along the along the y-axis a linear birefringence

(v + 4)\ue) B — (4\ + vue) B¢

An =ng —n, = \JELU (VEg — 4/\33) + (v —4)\) pFEoBo + (54)

2e
in which we can recognize a Cotton-Mouton birefringence
4N
Ancy (BY) =nj—ny =ng —n, = (—4\/8[1#/\ + (V+2€u€)> B} (55)
a Kerr birefringence
4N+ vpue
Ang (Eg) = nj—ni =n. —n, = <2€u - vww) Ej (56)
a magneto-electric linear birefringence
AnMELB (EOBO) =np —ng =n; —n; = (v —4\) uEoBy = (x12 + x21) 1 (57)
We can also identify a magneto-electric anisotropy for unpolarized light
Anyga (FoBo) =nk—n_x=ng —n_g = (v +4\) uEgBy = (x12 — X21) it (58)

If we assume that € ~ 1 and 1 &~ 1 we can approximate Ancy & (—2\ +v/2) B3, Ang ~ 2\ —v/2) EZ , AnypLp =~
(v —4)\) EoBg and Anpyga = (v +4)) EgBy. Clearly, all magneto-optic, electro-optic and magneto-electro-optic
effects in rigid isotropic media are interrelated and we can deduce remarkably simple relations like:

ATLCM - A?’LK
By B

(59)

and

AnypLs 2AnCM (60)
EoBo B2




17
B. Comparison of magneto-electric crystals

Having established the relation between the magneto-electric tensor of isotropic media in crossed fields and the
observed optical phenomena, we can ask whether there exist crystals that by virtue of their intrinsic properties
like magnetization and polarization, possess exactly the same magneto-electric tensor x as derived in Eq. (24). In
general one expects that the magnitude of the tensor elements for such crystals is many orders larger than for the
case of externally applied fields to isotropic media. This expectation is based on the observation of a non-reciprocal
magneto-electric birefringence of the order of 1072 in non-centrosymmetric, anti-ferromagnetic CryO3 [21]. This
crystal is the only one so far for which the real part of the magneto-electric tensor elements at optical frequencies
has been determined. The low frequency values are also around 10~2, which suggests that the magneto-electric effect
is approximately frequency-independent, from DC up to optical frequencies. The strongest induced magneto-electric
birefringence observed in liquids is 107 1*at £ = 105 V/m and B = 20 T [22], i.e. 8 orders of magnitude smaller.

Among the 90 possible magnetic point groups, 32 point groups exist that contain a center of symmetry, which
excludes the occurrence of magneto-electric effects [23]. This leaves us with 58 potential magnetic point groups that
allow for a magneto-electric effect. The tensor form of the magneto-electric effect induced by external magnetic and
electric fields in isotropic dielectrics,

X = (61)

o ot O
S o2
o OO

(where a «x FgBy and b o< EyBy) is only found in crystals in the magnetic point groups 222, mm2, 2mm and mmm,
with a # 0 and b # 0 without external fields. Such crystals would therefore have exactly the same magneto-electric
effects as rigid isotropic media in crossed electric and magnetic fields. The symmetric case a = b, i.e. 4\ = —v in the
notation above, concerns crystals in the classes 422, 4mm, 4m2, 4/mmm, 32, 3m, 3m, 622, 6mm, 6m2 and 6/mmm.
These would exhibit a higher tensor symmetry, and Anyga = 0, so these crystal classes can not emulate dielectrics
in crossed fields, where in general Anygpa # 0. More approximately, all magnetic crystal classes where the matrix
elements x12 and y21 are unequal and much larger than all other elements, will behave similarly to isotropic dielectrics
in crossed external fields. The latter criterion eliminates the magnetic crystal classes 2, m, 2/m, 222, mm2, mmm,
422, 4mm, 42m, 4/mmm, 32, 3m, 3m, 622, 6mm, 6/mmm, 422, 42m, 4/mmm, 23, m3, 432, 43m and m3m where
these elements are zero. This eliminates for instance the prototypical magneto-electric crystal CroO3 that belongs to
the class 3m. Note that the assignment of materials to a magnetic crystal class is a delicate issue. Not only will the
magnetic symmetry depend on temperature, but the magnetization direction can depend on external influences, in
particular on an external magnetic field that was applied, although in general an easy magnetization axis is dominant.
Furthermore, effects of domains have to be considered, where each domain itself can be magneto-electric, but with
adjacent domains generating opposite effects, so that the crystal as a whole does not show a magneto-electric effect.
In general, such materials can be prepared in a single domain state by creating first a high symmetry state at high
temperature, apply the electric/magnetic field and then slowly cool it down to the desired magneto-electric state.
From the above, we see that only very few crystal classes facilitate an exact emulation of the behavior of isotropic
dielectrics in crossed electric and magnetic fields. After a profound literature search, we propose FeGaOs as the
most suitable candidate for such an emulation [24]. FeGaOs is an orthorhombic piezo-electric ferrimagnetic (below
280 K) crystal, with an electrical polarization along the b-axis and an easy magnetization direction along the c-axis.
Identifying ¢ — z, b — y and a — z, we deduce a magnetic point group m2m with the symmetry operations 2,,, 2,, and
2. and a magneto-electric tensor of the form given by Eq. (61) [25]. At low frequencies, a magneto-electric coefficient
of 3-10~* has been observed [26]. More recently, the magneto-electric anisotropy of this material has been determined
in absorption for radiation propagation along the a-axis at optical [27] and X-ray (7 keV, [28]) frequencies. Relative
anisotropies in the absorption coefficient of the order of 102 have been observed at optical and X-ray resonances,
implying

IIm (x12 — X21)| = 10" 3Imn (62)

These observations impose through the Kramers-Kronig relations [10] anisotropies of the same order of magnitude
in the real part Re (x12 — x21). Quite complicated bi-signate line shapes were observed, so that no simple estimates
for the magnitude of Re (x12 — x21) could be obtained for frequencies outside the absorption regions. However, all
these experimental results suggest that a value x;; ~ 10~% can be expected over a wide frequency range from DC to
X-rays. As an alternative, we propose the crystal F'eAlO3, which is isomorphous to F'eGaO3 and will therefore have
the same magneto-electric tensor. Because the electronic transitions, generating both the magneto-electric effect and
the absorption in FeGaOs3, are localized on the Fe3T-ions, we expect very similar results for FeAlOs.
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C. Experimental feasibility of the Feigel effect

The relevant material parameters for FeGaOs at optical frequencies are :

p=4.5 g/cm?
JTE=NI
ex~n?r4
Anpypa = 1074
Try =280 K

According to Eq. (1), the momentum density gained by the magneto-electric medium from the vacuum fluctuations
is given by (in cgs units)

1 1+ep

510727
3275 LMEA Y

AZ

pU = hks = gAnMEA =78 g/cm’s (63)

where a cut-off wavelength of A\, = 0.1 nm was introduced, below which no more material response is supposed to
exist. Note that magneto-electric activity was observed down to a wavelength A = 0,2 nm [28] so that the cut-off A,
cannot be much bigger than our choice, so that the above value for pv is actually a lower limit. With the above value
for the mass-density, we estimate a velocity of

v~ 18 cm/s. (64)

A crystal of FeGaOj3 of mass m = 10 ug would therefore have a momentum

mv ~1.8-107* gem/s. (65)

We propose an experiment with a piezo-resistive-cantilever and phase-sensitive detection of the induced momentum
by an AC magnetic field above the saturation field of FeGaOs (0.15 T along the c-axis) at a magnetic field frequency
of f =60 Hz. The predicted momentum change is equal to a periodic force

_ Omwv

F, = 5 27 fmu ~ 0.07 gem/s” (66)

on the cantilever. The beam length of the available cantilever is [ = 0.14 mm, so the torque D on the cantilever would
be

D,=F, 1~1-1071° Nm. (67)

The experimentally determined noise level of our cantilever readout system is about 500 nV/ vHz between 1 Hz and
200 Hz at a sensitivity of about 107 V/Nm. This means that a signal-to-noise ratio of order unity can be obtained
already after 20 ms integration. When integration extends to seconds, the predicted signal-to-noise ratio for the
Feigel effect is large. The experiment is best done around 230 K, where Anypga has its maximum value. Cooling
of the environment to suppress contributions of the blackbody radiation field to the effect does not seem necessary.
We recall that, according to the Feigel theory, the dominant contributions to the momentum transfer come from very
high-energy photons, that are absent in blackbody radiation.

Upon observing a significant signal, an important check will be to change the direction of the b-axis of the crystal,
which ought to change the sign of the signal. Another important check would be a measurement above Trp= 280 K,
where the magneto-electric coefficient of F'eGaOj3 is known to vanish. Experimental verification or falsification of the
Feigel effect by means of magneto-electric crystals seems therefore feasible. Note that the observation of this effect
on isotropic dielectrics in crossed static fields with the same setup would require much longer integration times, of
the order of days to weeks, which does not seem practical. A possible improvement of the setup would be a higher
magnetic field frequency, which would require the construction of a special AC magnet.
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D. Experimental feasibility of the Casimir-Feigel effect

In Eq. 47 a regularized Feigel effect has been obtained by us in the Casimir geometry. The regularization eliminates
high energy photons that dominate in the Feigel theory, just like for the Casimir effect, which is generally accepted to
be a low-frequency phenomenon. We predict for the momentum density of the magneto-electric slab with thickness d
between two plates at a distance L,

pv =—g/d + (x12 — x21) (68)

_h X12 + Xx21
- 1924 30

L sin(wd/2L)
7d cos3 (wd/2L) )

Note that the momentum density diverges when d — L. An optimistic, but not unrealistic situation would be d ~ L/2
which yields as estimate for FeGaOs

h 210732

pU R mAnMEA ~ 7 (69)

For L = 103 cm, we finally obtain pv = 4-10720 g/cm®s, as compared to the value pv = 78 g/cm”s obtained by the
Feigel theory, i.e. roughly 22 orders of magnitude smaller! Although a cantilever setup would in principle be suited
to be implemented into the Casimir configuration, the calculated value for the momentum is too small to believe that
experimental verification with our current cantilever setup is within reach. At finite temperatures the effect might be
much bigger. A calculation of the Casimir-Feigel effect at finite temperatures is feasible, using the method employed
for the calculation of the Casimir effect at finite temperatures [29].

E. Experimental feasibility of the classical Feigel effect

Eq. 52 predicts that a small object with magneto-electric properties in an isotropic monochromatic radiation
field will be set into motion if the external fields are switched on. For this case, experimental verification is much
easier, as high intensity monochromatic radiation fields can be easily generated and modulated, thereby facilitating
experimental observation. Eq. 52 predicts for an object small compared to the wavelength (B = 1)

v = X12 — X21 o A AnMEA
27pd — (e —1)€°" " 100pco

(70)

In the limit of very strong radiation fields( £ > 75pc3 ) this converges to v = Anygaco, independent of the
radiation density. This corresponds to radiation fluxes of the order of I ~ 103'W/m?, which are not achievable in
present experiments. For realistic values of the radiation intensity I the achieved momentum is just linear in /. For
I = Eco =10 kW/cm?, Eq. 70 predicts a velocity v = 1075 ¢cm/s for an object made of FeGaOs.

Experimental verification of the classical Feigel effect seems possible by the same cantilever technique as described
above. A crystal of FeGaOj3 of mass m = 10 ug in an isotropic radiation field of 10 kW /cm?would have a momentum

mvu ~1-1071% gem/s. (71)

We propose this time to use a saturating DC magnetic field and periodically switch on and off the radiation field
by means of a photoelastic modulator at a frequency f = 50 kHz. The predicted momentum change is equal to a
periodic force

_ Omw

F, = el 2mfmu ~ 3-107° gem?/s (72)

on the cantilever. The beam length of the available cantilever is [ = 0.14 mm, so the torque D on the cantilever would
be

D,=F,-1~5-10"** Nm. (73)
Integration times of the order of seconds are sufficient to achieve a signal-to-noise ratio of unity. Important experi-

mental checks are that the observed signal should change with the polarity of the (saturating) magnetic field and that
the signal should vanish above Tgy,= 280 K
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IV. CONCLUDING REMARKS

This report is the result of a two months study on the Feigel effect, carried out in April/May 2005. We have
investigated light propagation in bi-anisotropic media, and the conservation of momentum. A Lorentz-invariant
description for the Feigel effect has been proposed. To eliminate the divergencies in the Feigel theory we have applied
regularization techniques developed in quantum field theory. This has provided finite expressions for the Feigel effect
in the well-known Casimir geometry consisting of two parallel metallic plates. We have also investigated a classical
variant of the Feigel effect, which is experimentally more feasible. Finally, we have carried out a detailed literature
study to find materials with favorable properties to observe or to reject the prediction of the Feigel work.

Our conclusion is that the Feigel effect could in principle exist when external electric and magnetic field are slowly
switched on. We do not confirm the final formula of the Feigel work, which expresses a dominant contribution of
high-energy vacuum photons. We do confirm the Feigel effect in the Casimir geometry, but its order of magnitude
is actually beyond experimental reach. We can consider the case treated by the Feigel work as the limit L — oo
of the Casimir-Feigel geometry, treated by us in this report and conclude that the prediction of the Feigel work that
“momentum comes from nothing” is too naive, and disregards recent developments of vacuum regularization. The
most favorable situation that we could find where observation of a Feigel effect is possible is one in which a magneto-
electric object is placed in an isotropic strong, classical radiation field. This is a fascinating idea with potential
applications for optical tweezers, whose validity will be a topic of future research.
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V. APPENDICES
APPENDIX A: ZERO ENERGY FLUX IN VACUUM

We proof here theorem (30).
Using the constitutive equations (2) and the Maxwell’s equations, and by inserting a complete set of plane waves
we can write for the i*" component of the Poynting vector,

1 " 1 Z ple-p T *
P

whose vacuum expectation is, using (28),
hw -1 T
(018110) = =52 > eige (17 (e p) — wxT), TmGis(w,p)
P

The Green’s tensor can be re-arranged to

G(w,p) = [(@+0)%(c = x -1 X") + (" (e p) —wx) - p (- (e-p) —wx™)]

The tensor j - xT can always be written as the sum of a symmetric and an anti-symmetric tensor. The asymmetric
part can always be written as the rotation over some axis s, i.e. (u-x?)* = e-s. The change of variable p — p + s
removes the asymmetric part, and we can thus assume u - x? to be symmetric. For the Feigel work we have thus
proved that (0]S;]0) = 0, since the p in the Feigel work is scalar and the x anti-symmetric, and the entire x-tensor
contribution can be eliminated by a change of variables.

It is at this moment that we restrict to the special case of our Lagrangian (23) with A # v/4. The effect is evidently
zero for y = 0 (the summation above over p is then odd in p), so to second order of the applied fields Eq, By we
can neglect the ME terms in € and p~!, and put €;; = £4;;. By first changing p — —p and then using the relation
AT (1 +A-AT)" 1= (1 + AT . A)~1. AT we get subsequently,

SiocTrei-ATlmG(A) = Trei~AT-ImG(AT):Trei-ImG(A)-AT
= TrA-ImG(A) €l = —Tre; - A-Im G(A)

where we have inserted A = ((¢ - p)w — wx). We conclude that S; = 0.

APPENDIX B: FIELD CORRELATIONS FROM ISOTROPIC RANDOM SOURCE

We proof here theorem (48).

We begin by considering a plane wave s,k (w)gy exp(ik-x) with polarization g,, and complex amplitude $,, incident
on the object. In the presence of the object this is not an eigenfunction of the Helmholtz equation (7) at frequency
w = k, but standard scattering theory [18] tells us that the appropriate eigenfunction is F,x(r,w) is still related to
the incident plane wave by means of the scattering operator. In the far-field of the object it converges to the incident
plane wave with wave vector k£ and polarization g,, plus a scattered spherical wave, but here we will need it mostly
inside the object. The field correlation of the electric field between any two points in space is expressed as,

/ an dQ’Z <sn(1A<,w)s:;, (lA{’,w)> Ep,i(r,w)Ep e (v, w)
4am 4m

nn’

(Ei(r,w)E5 (r',w))

1 *
L5() /4 a9 znj Brtes(t,0) Bl 5 (')

where we have used that <sn(f<,w)sfb/(f<’,w)> = 16,,0(2 — Q') S(w) to describe an unpolarized isotropic random

field. We see immediately from the equation above that in the absence of the object, we have the relation 475 (w) =
(|E(r,w)|?) = &. We can rewrite this as,

(B By = T2 [ S B Bl 50 x 78 (42— )
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Since E,x(r,w) is the exact eigenfunction at eigenvalue k2, we conclude that the righthand side is just the imaginary
part of the (spectral decomposition of the) Green’s function and,

B 87125 (w)

(Ei(r,w) B} (1, ) = ———

j ImGij(r,r’,w)

and the theorem is proved by inserting S = £ /4.



