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1 INTRODUCTION 

Quantum algorithms process information stored in qubits, the basic memory unit of quantum 
processors, and quantum operations (called gates) are the building blocks of quantum 
algorithms. In order to be run on quantum computing hardware, quantum algorithms must 
be compiled into a set of elementary machine instructions (i.e., quantum gates).  Since 
currently available quantum circuits suffer a number of technological problems such as noise 
and decoherence, it is important that the process that carries out the quantum computation 
be somehow adapted to the physical limitations of the quantum hardware of interest, by 
means of a proper compilation. 
   
For practical applications, it is important to make quantum computation able to tackle 
problem instances of more and more realistic size. To this aim, the ability to quickly compile 
quantum algorithms of good quality is paramount. Following our past research expertise on 
the subject [Oddi 2018, Rasconi 2019, Oddi 2020, Baioletti 2021], we aim at investigating 
the application of novel AI-based meta-heuristics to the problem of compiling quantum 
circuits to emerging quantum hardware, particularly focusing on Space-related applications. 
 
We focus our initial modelling efforts by studying the so-called Quantum Alternate Operator 
Ansatz (QAOA) algorithms on the gate-model noisy intermediate-scale quantum (NISQ) 
processor units. Our approach intends to improve over the compilation algorithms applied 
to the current quantum computing software development kits (e.g., [Qiskit 2021]), devise 
solutions that are easily adaptable to different classes of problems. 

1.1 The Noisy intermediate-scale quantum (NISQ) era 

In the noisy intermediate-scale quantum (NISQ) era, the leading quantum processors 
contain about 50 to a few hundred qubits, but are not advanced enough to reach fault-
tolerance nor large enough to profit sustainably from quantum supremacy. The term was 
coined by John Preskill in 2018, and it is used to describe the current state of the art in the 
fabrication of quantum processors. 
The term 'noisy' refers to the fact that quantum processors are very sensitive to the 
environment and may lose their quantum state due to quantum decoherence. In the NISQ 
era, the quantum processors are not sophisticated enough to continuously implement 
quantum error correction. 
The term 'intermediate-scale' refers to the quantum volume related to the not-so-large 
number of qubits and moderate gate fidelity. 
 
The term NISQ algorithms refers to algorithms designed for quantum processors in the NISQ 
era. For example, the variational quantum eigensolver (VQE) or the quantum approximate 
optimization algorithm (QAOA), are hybrid algorithms that use NISQ devices but reduce the 
calculation load by implementing some parts of the algorithm in usual classical processors. 
These algorithms have been proven to recover known results in quantum chemistry and 
some applications have been suggested in physics, material science, data science, 
cryptography, biology and finance.  
 
Usually, NISQ algorithms require error mitigation techniques to recover useful data, which 
however make use of precious qubits to be implemented. Thus, the creation of a computer 
with tens of thousands of qubits and enough error correction would eventually end the NISQ 
era. These “beyond-NISQ” devices would be able, for example, to implement Shor's 
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algorithm, for very large numbers and break RSA encryption. Until that point however, the 
need to produce circuits runnable in the current (or near-future) quantum architectures in a 
reasonably reliable manner (i.e., counting on noise minimization techniques rather than on 
error-correcting techniques) will stand. Hence, the need to provide quantum circuit 
compilation procedure that minimize the effects of decoherence by minimizing the circuit’s 
depth (see Section 1.3). 
 
 

1.2 Quantum Approximate Optimization Algorithm (QAOA) 

QAOA (Quantum Approximate Optimization Algorithm) introduced in [Farhi 2014] is a 
quantum algorithm that attempts to solve combinatorial problems. Combinatorial 
optimization problems involve finding an optimal object out of a finite set of objects, often 
reduced to finding "optimal" bitstrings composed of 0's and 1's among a finite set of 
bitstrings. One such problem corresponding to a graph is for instance the Max-Cut problem. 
 
More specifically, QAOA is a variational algorithm that uses a unitary U(β, γ) characterized 
by the parameters (β,γ) to prepare a quantum state |ψ(β, γ)⟩. The goal of the algorithm is to 

find optimal parameters (βopt, γopt) such that the quantum state |ψ(βopt, γopt)⟩ encodes the 
solution to the problem. 
 
The unitary U(β,γ) has a specific form and is composed of two unitaries: 
 

1. U(β) = e−iβHB  
2. U(γ) = e−iγHP 

 
where HB is the mixing Hamiltonian and HP is the problem Hamiltonian. Such a choice of 
unitary drives its inspiration from a related scheme called quantum annealing. 
 
The state is prepared by applying these unitaries as alternating blocks of the two unitaries 
applied p times such that 
 

|ψ(β, γ)⟩ = U1(β)U1(γ) ⋯ Up(β)Up(γ) |ψ0⟩ 
 
where |ψ0⟩ is a suitable initial state. 
 
A key issue in QAOA algorithms is to find the optimal parameters (βopt,γopt) such that the 
expectation value 
 

⟨ψ(βopt, γopt)| HP |ψ(βopt, γopt)⟩ 
 
is minimized. Such an expectation can be obtained by doing measurement in the Z-basis. 
Generally, a classical optimization algorithm to find the optimal parameters is used. The 
involved steps are shown in Figure 1: 
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Figure 1 - QAOA optimization steps 

 
 
And described in the following pseudocode: 
 

1. Initialize β and γ to suitable real values. 
2. Repeat until some suitable convergence criteria is met: 

a. Prepare the state |ψ(β, γ)⟩ using QAOA circuit 
b. Measure the state in standard basis 
c. Compute ⟨ψ(β, γ) |HP| ψ(β, γ)⟩ 
d. Find new set of parameters (βnew,γnew) using a classical optimization algorithm 
e. Set current parameters (β, γ) equal to the new parameters (βnew,γnew) 

1.3 The QCC problem 

Quantum Computing explores the implications of using quantum mechanics to model 
information and its processing. The impact of quantum computing technology on 
theoretical/applicative aspects of computation as well as on the society in the next decades 
is considered to be immensely beneficial [Nielsen 2011]. While classical computing revolves 
around the execution of logical gates based on two-valued bits, quantum computing uses 
quantum gates that manipulate multi-valued bits (qubits) that can represent as many logical 
states (qstates) as are the obtainable linear combinations of a set of basis states (state 
superpositions). A quantum circuit is composed of a number of qubits and by a series of 
quantum gates that operate on those qubits, and whose execution realizes a specific 
quantum algorithm. 
  
Executing a quantum circuit entails the chronological evaluation of each gate and the 
modification of the involved qstates according to the gate logic. Current quantum computing 
technologies like ion-traps, quantum dots, super-conducting qubits, etc. limit the qubit 
interaction distance to the extent of allowing the execution of gates between adjacent (i.e., 
nearest-neighbor) qubits only. This has opened the way to the exploration of possible 
techniques and/or heuristics aimed at guaranteeing nearest-neighbor (NN) compliance in 
any quantum circuit through the addition of a number of so-called SWAP gates between 
adjacent qubits (Quantum Circuit Compilation Problem - QCCP), see ([Oddi 2018]). 
  
The effect of a SWAP gate is to mutually exchange the qstates of the involved qubits, thus 
allowing the execution of the gates that require those qstates to rest on adjacent qubits. 
However, adding SWAP gates also introduces a time overhead in the circuit execution that 
generally depends on the quantum hardware's topology, as well as an increase of noise; on 
the other hand, it is highly desirable to minimize the circuit's execution time (i.e., makespan), 
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in order to mitigate the negative effects of decoherence and guarantee more stability to the 
quantum computation. 
 

 
Figure 2 - The compilation process 

 
The Quantum Circuit Compilation Problem (QCCP) can therefore be described as the 
problem of compiling (or “adapting”) an ideal quantum circuit that realizes a specific function 
so that it can be run on a specific quantum hardware. Our approach leverages the fact that 
the QCCP can be reduced to a Planning & Scheduling (P&S) problem, and efficiently solved 
by exploiting the meta-heuristics generally used with P&S instances. To this aim, we based 
the development of the project on our recent research results (see [Oddi 2018, Rasconi 
2019, Oddi 2020, Baioletti 2021]), in order to assess the effectiveness of our approach 
against a set of problems of particular interest, to be decided together with ESA’s Advanced 
Concept Team (ACT). 
  
As shown in Error! Reference source not found., the quantum compilation process mainly 
deals with the careful synthesis (planning) and the temporal allocation (scheduling) of the 
necessary SWAPS that guarantee the satisfaction of the nearest-neighbourhood condition 
for all qstate pairs that are involved in the execution of every two-qubit gate, either PS 
(phase-shift or SWAP gates). In more details, the algorithm proceeds according to the 
following steps: (i) it starts from the specification of the problem of interest (e.g., Max-Cut), 
(ii) it synthesizes the quantum gates whose execution ideally implements the solution of the 
problem instance (Ideal Quantum Circuit), and finally (iii) it produces the compiled Quantum 
Circuit through the addition of properly planned SWAP gates. 
 
 

1.4 Heuristic algorithms 

The technology we produced is general, and the possibilities of its application potentially 
span over the whole spectrum of Quantum Alternating Operator Ansatz (QAOA) algorithms 
operated on NISQ technology ([Hadfield 2019]). In this respect, the applications that are 
interesting for the space community are several. Given our research background in the 
Planning & Scheduling (P&S) area (we have a record of applications of our technology to 
solve planning and scheduling problems targeted at realistic space applications), our 
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general strategy is to reduce the Quantum Circuit Compilation Problem to a P&S problem. 
The previous reduction comes very natural, as any quantum circuit can indeed be regarded 
as the temporal execution of a set of activities (i.e., the quantum gates) each requiring a 
number of resources (i.e., the qstates and/or the qubits on which the gates are executed), 
where each activity is characterized by a given duration, and where several temporal/causal 
links may exist among the activities for a variety of reasons, such as: (i) gates may not be 
commutative and hence they must be executed according to a certain order, or (ii) even in 
the commutative case, gates scheduling must be consistent with the ordering imposed by 
the execution pass the gates belong to. As a further observation, the QCCP is indeed a 
planning problem, as the compilation problem mainly entails the synthesis of a set of SWAP 
gates not originally present in the “ideal” circuit. 
 
As previously stated, the problem of minimizing the makespan of quantum circuits on 
complex quantum hardware topologies is an NP-complete problem ([Botea 2018]), hence a 
heuristic approach is required, especially when large architectures are involved. 
It can be easily demonstrated that the synthesis of a feasible quantum compilation circuit 
can be performed in polynomial time; intuitively, it is enough to begin from an empty circuit 
and iteratively adding all the gates belonging to the ideal quantum circuit when they are 
applicable (i.e., the NN condition is satisfied) or adding the SWAP gates that are necessary 
to their application. However, we have to face the problem that producing any quantum 
circuit is not enough: we are interested in circuits whose makespan is as short as possible, 
because of the decoherence issue that still affects the quantum hardware currently 
available. In other words, the problem we need to solve is no longer a feasibility problem but 
rather an optimization problem, which turns the problem’s complexity from polynomial to NP-
complete [Botea 2018]. This is the reason why solving techniques that rely on efficient meta-
heuristics are necessary. 
 

1.5 The Qiskit framework 

Qiskit [Qiskit 2021] is an open-source software development kit (SDK) for working with 
quantum computers at the level of circuits, pulses, and algorithms. It provides tools for 
creating and manipulating quantum programs and running them on prototype quantum 
devices on IBM Quantum Experience or on simulators on a local computer. It follows the 
circuit model for universal quantum computation, and can be used for any quantum 
hardware (currently supports superconducting qubits and trapped ions) that follows this 
model.  
Qiskit was founded by IBM Research to allow software development for their cloud quantum 
computing service, IBM Quantum Experience. Contributions are also made by external 
supporters, typically from academic institutions.  
The primary version of Qiskit uses the Python programming language. Versions for Swift 
and JavaScript were initially explored, though the development for these versions have 
halted. Instead, a minimal re-implementation of basic features is available as MicroQiskit, 
which is made to be easy to port to alternative platforms.  
 
As Qiskit is an open-source project committed to both: (i) bringing quantum computing to 
people of all backgrounds and to (ii) allowing for integrations on behalf of academic 
institutions, one of our objectives has been to implement our solutions in Python language 
to allow a seamless integration of our contribution as a possible extension to the Qiskit 
framework.  
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2 QUANTUM CIRCUITS AND THE COMPILATION 
PROBLEM 

As it is evident from our works published so far, we focused our efforts on routing (i.e., 
compiling) circuits that implement the QAOA paradigm specifically applied to the Max-Cut 
problem. However, the QAOA approach lends itself to the representation of a set of other 
problems that may be of particular interest for the objectives of the present study. 
  
More specifically, we are particularly interested in tackling problems whose structure is 
isomorphic to Planning & Scheduling (P&S) problems that may be particularly relevant in 
the space domain. To concretely identify the set of problems that could be realistically 
analysed within the limited timespan of this study, we focused our efforts in the graph 
colouring problem [Venturelli 2019], as it can be shown that a number of instances of P&S 
problems are reducible or strictly correlated to graph colouring.  For example, we can 
consider instances of the satellite range scheduling problem [Zufferey 2008], where a set of 
communication jobs have to be assigned to a set of ground stations with the objective of 
minimizing the number of conflicting jobs. 
 
Of course, a number of other problems may be considered in the future, for instance the 
real-world flight-gate assignment problem, i.e., the problem of assigning different gates to 
flights at an airport with the objective of minimizing the total transit times of all passengers 
[Stollenwerk 2020], or the resolution of the path planning problem for an exploratory rover 
that has to find the shortest way among a set of interesting locations for a long-range 
planetary exploration scenario, in the spirit of the Mars Sample Return (MSR) ESA mission 
concept. The previous problem may be of particular interest for Space: the problem can be 
modelled as a traveling salesman problem (see [Hadfield 2019]) and consists in planning a 
minimum-distance path among a set of scientifically interesting locations on the Martian 
surface to the aim of picking up the samples from past experiments (e.g., drills) and bring 
the samples to a space probe that will return them back to Earth. 

2.1 Max-k-Cut Circuit 

The combinatorial optimization problem initially tackled with QAOA [Fahri 2014] is the MAX-
CUT (see Figure 3 (a)). Given an undirected graph G = (V, E), the objective of this problem 
is to find a subset S of the vertex set V such that the number of edges between S and the 
complementary subset (V – S) is maximized. 
 
The circuit for solving the MAX-CUT with the QAOA approach is generally composed by p 
phases (p >= 1), and at least |V| qubits are necessary for its resolution. In each phase, the 
circuit comprises a level of PS gates, each of them working on the qubits associated to the 
end points of each edge, followed by a level of MIX gates, for each vertex (see Figure 4). 
 
A generalization of the MAX-CUT is the GRAPH COLOURING problem (see Figure 3 (b)), 
where, given an undirected graph G = (V, E), in which the set of vertices V can be coloured 
with one among k available colours, the objective is to maximize the number of edges in E 
that have end points with different colours. Clearly, the GRAPH COLOURING reduces to 
the MAX-CUT when k=2.  A possible approach of creating a circuit for solving GRAPH 
COLOURING uses the one-hot encoding, by having k qubits for each vertex. The i-th qubit 
indicates whether the vertex is coloured with the colour i (see Figure 5). 
 
 
 



11 

 

  
 

(a) (b) (c) 

Figure 3 - (a) MAX-Cut, (b) Graph Colouring, (c) MAX-k-Cut 

 
In its turn, the GRAPH COLOURING can be further generalized into the MAX-k-CUT 
problem (see Figure 3 (c)). In this case, given a weighted undirected graph G = (V, E), the 
MAX-k-CUT problem consists of finding a maximum-weight k-cut, that is a partition of the 
vertices into k subsets, such that the sum of the weights wij of the edges (i,j) that have end 
points on different subsets is maximized.  
Finally, LIST COLOURING generalizes MAX-k-CUT by restricting the set of allowed colours 
for each vertex. 
 

 
Figure 4 - Quantum Approximate Optimization Algorithm (QAOA) circuit 

 
 

 
Figure 5 - Mixer blocks' implementation for Graph Colouring and Max-k-Cut 
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2.2 Satellite scheduling circuit 

A combinatorial optimization problem based on LIST COLOURING and related to space 
applications is SATELLITE SCHEDULING. In this problem, a set of satellites are required 
to communicate with a set of k ground stations having unary capacity. Each satellite i can 
use only a subset Si of the available ground stations. The aim of this problem is to maximize 
the number of non-conflicting communications. Note that this is generally an oversubscribed 
problem, as the satellite communication requests may exceed the available communication 
windows. 
 
The SATELLITE SCHEDULING problem can be reduced to LIST COLOURING [Marx 2004] 
by creating a conflict graph G(V, E), where V is the set of satellite communication windows, 
and there is edge (i,j) ∈ E if and only if the communication windows i and j in V have a non-
empty intersection (see Figure 6). The weight wij on each edge (i,j) ∈ E represents the 
“importance of avoiding a conflict between the communication pair (i,j)”. Finally, the number 
of colours k coincides with the number of ground stations. 
 

 
Figure 6 – An example of conflict graph: connected vertices correspond to overlapping communications  

With respect to MAX-k-CUT, in order to correctly represent the SATELLITE SCHEDULING 
problem, the corresponding Quantum Approximate Optimization Algorithm (QAOA) circuit 
has to be modified in all its three components: 1) Initial state setting |s>  [Cruz 2019]; 2) 
Phase-Shift PS blocks; 3) MIX blocks. 
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Figure 7 – One-hot coding for the List Colouring problem 

An additional original contribution is the implementation one-hot coding schema for the 
Satellite Scheduling (reduced to List Colouring), such that the total number of used qubits is 
less than k*|V| and coincides with the sum of the used colours calculated over the set of all 
nodes V (see Figure 7). 
 

2.3 The Quantum Circuit Compilation Problem (QCCP) 

The problems tackled in this report consists in compiling a given quantum circuit on a specific 
quantum hardware architecture. To this aim, we focus on the same framework used in [Do 
2020], which is characterized by the following elements: (i) the class of Quantum 
Approximate Optimization Algorithm (QAOA) circuits [Farhi 2014; Guerreschi 2017] to 
represent an algorithm for solving the problems introduced in the previous Section 2.1 and 
Section 2.2 (ii) a specific hardware architecture, for example the one inspired by the 
architecture proposed by Rigetti Computing Inc. [Sete  2016]. The QAOA-based benchmark 
problems are characterized by a high number of commuting quantum gates (i.e., gates 
among which no particular order is superimposed) that allow for great flexibility and 
parallelism in the solution, which makes the corresponding optimization problem very 
interesting and guarantees greater circuit depth minimization potential for decoherence 
minimization [Venturelli 2017].  
 
Formally, the Quantum Circuit Compilation Problem (QCCP) is a tuple P = (C0, L0, QM), 
where C0 is the input quantum circuit, representing the execution of the Max-k-Cut algorithm 
or the Satellite scheduling problem, L0 is the initial assignment of the i-th qstate qi to the i-th 
qubit ni, and QM is a representation of the quantum backend (or quantum hardware). 
 

• The input quantum circuit is a tuple C0 = (Q, VC0, TC0), where: (i) Q = {q1, q2, …, qN} 
is the set of qstates; (ii) VC0 = P-S ∪ MIX ∪ {gstart, gend} represents the set of p-s and 
mix gate operations (P-S and MIX) that have to be scheduled, such that: (i) every p-
s(qi,qj) and mix(qi, qj) gate requires two qstates for execution; (ii) gstart and gend are 
two fictitious reference gate operations requiring no qstates. Finally, TC0 is a set of 
simple precedence constraints imposed on the P-S, MIX and {gstart, gend} sets. 

• L0 is the initial assignment at the time origin t = 0 of qstates qi to qubits ni. 

• QM is a representation of the quantum backend as an undirected graph QM = (VN, 
Egate), where VN = {n1, n2, …, nN} is the set of qubits (nodes), Egate is a set of undirected 
edges (ni, nj) representing the set of adjacent qubits. 
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A feasible solution is a tuple S = (SWAP, TC), which extends the initial circuit C0 to a 
compiled circuit CC = (Q, VCC, TCC), such that VCC = SWAP ∪ P-S ∪ MIX ∪ {gstart, gend} and 
TCC = TC0 ∪ TCC where: (i) SWAP is a set of additional swap(qi,qj) gates added to guarantee 

the adjacency constraints for the set of P-S gates, and (ii) TCC is a set of additional simple 
precedence constraints such that: 
 

• For each qstate qi, a total order ≤ is imposed among the set Qi of operations requiring 
qi, with Qi = {op ∈ P-S ∪ MIX ∪ SWAP: op requires qi};  

• All the p-s(qi,qj) and swap(qi,qj) gate operations are allocated on adjacent qubits in 
QB; 

• The graph (VCC, TCC) does not contain cycles. 
 
Given a solution S, a path between the two fictitious gates gstart and gend is a sequence of 
gates gstart, op1, op2, …, opk, gend, with opj ∈ P-S ∪ MIX ∪ SWAP, such that gstart ≤ op1, op1 ≤ 

op2, …, opk ≤ gend ∈ (TC0 ∪ TCC). The length of the path is the number of all the path’s gates 
and depth(S) is the length of the longest path from gstart to gend. An optimal solution S is a 
feasible solution characterized by the minimum depth. 

3 GRS ALGORITHM 

In the following, we provide a detailed description of the Greedy Randomized Search (GRS) 
procedure used to compile the circuit introduced in previous Section 2. GRS has traditionally 
revealed a very effective method for the resolution of complex optimization problems (such 
as the QCCP), as it realizes a simple optimization process that quickly guides the search 
towards good solutions. The GRS is particularly useful in the cases where a high-quality 
solution is needed in a relatively short time. Among other applications, it is particularly 
suitable for constraint-based scheduling problems; since the QCCP can be reduced to a 
Planning and Scheduling (P&S) problem. 
 
GRS Algorithm: 

• input: Quantum backend QM, circuit C, cpu_time T 

• output: best compiled circuit CC* 
o CC* ← nil 
o BestDepth ← +inf 
o while not (TimeLimitExceeded(T)) 

 CC ← CompileCircuit(QM, C) 
 if CC.depth < BestDepth then 

• CC* ← CC 

• BestDepth ← CC.depth 
o return(CC*) 

 
The above GRS Algorithm sketches the bulk of the implemented optimization process. It 
essentially realizes an optimization cycle in which a new solution CC is computed at each 
iteration through the CompileCircuit() algorithm, and its depth (CC.depth) is compared with 
the best depth found so far (BestDepth) in the iterative process. In case CC.depth is smaller 
than BestDepth, then the current solution CC becomes the new best solution CC*. The 
optimization process continues until a stopping condition (generally a max time limit) is met, 
where the GRS procedure returns the best solution found. 
 
As can be readily observed, the efficacy of the GRS mainly depends on the efficacy of the 
CompileCircuit() procedure (see below), which has the task of synthesizing increasingly 
better solutions. The  CompileCircuit() is a random algorithm.  It operates on macro-gates 
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containing primitive gates that use two qstates at most, and its pseudocode is shown in the 
following. Indeed, the CompileCircuit() procedure is in itself a heuristically-based iterative 
algorithm that implements a constructive methodology where a solution is built from scratch, 
and where the selection of which quantum gate to insert next in the solution is guided by a 
heuristic (the Quantum Gate Ranking Heuristic - QGRH) that returns a ranking that takes 
into account the “neighbouring cost” of all the gates that have yet to be inserted in the 
solution. At each iteration, the gate that guarantees the fastest realization of the 
neighbouring conditions of all the remaining gates is selected.  
 
CompileCircuit Algorithm: 

• input: Quantum backend QM, circuit C 

• output: compiled circuit CC 
o CC ← InitSolution(QM, C) 
o t ← 0 
o while (not all the INIT, PS and MIX gates are inserted in CC) 

 g ← SelectExecutableGate(QM, CC, t) 
 if g ≠ null then 

• CC ← InsertGate(g, CC, QM) 
 else 

• t ← t + 1 
o return(CC) 

 
In the above CompileCircuit() algorithm the procedure SelectExecutableGate() selects a 
gate which can be a PS, a MIX, a SWAP  gate. Indeed, it is a random algorithm targeted to 
minimize the solution depth, in particular its implementation is inspired to [Chand 2019], 
such that the selection of a gate g is based on two criteria: 1) the earliest start time gate 
selection (a value correlated to depth minimization); 2) a metric to minimize the number of 
swaps. At each iteration, the SelectExecutableGate(QM, CC, t) method selects the next gate 
to be inserted in the solution by means of the InsertGate(g, CC, QM) method. In all time 
instants t where no quantum gate can be selected for insertion, the current time t is increased 
(t ← t + 1). The CompileCircuit() process continues until a complete solution is built. 

4 EMPIRICAL EVALUATION  

We have implemented and tested the proposed ideas leveraging the existing open-source 
quantum-related frameworks such as Qiskit [Qiskit 2021]. As described in Section 1.5, Qiskit 
is a known open-source Software Development Kit for working with quantum computers at 
the level of pulses, circuits and application modules. It allows for the creation, modification, 
simulation, and optimization of quantum circuits on a set both simulated and real quantum 
architectures, as well as allowing the possibility to test mapping algorithms on arbitrary 
quantum hardware topologies. 
 
 



16 

 

 
Figure 8 - Chain of possible modifications (rewritings) that can be applied to a quantum circuit, available through the 

Qiskit’s Transpiler operator (image taken from: https://qiskit.org/documentation/apidoc/transpiler.html) 

 
Figure 8 depicts the chain of possible modifications (rewritings) that can be applied to a 
quantum circuit, available through the Qiskit’s Transpiler operator. The possible rewriting 
steps are the following: (i) the optimization transformations to the ideal (virtual) circuits that 
realize a specific function (Pass 1), (ii) the decomposition of 3+ quantum gates to 2-qubit 
gates in order to realistically allow their execution on the current quantum architectures 
(Pass 2), (iii) the mapping of the virtual qubits in a one-to-one manner to the “physical” qubits 
in the actual quantum device (Pass 3), (iv) the insertion of SWAP gates to the ideal circuit 
in order to overcome the qubit connectivity limitations of the current quantum hardware 
technology (Pass 4), (v) the translation of a quantum circuit in terms of the physical gates of 
the particular hardware of interest (Pass 5), and (vi) the optimization process applicable on 
the final physical circuit, generally performed in terms of gate simplifications. 
 
Our contribution for this study has been focused on Pass 3 and Pass 4, through the 
implementation of efficient compilation procedures capable of tackling both the problem of 
quantum circuit compilation w.r.t. a given hardware topology (Pass 4) with the aim of 
minimizing the circuit’s depth, and the problem of deciding the best initial virtual qubit -> real 
qubit mapping (Pass 3) with the aim of reducing the insertion of unnecessary SWAPS. The 
previous procedures were implemented in the Python language, in order to allow their 
integration within Qiskit. The performance of the proposed libraries was tested on a set of 
case study domains including the application of quantum computing to satellite scheduling 
problem. 
 
We have defined a first benchmark set for the graph colouring circuits, obtained as an 
extension of the N8 benchmark for the Max-Cut problem (e.g., see [Oddi 2018]), considering 
a number of colours k = 3. All the 22 instances have 7-nodes graphs, with p=2, hence 
quantum processors with at least 21 qubits (7 nodes x 3 colours = 21 qubits) are necessary; 
more specifically, we consider Rigetti-inspired 21-qubit processors. The Python version of 
the proposed greedy randomized search (GRS) algorithm compiles a QAOA circuit with the 
following choices: 1) one-hot coding for representing the MAX-k-Cut [Fuchs 2021]; 2) 
decomposition procedure for the QAOA blocks based on the identification of odd and even 
MIXXY gates [Hadfield 2019, Wang 2020].  Figure 9 compares the proposed GRS algorithm 
with the following compiling algorithms available in Qiskit: 
BasicSwap, StochasticSwap, SabreSwap, LookaheadSwap*. The algorithms are compared 
with respect to the depth of the compiled circuits (the circuit’s depth represents the longest 
path in the compiled circuit graph) and on each algorithm a CPU time limit of 10 seconds is 
imposed for each run. Note that no solution is found by the LookaheadSwap algorithm within 
the previous CPU time limit. 
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Figure 9 - GRS performance on graph colouring circuits 

The following figure depicts the results obtained having a closer look to the comparison with 
the SabreSwap algorithm available in Qiskit, which can be run according to three different 
heuristics: basic, lookahead, decay  
 

 
Figure 10 - GRS performance on Graph Colouring graphs 

 

5 PYTHON MODULE 

We have uploaded all the software proposed for the study Meta-Heuristic Algorithms for The 
Quantum Circuit Compilation Problem on a dedicated GitLab repository, which now contains 
the current version (not final) of the Python code. In order to install and test the current 
version of the software, we suggest to clone the full repository, and use the Jupyter notebook  
 

Meta-HeuristicAlgorithmsForTheQuantumCircuitCompilationProblem.ipynb 
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contained in the folder QuantumCompilers.  
 
Currently, the code works with the following main settings: Python 3.9.6, Qiskit 0.29.1. and 
requires part of the publicly available software downloadable from 
https://github.com/OpenQuantumComputing, and described in the paper [Fuchs 2021]. Note 
that the Python environment used to develop and run the software can be easily recreated 
by using the file requirements.txt contained in the folder QuantumCompilers. 
 
The notebook mentioned above describes the generation, compilation and execution (on a 
qasm simulator) of a quantum circuit for solving the two problems proposed in the study:  
the Max-k-Cut and the Space-Ground Communications scheduling.  
 

6 CONCLUSIONS 

The aim of this study has been the investigation of the use of quantum computing as an 
accelerator for the resolution of optimization problems in the space domain. We have 
considered the compilation techniques for Noisy Intermediate-Scale Quantum (NISQ) 
devices. In particular, we have explored the QAOA (Quantum Approximate Optimization 
Algorithm) approach for solving optimization problems and studied the quantum circuits for 
two reference problems: the Max-k-Cut (an extension of the well-known Graph Colouring 
problem); the scheduling of space-ground communications. We have proposed a greedy 
randomized search (GRS) algorithm targeted at optimizing the compilation of quantum 
circuits and defined an original benchmark set for testing compilation algorithms. On the 
basis of our empirical validation the proposed GRS algorithm outperforms other compilation 
algorithms available in the Qiskit framework. 
 
About the medium/long term goal of reaching the quantum speed-up over classical 
computers, we remark that the chosen QAOA approach exploits the intrinsic parallelism of 
quantum computing by concurrently evaluating all the possible assignments on problem 
variables and generating a probability distribution such that good assignments have a larger 
probability of being computed. According to [Fahri 2019] it is very unlikely that a conventional 
algorithm can create such a probability distribution efficiently. Moreover, as studied by 
[Guerreschi 2019], for QAOA applied to the solution of Max-Cut, as the number of available 
qubits will increase to the thousands (note that the proposed benchmark circuits used in this 
report have sizes of tens of qubits), QAOA will outperform the existing classical algorithms 
for combinatorial optimization. 
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