
1

Meta-Heuristic Algorithms for
the Quantum Circuit Compilation

Problem

Final Report

Authors: Angelo Oddi1, Riccardo Rasconi1, Vieri Giuliano Santucci1, Marco
Baioletti2, Hamish Beck3
Affiliation: 1ISTC-CNR, 2University of Perugia, 3ESA ACT

Date: 23 December 2021

Contacts:

Angelo Oddi
Tel: +39-06-44595-214
Fax: +39-06-44595-243
e-mail: angelo.oddi@istc.cnr.it

Leopold Summerer (Technical Officer)
Tel: +31(0)715654192
Fax: +31(0)715658018
e-mail: act@esa.int

Available on the ACT
website
http://www.esa.int/act

Ariadna ID: 21/1201
Ariadna study type: Standard

Contract Number: 4000134995/21/NL/GLC/my

http://www.esa.int/act

2

This page intentionally left blank

3

1 Introduction5
1.1 The Noisy intermediate-scale quantum (NISQ) era5
1.2 Quantum Approximate Optimization Algorithm (QAOA)6
1.3 The QCC problem7
1.4 Heuristic algorithms8
1.5 The Qiskit framework9

2 Quantum circuits and the compilation problem10
2.1 Max-k-Cut Circuit10
2.2 Satellite scheduling circuit12
2.3 The Quantum Circuit Compilation Problem (QCCP)13

3 GRS algorithm14
4 Empirical evaluation 15

5 Python module17
6 Conclusions18

7 References18

4

LIST OF FIGURES

Figure 1 - QAOA optimization steps7
Figure 2 - The compilation process8
Figure 3 - (a) MAX-Cut, (b) Graph Colouring, (c) MAX-k-Cut11
Figure 4 - Quantum Approximate Optimization Algorithm (QAOA) circuit11
Figure 5 - Mixer blocks' implementation for Graph Colouring and Max-k-Cut11
Figure 6 – An example of conflict graph: connected vertices correspond to overlapping
communications12
Figure 7 – One-hot coding for the List Colouring problem13
Figure 8 - Chain of possible modifications (rewritings) that can be applied to a quantum
circuit, available through the Qiskit’s Transpiler operator (image taken from:
https://qiskit.org/documentation/apidoc/transpiler.html)16
Figure 9 - GRS performance on graph colouring circuits17
Figure 10 - GRS performance on Graph Colouring graphs17

5

1 INTRODUCTION

Quantum algorithms process information stored in qubits, the basic memory unit of quantum
processors, and quantum operations (called gates) are the building blocks of quantum
algorithms. In order to be run on quantum computing hardware, quantum algorithms must
be compiled into a set of elementary machine instructions (i.e., quantum gates). Since
currently available quantum circuits suffer a number of technological problems such as noise
and decoherence, it is important that the process that carries out the quantum computation
be somehow adapted to the physical limitations of the quantum hardware of interest, by
means of a proper compilation.

For practical applications, it is important to make quantum computation able to tackle
problem instances of more and more realistic size. To this aim, the ability to quickly compile
quantum algorithms of good quality is paramount. Following our past research expertise on
the subject [Oddi 2018, Rasconi 2019, Oddi 2020, Baioletti 2021], we aim at investigating
the application of novel AI-based meta-heuristics to the problem of compiling quantum
circuits to emerging quantum hardware, particularly focusing on Space-related applications.

We focus our initial modelling efforts by studying the so-called Quantum Alternate Operator
Ansatz (QAOA) algorithms on the gate-model noisy intermediate-scale quantum (NISQ)
processor units. Our approach intends to improve over the compilation algorithms applied
to the current quantum computing software development kits (e.g., [Qiskit 2021]), devise
solutions that are easily adaptable to different classes of problems.

1.1 The Noisy intermediate-scale quantum (NISQ) era

In the noisy intermediate-scale quantum (NISQ) era, the leading quantum processors
contain about 50 to a few hundred qubits, but are not advanced enough to reach fault-
tolerance nor large enough to profit sustainably from quantum supremacy. The term was
coined by John Preskill in 2018, and it is used to describe the current state of the art in the
fabrication of quantum processors.
The term 'noisy' refers to the fact that quantum processors are very sensitive to the
environment and may lose their quantum state due to quantum decoherence. In the NISQ
era, the quantum processors are not sophisticated enough to continuously implement
quantum error correction.
The term 'intermediate-scale' refers to the quantum volume related to the not-so-large
number of qubits and moderate gate fidelity.

The term NISQ algorithms refers to algorithms designed for quantum processors in the NISQ
era. For example, the variational quantum eigensolver (VQE) or the quantum approximate
optimization algorithm (QAOA), are hybrid algorithms that use NISQ devices but reduce the
calculation load by implementing some parts of the algorithm in usual classical processors.
These algorithms have been proven to recover known results in quantum chemistry and
some applications have been suggested in physics, material science, data science,
cryptography, biology and finance.

Usually, NISQ algorithms require error mitigation techniques to recover useful data, which
however make use of precious qubits to be implemented. Thus, the creation of a computer
with tens of thousands of qubits and enough error correction would eventually end the NISQ
era. These “beyond-NISQ” devices would be able, for example, to implement Shor's

6

algorithm, for very large numbers and break RSA encryption. Until that point however, the
need to produce circuits runnable in the current (or near-future) quantum architectures in a
reasonably reliable manner (i.e., counting on noise minimization techniques rather than on
error-correcting techniques) will stand. Hence, the need to provide quantum circuit
compilation procedure that minimize the effects of decoherence by minimizing the circuit’s
depth (see Section 1.3).

1.2 Quantum Approximate Optimization Algorithm (QAOA)

QAOA (Quantum Approximate Optimization Algorithm) introduced in [Farhi 2014] is a
quantum algorithm that attempts to solve combinatorial problems. Combinatorial
optimization problems involve finding an optimal object out of a finite set of objects, often
reduced to finding "optimal" bitstrings composed of 0's and 1's among a finite set of
bitstrings. One such problem corresponding to a graph is for instance the Max-Cut problem.

More specifically, QAOA is a variational algorithm that uses a unitary U(β, γ) characterized
by the parameters (β,γ) to prepare a quantum state |ψ(β, γ)⟩. The goal of the algorithm is to

find optimal parameters (βopt, γopt) such that the quantum state |ψ(βopt, γopt)⟩ encodes the
solution to the problem.

The unitary U(β,γ) has a specific form and is composed of two unitaries:

1. U(β) = e−iβHB
2. U(γ) = e−iγHP

where HB is the mixing Hamiltonian and HP is the problem Hamiltonian. Such a choice of
unitary drives its inspiration from a related scheme called quantum annealing.

The state is prepared by applying these unitaries as alternating blocks of the two unitaries
applied p times such that

|ψ(β, γ)⟩ = U1(β)U1(γ) ⋯ Up(β)Up(γ) |ψ0⟩

where |ψ0⟩ is a suitable initial state.

A key issue in QAOA algorithms is to find the optimal parameters (βopt,γopt) such that the
expectation value

⟨ψ(βopt, γopt)| HP |ψ(βopt, γopt)⟩

is minimized. Such an expectation can be obtained by doing measurement in the Z-basis.
Generally, a classical optimization algorithm to find the optimal parameters is used. The
involved steps are shown in Figure 1:

7

Figure 1 - QAOA optimization steps

And described in the following pseudocode:

1. Initialize β and γ to suitable real values.
2. Repeat until some suitable convergence criteria is met:

a. Prepare the state |ψ(β, γ)⟩ using QAOA circuit
b. Measure the state in standard basis
c. Compute ⟨ψ(β, γ) |HP| ψ(β, γ)⟩
d. Find new set of parameters (βnew,γnew) using a classical optimization algorithm
e. Set current parameters (β, γ) equal to the new parameters (βnew,γnew)

1.3 The QCC problem

Quantum Computing explores the implications of using quantum mechanics to model
information and its processing. The impact of quantum computing technology on
theoretical/applicative aspects of computation as well as on the society in the next decades
is considered to be immensely beneficial [Nielsen 2011]. While classical computing revolves
around the execution of logical gates based on two-valued bits, quantum computing uses
quantum gates that manipulate multi-valued bits (qubits) that can represent as many logical
states (qstates) as are the obtainable linear combinations of a set of basis states (state
superpositions). A quantum circuit is composed of a number of qubits and by a series of
quantum gates that operate on those qubits, and whose execution realizes a specific
quantum algorithm.

Executing a quantum circuit entails the chronological evaluation of each gate and the
modification of the involved qstates according to the gate logic. Current quantum computing
technologies like ion-traps, quantum dots, super-conducting qubits, etc. limit the qubit
interaction distance to the extent of allowing the execution of gates between adjacent (i.e.,
nearest-neighbor) qubits only. This has opened the way to the exploration of possible
techniques and/or heuristics aimed at guaranteeing nearest-neighbor (NN) compliance in
any quantum circuit through the addition of a number of so-called SWAP gates between
adjacent qubits (Quantum Circuit Compilation Problem - QCCP), see ([Oddi 2018]).

The effect of a SWAP gate is to mutually exchange the qstates of the involved qubits, thus
allowing the execution of the gates that require those qstates to rest on adjacent qubits.
However, adding SWAP gates also introduces a time overhead in the circuit execution that
generally depends on the quantum hardware's topology, as well as an increase of noise; on
the other hand, it is highly desirable to minimize the circuit's execution time (i.e., makespan),

8

in order to mitigate the negative effects of decoherence and guarantee more stability to the
quantum computation.

Figure 2 - The compilation process

The Quantum Circuit Compilation Problem (QCCP) can therefore be described as the
problem of compiling (or “adapting”) an ideal quantum circuit that realizes a specific function
so that it can be run on a specific quantum hardware. Our approach leverages the fact that
the QCCP can be reduced to a Planning & Scheduling (P&S) problem, and efficiently solved
by exploiting the meta-heuristics generally used with P&S instances. To this aim, we based
the development of the project on our recent research results (see [Oddi 2018, Rasconi
2019, Oddi 2020, Baioletti 2021]), in order to assess the effectiveness of our approach
against a set of problems of particular interest, to be decided together with ESA’s Advanced
Concept Team (ACT).

As shown in Error! Reference source not found., the quantum compilation process mainly
deals with the careful synthesis (planning) and the temporal allocation (scheduling) of the
necessary SWAPS that guarantee the satisfaction of the nearest-neighbourhood condition
for all qstate pairs that are involved in the execution of every two-qubit gate, either PS
(phase-shift or SWAP gates). In more details, the algorithm proceeds according to the
following steps: (i) it starts from the specification of the problem of interest (e.g., Max-Cut),
(ii) it synthesizes the quantum gates whose execution ideally implements the solution of the
problem instance (Ideal Quantum Circuit), and finally (iii) it produces the compiled Quantum
Circuit through the addition of properly planned SWAP gates.

1.4 Heuristic algorithms

The technology we produced is general, and the possibilities of its application potentially
span over the whole spectrum of Quantum Alternating Operator Ansatz (QAOA) algorithms
operated on NISQ technology ([Hadfield 2019]). In this respect, the applications that are
interesting for the space community are several. Given our research background in the
Planning & Scheduling (P&S) area (we have a record of applications of our technology to
solve planning and scheduling problems targeted at realistic space applications), our

9

general strategy is to reduce the Quantum Circuit Compilation Problem to a P&S problem.
The previous reduction comes very natural, as any quantum circuit can indeed be regarded
as the temporal execution of a set of activities (i.e., the quantum gates) each requiring a
number of resources (i.e., the qstates and/or the qubits on which the gates are executed),
where each activity is characterized by a given duration, and where several temporal/causal
links may exist among the activities for a variety of reasons, such as: (i) gates may not be
commutative and hence they must be executed according to a certain order, or (ii) even in
the commutative case, gates scheduling must be consistent with the ordering imposed by
the execution pass the gates belong to. As a further observation, the QCCP is indeed a
planning problem, as the compilation problem mainly entails the synthesis of a set of SWAP
gates not originally present in the “ideal” circuit.

As previously stated, the problem of minimizing the makespan of quantum circuits on
complex quantum hardware topologies is an NP-complete problem ([Botea 2018]), hence a
heuristic approach is required, especially when large architectures are involved.
It can be easily demonstrated that the synthesis of a feasible quantum compilation circuit
can be performed in polynomial time; intuitively, it is enough to begin from an empty circuit
and iteratively adding all the gates belonging to the ideal quantum circuit when they are
applicable (i.e., the NN condition is satisfied) or adding the SWAP gates that are necessary
to their application. However, we have to face the problem that producing any quantum
circuit is not enough: we are interested in circuits whose makespan is as short as possible,
because of the decoherence issue that still affects the quantum hardware currently
available. In other words, the problem we need to solve is no longer a feasibility problem but
rather an optimization problem, which turns the problem’s complexity from polynomial to NP-
complete [Botea 2018]. This is the reason why solving techniques that rely on efficient meta-
heuristics are necessary.

1.5 The Qiskit framework

Qiskit [Qiskit 2021] is an open-source software development kit (SDK) for working with
quantum computers at the level of circuits, pulses, and algorithms. It provides tools for
creating and manipulating quantum programs and running them on prototype quantum
devices on IBM Quantum Experience or on simulators on a local computer. It follows the
circuit model for universal quantum computation, and can be used for any quantum
hardware (currently supports superconducting qubits and trapped ions) that follows this
model.
Qiskit was founded by IBM Research to allow software development for their cloud quantum
computing service, IBM Quantum Experience. Contributions are also made by external
supporters, typically from academic institutions.
The primary version of Qiskit uses the Python programming language. Versions for Swift
and JavaScript were initially explored, though the development for these versions have
halted. Instead, a minimal re-implementation of basic features is available as MicroQiskit,
which is made to be easy to port to alternative platforms.

As Qiskit is an open-source project committed to both: (i) bringing quantum computing to
people of all backgrounds and to (ii) allowing for integrations on behalf of academic
institutions, one of our objectives has been to implement our solutions in Python language
to allow a seamless integration of our contribution as a possible extension to the Qiskit
framework.

10

2 QUANTUM CIRCUITS AND THE COMPILATION
PROBLEM

As it is evident from our works published so far, we focused our efforts on routing (i.e.,
compiling) circuits that implement the QAOA paradigm specifically applied to the Max-Cut
problem. However, the QAOA approach lends itself to the representation of a set of other
problems that may be of particular interest for the objectives of the present study.

More specifically, we are particularly interested in tackling problems whose structure is
isomorphic to Planning & Scheduling (P&S) problems that may be particularly relevant in
the space domain. To concretely identify the set of problems that could be realistically
analysed within the limited timespan of this study, we focused our efforts in the graph
colouring problem [Venturelli 2019], as it can be shown that a number of instances of P&S
problems are reducible or strictly correlated to graph colouring. For example, we can
consider instances of the satellite range scheduling problem [Zufferey 2008], where a set of
communication jobs have to be assigned to a set of ground stations with the objective of
minimizing the number of conflicting jobs.

Of course, a number of other problems may be considered in the future, for instance the
real-world flight-gate assignment problem, i.e., the problem of assigning different gates to
flights at an airport with the objective of minimizing the total transit times of all passengers
[Stollenwerk 2020], or the resolution of the path planning problem for an exploratory rover
that has to find the shortest way among a set of interesting locations for a long-range
planetary exploration scenario, in the spirit of the Mars Sample Return (MSR) ESA mission
concept. The previous problem may be of particular interest for Space: the problem can be
modelled as a traveling salesman problem (see [Hadfield 2019]) and consists in planning a
minimum-distance path among a set of scientifically interesting locations on the Martian
surface to the aim of picking up the samples from past experiments (e.g., drills) and bring
the samples to a space probe that will return them back to Earth.

2.1 Max-k-Cut Circuit

The combinatorial optimization problem initially tackled with QAOA [Fahri 2014] is the MAX-
CUT (see Figure 3 (a)). Given an undirected graph G = (V, E), the objective of this problem
is to find a subset S of the vertex set V such that the number of edges between S and the
complementary subset (V – S) is maximized.

The circuit for solving the MAX-CUT with the QAOA approach is generally composed by p
phases (p >= 1), and at least |V| qubits are necessary for its resolution. In each phase, the
circuit comprises a level of PS gates, each of them working on the qubits associated to the
end points of each edge, followed by a level of MIX gates, for each vertex (see Figure 4).

A generalization of the MAX-CUT is the GRAPH COLOURING problem (see Figure 3 (b)),
where, given an undirected graph G = (V, E), in which the set of vertices V can be coloured
with one among k available colours, the objective is to maximize the number of edges in E
that have end points with different colours. Clearly, the GRAPH COLOURING reduces to
the MAX-CUT when k=2. A possible approach of creating a circuit for solving GRAPH
COLOURING uses the one-hot encoding, by having k qubits for each vertex. The i-th qubit
indicates whether the vertex is coloured with the colour i (see Figure 5).

11

(a) (b) (c)

Figure 3 - (a) MAX-Cut, (b) Graph Colouring, (c) MAX-k-Cut

In its turn, the GRAPH COLOURING can be further generalized into the MAX-k-CUT
problem (see Figure 3 (c)). In this case, given a weighted undirected graph G = (V, E), the
MAX-k-CUT problem consists of finding a maximum-weight k-cut, that is a partition of the
vertices into k subsets, such that the sum of the weights wij of the edges (i,j) that have end
points on different subsets is maximized.
Finally, LIST COLOURING generalizes MAX-k-CUT by restricting the set of allowed colours
for each vertex.

Figure 4 - Quantum Approximate Optimization Algorithm (QAOA) circuit

Figure 5 - Mixer blocks' implementation for Graph Colouring and Max-k-Cut

12

2.2 Satellite scheduling circuit

A combinatorial optimization problem based on LIST COLOURING and related to space
applications is SATELLITE SCHEDULING. In this problem, a set of satellites are required
to communicate with a set of k ground stations having unary capacity. Each satellite i can
use only a subset Si of the available ground stations. The aim of this problem is to maximize
the number of non-conflicting communications. Note that this is generally an oversubscribed
problem, as the satellite communication requests may exceed the available communication
windows.

The SATELLITE SCHEDULING problem can be reduced to LIST COLOURING [Marx 2004]
by creating a conflict graph G(V, E), where V is the set of satellite communication windows,
and there is edge (i,j) ∈ E if and only if the communication windows i and j in V have a non-
empty intersection (see Figure 6). The weight wij on each edge (i,j) ∈ E represents the
“importance of avoiding a conflict between the communication pair (i,j)”. Finally, the number
of colours k coincides with the number of ground stations.

Figure 6 – An example of conflict graph: connected vertices correspond to overlapping communications

With respect to MAX-k-CUT, in order to correctly represent the SATELLITE SCHEDULING
problem, the corresponding Quantum Approximate Optimization Algorithm (QAOA) circuit
has to be modified in all its three components: 1) Initial state setting |s> [Cruz 2019]; 2)
Phase-Shift PS blocks; 3) MIX blocks.

13

Figure 7 – One-hot coding for the List Colouring problem

An additional original contribution is the implementation one-hot coding schema for the
Satellite Scheduling (reduced to List Colouring), such that the total number of used qubits is
less than k*|V| and coincides with the sum of the used colours calculated over the set of all
nodes V (see Figure 7).

2.3 The Quantum Circuit Compilation Problem (QCCP)

The problems tackled in this report consists in compiling a given quantum circuit on a specific
quantum hardware architecture. To this aim, we focus on the same framework used in [Do
2020], which is characterized by the following elements: (i) the class of Quantum
Approximate Optimization Algorithm (QAOA) circuits [Farhi 2014; Guerreschi 2017] to
represent an algorithm for solving the problems introduced in the previous Section 2.1 and
Section 2.2 (ii) a specific hardware architecture, for example the one inspired by the
architecture proposed by Rigetti Computing Inc. [Sete 2016]. The QAOA-based benchmark
problems are characterized by a high number of commuting quantum gates (i.e., gates
among which no particular order is superimposed) that allow for great flexibility and
parallelism in the solution, which makes the corresponding optimization problem very
interesting and guarantees greater circuit depth minimization potential for decoherence
minimization [Venturelli 2017].

Formally, the Quantum Circuit Compilation Problem (QCCP) is a tuple P = (C0, L0, QM),
where C0 is the input quantum circuit, representing the execution of the Max-k-Cut algorithm
or the Satellite scheduling problem, L0 is the initial assignment of the i-th qstate qi to the i-th
qubit ni, and QM is a representation of the quantum backend (or quantum hardware).

• The input quantum circuit is a tuple C0 = (Q, VC0, TC0), where: (i) Q = {q1, q2, …, qN}
is the set of qstates; (ii) VC0 = P-S ∪ MIX ∪ {gstart, gend} represents the set of p-s and
mix gate operations (P-S and MIX) that have to be scheduled, such that: (i) every p-
s(qi,qj) and mix(qi, qj) gate requires two qstates for execution; (ii) gstart and gend are
two fictitious reference gate operations requiring no qstates. Finally, TC0 is a set of
simple precedence constraints imposed on the P-S, MIX and {gstart, gend} sets.

• L0 is the initial assignment at the time origin t = 0 of qstates qi to qubits ni.

• QM is a representation of the quantum backend as an undirected graph QM = (VN,
Egate), where VN = {n1, n2, …, nN} is the set of qubits (nodes), Egate is a set of undirected
edges (ni, nj) representing the set of adjacent qubits.

14

A feasible solution is a tuple S = (SWAP, TC), which extends the initial circuit C0 to a
compiled circuit CC = (Q, VCC, TCC), such that VCC = SWAP ∪ P-S ∪ MIX ∪ {gstart, gend} and
TCC = TC0 ∪ TCC where: (i) SWAP is a set of additional swap(qi,qj) gates added to guarantee

the adjacency constraints for the set of P-S gates, and (ii) TCC is a set of additional simple
precedence constraints such that:

• For each qstate qi, a total order ≤ is imposed among the set Qi of operations requiring
qi, with Qi = {op ∈ P-S ∪ MIX ∪ SWAP: op requires qi};

• All the p-s(qi,qj) and swap(qi,qj) gate operations are allocated on adjacent qubits in
QB;

• The graph (VCC, TCC) does not contain cycles.

Given a solution S, a path between the two fictitious gates gstart and gend is a sequence of
gates gstart, op1, op2, …, opk, gend, with opj ∈ P-S ∪ MIX ∪ SWAP, such that gstart ≤ op1, op1 ≤

op2, …, opk ≤ gend ∈ (TC0 ∪ TCC). The length of the path is the number of all the path’s gates
and depth(S) is the length of the longest path from gstart to gend. An optimal solution S is a
feasible solution characterized by the minimum depth.

3 GRS ALGORITHM

In the following, we provide a detailed description of the Greedy Randomized Search (GRS)
procedure used to compile the circuit introduced in previous Section 2. GRS has traditionally
revealed a very effective method for the resolution of complex optimization problems (such
as the QCCP), as it realizes a simple optimization process that quickly guides the search
towards good solutions. The GRS is particularly useful in the cases where a high-quality
solution is needed in a relatively short time. Among other applications, it is particularly
suitable for constraint-based scheduling problems; since the QCCP can be reduced to a
Planning and Scheduling (P&S) problem.

GRS Algorithm:

• input: Quantum backend QM, circuit C, cpu_time T

• output: best compiled circuit CC*
o CC* ← nil
o BestDepth ← +inf
o while not (TimeLimitExceeded(T))

 CC ← CompileCircuit(QM, C)
 if CC.depth < BestDepth then

• CC* ← CC

• BestDepth ← CC.depth
o return(CC*)

The above GRS Algorithm sketches the bulk of the implemented optimization process. It
essentially realizes an optimization cycle in which a new solution CC is computed at each
iteration through the CompileCircuit() algorithm, and its depth (CC.depth) is compared with
the best depth found so far (BestDepth) in the iterative process. In case CC.depth is smaller
than BestDepth, then the current solution CC becomes the new best solution CC*. The
optimization process continues until a stopping condition (generally a max time limit) is met,
where the GRS procedure returns the best solution found.

As can be readily observed, the efficacy of the GRS mainly depends on the efficacy of the
CompileCircuit() procedure (see below), which has the task of synthesizing increasingly
better solutions. The CompileCircuit() is a random algorithm. It operates on macro-gates

15

containing primitive gates that use two qstates at most, and its pseudocode is shown in the
following. Indeed, the CompileCircuit() procedure is in itself a heuristically-based iterative
algorithm that implements a constructive methodology where a solution is built from scratch,
and where the selection of which quantum gate to insert next in the solution is guided by a
heuristic (the Quantum Gate Ranking Heuristic - QGRH) that returns a ranking that takes
into account the “neighbouring cost” of all the gates that have yet to be inserted in the
solution. At each iteration, the gate that guarantees the fastest realization of the
neighbouring conditions of all the remaining gates is selected.

CompileCircuit Algorithm:

• input: Quantum backend QM, circuit C

• output: compiled circuit CC
o CC ← InitSolution(QM, C)
o t ← 0
o while (not all the INIT, PS and MIX gates are inserted in CC)

 g ← SelectExecutableGate(QM, CC, t)
 if g ≠ null then

• CC ← InsertGate(g, CC, QM)
 else

• t ← t + 1
o return(CC)

In the above CompileCircuit() algorithm the procedure SelectExecutableGate() selects a
gate which can be a PS, a MIX, a SWAP gate. Indeed, it is a random algorithm targeted to
minimize the solution depth, in particular its implementation is inspired to [Chand 2019],
such that the selection of a gate g is based on two criteria: 1) the earliest start time gate
selection (a value correlated to depth minimization); 2) a metric to minimize the number of
swaps. At each iteration, the SelectExecutableGate(QM, CC, t) method selects the next gate
to be inserted in the solution by means of the InsertGate(g, CC, QM) method. In all time
instants t where no quantum gate can be selected for insertion, the current time t is increased
(t ← t + 1). The CompileCircuit() process continues until a complete solution is built.

4 EMPIRICAL EVALUATION

We have implemented and tested the proposed ideas leveraging the existing open-source
quantum-related frameworks such as Qiskit [Qiskit 2021]. As described in Section 1.5, Qiskit
is a known open-source Software Development Kit for working with quantum computers at
the level of pulses, circuits and application modules. It allows for the creation, modification,
simulation, and optimization of quantum circuits on a set both simulated and real quantum
architectures, as well as allowing the possibility to test mapping algorithms on arbitrary
quantum hardware topologies.

16

Figure 8 - Chain of possible modifications (rewritings) that can be applied to a quantum circuit, available through the

Qiskit’s Transpiler operator (image taken from: https://qiskit.org/documentation/apidoc/transpiler.html)

Figure 8 depicts the chain of possible modifications (rewritings) that can be applied to a
quantum circuit, available through the Qiskit’s Transpiler operator. The possible rewriting
steps are the following: (i) the optimization transformations to the ideal (virtual) circuits that
realize a specific function (Pass 1), (ii) the decomposition of 3+ quantum gates to 2-qubit
gates in order to realistically allow their execution on the current quantum architectures
(Pass 2), (iii) the mapping of the virtual qubits in a one-to-one manner to the “physical” qubits
in the actual quantum device (Pass 3), (iv) the insertion of SWAP gates to the ideal circuit
in order to overcome the qubit connectivity limitations of the current quantum hardware
technology (Pass 4), (v) the translation of a quantum circuit in terms of the physical gates of
the particular hardware of interest (Pass 5), and (vi) the optimization process applicable on
the final physical circuit, generally performed in terms of gate simplifications.

Our contribution for this study has been focused on Pass 3 and Pass 4, through the
implementation of efficient compilation procedures capable of tackling both the problem of
quantum circuit compilation w.r.t. a given hardware topology (Pass 4) with the aim of
minimizing the circuit’s depth, and the problem of deciding the best initial virtual qubit -> real
qubit mapping (Pass 3) with the aim of reducing the insertion of unnecessary SWAPS. The
previous procedures were implemented in the Python language, in order to allow their
integration within Qiskit. The performance of the proposed libraries was tested on a set of
case study domains including the application of quantum computing to satellite scheduling
problem.

We have defined a first benchmark set for the graph colouring circuits, obtained as an
extension of the N8 benchmark for the Max-Cut problem (e.g., see [Oddi 2018]), considering
a number of colours k = 3. All the 22 instances have 7-nodes graphs, with p=2, hence
quantum processors with at least 21 qubits (7 nodes x 3 colours = 21 qubits) are necessary;
more specifically, we consider Rigetti-inspired 21-qubit processors. The Python version of
the proposed greedy randomized search (GRS) algorithm compiles a QAOA circuit with the
following choices: 1) one-hot coding for representing the MAX-k-Cut [Fuchs 2021]; 2)
decomposition procedure for the QAOA blocks based on the identification of odd and even
MIXXY gates [Hadfield 2019, Wang 2020]. Figure 9 compares the proposed GRS algorithm
with the following compiling algorithms available in Qiskit:
BasicSwap, StochasticSwap, SabreSwap, LookaheadSwap*. The algorithms are compared
with respect to the depth of the compiled circuits (the circuit’s depth represents the longest
path in the compiled circuit graph) and on each algorithm a CPU time limit of 10 seconds is
imposed for each run. Note that no solution is found by the LookaheadSwap algorithm within
the previous CPU time limit.

17

Figure 9 - GRS performance on graph colouring circuits

The following figure depicts the results obtained having a closer look to the comparison with
the SabreSwap algorithm available in Qiskit, which can be run according to three different
heuristics: basic, lookahead, decay

Figure 10 - GRS performance on Graph Colouring graphs

5 PYTHON MODULE

We have uploaded all the software proposed for the study Meta-Heuristic Algorithms for The
Quantum Circuit Compilation Problem on a dedicated GitLab repository, which now contains
the current version (not final) of the Python code. In order to install and test the current
version of the software, we suggest to clone the full repository, and use the Jupyter notebook

Meta-HeuristicAlgorithmsForTheQuantumCircuitCompilationProblem.ipynb

18

contained in the folder QuantumCompilers.

Currently, the code works with the following main settings: Python 3.9.6, Qiskit 0.29.1. and
requires part of the publicly available software downloadable from
https://github.com/OpenQuantumComputing, and described in the paper [Fuchs 2021]. Note
that the Python environment used to develop and run the software can be easily recreated
by using the file requirements.txt contained in the folder QuantumCompilers.

The notebook mentioned above describes the generation, compilation and execution (on a
qasm simulator) of a quantum circuit for solving the two problems proposed in the study:
the Max-k-Cut and the Space-Ground Communications scheduling.

6 CONCLUSIONS

The aim of this study has been the investigation of the use of quantum computing as an
accelerator for the resolution of optimization problems in the space domain. We have
considered the compilation techniques for Noisy Intermediate-Scale Quantum (NISQ)
devices. In particular, we have explored the QAOA (Quantum Approximate Optimization
Algorithm) approach for solving optimization problems and studied the quantum circuits for
two reference problems: the Max-k-Cut (an extension of the well-known Graph Colouring
problem); the scheduling of space-ground communications. We have proposed a greedy
randomized search (GRS) algorithm targeted at optimizing the compilation of quantum
circuits and defined an original benchmark set for testing compilation algorithms. On the
basis of our empirical validation the proposed GRS algorithm outperforms other compilation
algorithms available in the Qiskit framework.

About the medium/long term goal of reaching the quantum speed-up over classical
computers, we remark that the chosen QAOA approach exploits the intrinsic parallelism of
quantum computing by concurrently evaluating all the possible assignments on problem
variables and generating a probability distribution such that good assignments have a larger
probability of being computed. According to [Fahri 2019] it is very unlikely that a conventional
algorithm can create such a probability distribution efficiently. Moreover, as studied by
[Guerreschi 2019], for QAOA applied to the solution of Max-Cut, as the number of available
qubits will increase to the thousands (note that the proposed benchmark circuits used in this
report have sizes of tens of qubits), QAOA will outperform the existing classical algorithms
for combinatorial optimization.

7 REFERENCES

[Alam 2020] M. Alam, A. Ash-Saki and S. Ghosh. Circuit Compilation
Methodologies for Quantum Approximate Optimization Algorithm.
2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 215-228, doi:
10.1109/MICRO50266.2020.00029.

[Baioletti 2021] Marco Baioletti, Riccardo Rasconi, Angelo Oddi. A Novel Ant Colony
Optimization Strategy for the Quantum Circuit Compilation Problem.
EvoCOP 2021: 1-16.

[Botea 2018] A. Botea, A. Kishimoto, R. Marinescu (2018) “On the Complexity of
Quantum Circuit Compilation”. In: Eleventh annual symposium on
combinatorial search

19

[Chand 2019] Chand, S., Singh, H.K., Ray, T., Ryan, M.: Rollout based heuristics
for the quantum circuit compilation problem. In: 2019 IEEE
Congress on Evolutionary Computation (CEC), pp. 974–981 (2019)

[Clerc 2020] Maurice Clerc. A general quantum method to solve the graph K-
colouring problem. 2020. ⟨hal-02891847v2⟩.

[Cruz 2019] Cruz D, Fournier R, Gremion F, Jeannerot A, Komagata K, Tosic T,
Thiesbrummel J, Chan CL, Macris N, Dupertuis M-A, et al. Efficient
quantum algorithms for GHZ and W states, and implementation on
the IBM quantum computer. Adv Quantum Technol. 2019;2(5–
6):1900015.

[Do 2020] Minh Do, Zhihui Wang, Bryan O'Gorman, Davide Venturelli, Eleanor
Gilbert Rieffel, Jeremy Frank: Planning for Compilation of a
Quantum Algorithm for Graph Coloring. CoRR abs/2002.10917
(2020)

[Farhi 2014] Farhi, E.; Goldstone, J.; and Gutmann, S. 2014. A quantum
approximate optimization algorithm. arXiv preprint arXiv:1411.4028.

[Farhi 2019] Edward Farhi, Aram W. Harrowy. Quantum Supremacy through the
Quantum Approximate Optimization Algorithm. arXiv:1602.07674v2

[Fuchs 2021] Fuchs, F.G., Kolden, H.Ø., Aase, N.H. et al. Efficient Encoding of
the Weighted MAX 𝑘-CUT on a Quantum Computer Using QAOA.
SN COMPUT. SCI. 2, 89 (2021). https://doi.org/10.1007/s42979-
020-00437-z

[Guerreschi 2017] Guerreschi, G. G., and Park, J. 2017. Gate scheduling for quantum
algorithms. arXiv preprint arXiv:1708.00023.

[Guerreschi 2019] Guerreschi, G.G., Matsuura, A.Y. QAOA for Max-Cut requires
hundreds of qubits for quantum speed-up. Sci Rep 9, 6903 (2019).
https://doi.org/10.1038/s41598-019-43176-9

[Hadfield 2019] Hadfield S, Wang Z, O’Gorman B, Rieffel EG, Venturelli D, Biswas
R. From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz. Algorithms. 2019;12(2):34.

[Li 2019] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit
Mapping Problem for NISQ-Era Quantum Devices. In Proceedings
of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS '19). Association for Computing Machinery, New York,
NY, USA, 1001–1014.
DOI:https://doi.org/10.1145/3297858.3304023

[Marx 2004] Marx, D. Graph Colouring Problems and Their Applications in
Scheduling, Periodica Polytechnica Electrical Engineering, 48(1-2),
pp. 11–16

[Murali 2019] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T.
Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler
Mappings for Noisy Intermediate-Scale Quantum Computers. In
Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS '19). Association for Computing Machinery, New
York, NY, USA, 1015–1029.
DOI:https://doi.org/10.1145/3297858.3304075

[Nielsen 2011] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th edn. Cambridge
University Press, New York (2011)

20

[Oddi 2018] Angelo Oddi and Riccardo Rasconi. Greedy Randomized Search for
Scalable Compilation of Quantum Circuits. 15th International
Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR 2018), June 26-29,
2018 , Delft, The Netherlands.

[Qiskit 2021] Open-Source Quantum Development, https://qiskit.org/ (Accessed
21 December 2021)

[Rasconi 2019] Riccardo Rasconi, Angelo Oddi. An Innovative Genetic Algorithm for
the Quantum Circuit Compilation Problem. AAAI 2019: 7707-7714.

[Sete 2016] Sete, E. A.; Zeng,W. J.; and Rigetti, C. T. 2016. A functional
architecture for scalable quantum computing. In 2016 IEEE
International Conference on Rebooting Computing (ICRC),
1–6.

[Stollenwerk
2020]

T. Stollenwerk, S. Hadfield and Z. Wang. Toward Quantum Gate-
Model Heuristics for Real-World Planning Problems. IEEE
Transactions on Quantum Engineering, vol. 1, pp. 1-16, 2020, Art
no. 3101816, doi: 10.1109/TQE.2020.3030609.

[Swamit 2019] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits
Are Created Equal: A Case for Variability-Aware Policies for NISQ-
Era Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS '19). Association for
Computing Machinery, New York, NY, USA, 987–999.
DOI:https://doi.org/10.1145/3297858.3304007

[Venturelli 2019] D. Venturelli, M. Do, B. O’Gorman, J. Frank, E. Rieffel, K. E. Booth,
T. Nguyen, P. Narayan, S. Nanda. “Quantum circuit compilation: An
emerging application for automated reasoning”. In: S. Bernardini, K.
Talamadupula, N. Yorke-Smith (Eds.), Proceedings of the 12th
International Scheduling and Planning Applications Workshop
(SPARK 2019), 2019, pp. 95–103

[Wang 2020] Zhihui Wang, Nicholas C. Rubin, Jason M. Dominy, and Eleanor G.
Rieffel. 2020. XY mixers: Analytical and numerical results for the
quantum alternating operator ansatz. Phys. Rev. A 101, 012320.
DOI:https://doi.org/10.1103/PhysRevA.101.012320

[Zufferey. 2008] Zufferey, Nicolas, Amstutz, Patrick, Giaccari, Philippe. Graph
Colouring Approaches for a Satellite Range Scheduling Problem.
Journal of Scheduling, 2008, vol. 11, no. 4, p. 263-277.

https://qiskit.org/

	1 Introduction
	1.1 The Noisy intermediate-scale quantum (NISQ) era
	1.2 Quantum Approximate Optimization Algorithm (QAOA)
	1.3 The QCC problem
	1.4 Heuristic algorithms
	1.5 The Qiskit framework

	2 Quantum circuits and the compilation problem
	2.1 Max-k-Cut Circuit
	2.2 Satellite scheduling circuit
	2.3 The Quantum Circuit Compilation Problem (QCCP)

	3 GRS algorithm
	4 Empirical evaluation
	5 Python module
	6 Conclusions
	7 References

