

Triple Spacetime Metamaterials: A generalization of transformation media.

L. Bergamin

ESA Advanced Concepts Team
ESTEC, Noordwijk, The Netherlands

Prospection of Invisibility Devices for Space
ESTEC, June 13, 2008

Maxwell's equations for linear media

Maxwell's equations in general coordinates

$$\begin{aligned}\nabla_i B^i &= 0, & \nabla_0 B^i + \epsilon^{ijk} \partial_j E_k &= 0, \\ \nabla_i \mathcal{D}^i &= \rho, & \epsilon^{ijk} \partial_j \mathcal{H}_k - \nabla_0 \mathcal{D}^i &= j^i,\end{aligned}$$

are considered with a linear, nondispersive constitutive relation

$$\begin{aligned}\mathcal{D}^i &= \epsilon^{ij} E_j + \kappa^{ij} \mathcal{H}_j, \\ B^i &= \mu^{ij} \mathcal{H}_j + \xi^{ij} E_j.\end{aligned}$$

Symmetries and invariant transformations

Maxwell's theory is invariant under diffeomorphisms, locally coordinate transformations

$$x^\mu \implies \bar{x}^\mu(x)$$

but

- two sets of equations

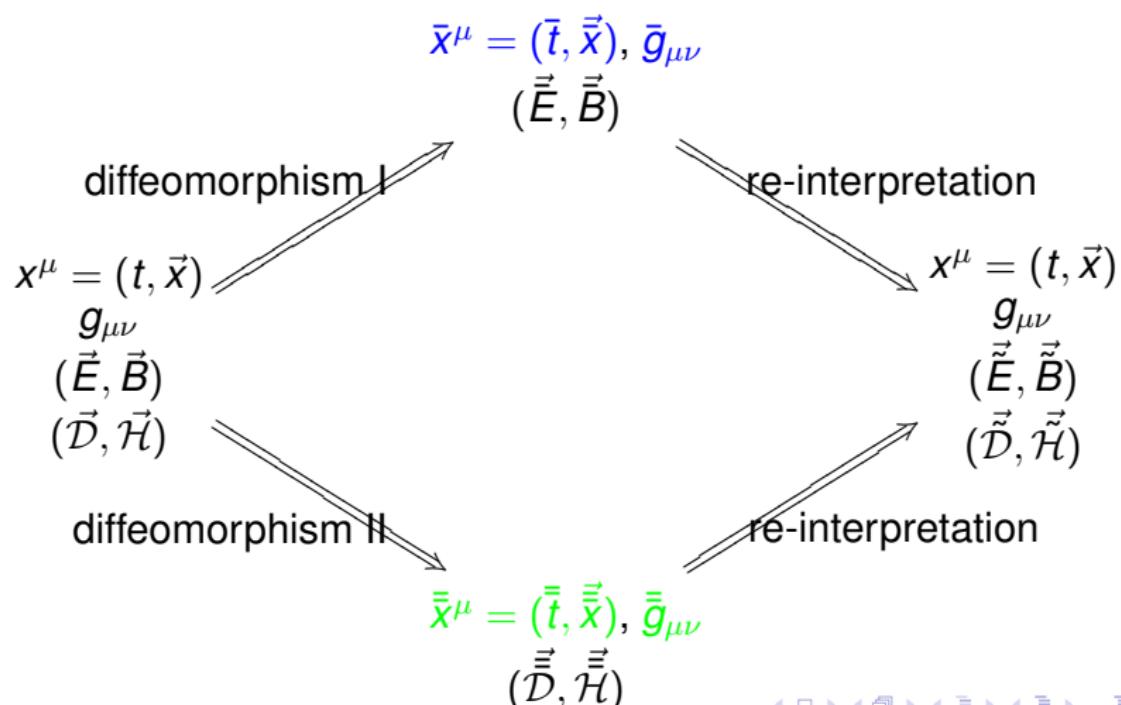
$$\epsilon^{\mu\nu\rho\sigma} \partial_\nu F_{\rho\sigma} = 0 , \quad D_\nu H^{\mu\nu} = -J^\mu$$

are invariant under **separate** diffeomorphisms;

- constitutive relation is not invariant under this manipulation.

Invariant transformation of the equations of motions, but no symmetry.

Generalization of transformation media



General constitutive relation

$$\tilde{D}^i = -\bar{s} \frac{\sqrt{-\bar{g}}}{\sqrt{\gamma} g_{\bar{0}\bar{0}}} g^{\bar{i}\bar{j}} \tilde{E}_j - \bar{s} \bar{s} \frac{\sqrt{-\bar{g}} \sqrt{-\bar{g}}}{\gamma g_{\bar{0}\bar{0}}} g^{\bar{i}\bar{k}} g^{\bar{0}\bar{l}} \epsilon_{klm} g^{\bar{m}\bar{j}} \tilde{\mathcal{H}}_j ,$$

$$\tilde{B}^i = -\bar{s} \frac{\sqrt{-\bar{g}}}{\sqrt{\gamma} g_{\bar{0}\bar{0}}} g^{\bar{i}\bar{j}} \tilde{\mathcal{H}}_j + \bar{s} \bar{s} \frac{\sqrt{-\bar{g}} \sqrt{-\bar{g}}}{\gamma g_{\bar{0}\bar{0}}} g^{\bar{i}\bar{k}} \epsilon_{klm} g^{\bar{l}\bar{0}} g^{\bar{m}\bar{j}} \tilde{E}_j ,$$

with

$$g^{\bar{\mu}\bar{\nu}} = \frac{\partial \bar{x}^\mu}{\partial x^\rho} \frac{\partial \bar{x}^\nu}{\partial x^\sigma} g^{\rho\sigma} = \bar{g}^{\mu\rho} \frac{\partial \bar{x}^\nu}{\partial \bar{x}^\rho} = \frac{\partial \bar{x}^\mu}{\partial \bar{x}^\rho} \bar{g}^{\rho\nu} ,$$

\bar{s} change of orientation in $x^\mu \rightarrow \bar{x}^\mu$,

$\bar{\bar{s}}$ change of orientation in $x^\mu \rightarrow \bar{\bar{x}}^\mu$.

Characteristics of generalized transformations

- $\bar{s}\sqrt{-\bar{g}}\mu^{ij} = \bar{s}\sqrt{-\bar{g}}\epsilon^{ij}$.
- ϵ^{ij} and μ^{ij} not symmetric if $\frac{\partial \bar{x}^\mu}{\partial \bar{x}^\nu}$ not symmetric,
 \Rightarrow non-reciprocal materials, e.g. $\bar{x} = x - z$, $\bar{\bar{x}} = x + z$.
- Signs of eigenvalues of ϵ^{ij} can be chosen freely,
 \Rightarrow indefinite materials, e.g. $\bar{x} = -x$, $\bar{\bar{x}} = x$.
- Relative sign between eigenvalues of ϵ^{ij} and μ^{ij} not fixed.
 \Rightarrow evanescent waves for $\bar{t} = -t$ but $\bar{\bar{t}} = t$.
- Bi-anisotropic materials if time maps non-trivially,

$$g^{\bar{0}\bar{i}} \neq 0, \quad g^{\bar{0}\bar{\bar{i}}} \neq 0.$$

κ^{ij} and ξ^{ij} need not be anti-symmetric.