

Manipulation of Lightwave Through Coordinate Transformation

Min Qiu*, Min Yan, Wei Yan

Department of Microelectronics and Applied Physics
Royal Institute of Technology (KTH), Sweden

*Email: min@kth.se

2008-06-13

Ariadna bidder code: **21290**

Project plan

We are here!

Tasks	Time (mth)	0.5	1	1.5	2	2.5	3	3.5	4
Cylindrical cloak: Simplification									
Cylindrical cloak: Effect of order number									
<i>Electromagnetic Concentrator</i>									
Arbitrarily-shaped cloak									
Project report									

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

Introduction

Scattering → visibility

? → invisibility

Coordinate transformation approach

(b)

1. J. B. Pendry, D. Schurig, and D. R. Smith, *Science* **312**, p.1780 (2006).
2. U. Leonhardt, *Science* **312**, p. 1777 (2006).

Coordinate transformation

Original Cartesian coordinate (x, y, z)

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}, \quad \nabla \cdot \mathbf{D} = \rho, \quad \nabla \cdot \mathbf{B} = 0.$$

$$\mathbf{D} = \epsilon_0 \bar{\bar{\epsilon}} \cdot \mathbf{E}, \quad \mathbf{B} = \mu_0 \bar{\bar{\mu}} \cdot \mathbf{H},$$

Jacobian transformation matrix

$$\Lambda = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \\ \frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_3} \end{bmatrix}.$$

New coordinate (q_1, q_2, q_3)

$$x = f_1(q_1, q_2, q_3), \quad y = f_2(q_1, q_2, q_3), \quad z = f_3(q_1, q_2, q_3).$$

The Maxwell equations can take the invariant form as

$$\nabla_q \times \hat{\mathbf{E}} = -\frac{\partial \hat{\mathbf{B}}}{\partial t}, \quad \nabla_q \times \hat{\mathbf{H}} = \frac{\partial \hat{\mathbf{D}}}{\partial t} + \hat{\mathbf{j}}, \quad \nabla_q \cdot \hat{\mathbf{D}} = \hat{\rho}, \quad \nabla_q \cdot \hat{\mathbf{B}} = 0$$

with

$$\hat{\bar{\epsilon}} = \det(\Lambda)(\Lambda)^{-1} \bar{\bar{\epsilon}} \Lambda^{-T}, \quad \hat{\bar{\mu}} = \det(\Lambda)(\Lambda)^{-1} \bar{\bar{\mu}} \Lambda^{-T},$$

Coordinate transformation

Coordinate transformation

$$\hat{\mathbf{E}} = \Lambda^T \mathbf{E}, \quad \hat{\mathbf{H}} = \Lambda^T \mathbf{H},$$

Line-transformed cloak

Point-transformed cloak

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

Ideal cylindrical cloak

Principle:

To compress EM fields within a cylindrical air region $r' < b$ into the cylindrical annular region $a < r < b$.

The simplest transformation:

from (r', θ', z') (original cylindrical coordinate) to
 (r, θ, z) (physical cylindrical coordinate)

$$\begin{aligned} r &= \frac{b-a}{a} r' + a \\ \theta &= \theta' \\ z &= z' \end{aligned}$$

Ideal cylindrical cloak

Field in original EM space

Field in physical space

Colormap shows E_z field

$$\epsilon_z = \left(\frac{b}{b-a} \right)^2 \frac{r-a}{r}$$

$$\mu_r = \frac{r-a}{r}$$

$$\mu_\theta = \frac{r}{r-a}$$

Electromagnetic null space!

Difficulty: ϵ_θ , μ_θ , ϵ_z , and μ_z diverge at $r=a$!

Simplified cylindrical cloaks

Reasons for material simplification [1,2]:

1. To avoid infinite parameters
2. To alleviate metamaterial engineering task

See Ref. 1

The material parameters are simplified as

$$\begin{aligned}\varepsilon_r &= \mu_r = \frac{r-a}{r}, \\ \varepsilon_\theta &= \mu_\theta = \frac{r}{r-a}, \\ \varepsilon_z &= \mu_z = \left(\frac{b}{b-a}\right)^2 \frac{r-a}{r}.\end{aligned}$$

$$\begin{aligned}\varepsilon_r &= \mu_r = \left(\frac{r-a}{r}\right)^2, \\ \varepsilon_\theta &= \mu_\theta = 1, \\ \varepsilon_z &= \mu_z = \left(\frac{b}{b-a}\right)^2.\end{aligned}$$

$\mu_\theta \varepsilon_z$ and $\mu_r \varepsilon_z$ invariant

1. D. Schurig, et al., Science **314**, 977 (2006).
2. W. Cai et al., "Optical cloaking with metamaterials," Nat. Photonics **1**, 224–227 (2007).

Simplified cylindrical cloaks: not perfect

Origin of the problem:

Wave equation (r -dependent) in ideal cloak medium:

$$\frac{d}{dr} \left(\frac{r}{\mu_\theta} \frac{d\Psi}{dr} \right) + k_0^2 r \epsilon_z \Psi - m^2 \frac{1}{r \mu_r} \Psi = 0.$$

Wave equation in simplified cloak medium:

$$\frac{1}{\mu_\theta \epsilon_z} \frac{d}{dr} \left(r \frac{d\Psi}{dr} \right) + k_0^2 r \Psi - m^2 \frac{1}{r \mu_r \epsilon_z} \Psi = 0.$$

Wrong assumption: μ_θ is constant

where m is angular mode number

Scattering coefficients

Scattering coefficients in different cylindrical orders w.r.t. *Outer radius b* [1]:

Parameters: $f=2\text{GHz}$; $a=0.1\text{m}$

Improved simplification

Ideal	Simplified [2]	Simplified (current work)
$\epsilon_r = \mu_r = \frac{r-a}{r}$	$\epsilon_r = \mu_r = \left(\frac{r-a}{r}\right)^2$	$\epsilon_r = \mu_r = \left(\frac{r-a}{r}\right)^2 \frac{b}{b-a}$
$\epsilon_\theta = \mu_\theta = \frac{r}{r-a}$	$\epsilon_\theta = \mu_\theta = 1$	$\epsilon_\theta = \mu_\theta = \frac{b}{b-a}$
$\epsilon_z = \mu_z = \left(\frac{b}{b-a}\right)^2 \frac{r-a}{r}$	$\epsilon_z = \mu_z = \left(\frac{b}{b-a}\right)^2$	$\epsilon_z = \mu_z = \frac{b}{b-a}$

Same condition: $\mu_\theta \epsilon_z$ and $\mu_r \epsilon_z$ invariant

— μ_r
- - - μ_θ
- · - · - ϵ_z

Advantage:
The outer interface is perfectly matched to exterior!

1. M. Yan, Z. Ruan, and M. Qiu, Opt. Express **15**, p. 17772 (2007).
2. D. Schurig, et al., Science **314**, 977 (2006).

Improved simplification

Previous simplified

Improved simplification

(a)

- Bare cylinder
- Simplified linear cloak [2]
- Simplified quadratic cloak [3]
- Simplified linear cloak (improved)

Scattered E_z field

1. M. Yan, Z. Ruan, and M. Qiu, Opt. Express **15**, p. 17772 (2007).
2. D. Schurig, et al., Science **314**, 977 (2006).
3. W. Cai et al., Appl. Phys. Lett. **91**, 111,105 (2007).

Can we cancel the zeroth order scattering?

Cancellation of zeroth-order scattering

without monopole cancellation

with monopole cancellation

$$a = 0.3\text{m}, b = 0.6\text{m}$$

Cancellation of zeroth-order scattering

Without cancellation

With cancellation

$$\lambda=0.3\text{m}$$

Far field radiation

Remarks:

- Mostly high order scatterings remain
- Wavelength dependent

Ref:

W. Yan, M. Yan, and Min Qiu, "Non-magnetic simplified cylindrical cloak with near perfect invisibility by suppressing zeroth order scattering," *Appl. Phys. Lett.*, in review.

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

High-order cylindrical invisibility cloak

One possible class of transformation may take the form of

$$r' = \frac{b}{(b-a)^n} (r-a)^n,$$

n : transformation order.

$$\varepsilon_r = \mu_r = \frac{r-a}{nr}, \quad \varepsilon_\theta = \mu_\theta = \frac{nr}{r-a}, \quad \varepsilon_z = \mu_z = \frac{nb^2(r-a)^{2n-1}}{(b-a)^{2n}r}.$$

Infinite parameters at $r=a$!

Effect of transformation order on scattering coefficients

$$a = 0.1\text{m}$$

$$b = 0.3\text{m}$$

$$\lambda = 0.15\text{m}$$

Thickness of the layer peeled away: **$d=0.01\text{m}$**

PEC lining is present

Field distributions

Ez

Scattered Ez

Transformation order used: n=3

Ref

M. Yan, W. Yan, L. Zhang, M. Qiu, Cylindrical Invisibility Cloak: Properties and Strategies for Practical Realization, NATO Advanced Research Workshop, Metamaterials for Secure Information and Communication Technologies, 7-10 May, 2008, Marrakech – Morocco.

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

EM concentrator

Application:
● Photovoltaic fiber
● Fluid heating

Resonance based EM concentrator

- Enhancement factor 230
- Wavelength dependant

Resonance based EM concentrator

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

Arbitrarily-shaped cloaks

Blowing-up a line

Blowing-up a point

General cross-section:

Ref:

Wei Yan, Min Yan, Zhichao Ruan, Min Qiu, "Coordinate transformation makes perfect invisibility cloak with arbitrary shape," *New Journal of Physics*, vol. 10, 043040 (2008).

Arbitrarily-shaped cloak

For both line-transformed or point-transformed cloaks,

$$\hat{\mathbf{E}}^i = \Lambda^T \mathbf{E}^i, \quad \hat{\mathbf{H}}^i = \Lambda^T \mathbf{H}^i,$$

At outer boundary:

$$\hat{E}_{t_1}^i = \mathbf{E}^i \cdot \hat{t}_1, \quad \hat{H}_{t_1}^i = \mathbf{H}^i \cdot \hat{t}_1,$$

$$\hat{E}_{t_2}^i = \mathbf{E}^i \cdot \hat{t}_2, \quad \hat{H}_{t_2}^i = \mathbf{H}^i \cdot \hat{t}_2,$$

Arbitrarily-shaped cloak

For line-transformed cloak,

$$\hat{E}_{t1}^i = \hat{H}_{t1}^i = 0.$$

However, the other components of fields are not zero. In particular,

$$\hat{E}_{t2}^i = (\hat{s} \cdot \hat{t}_2)[B_1, B_2, B_3]\mathbf{E}^i,$$

$$\hat{H}_{t2}^i = (\hat{s} \cdot \hat{t}_2)[B_1, B_2, B_3]\mathbf{H}^i,$$

$$\hat{E}_n^i = [F_1 + B_1(\hat{s} \cdot \hat{n}), F_2 + B_2(\hat{s} \cdot \hat{n}), F_3 + B_3(\hat{s} \cdot \hat{n})]\mathbf{E}^i,$$

$$\hat{H}_n^i = [F_1 + B_1(\hat{s} \cdot \hat{n}), F_2 + B_2(\hat{s} \cdot \hat{n}), F_3 + B_3(\hat{s} \cdot \hat{n})]\mathbf{H}^i,$$

with

$$B_i = \sqrt{\partial b_i / \partial q_1^2 + \partial b_i / \partial q_2^2 + \partial b_i / \partial q_3^2}.$$

Outer boundary

inner boundary

Remark: Surface current will be induced at the inner surface.

Arbitrarily-shaped cloak

For point-transformed cloak,

$$\hat{E}_{t_1}^i = \hat{H}_{t_1}^i = 0,$$

$$\hat{E}_{t_2}^i = \hat{H}_{t_2}^i = 0,$$

$$\hat{E}_n^i = [F_1, F_2, F_3] \mathbf{E}^i, \quad \hat{H}_n^i = [F_1, F_2, F_3] \mathbf{H}^i.$$

All tangential fields are zero.

Therefore no field discontinuity exists for perfect cloaking.

Table of Contents

Content	Time
0. Introduction	8
1. Cylindrical cloak: Simplification	15'
2. Cylindrical cloak: Effect of order number	6'
3. Electromagnetic Concentrator	6'
4. Arbitrarily-shaped cloak	6'
5. Conclusion	4'
Total:	45'

Project plan

We are here!

Tasks	Time (mth)	0.5	1	1.5	2	2.5	3	3.5	4
Cylindrical cloak: Simplification									
Cylindrical cloak: Effect of order number									
<i>Electromagnetic Concentrator</i>									
Arbitrarily-shaped cloak									
Project report									

Outcome

Papers:

1. Wei Yan, Min Yan, Zhichao Ruan, Min Qiu, "Coordinate transformation makes perfect invisibility cloak with arbitrary shape," *New Journal of Physics*, vol. 10, 043040 (2008).
2. M. Yan, W. Yan, L. Zhang, M. Qiu, *Cylindrical Invisibility Cloak: Properties and Strategies for Practical Realization*, NATO Advanced Research Workshop, Metamaterials for Secure Information and Communication Technologies, 7-10 May, 2008, Marrakech, Morocco.
3. W. Yan, M. Yan, and Min Qiu, "Non-magnetic simplified cylindrical cloak with near perfect invisibility by suppressing zeroth order scattering," *Appl. Phys. Lett.*, in review.

Code:

Matlab code for scattering calculation of multilayered cylindrical structures.

Thank you!

Questions?

