Manipulation of Lightwave Through Coordinate Transformation

Min Qiu*, Min Yan, Wei Yan

Department of Microelectronics and Applied Physics
Royal Institute of Technology (KTH), Sweden

*Email: min@kth.se

2008-06-13

Ariadna bidder code: 21290
Project plan

We are here!

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Time (mth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Cylindrical cloak: Simplification</td>
<td></td>
</tr>
<tr>
<td>Cylindrical cloak: Effect of order number</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Concentrator</td>
<td></td>
</tr>
<tr>
<td>Arbitrarily-shaped cloak</td>
<td></td>
</tr>
<tr>
<td>Project report</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>15’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>15’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
Introduction

Scattering \rightarrow visibility

? \rightarrow invisibility
Coordinate transformation approach

Coordinate transformation

Original Cartesian coordinate \((x, y, z)\)

\[
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}, \quad \nabla \cdot \mathbf{D} = \rho, \quad \nabla \cdot \mathbf{B} = 0.
\]

\[
\mathbf{D} = \varepsilon_0 \varepsilon \cdot \mathbf{E}, \quad \mathbf{B} = \mu_0 \mu \cdot \mathbf{H},
\]

New coordinate \((q_1, q_2, q_3)\)

\[
x = f_1(q_1, q_2, q_3), \quad y = f_2(q_1, q_2, q_3), \quad z = f_3(q_1, q_2, q_3).
\]

The Maxwell equations can take the invariant form as

\[
\nabla_q \times \mathbf{\hat{E}} = -\frac{\partial \mathbf{\hat{B}}}{\partial t}, \quad \nabla_q \times \mathbf{\hat{H}} = \frac{\partial \mathbf{\hat{D}}}{\partial t} + \mathbf{j}, \quad \nabla_q \cdot \mathbf{\hat{D}} = \hat{\rho}, \quad \nabla_q \cdot \mathbf{\hat{B}} = 0
\]

with

\[
\hat{\varepsilon} = \det(\Lambda)(\Lambda)^{-1}\varepsilon \Lambda^{-T}, \quad \hat{\mu} = \det(\Lambda)(\Lambda)^{-1}\mu \Lambda^{-T},
\]

Jacobian transformation matrix

\[
\Lambda = \begin{bmatrix}
\frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \frac{\partial x}{\partial q_3} \\
\frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \frac{\partial y}{\partial q_3} \\
\frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \frac{\partial z}{\partial q_3}
\end{bmatrix}.
\]
Coordinate transformation
Coordinate transformation

\[\hat{E} = \Lambda^T E, \quad \hat{H} = \Lambda^T H, \]
Line-transformed cloak
Point-transformed cloak
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>18’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
Ideal cylindrical cloak

Principle:
To compress EM fields within a cylindrical air region $r' < b$ into the cylindrical annular region $a < r < b$.

The simplest transformation:
from (r', θ', z') (original cylindrical coordinate) to (r, θ, z) (physical cylindrical coordinate)

\[
\begin{align*}
 r &= \frac{b - a}{a} r' + a \\
 \theta &= \theta' \\
 z &= z'
\end{align*}
\]
Ideal cylindrical cloak

Colormap shows E_z field

Field in original EM space

Field in physical space

Electromagnetic null space!

Difficulty: ε_θ, μ_θ, ε_z, and μ_z diverge at $r=a$!

\[
\varepsilon_z = \left(\frac{b}{b-a}\right)^2 \frac{r-a}{r} \\
\mu_r = \frac{r-a}{r} \\
\mu_\theta = \frac{r}{r-a}
\]
Simplified cylindrical cloaks

Reasons for material simplification [1,2]:
1. To avoid infinite parameters
2. To alleviate metamaterial engineering task

The material parameters are simplified as

\[
\varepsilon_r = \mu_r = \frac{r-a}{r}, \\
\varepsilon_\theta = \mu_\theta = \frac{r}{r-a}, \\
\varepsilon_z = \mu_z = \left(\frac{b}{b-a}\right)^2 \frac{r-a}{r}.
\]

\[
\varepsilon_r = \mu_r = \left(\frac{r-a}{r}\right)^2, \\
\varepsilon_\theta = \mu_\theta = 1, \\
\varepsilon_z = \mu_z = \left(\frac{b}{b-a}\right)^2.
\]

\[\varepsilon_\theta \varepsilon_z \text{ and } \mu_r \varepsilon_z \text{ invariant}\]

Simplified cylindrical cloaks: not perfect

Origin of the problem:

Wave equation (r-dependent) in ideal cloak medium:
\[
\frac{d}{dr} \left(\frac{r}{\mu_\theta} \frac{d\Psi}{dr} \right) + \frac{k_0^2}{r} \epsilon \Psi - m^2 \frac{1}{r \mu_r} \Psi = 0.
\]

Wave equation in simplified cloak medium:
\[
\frac{1}{\mu_\theta \epsilon} \frac{d}{dr} \left(\frac{r}{dr} \frac{d\Psi}{dr} \right) + \frac{k_0^2}{r} \Psi - m^2 \frac{1}{r \mu_r \epsilon} \Psi = 0.
\]

Wrong assumption: \(\mu_0 \) is constant, where \(m \) is angular mode number.
Scattering coefficients

Scattering coefficients in different cylindrical orders w.r.t. Outer radius b [1]:

![Graph showing scattering coefficients]

Parameters: $f=2\,\text{GHz}; a=0.1\,\text{m}$

Improved simplification

<table>
<thead>
<tr>
<th>Ideal</th>
<th>Simplified [2]</th>
<th>Simplified (current work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_r = \mu_r = \frac{r-a}{r})</td>
<td>(\varepsilon_r = \mu_r = \left(\frac{r-a}{r}\right)^2)</td>
<td>(\varepsilon_r = \mu_r = \left(\frac{r-a}{r}\right)^2 \frac{b}{b-a})</td>
</tr>
<tr>
<td>(\varepsilon_\theta = \mu_\theta = \frac{r}{r-a})</td>
<td>(\varepsilon_\theta = \mu_\theta = 1)</td>
<td>(\varepsilon_\theta = \mu_\theta = \frac{b}{b-a})</td>
</tr>
<tr>
<td>(\varepsilon_z = \mu_z = \left(\frac{b}{b-a}\right)^2 \frac{r-a}{r})</td>
<td>(\varepsilon_z = \mu_z = \left(\frac{b}{b-a}\right)^2)</td>
<td>(\varepsilon_z = \mu_z = \frac{b}{b-a})</td>
</tr>
</tbody>
</table>

Same condition: \(\mu_\theta \varepsilon_z \) and \(\mu_\theta \varepsilon_z \) invariant

Advantage:
The outer interface is perfectly matched to exterior!

Improved simplification

Previous simplified

Improved
Improved simplification

Bare cylinder
Simplified linear cloak [2]
Simplified quadratic cloak [3]
Simplified linear cloak (improved)

Can we cancel the zeroth order scattering?
Cancellation of zeroth-order scattering

without monopole cancellation

with monopole cancellation

\[a = 0.3 \text{m}, \quad b = 0.6 \text{m} \]
Cancellation of zeroth-order scattering

\[\lambda = 0.3 \text{m} \]
Far field radiation

![Graph showing RCS (dB) vs θ (degree) for different configurations.](image)

Remarks:
- Mostly high order scatterings remain
- Wavelength dependent

Ref:
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>15’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
High-order cylindrical invisibility cloak

One possible class of transformation may take the form of

\[r' = \frac{b}{(b-a)^n(\rho - a)^n}, \]

\(n \): transformation order.

Virtual flat space \(n=1 \) \(n=3 \)

Infinite parameters at \(r=a \)!
Effect of transformation order on scattering coefficients

- $a = 0.1\text{m}$
- $b = 0.3\text{m}$
- $\lambda = 0.15\text{m}$
- Thickness of the layer peeled away: $d = 0.01\text{m}$
- PEC lining is present
Field distributions

Ez
Scattered Ez
Transformation order used: n=3

Ref
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>15’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
EM concentrator

Virtual r' vs Physical r

Application:
- Photovoltaic fiber
- Fluid heating

Resonance based EM concentrator

- Enhancement factor 230
- Wavelength dependant
Resonance based EM concentrator
Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>15’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
Arbitrarily-shaped cloaks

Blowing-up a line

Blowing-up a point

General cross-section:

Ref:
Arbitrarily-shaped cloak

For both line-transformed or point-transformed cloaks,

\[\hat{E}^i = \Lambda^T E^i, \quad \hat{H}^i = \Lambda^T H^i, \]

At outer boundary:

\[\hat{E}^i_{t_1} = E^i \cdot \hat{t}_1, \quad \hat{H}^i_{t_1} = H^i \cdot \hat{t}_1, \]
\[\hat{E}^i_{t_2} = E^i \cdot \hat{t}_2, \quad \hat{H}^i_{t_2} = H^i \cdot \hat{t}_2, \]
Arbitrarily-shaped cloak

For line-transformed cloak,

\[\hat{E}^i_{t1} = \hat{H}^i_{t1} = 0. \]

However, the other components of fields are not zero. In particular,

\[\hat{E}^i_{t2} = (\hat{s} \cdot \hat{t}_2)[B_1, B_2, B_3]E^i, \]

\[\hat{H}^i_{t2} = (\hat{s} \cdot \hat{t}_2)[B_1, B_2, B_3]H^i, \]

\[\hat{E}^i_n = [F_1 + B_1(\hat{s} \cdot \hat{n}), F_2 + B_2(\hat{s} \cdot \hat{n}), F_3 + B_3(\hat{s} \cdot \hat{n})]E^i, \]

\[\hat{H}^i_n = [F_1 + B_1(\hat{s} \cdot \hat{n}), F_2 + B_2(\hat{s} \cdot \hat{n}), F_3 + B_3(\hat{s} \cdot \hat{n})]H^i, \]

with

\[B_i = \sqrt{\partial b_i/\partial q_1^2 + \partial b_i/\partial q_2^2 + \partial b_i/\partial q_3^2}. \]

Remark: Surface current will be induced at the inner surface.
Arbitrarily-shaped cloak

For point-transformed cloak,

\[\hat{E}^{i}_{t_1} = \hat{H}^{i}_{t_1} = 0, \]
\[\hat{E}^{i}_{t_2} = \hat{H}^{i}_{t_2} = 0, \]
\[\hat{E}^{i}_{n} = [F_1, F_2, F_3]E^{i}, \hat{H}^{i}_{n} = [F_1, F_2, F_3]H^{i}. \]

All tangential fields are zero. Therefore no field discontinuity exists for perfect cloaking.
<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>1. Cylindrical cloak: Simplification</td>
<td>15’</td>
</tr>
<tr>
<td>2. Cylindrical cloak: Effect of order number</td>
<td>6’</td>
</tr>
<tr>
<td>3. Electromagnetic Concentrator</td>
<td>6’</td>
</tr>
<tr>
<td>4. Arbitrarily-shaped cloak</td>
<td>6’</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>4’</td>
</tr>
<tr>
<td>Total:</td>
<td>45’</td>
</tr>
</tbody>
</table>
Project plan

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Time (mth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Cylindrical cloak: Simplification</td>
<td></td>
</tr>
<tr>
<td>Cylindrical cloak: Effect of order number</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Concentrator</td>
<td></td>
</tr>
<tr>
<td>Arbitrarily-shaped cloak</td>
<td></td>
</tr>
<tr>
<td>Project report</td>
<td></td>
</tr>
</tbody>
</table>

We are here!
Outcome

Papers:

Code:
Matlab code for scattering calculation of multilayered cylindrical structures.
Thank you!

Questions?