

# Reverse engineering in metamaterial based electromagnetic cloak

**D. Lippens, D. Gaillot and C. Croënne**

**Institut d'Electronique, de Microélectronique et de Nanotechnologie  
Université de Lille, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq  
France,**

[Didier.Lippens@iemn.univ-lille1.fr](mailto:Didier.Lippens@iemn.univ-lille1.fr),  
[Davy.gaillot@iemn.univ-lille1.fr](mailto:Davy.gaillot@iemn.univ-lille1.fr),  
[Charles.croenne@iemn.univ-lille1.fr](mailto:Charles.croenne@iemn.univ-lille1.fr)

Tel + 33 3 20 19 78 77, secretary M<sup>rs</sup> M-B Dernoncourt Tel + 33 3 20 19 78 44, fax + 33 3 20 19 78 92

**The authors would like to thank the others members of DOME group :  
N. Fabre, G. Houzet, X. Mélique, E. Lheurette, V. Sadaune, O. Vanbésien,  
Alejandro Lucas and F-L. Zhang.**

# Potential applications of metamaterial technologies )

## Focusing

**Superlens ( near-field conditions)**

**Hyperlens ( far-field condition )**

## Antennas

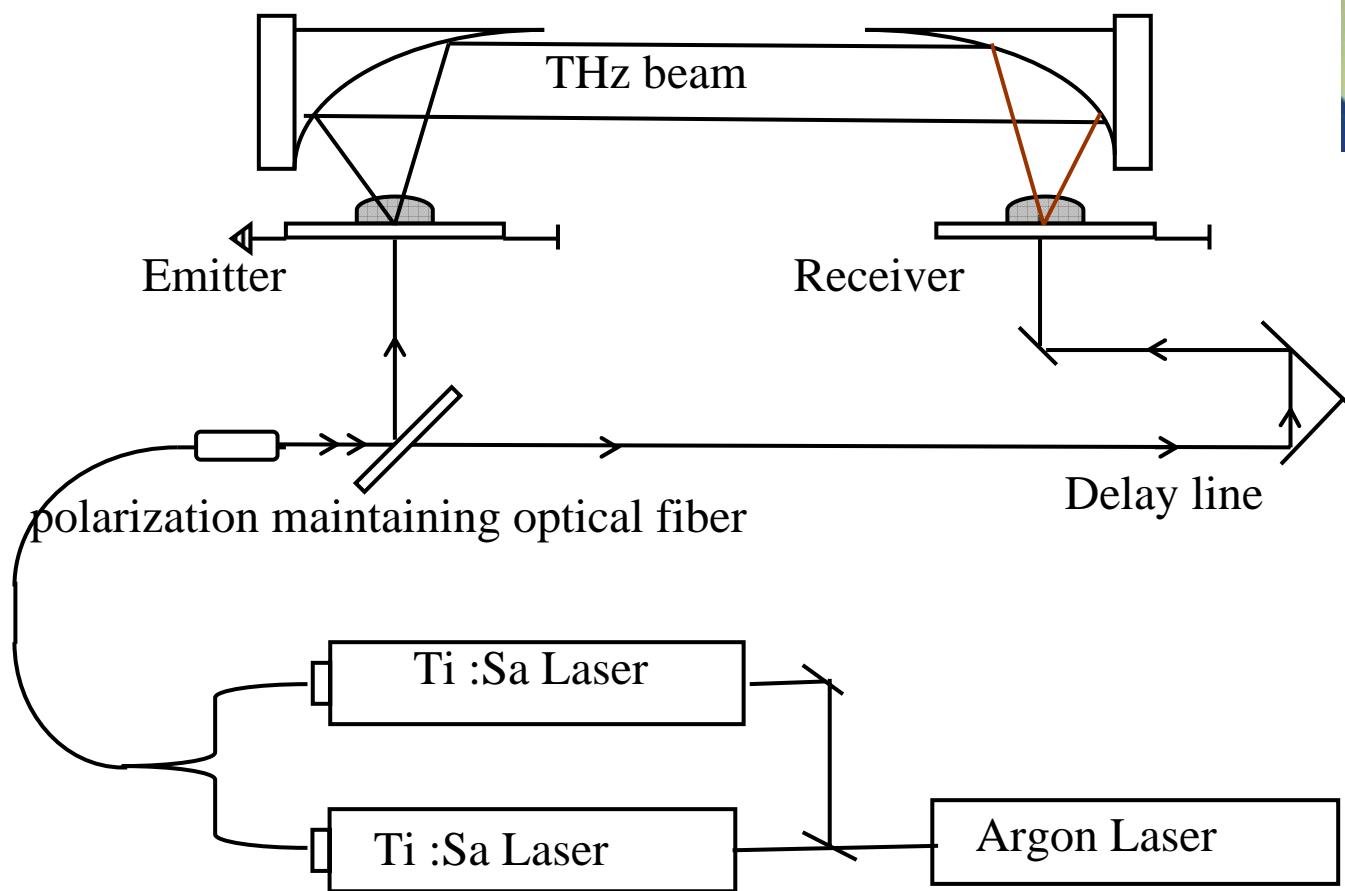
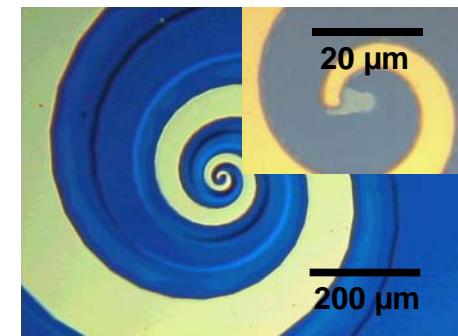
**AMC ( Artificial magnetic conductors)**

**Partially reflected superstrates**

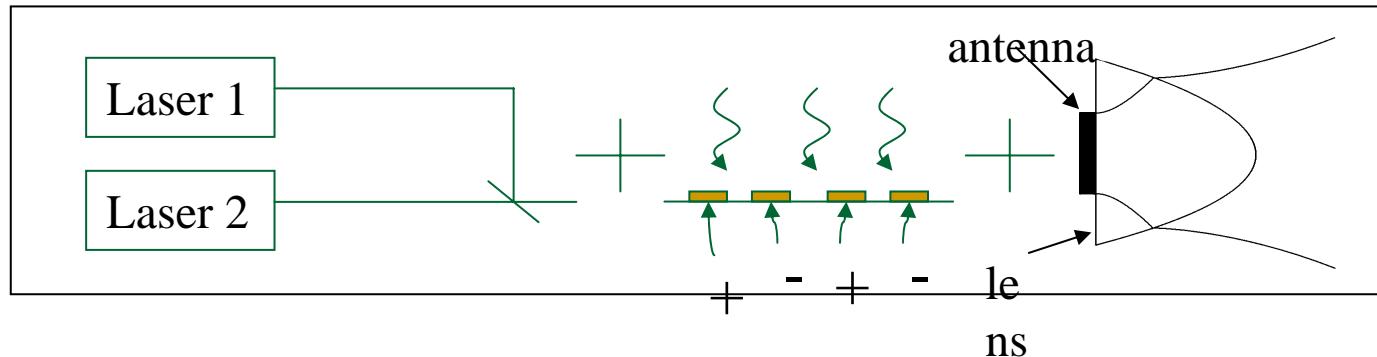
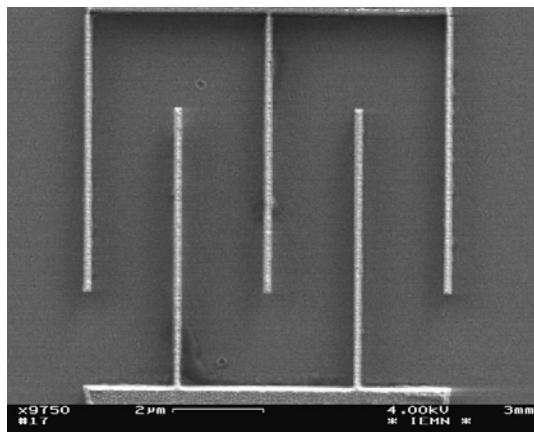
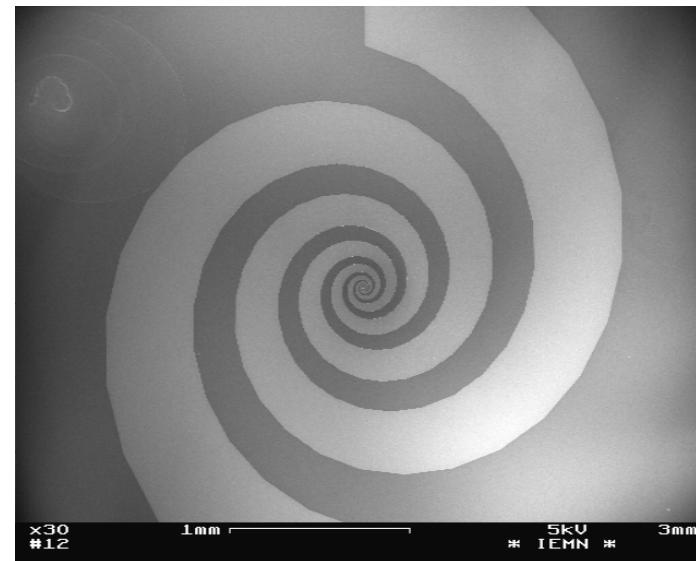
**Near-zero media**

## Non linear Terahertz Electronics

## THz imaging and spectroscopy systems ( homodyne system)



# THz imaging and spectroscopy systems ( homodyne system)



# Transformations optics

**Cloaking**

**Linear and non linear transformations**

**Reduced equations**

**Lensing**

**Diverging- converging systems**

**Channeling ( near field )–Collimating (far field)**

# Outline

- **Cloaking ( Davy Gaiot - Jose Llorens Montolio)**
  - **Electric Cloak with metallic nanowires at optical wavelengths**
    - **Homogenization**
      - Bruggeman and MG's approaches
    - **Study of lossless and lossy cloaks**
  - **Magnetic Cloak with high- $\kappa$  ceramics at THz frequencies**
    - **Basic principle of Magnetic Mie resonance**
    - **Cloaking performance and robustness**
      - Wavelength-scaled cloak
      - Large cloak
- **Transformation Optics (C. Croënne)**
  - **Channeling**
  - **High Resolution (HR) flat hyper lens**
  - **HR focusing devices**

# Studied Electromagnetic Cloaking Devices

GHz-THz  
Frequencies

Magnetic  
Cloak  
 $0 < \mu_r < 1$

High- $\kappa$  Dielectrics



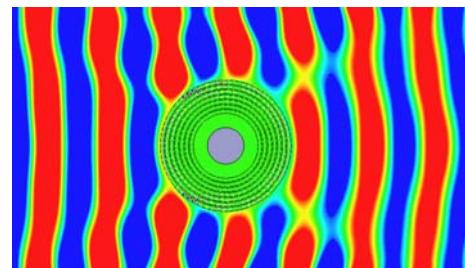
Zhao *et al.*, Appl. Phys. Lett., (2007)  
O'Brien *et al.*, JPM (2002)

IEMN

$$\varepsilon_z = \left( \frac{b}{b-a} \right)^2$$

$$\mu_r = \left( \frac{r-a}{r} \right)^2$$

$$\mu_\theta = 1$$



Gaillot *et al.*, Opt. Exp. (2008)

Electric  
Cloak  
 $0 < \varepsilon_r < 1$

IEMN + ACT

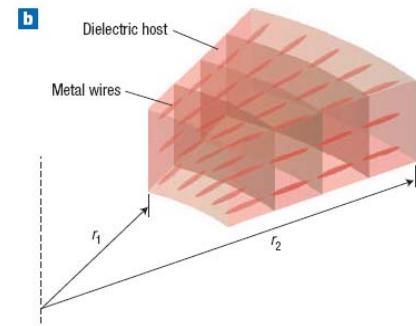
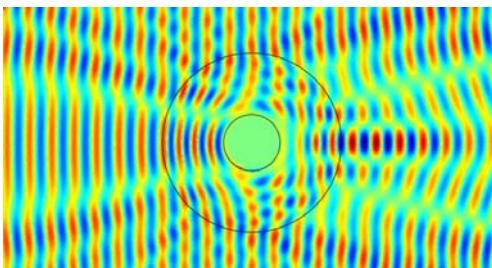
$$\mu_z = 1$$

$$\varepsilon_\theta = \left( \frac{b}{b-a} \right)^2$$

$$\varepsilon_r = \left( \frac{b}{b-a} \right)^2 \cdot \left( \frac{r-a}{r} \right)^2$$

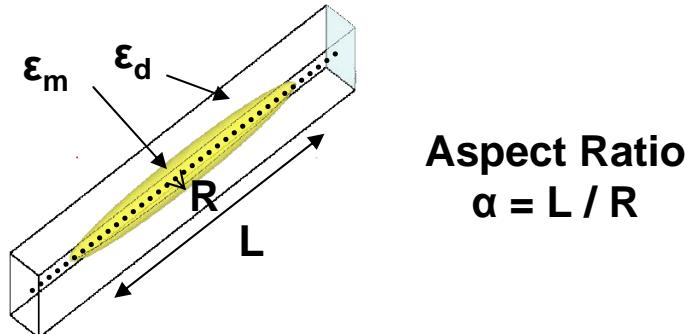
Optical  
Frequencies

Metallic Nanowires



Cai *et al.*, Nat. Photon. (2007)

# Electric Cloak : Homogenization of Particles



## Bruggeman's Formula

$$f \frac{\epsilon_m - \epsilon_{\text{eff}}}{\epsilon_m + \kappa \epsilon_{\text{eff}}} + (1 - f) \frac{\epsilon_d - \epsilon_{\text{eff}}}{\epsilon_d + \kappa \epsilon_{\text{eff}}} = 0$$

- Geometry imposed by the host dielectric medium properties
- Cai's solving approach is based on the fact that the filling fraction is a function of  $f_a \cdot (a/r)$ 
  - $f_a$  is filling fraction of metal at the inner surface of the cloak

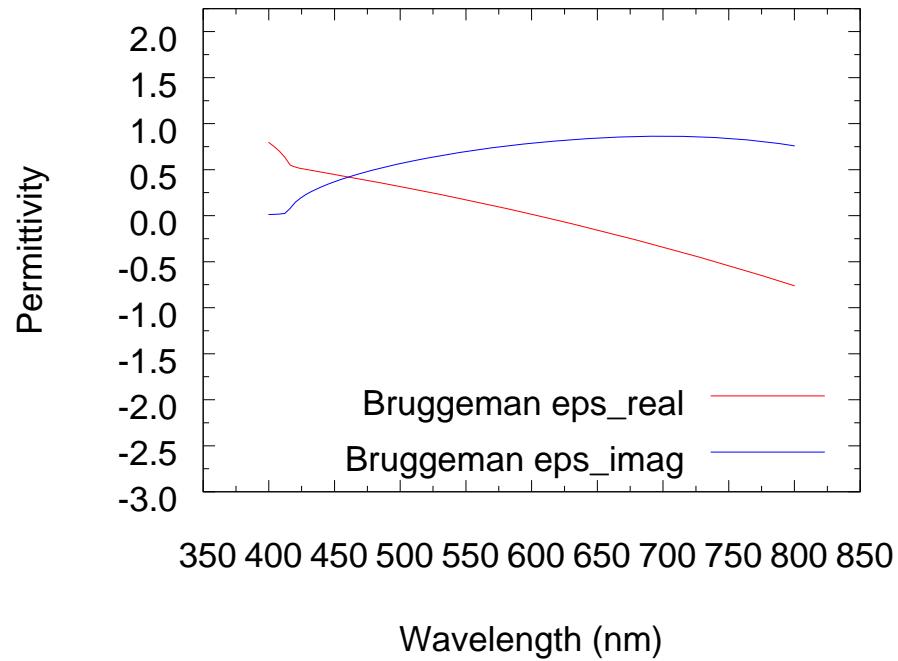
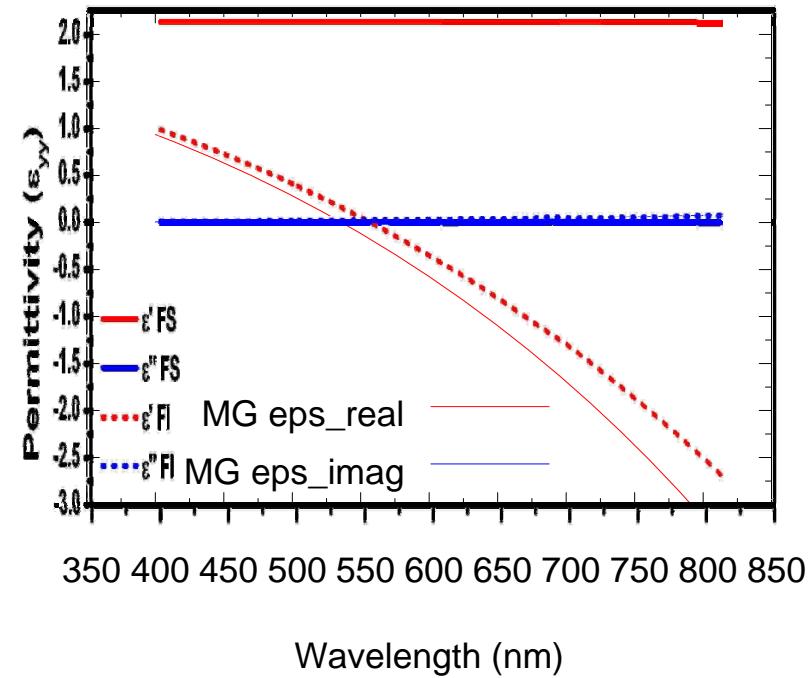
## Maxwell-Garnett's Formula

$$\frac{\epsilon_{\text{eff},r} - \epsilon_d}{\epsilon_{\text{eff},r} + \kappa \epsilon_d} = f \frac{\epsilon_m - \epsilon_d}{\epsilon_m + \kappa \epsilon_d}$$

- Optimization problem with parameters vector  $x = \{\epsilon_d, \epsilon_m, a, b, \alpha, \lambda\}$
- One can only match one of the two parameters
  - *Mismatch of  $\epsilon_{\phi}(r)$*

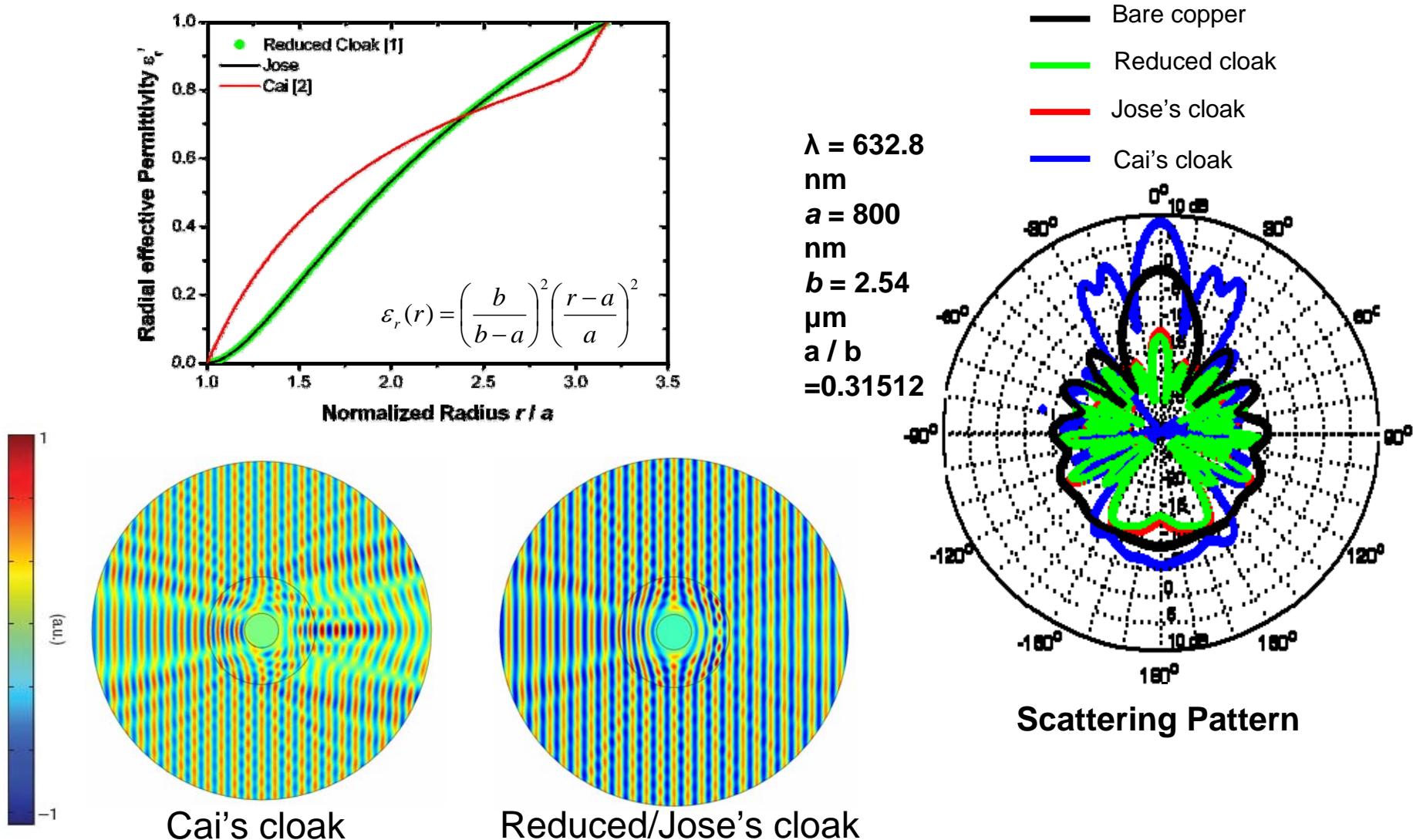
# Homogenization formula vs. numerical FS and FI

Computation of both analytical formulas for  $\alpha = 11.83$  and  $f = 0.1175$

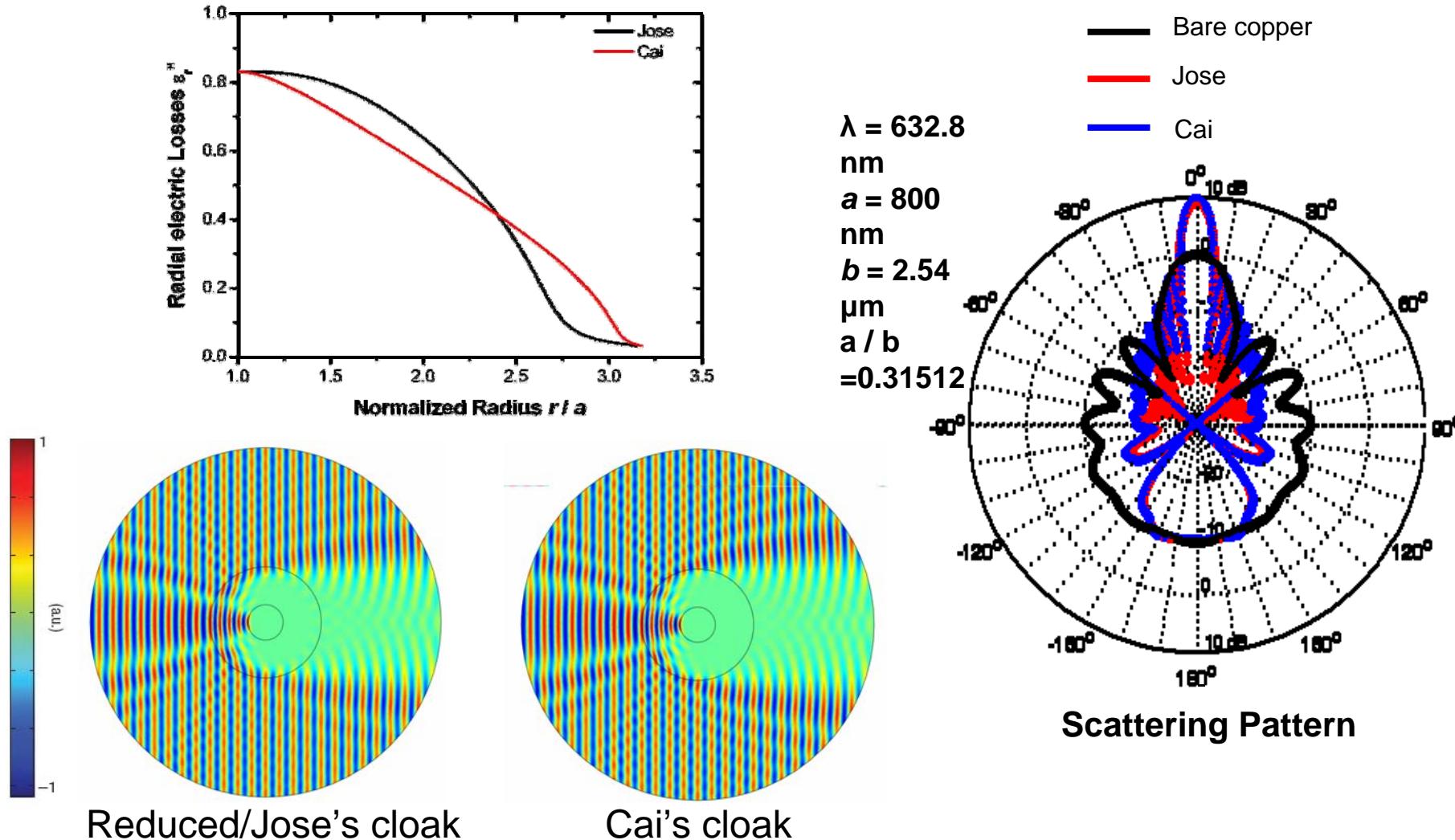


- Bruggeman formula shows a very poor agreement with FI results. Seems that the explanation of the high losses is due to the wrong use of Bruggeman formula.
- The Maxwell-Garnett formula exhibits an excellent agreement.

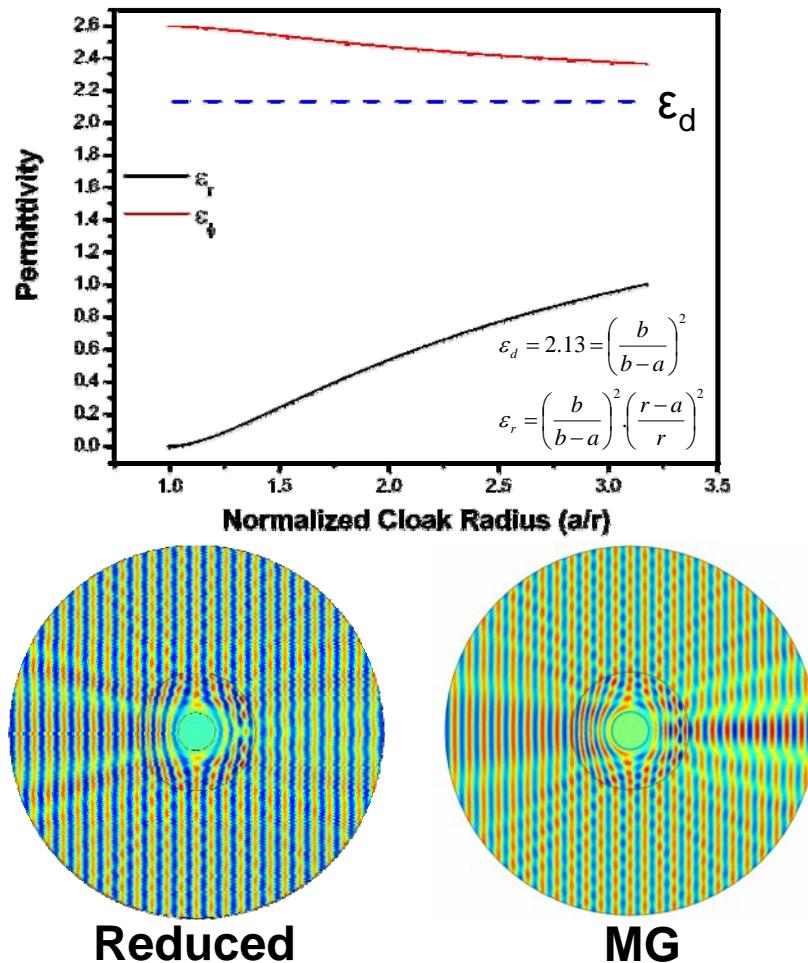
# Bruggeman Homogeneous Lossless Model



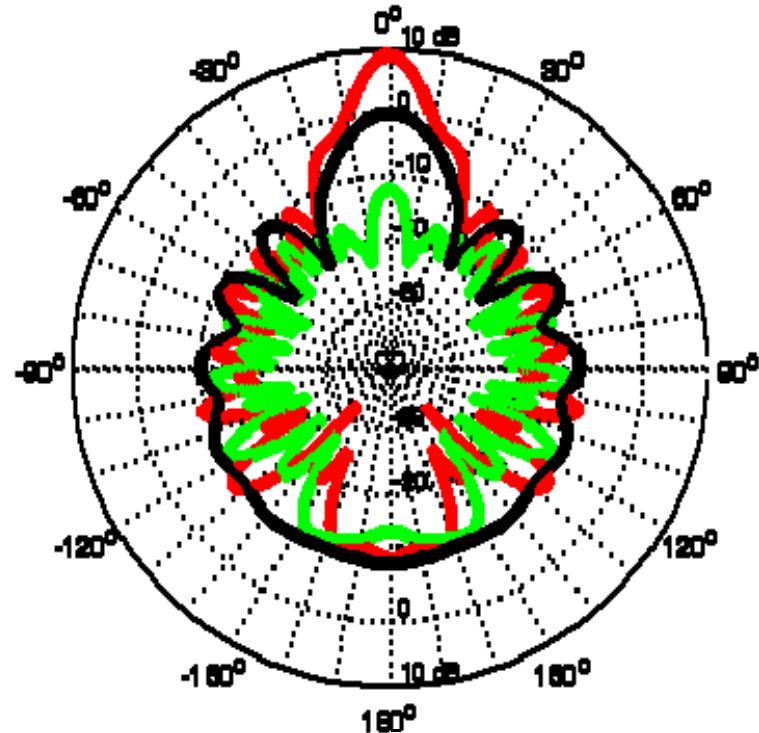
# Bruggeman Homogeneous Lossy Model



# MG Homogeneous Lossless Cloak

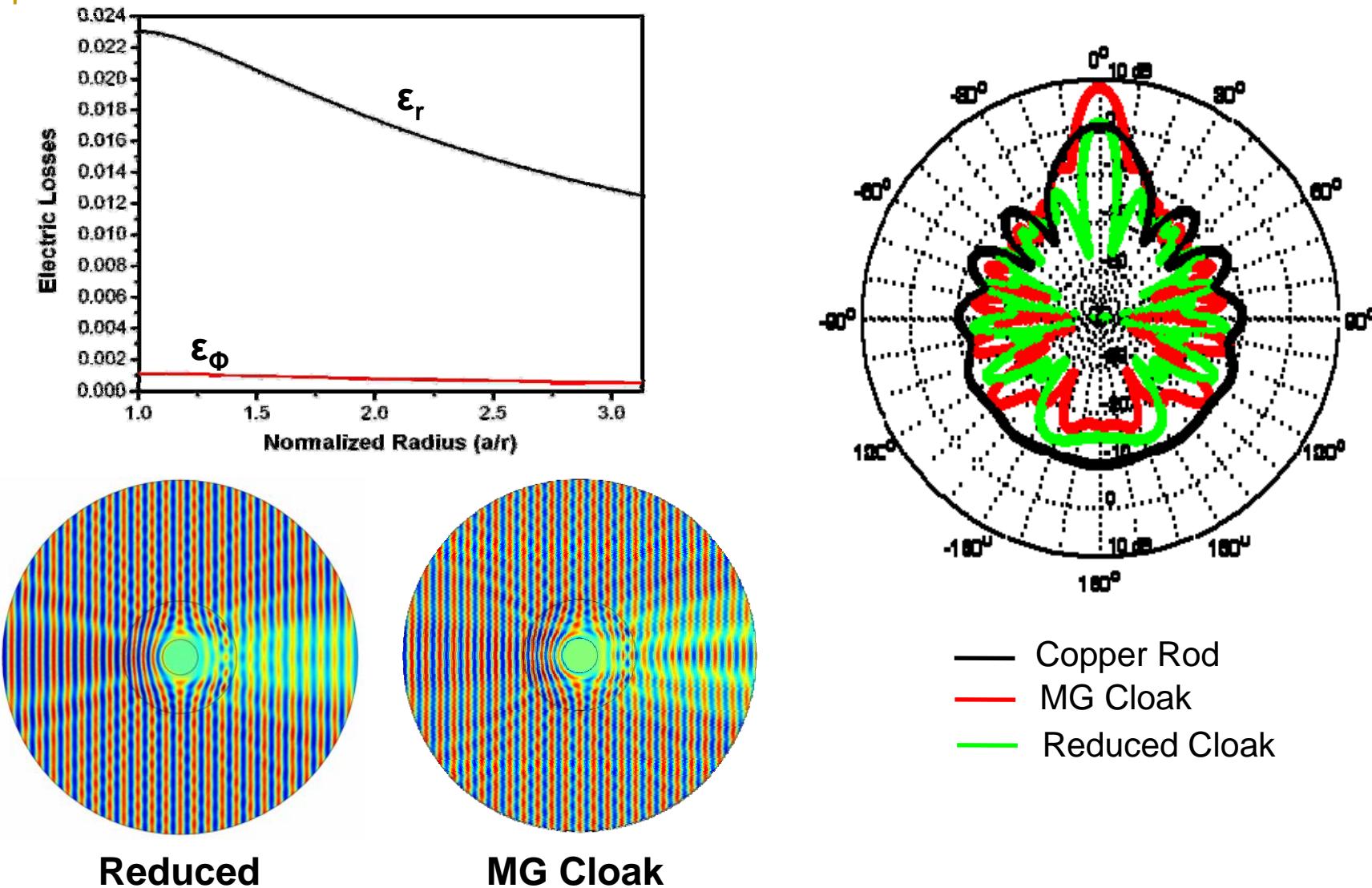


— Copper Rod  
— MG Cloak  
— Reduced Cloak

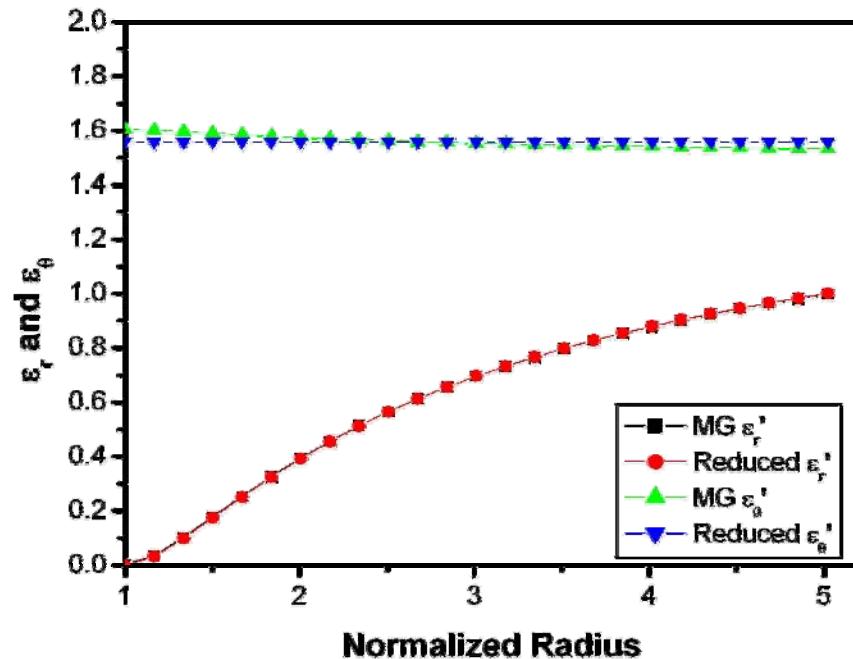
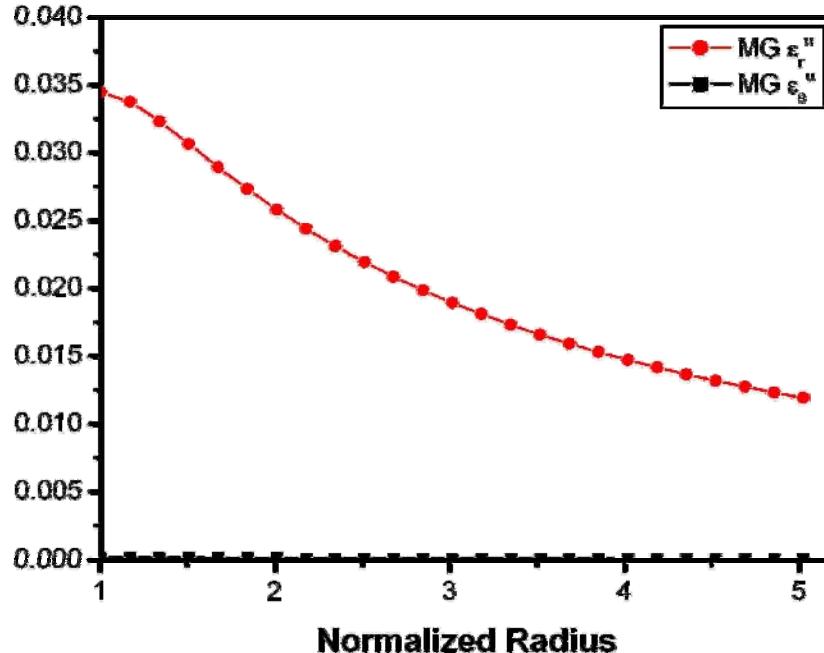


- Mismatched MG cloak does not perform well due to the mismatch of  $\epsilon_\phi(r)$  with the reduced eqns.

# MG Homogeneous Lossy Cloak



# Optimized MG Cloak

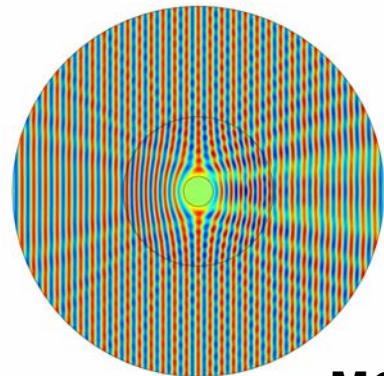
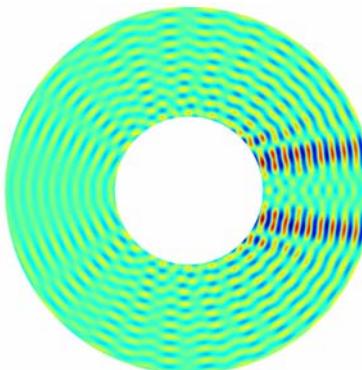


- MG Data obtained from local optimization routine

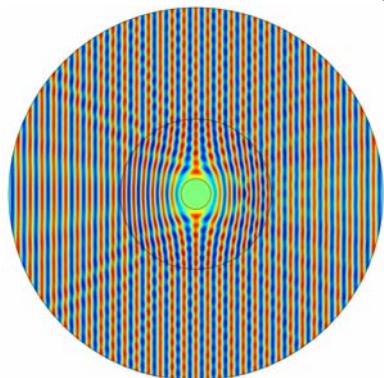
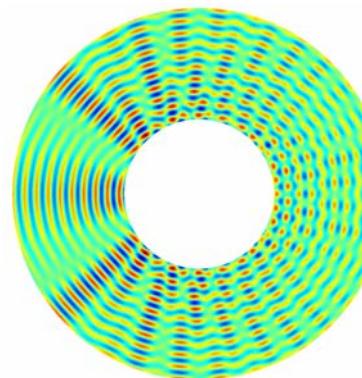
$$J = \left( \text{Re}(\epsilon_{\text{eff},r}(r)) - \epsilon_{\text{theo},r}(r) \right)^2 + \left( \text{Re}(\epsilon_{\text{eff},\theta}(r)) - \epsilon_{\text{theo},\theta}(r) \right)^2 + \text{Im}(\epsilon_{\text{eff},r}(r))^2 + \text{Im}(\epsilon_{\text{eff},\theta}(r))^2$$

- $\epsilon_d = 1.5$  and  $\alpha = 5.954009$
- $a = 1$  and  $b = 5.022861$  ( $a/b = 0.199$ )

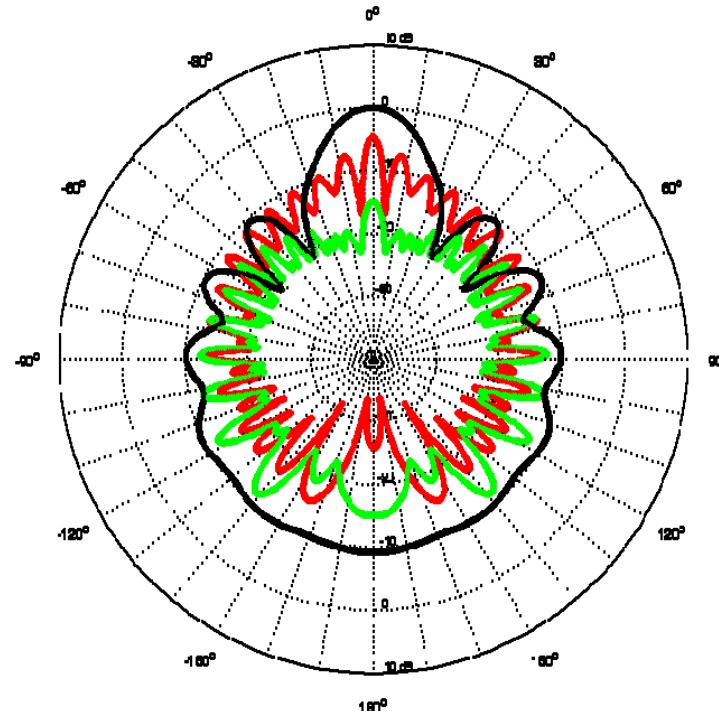
# Optimized Lossless MG Cloak



MG Cloak



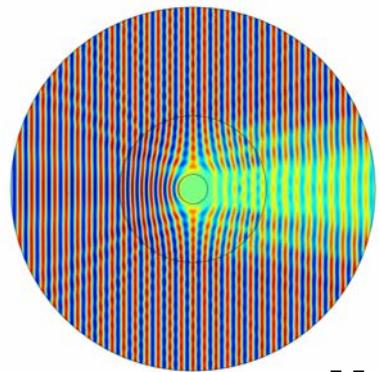
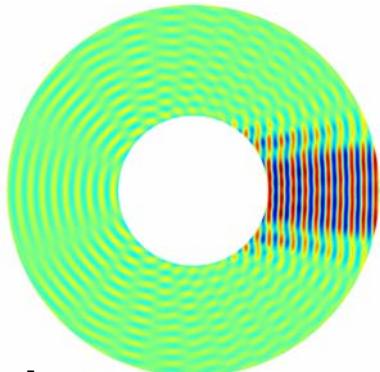
Reduced Cloak



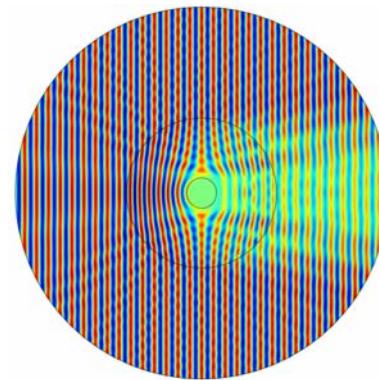
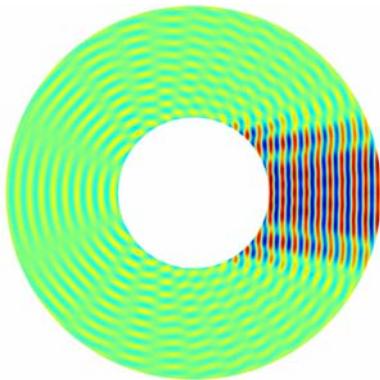
- Copper Rod
- Lossless MG Cloak
- Lossless Reduced Cloak

- Optimized cloak operates far better than original counterpart.
- Displays larger forward scattering but reduced backward scattering

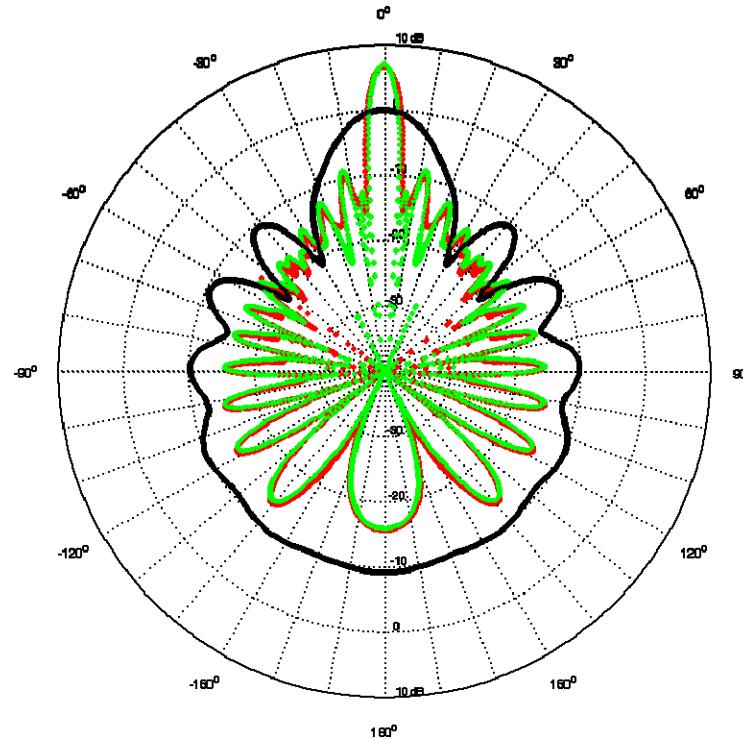
# Optimized Lossy MG Cloak



MG Cloak



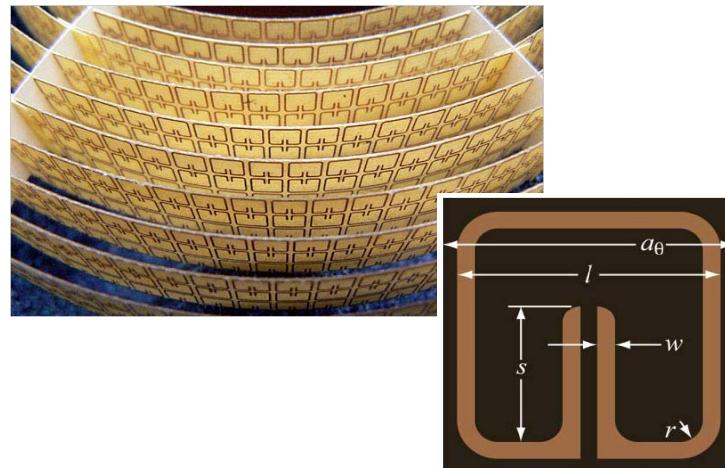
Reduced Cloak



- Copper Rod
- Lossy MG Cloak
- Lossy Reduced Cloak

- Reduced cloak losses calculated as the mean average from optimized data
- Field maps and radiation patterns are very similar indicating that losses dominate behavior

# Magnetic Cloaking Devices Based on high- $\kappa$ Dielectrics



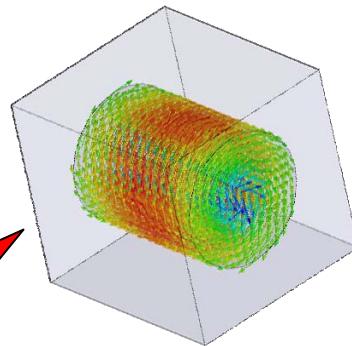
Schurig *et al.*, Science (2006)

- Need for a non-metallic metamaterial particle that operates up to THz frequencies
  - Strong magnetic response with adjustable magnetic plasma frequency
  - Manageable losses
  - Ease of assembly for cloaking or other purposes
  - Flexible fabrication for complex geometrical shape

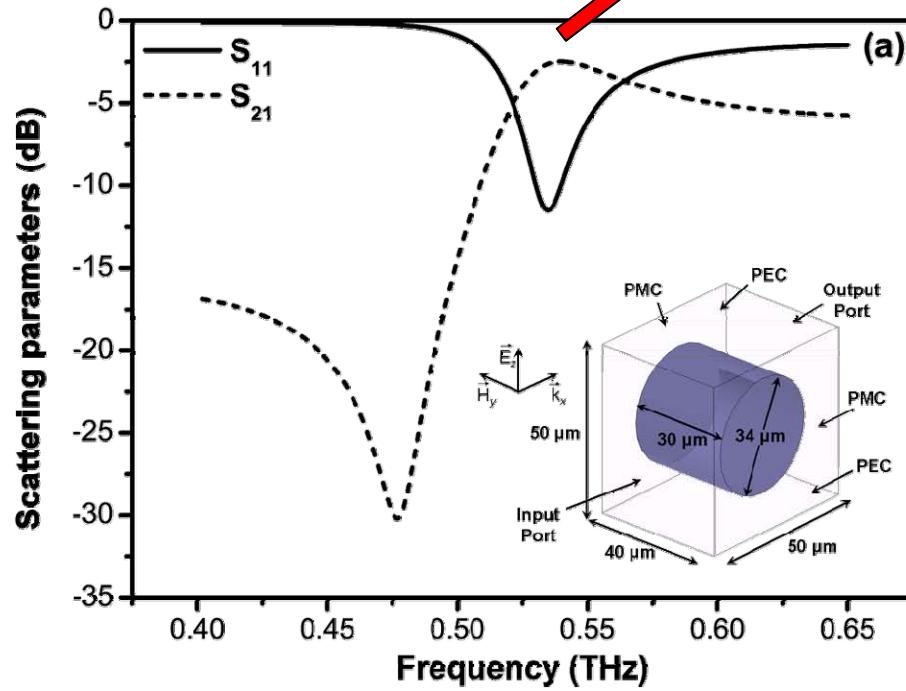
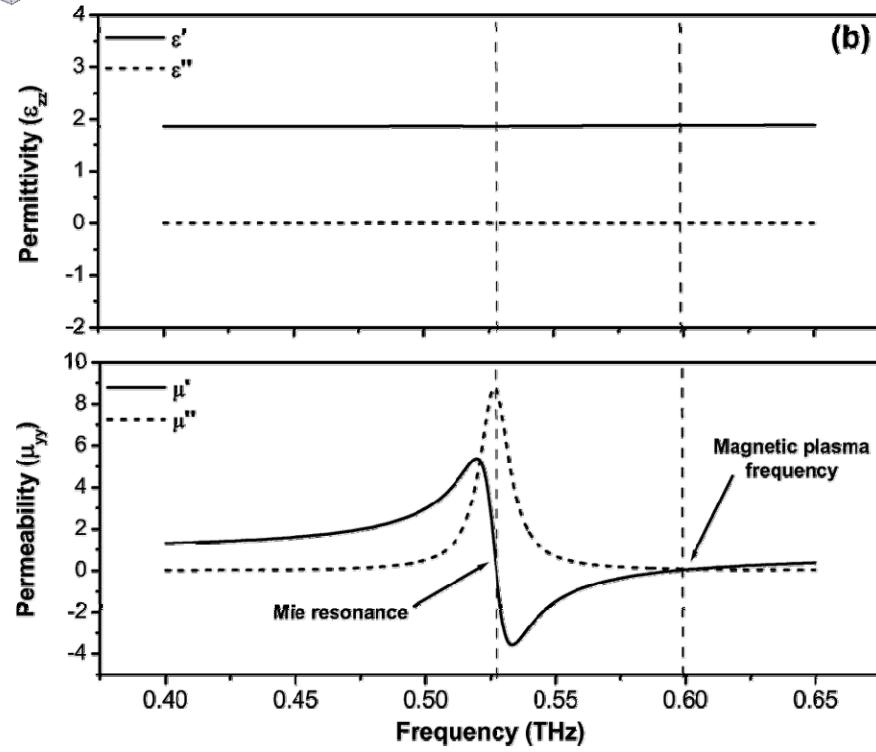
# Magnetic Mie Resonances in Ferroelectrics at THz frequencies

Example :  $Ba_xSr_{1-x}TiO_3$  (BST)

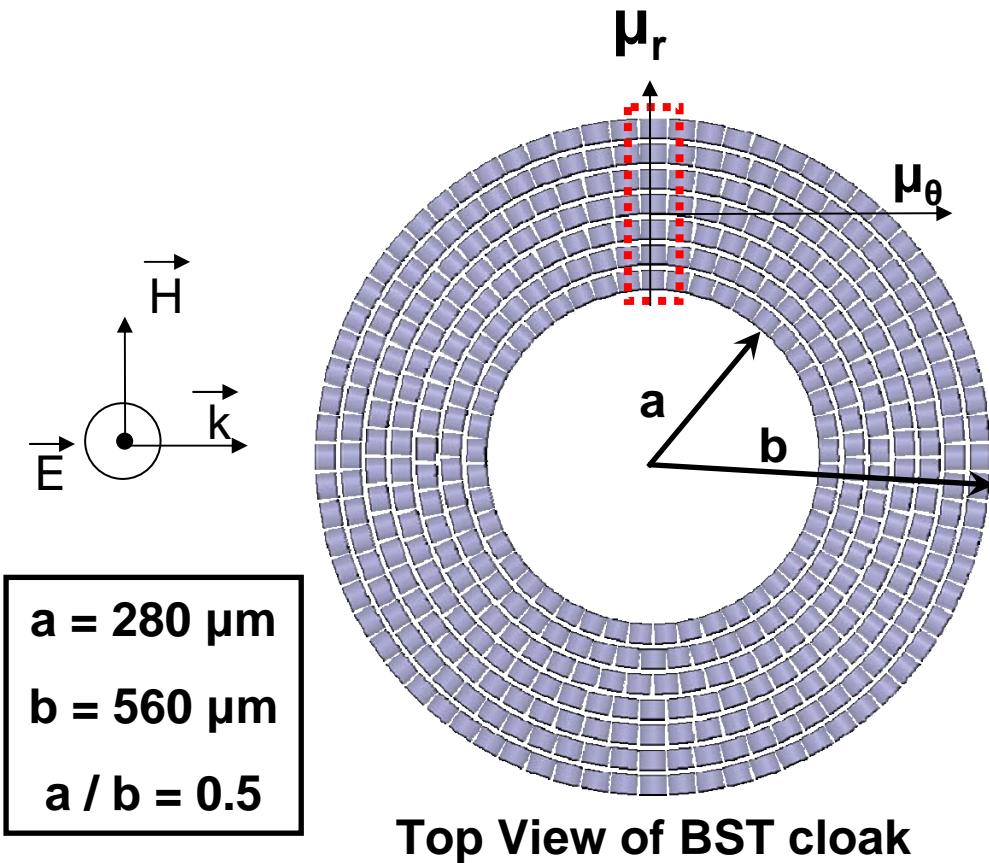
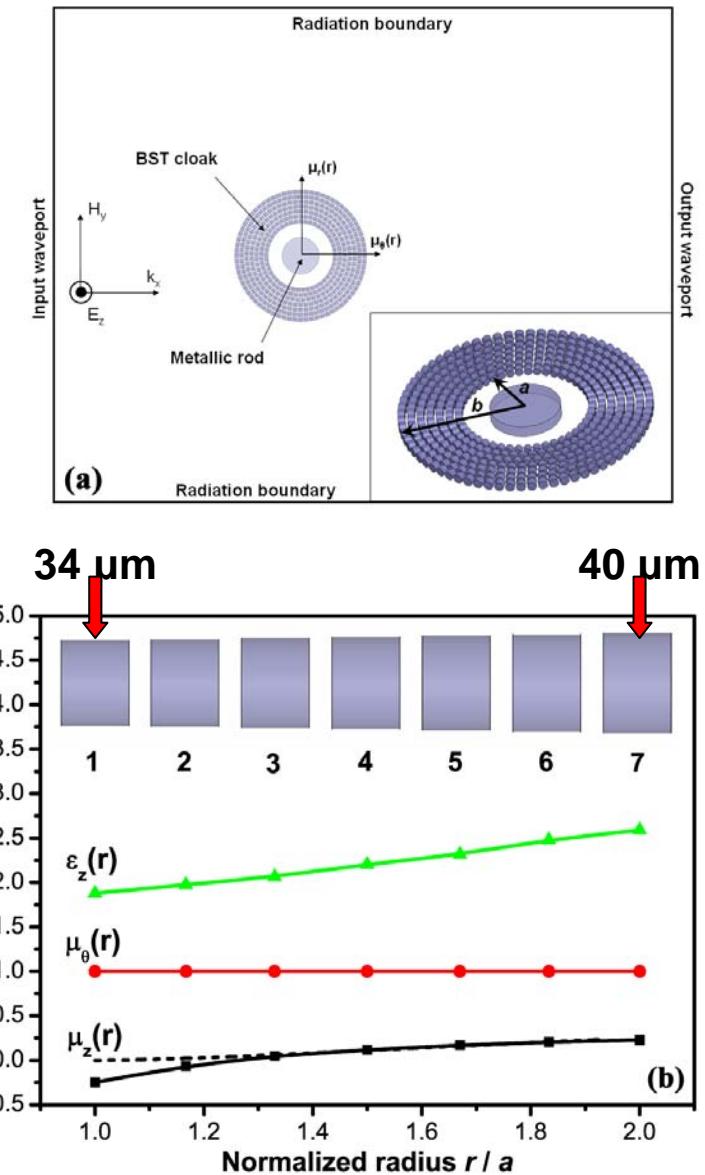
$$\epsilon = 200 + 5*j$$



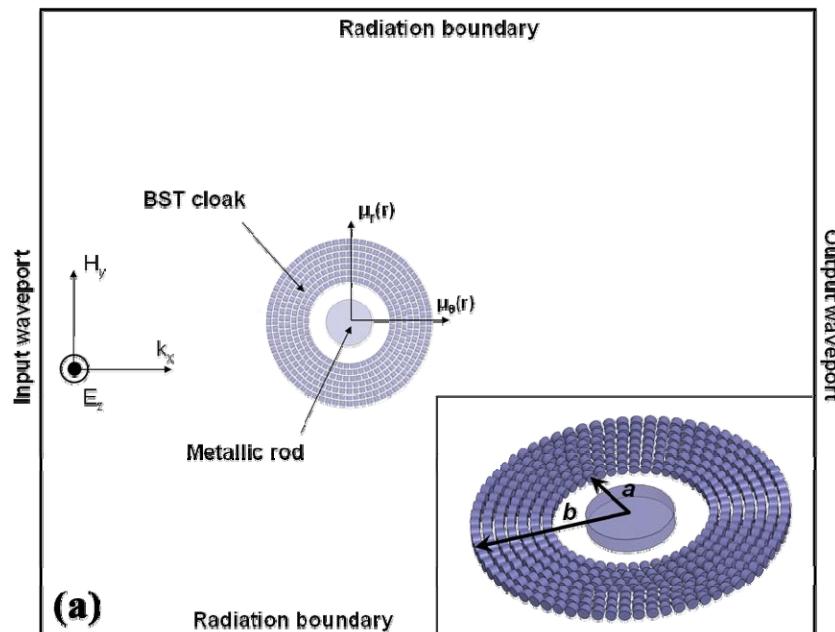
E-field map at Mie resonance



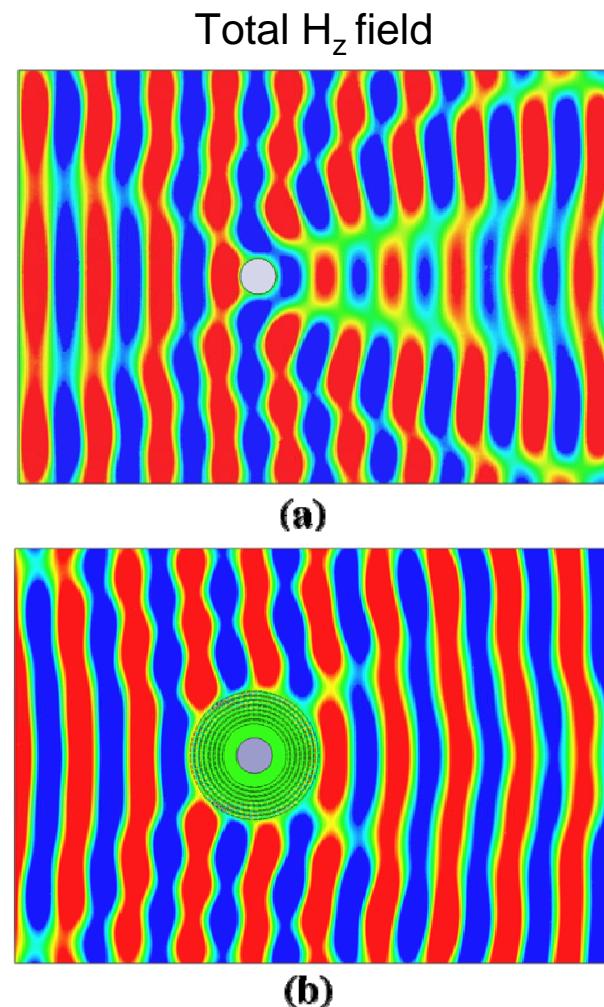
# Wavelength-scaled Cloak Design using BST rods



# 3D Full Wave Simulations of the BST cloak at 0.58 THz

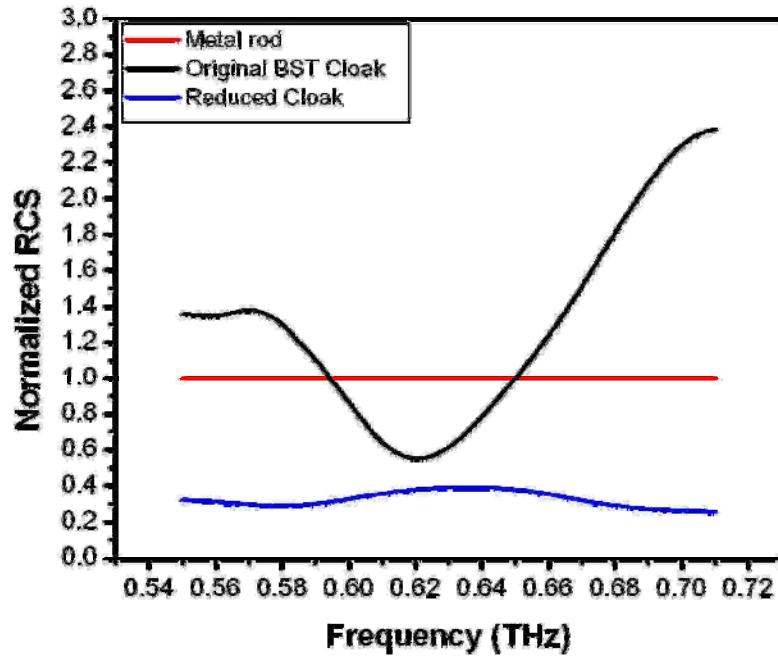
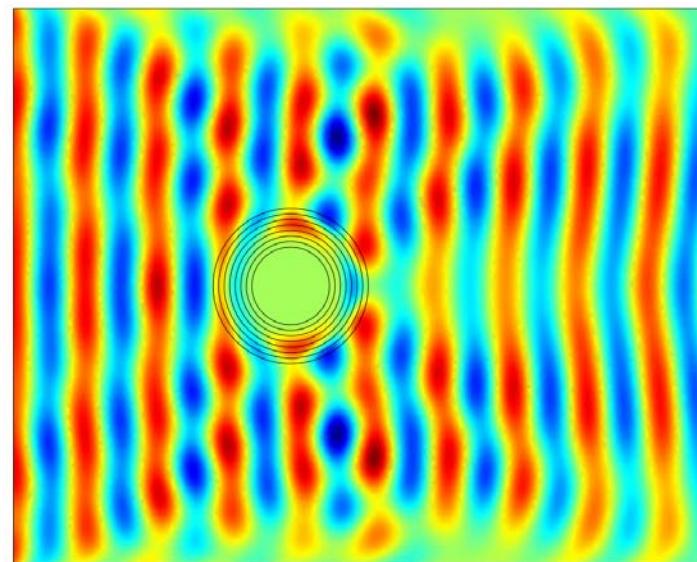


$a = 280 \mu\text{m}$   
 $b = 560 \mu\text{m}$   
 $a / b = 0.5$



Gaillot et al., Opt. Exp., (2008)

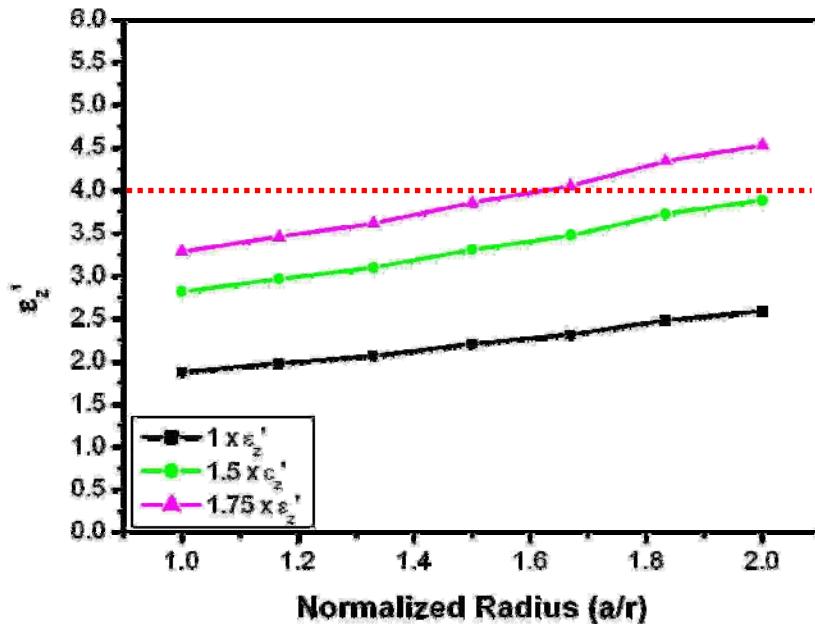
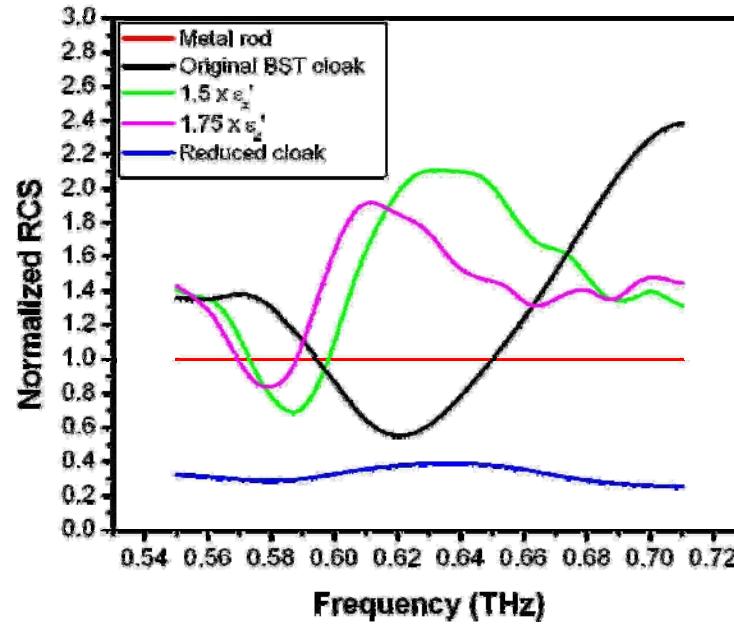
# 2D Computations w/ Full Dispersive Parameters : Frequency Robustness



**E-field Map at cloaking frequency**

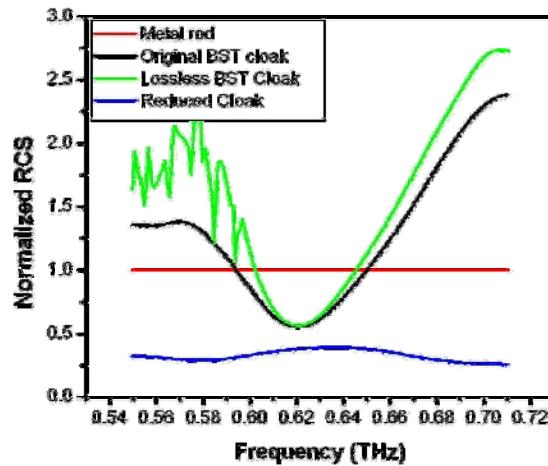
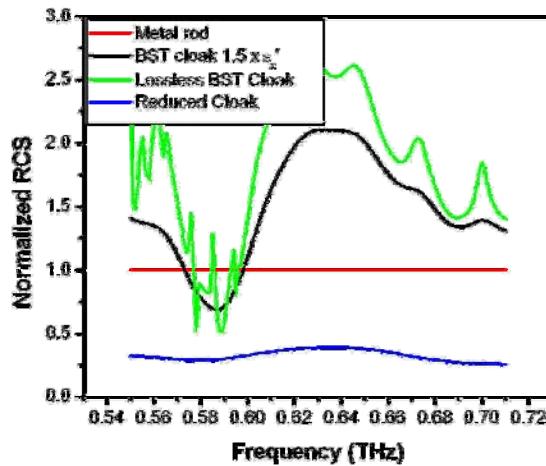
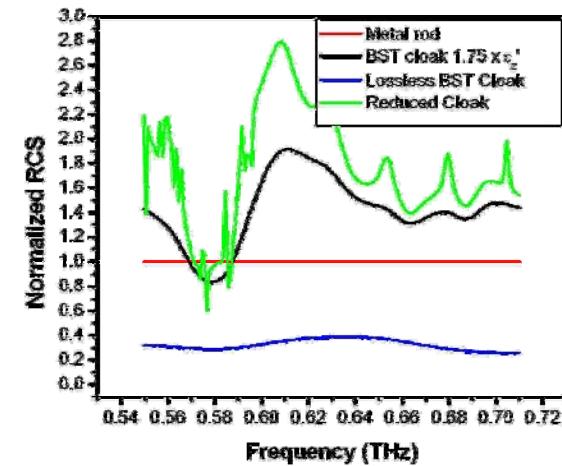
- Full lossy dispersive effective parameters incorporated into the 2D FEM model
- Broad cloaking range although phase front reconstruction achieved at single frequency point
  - Mixed lossy and cloaking regime

# Effect of permittivity mismatch to RCS



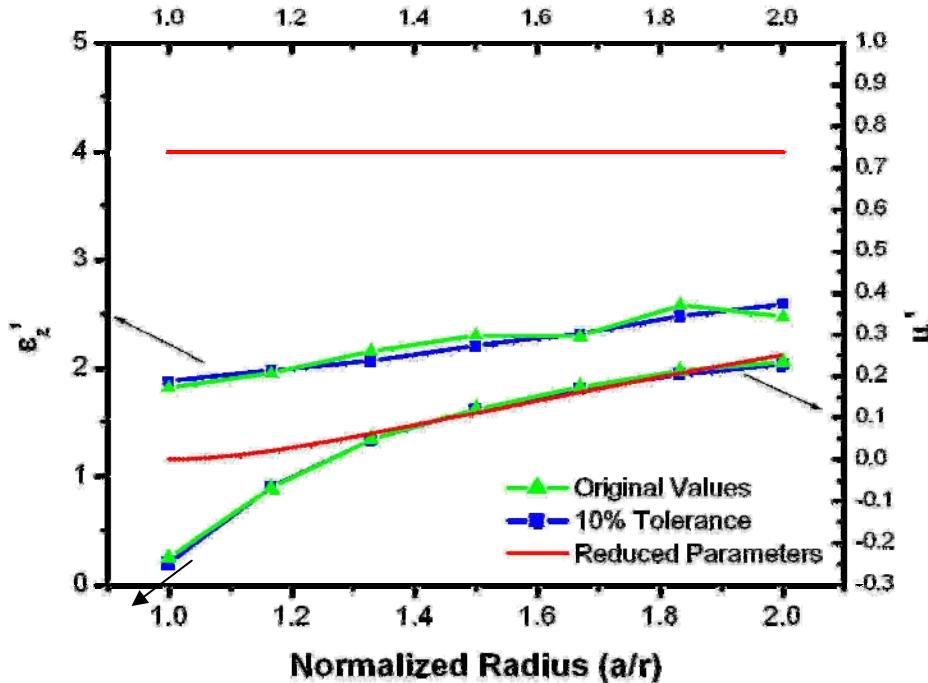
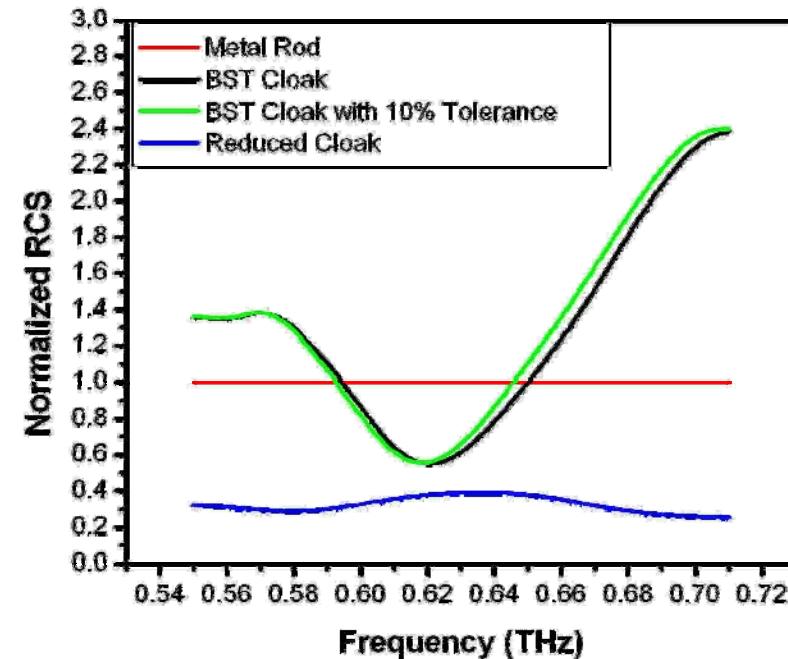
- Original cloak presents mismatch in radial permittivity which is attributed to the low performance of the cloak
- This mismatch is artificially alleviated by shifting permittivity data
  - Allows impedance matching at outer interface of the cloak
- Reduction of the cloaking bandwidth around the expected cloaking frequency

# Comparison Lossless Vs. Lossy cloak



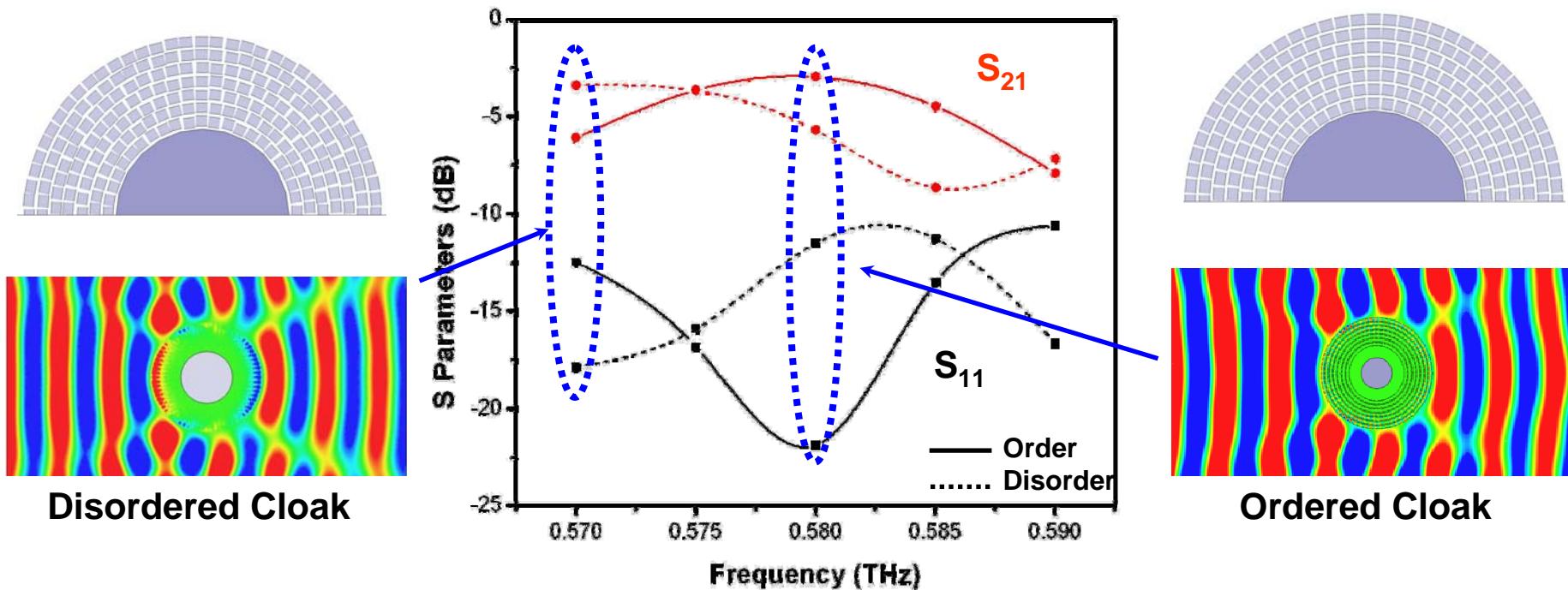
- Losses removed to quantify robustness frequency dependence
- Results show that lossless cloaks exhibit narrower cloaking bandwidths
  - Losses broaden cloaking bandwidth
- Rapid oscillations at lower wavelengths due to numerical artifacts
  - Dampened by losses

# Robustness Dependence to the Elements Disorder (2D FEM Solver)



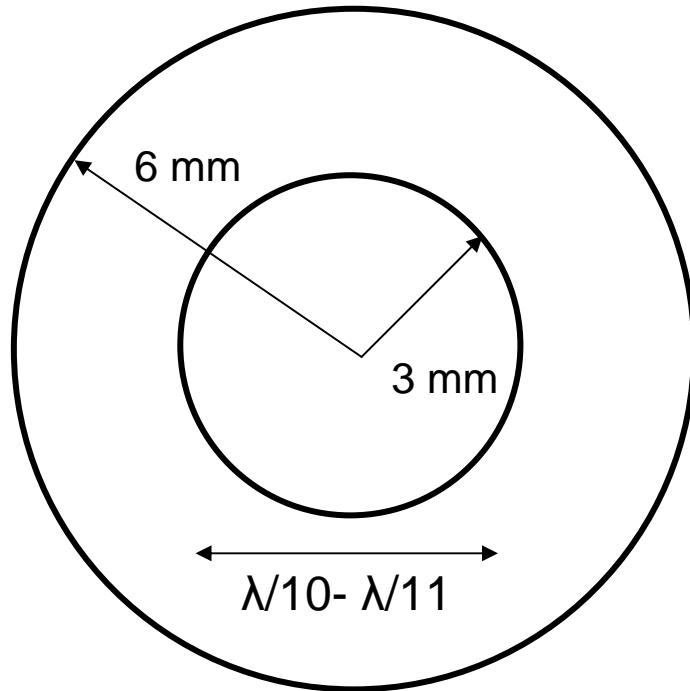
- Disorder is artificially introduced by randomizing effective parameter values with 10% tolerance
  - Simplified approach avoids homogenization of random elements
- Results indicate that the frequency robustness is not very sensitive to the randomization
  - Slight shift of the cloaking bandwidth and cloaking frequency

# Robustness Dependence to the Elements Disorder (3D FEM Solver)

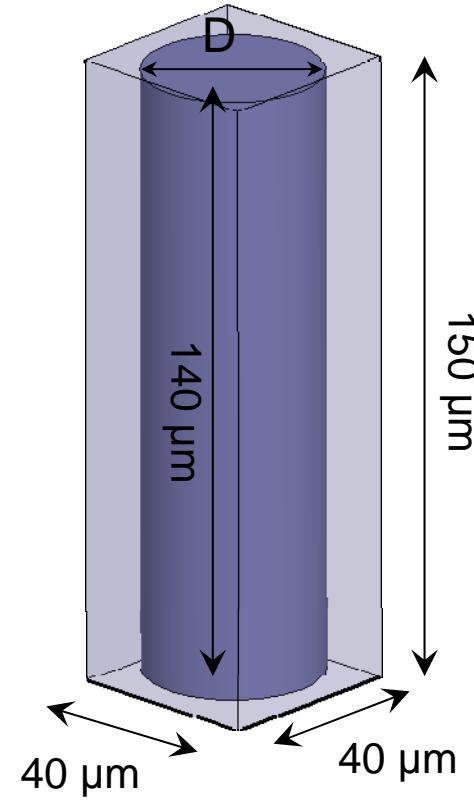


- Artificially introduced positional (within 5 $\mu$ m) and dimensional disorder (within 1%)
  - Avoids elements from touching each other
- Results show slight shift of the cloaking frequency from 0.58 to 0.57 THz

# Design of a Larger BST Cloak

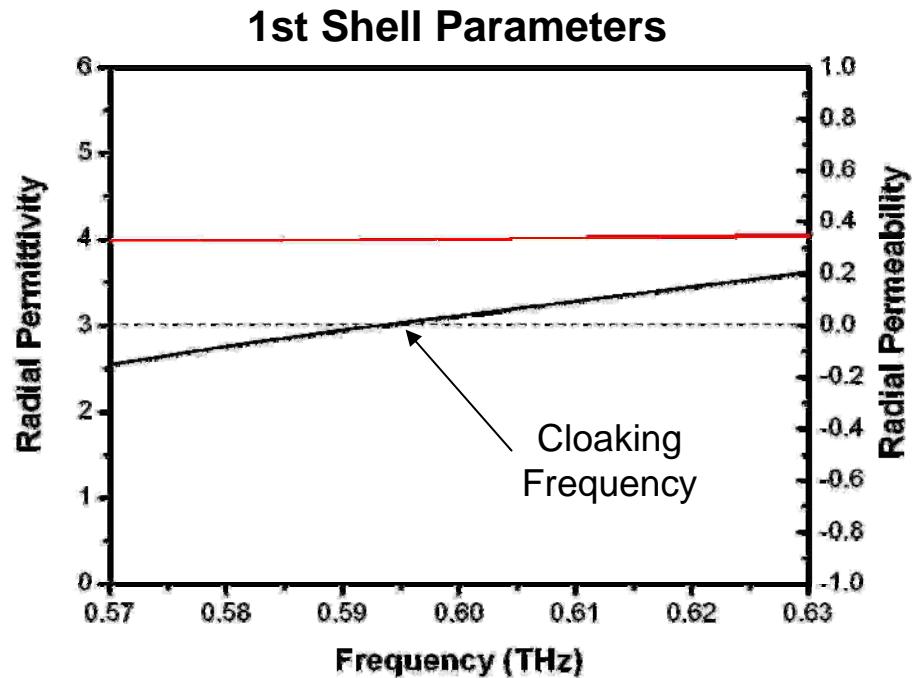
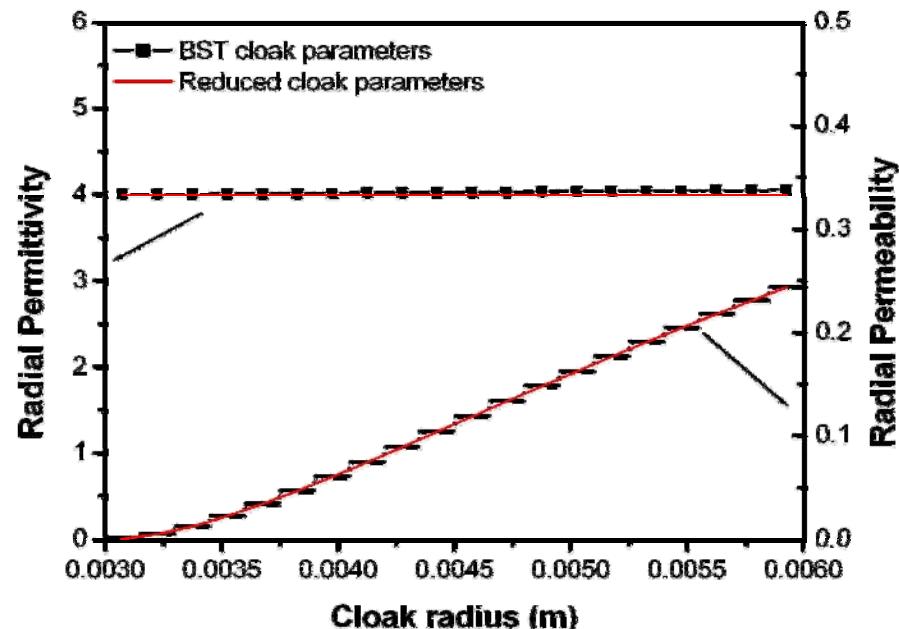


- Cloaking Frequency  $\sim 550\text{-}600$  GHz
- Metallic cylinder diameter  $> \lambda/10$
- $a / b = 0.5$ ;  $a = 3\text{mm}$ ;  $b = 6\text{mm}$
- $\epsilon_r = 4$ ,  $\epsilon_\theta = 1$ ,  $\mu_r(r) = (1-a/r)^2$
- Cloaking body presents 20 layer-by-layer shells



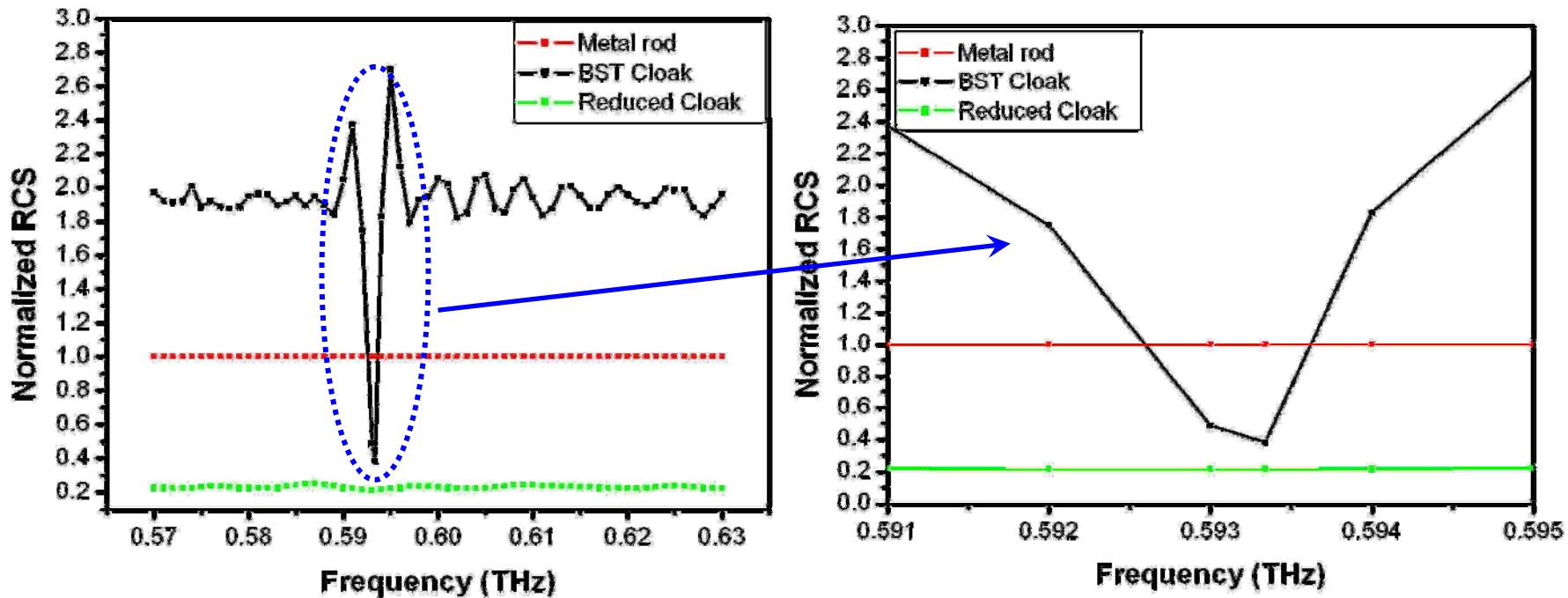
$$\epsilon_{\text{BST}} = 200 + 5^*j$$

# Cloak Parameters



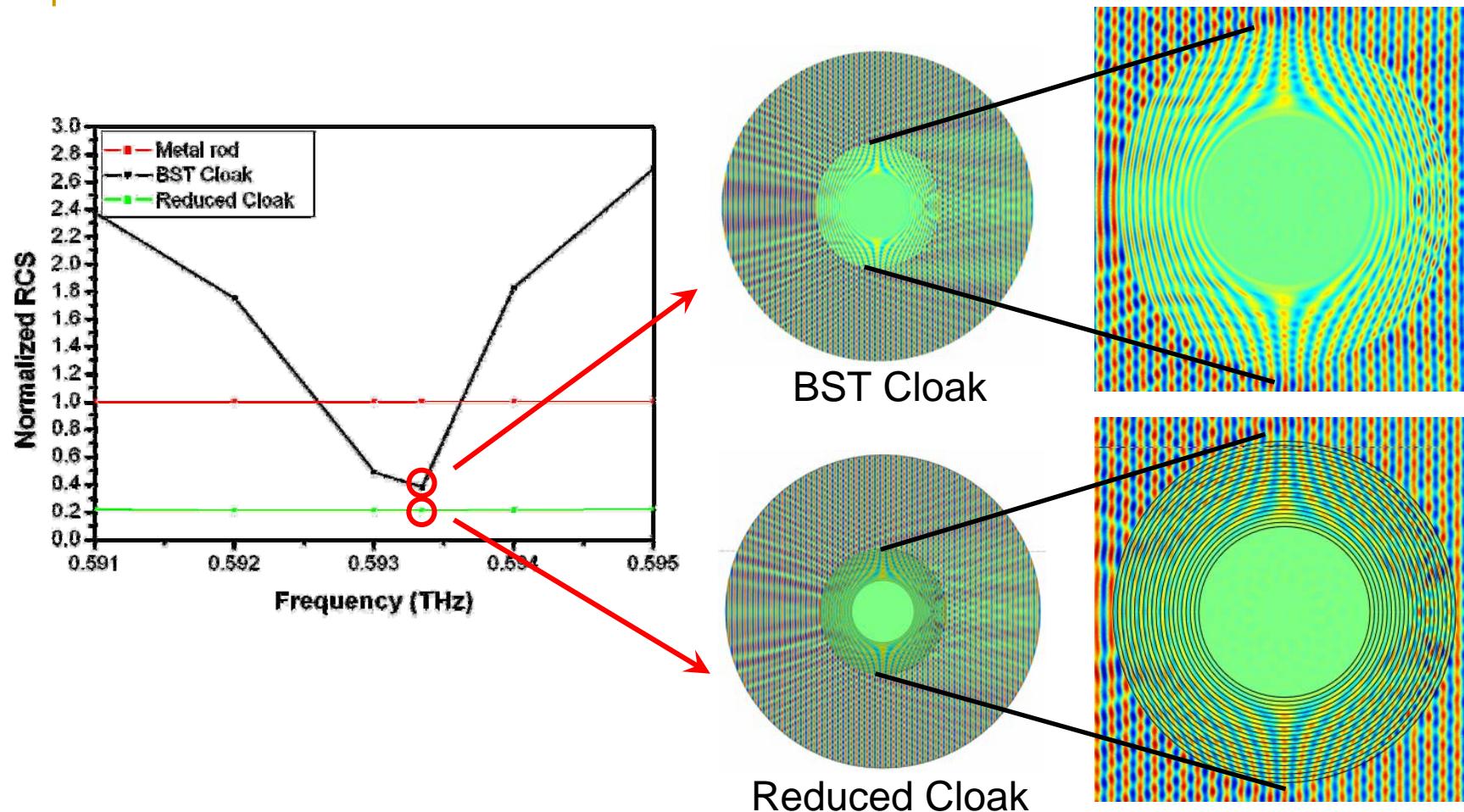
- Cloaking frequency expected at 593.4 GHz
  - $\mu_r$  ( $a = 3\text{mm}$ ) = 0
- Matched fit to the reduced Eqns for optimum performance
  - Slight permittivity mismatch at outer interface

# Frequency Dependence of Cloaking Performance with Lossless Parameters



- Full dispersive lossless parameters entered in 2D FEM model
- Cloaking achieved around 593.4 GHz as expected
- Narrow cloaking bandwidth ~1%

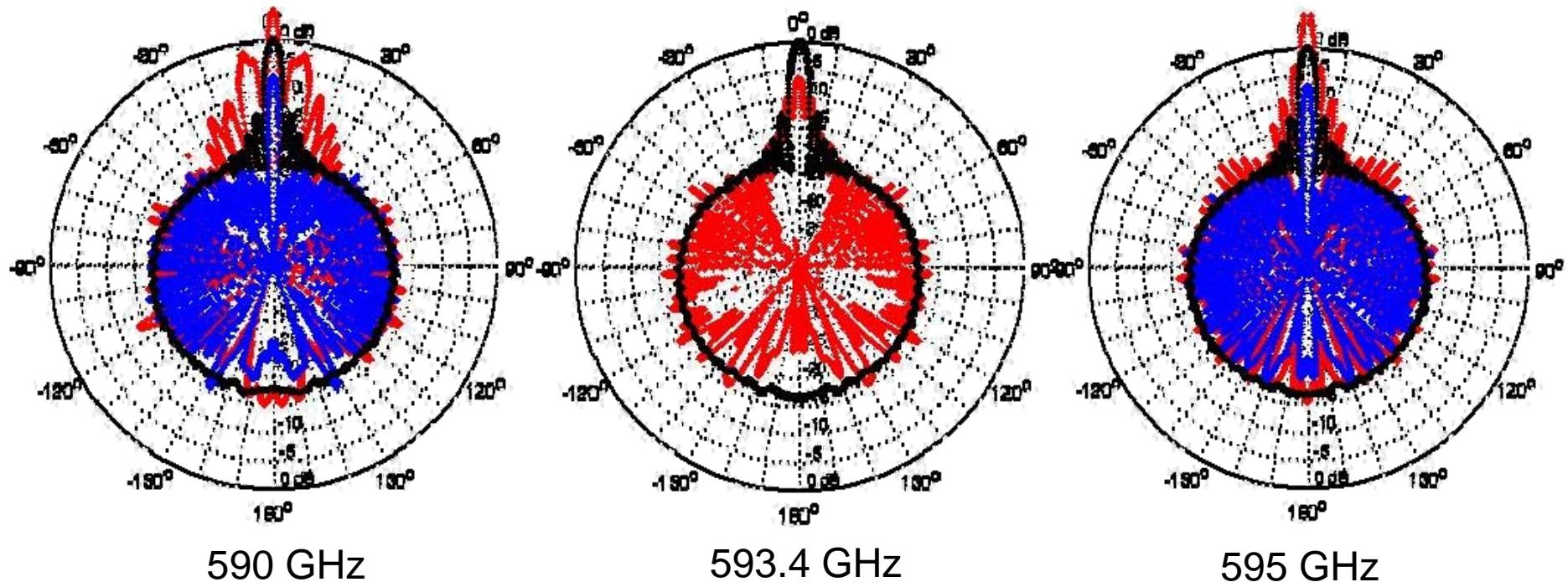
# E-field Map : Reduced Vs. BST Cloak



- Reduced and BST cloak perform almost equally at cloaking frequency
  - E-field maps close to each other

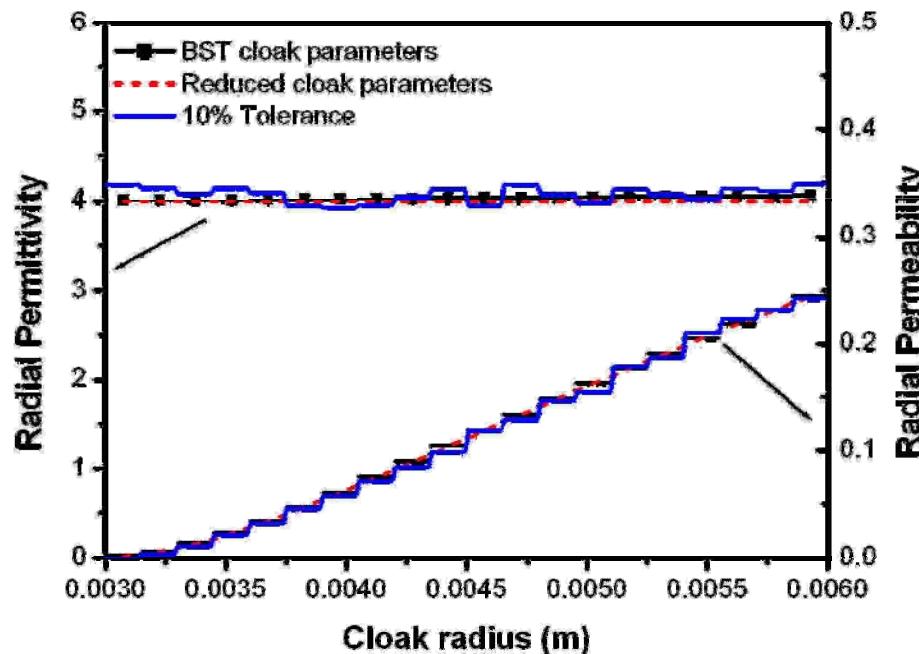
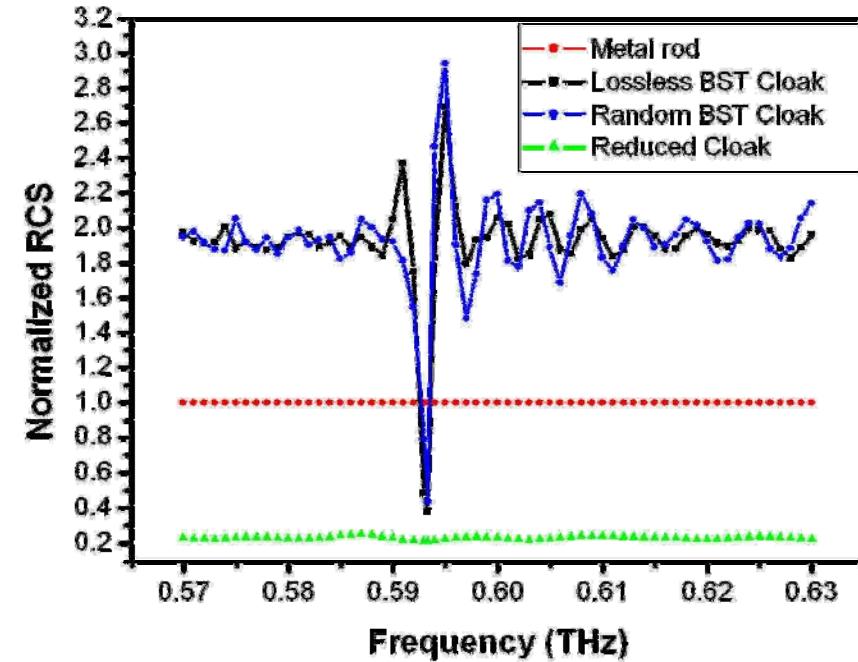
# Scattering Patterns

- Copper Rod
- Lossless Cloak
- Lossless Reduced Cloak



- Minimized forward and backward scattering at cloaking frequency
  - Pattern similar to that of the reduced cloak
- -7.5dB forward scattering reduction
- -25dB backward scattering reduction

# Cloaking performance dependence to the disorder



- Positional and dimensional disorder can be understood in effective parameters mismatch
  - Avoid complex homogenization procedures
  - Enables use of 2D homogenous layer-by-layer models
- 10% randomization has little effect on the performance of the cloak
  - Slight reduction of the cloaking bandwidth

# Summary : Electric Cloaking Devices

- Effective Medium Theory (EMT) algorithms used to compute matched effective parameters of ellipsoidal metallic particles for electric cloaking device with
  - Bruggeman's formula
    - Original Cai's approach who assumed artificial  $f(r) = f_a(a/r)$
    - Jose's approach w/o assumptions on filling fraction
  - Maxwell-Garnett's formula
    - Local optimization subroutine to minimizing both permittivity components
- Cloaking performance is strongly dependent to the
  - Effective parameters fit to the reduced Eqns.
  - Electric losses
- Need to develop optimization routine to integrate losses strong influence to the cloaking performance

# Summary : Magnetic Cloaking Devices

- Mie resonance in high- $\kappa$  dielectrics engineered to adjust magnetic plasma frequency
  - Design of wavelength-scaled and large magnetic cloak
- Cloaking ability and performance simulated with 2D homogeneous and 3D microstructured models
  - Lossless models close to single-frequency cloak with reduced Eqns.
  - Cloaking bandwidth broaden by
    - Losses
    - Permittivity mismatch
- Studied structure disorder in homogeneous and microstructured models
  - Limited / reasonable disorder does not fundamentally affect cloaking performance

## Transformation Optics:

Starting point:

Engheta's channeling slab  
with values:

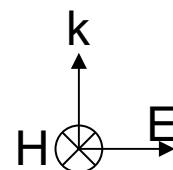
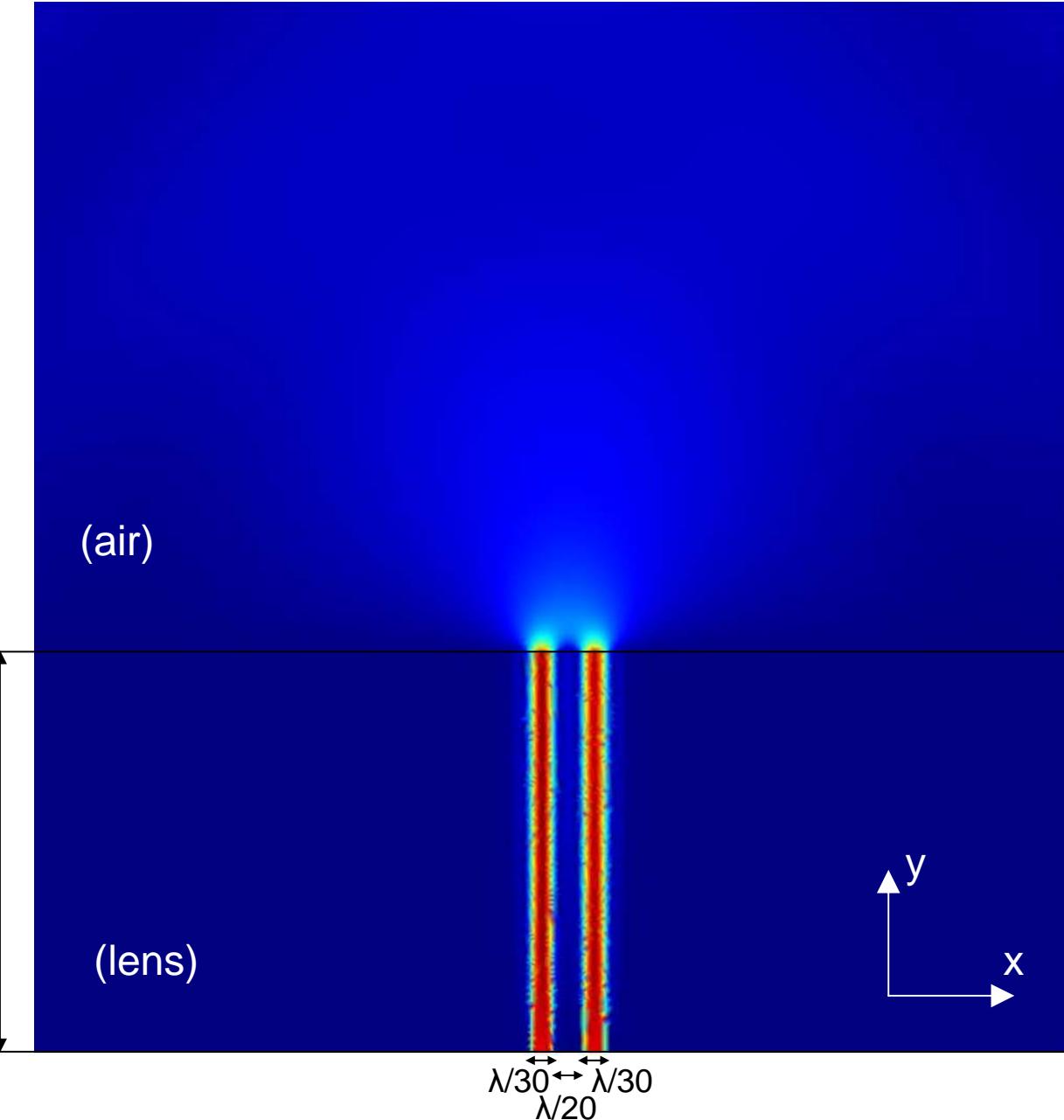
$$\epsilon_{xx} = 0.001$$

$$\epsilon_{yy} = 2.5$$

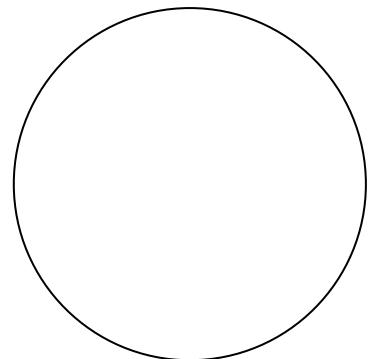
$$\mu_{zz} = 1$$

Thanks to the strong  
anisotropy of the permittivity  
(with a parallel value close  
to 0), this device “channels”  
arbitrary field patterns from  
one interface to the other.

Is it possible to transform  
this device to obtain  
magnification ?

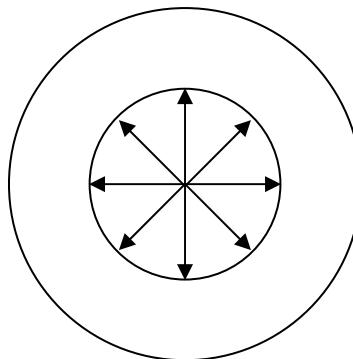


Original space



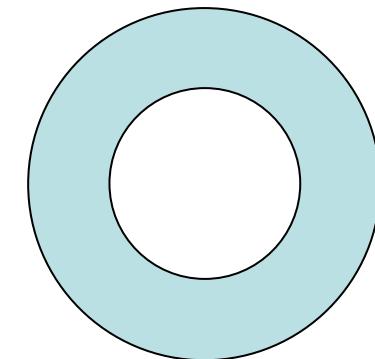
$\epsilon=1, \mu=1$   
(vacuum sphere)

Transformed space



$$r' = \frac{b-a}{b} r + a$$

“Field controlling” device

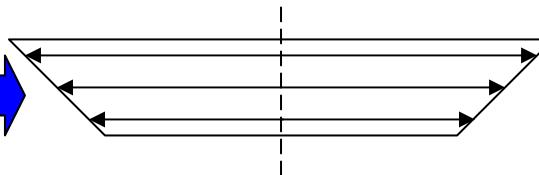


$$\epsilon(x,y,z)=\dots$$
$$\mu(x,y,z)=\dots$$

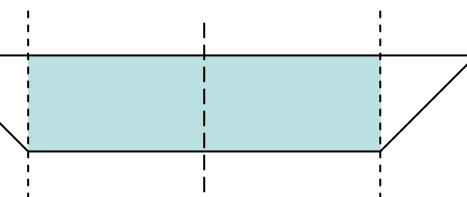
(Pendry's cloak)



$\epsilon_{xx} \ll 1, \epsilon_{yy} > 1, \mu_{zz} = 1$   
(channeling slab for  
TM polarization)



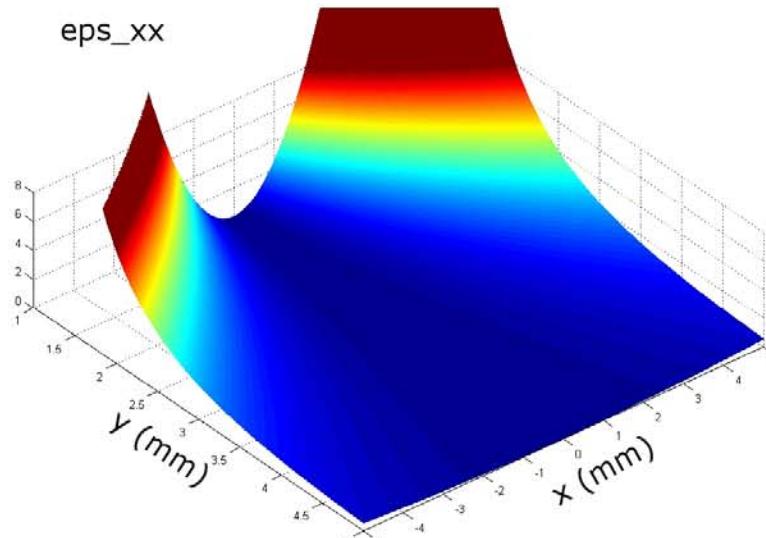
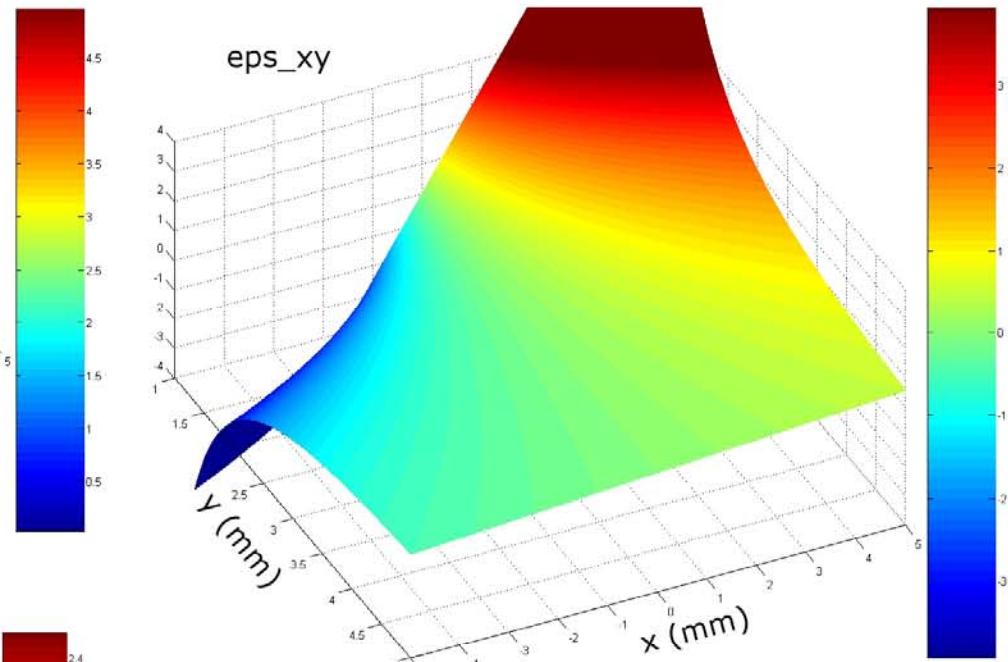
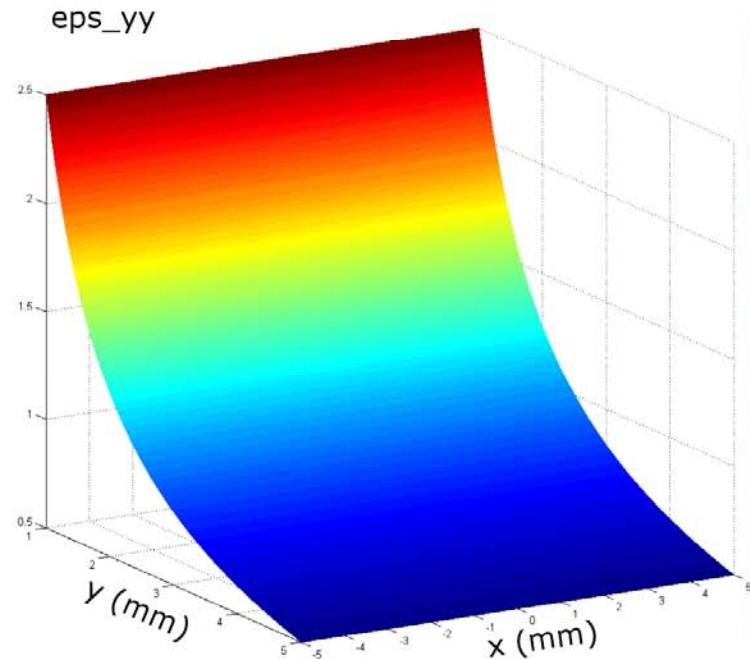
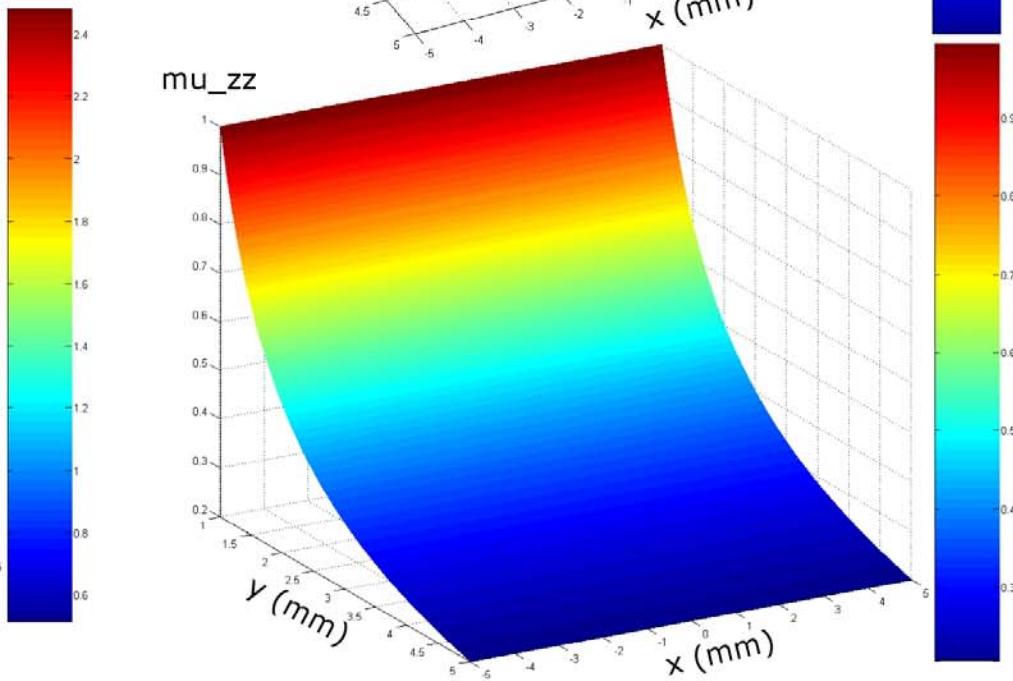
$$x' = \left[ \left( \frac{y-a}{b-a} \right) (t-1) + 1 \right] x$$



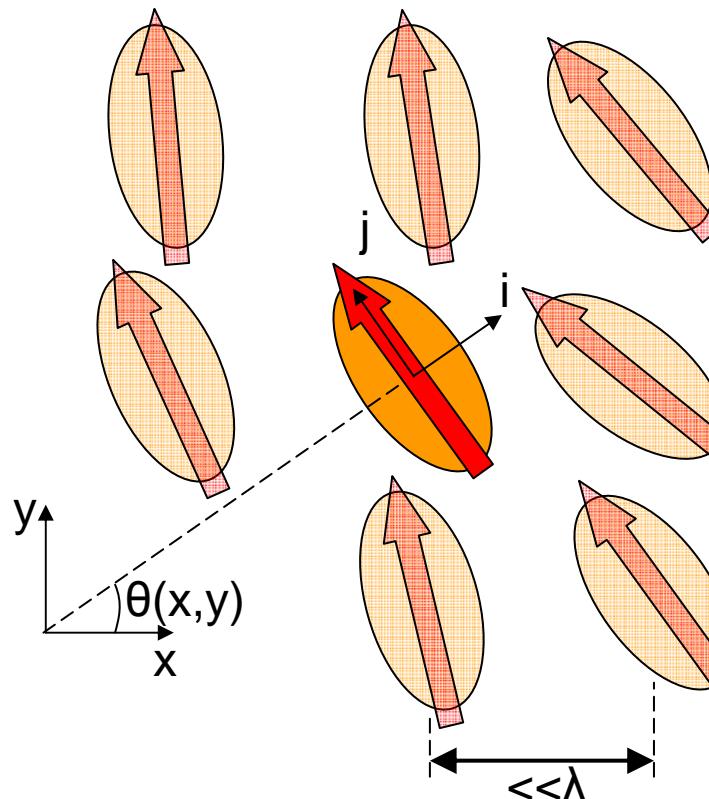
$$\epsilon(x,y,z)=\dots$$
$$\mu(x,y,z)=\dots$$

(a lens that “magnifies”  
near-field patterns)

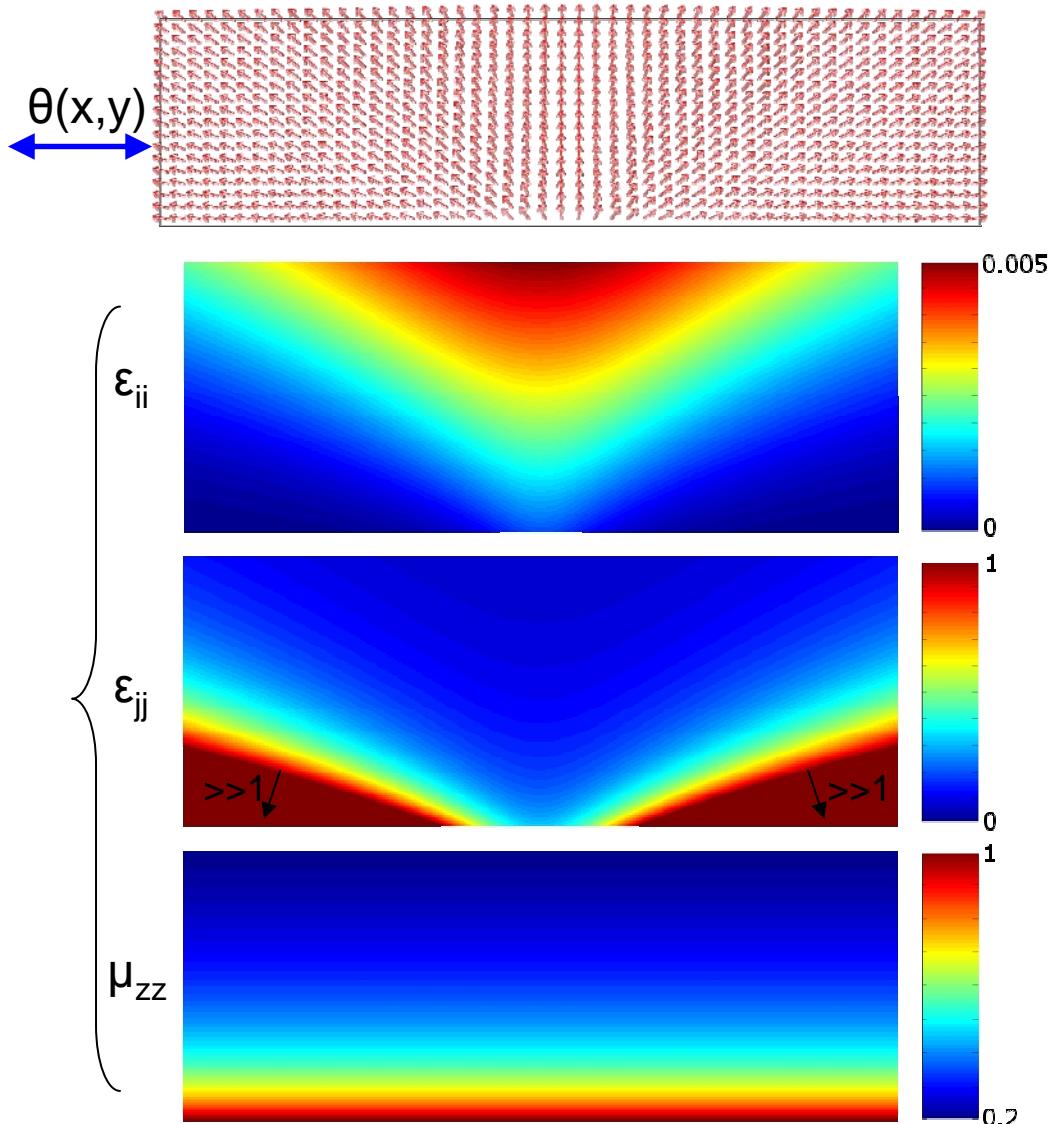
## Effective parameters inside the magnifying lens:

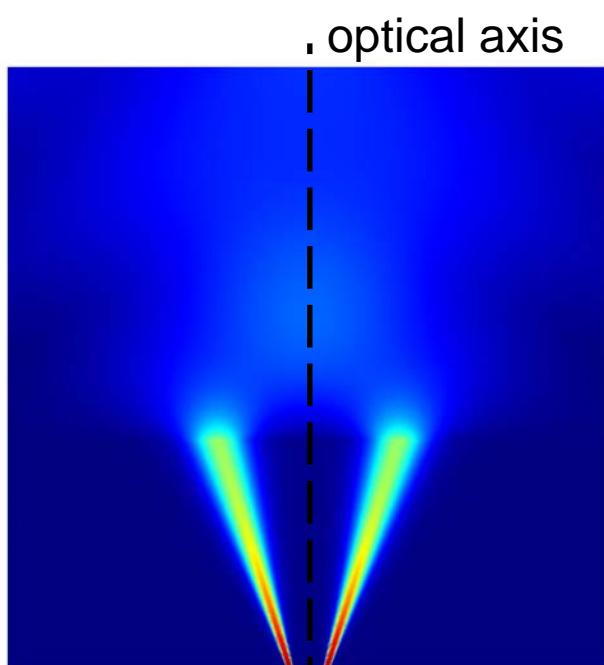
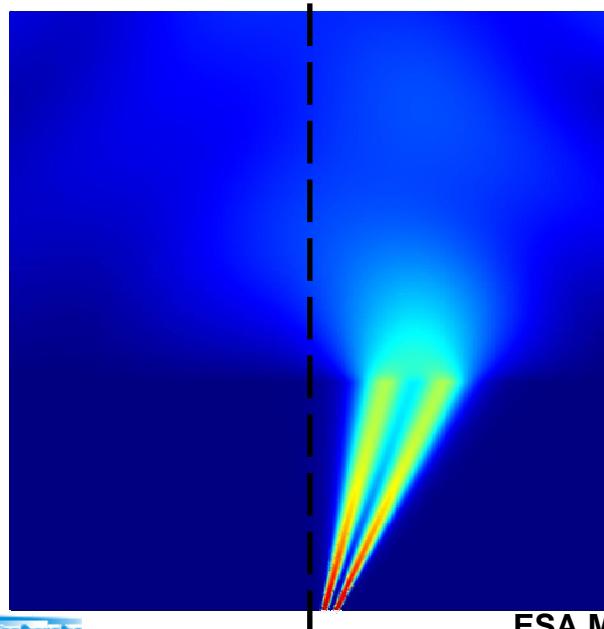
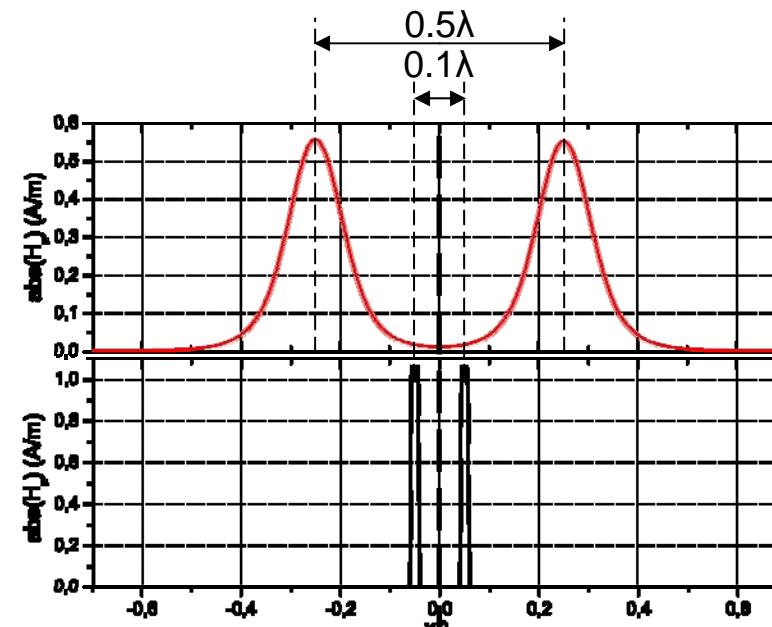
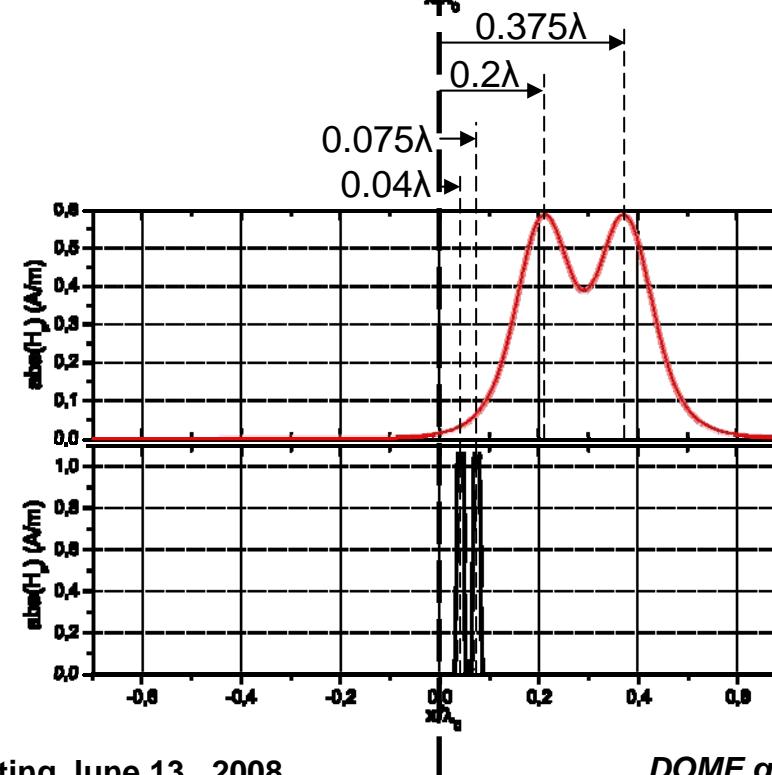


Let us now consider a local rotation of the coordinate system inside the lens:



With a suitable function for the local rotation, it is possible to avoid the off-diagonal term in  $\epsilon(x, y)$ :



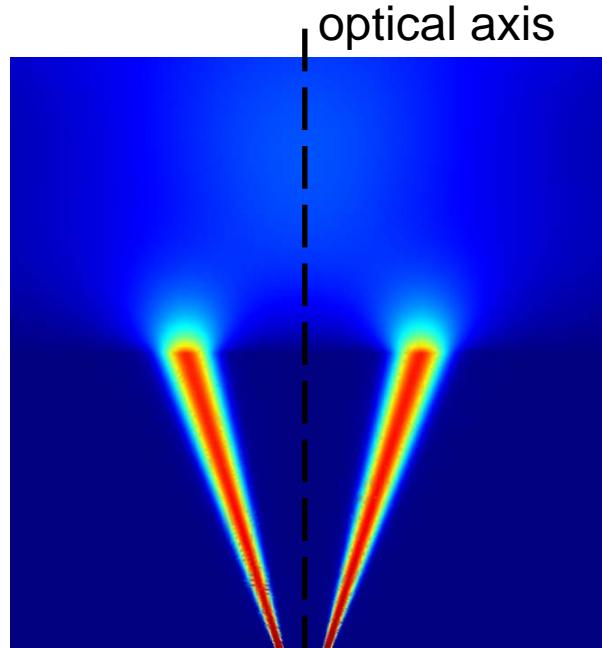
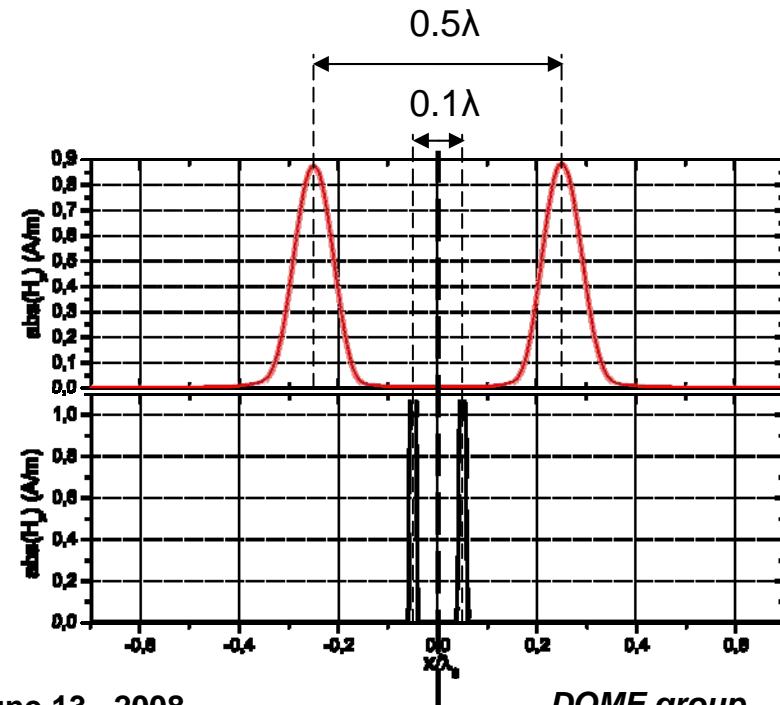


Main disadvantage: we still have strong gradients for all three *local effective* parameters.

We can drop some of the complexity while retaining the main effect if we keep the local rotation but without any local gradient. In summary:

$\varepsilon_{ii}=0.001$  ;  $\varepsilon_{jj}=2.5$  ;  $\mu_{zz}=1$  in the coordinate system given by

$$\theta = \frac{1}{2} \tan^{-1} \left( \frac{2\varepsilon^{xx}(b-a)^2(t-1)xf(y)}{\varepsilon^{xx}f(y)^4 + \varepsilon^{yy}(b-a)^2(f(y)+(t-1)x)(f(y)-(t-1)x)} \right) \quad \text{with} \quad f(y) = ((b-at)+(t-1)y)$$

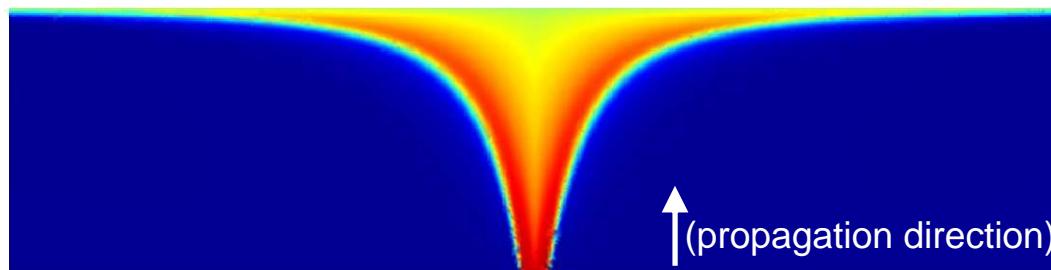


At this point we can choose freely our  $\theta(x,y)$  distribution.

Let us look for distributions that perform other functions on the incident field pattern.

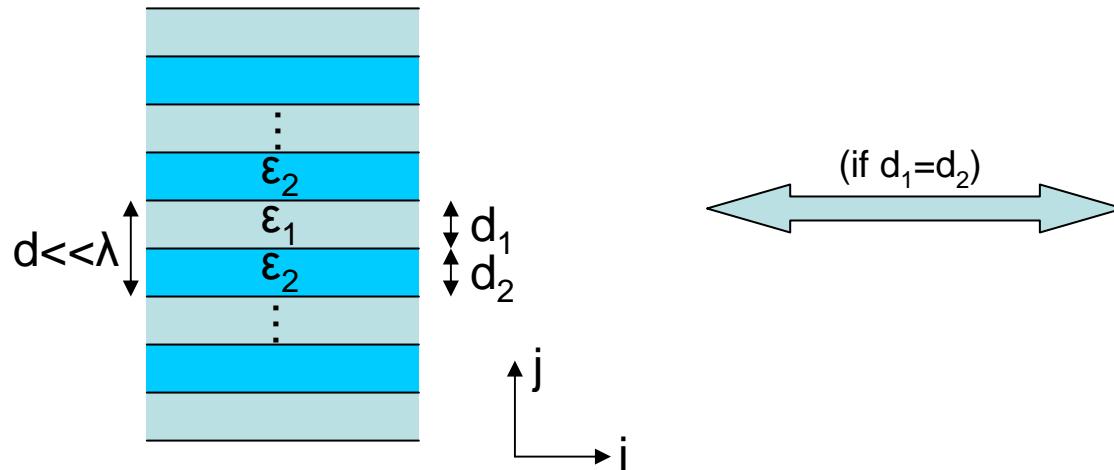
Example:  $\theta(x, y) = \text{sign}(x) \left[ \tan^{-1} \left( -c_1 (|x| + c_2) \frac{b-a}{b-y} \right) \right]$

It « spreads » a point source along the transverse direction, transforming it into a line source.



How can we implement the required anisotropy ?

One possibility is a stack alternating two different layers:



$$\epsilon_{ii} = \frac{\epsilon_1 + \epsilon_2}{2}$$

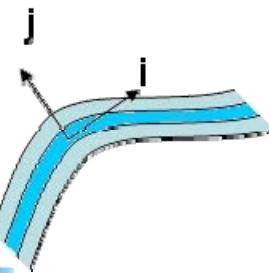
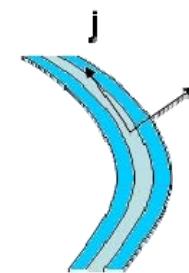
$$\epsilon_{jj} = \frac{2\epsilon_1\epsilon_2}{\epsilon_1 + \epsilon_2}$$

The limits of the layers form a family of curves.

At every point, those curves must be either normal or tangential to the local  $j$  vector of the rotated coordinate system.

case (a) : locally normal :

case (b) : locally tangential :

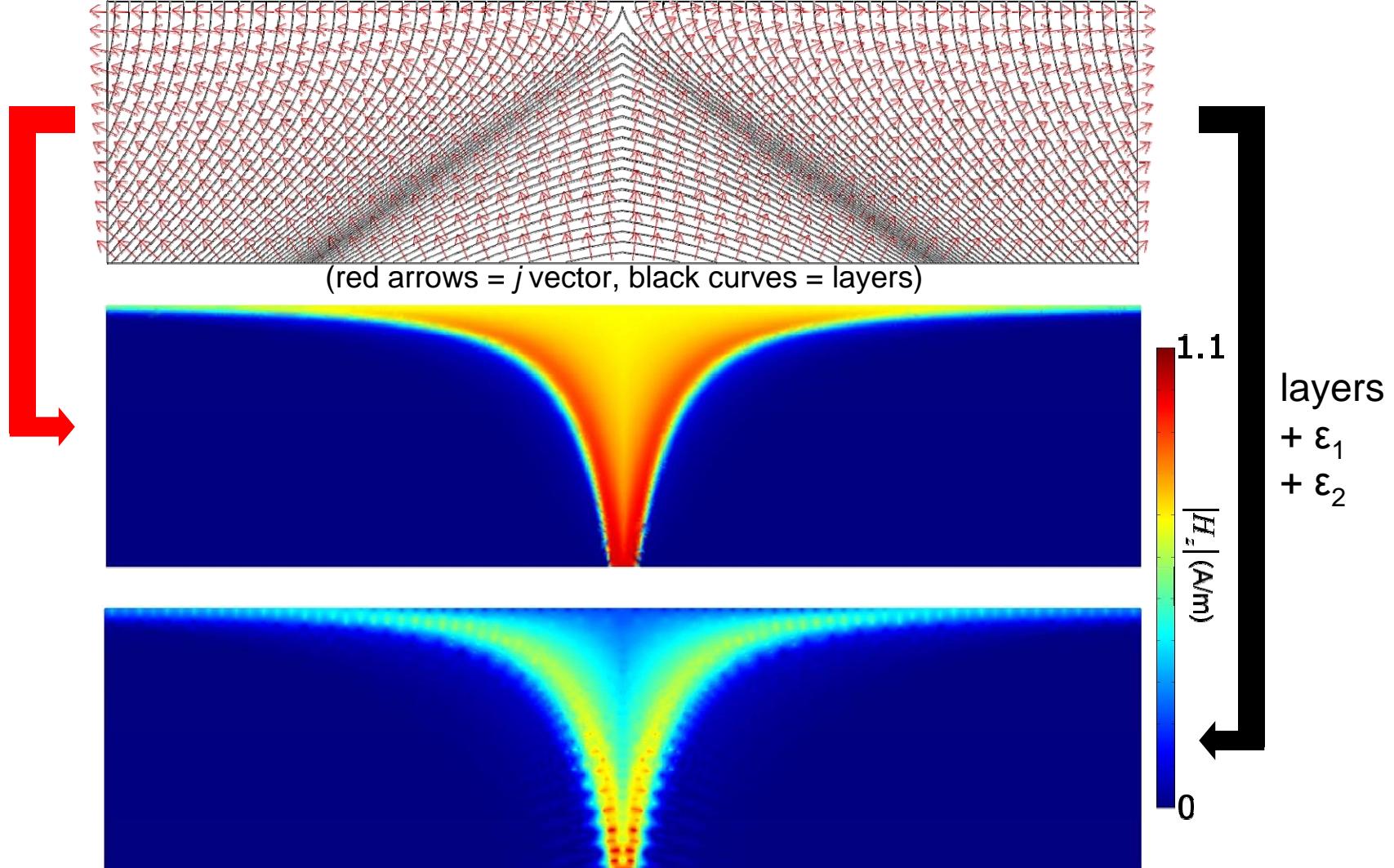


case (a): locally normal:

$$\theta(x, y) = \text{sign}(x) \left[ \tan^{-1} \left( -c_1 (|x| + c_2) \frac{b-a}{b-y} \right) \right]$$

$$\left. \begin{aligned} \varepsilon_{ii} &= 0.001 \\ \varepsilon_{jj} &= 2.5 \end{aligned} \right\} \Leftrightarrow \left. \begin{aligned} \varepsilon_1 &= 0.001 - i0.05 \\ \varepsilon_2 &= 0.001 + i0.05 \end{aligned} \right.$$

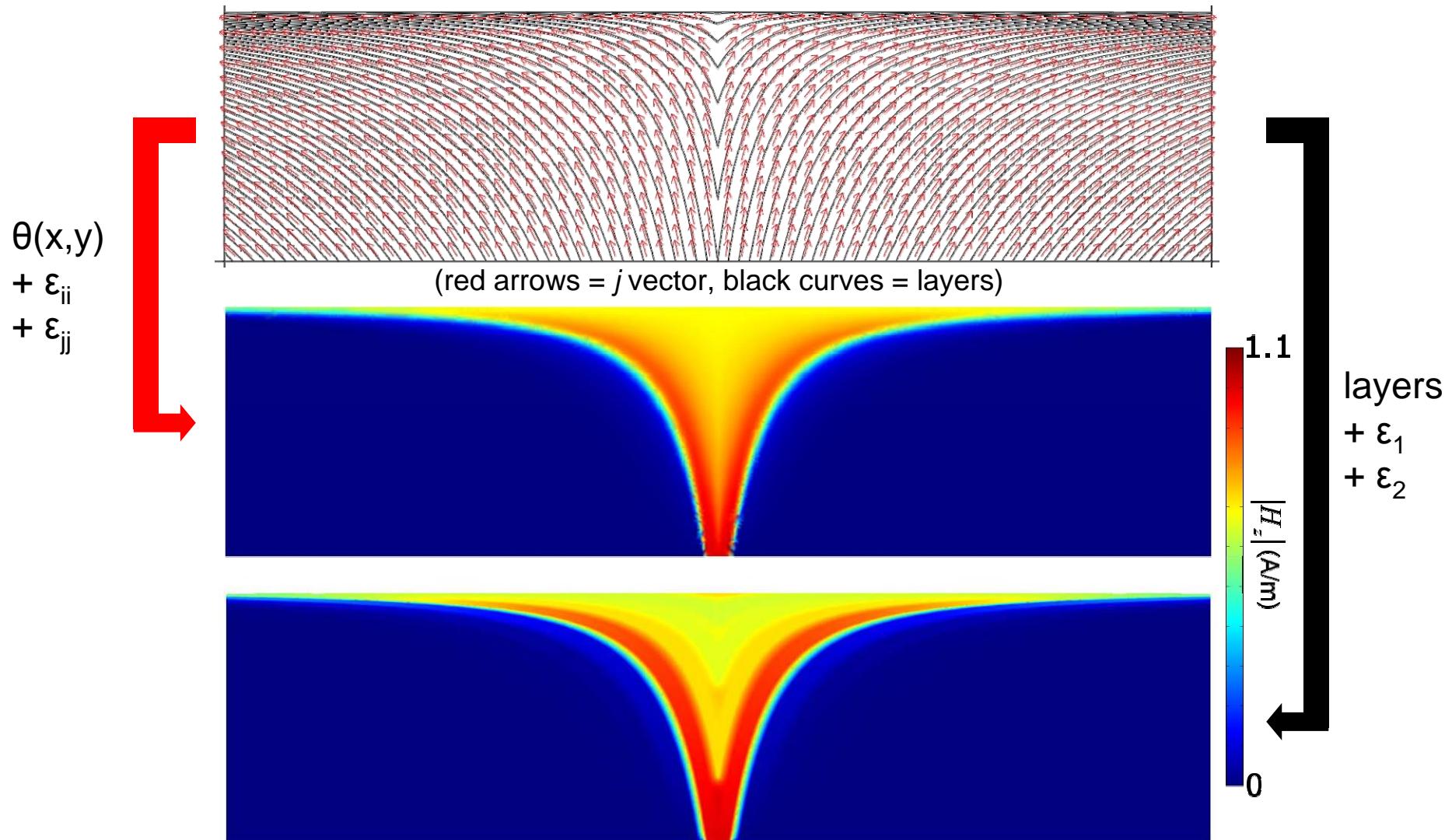
$$\theta(x, y) \\ + \varepsilon_{ii} \\ + \varepsilon_{jj}$$



case (b): locally tangential:

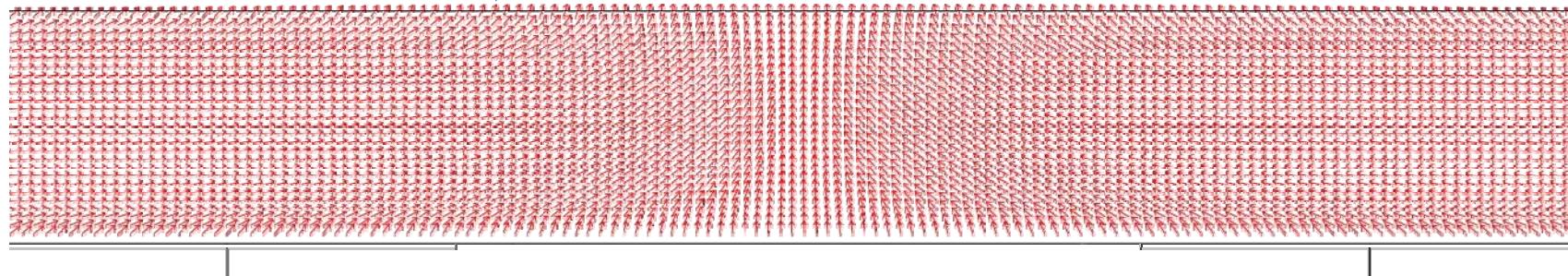
$$\theta(x, y) = \text{sign}(x) \left[ \tan^{-1} \left( -c_1 (|x| + c_2) \frac{b-a}{b-y} \right) \right]$$

$$\left. \begin{aligned} \varepsilon_{ii} &= 0.001 \\ \varepsilon_{jj} &= 2.5 \end{aligned} \right\} \Leftrightarrow \left. \begin{aligned} \varepsilon_1 &= 4.9995 \\ \varepsilon_2 &= 0.0005 \end{aligned} \right.$$

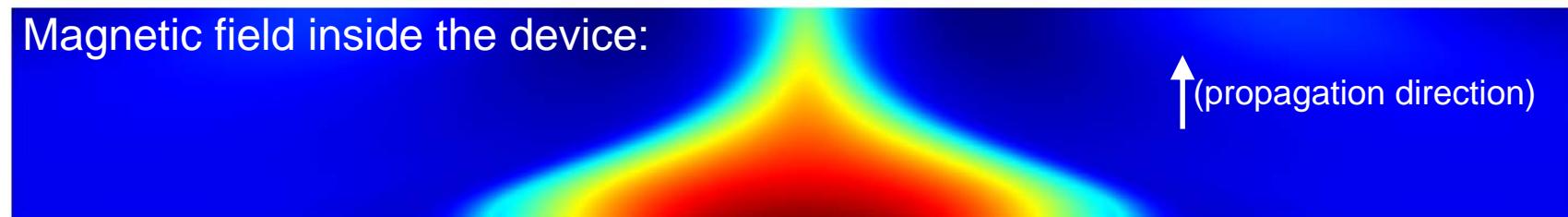
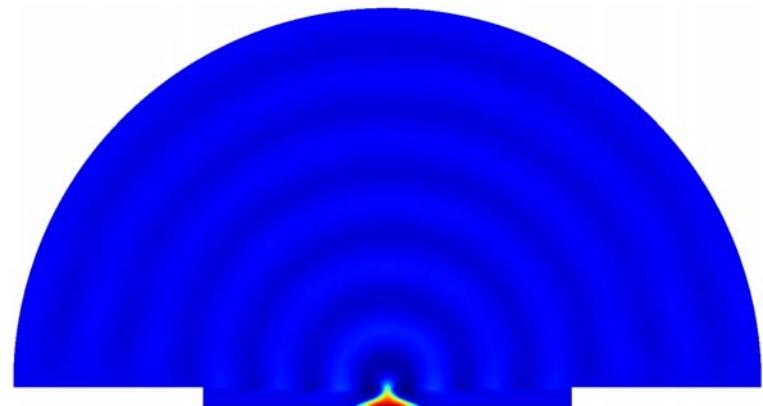


Another example:  
an energy concentrator

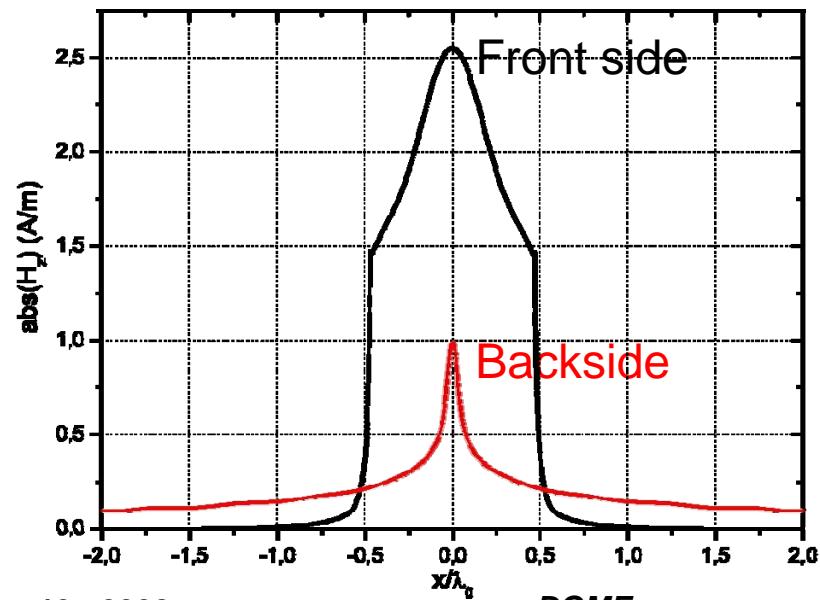
$$\theta = \tan^{-1} \left( cst \frac{x(-y^2 + (a+b)y - ab)}{(a-b)^2} \right)$$
$$\epsilon_{ii} = 0.036 + i \cdot 0.76$$
$$\epsilon_{jj} = 13.89 + i \cdot 0.41$$
$$\mu_{zz} = 1$$



Magnetic field inside the device:



Magnetic field in air behind the device



# Summary

## Two different approaches:

- full conformal mapping leading to a field controlling device
- direct use of an empirical function to tune the channeling direction

## A large range of functions:

- hyperlens: convert evanescent waves into propagative ones for super resolution
- channeling / collimating / diverging systems...

## Two different implementations:

- stack of two different layers with a specific shape (important technological challenge)
- array of particles individually oriented (very high requirement on the anisotropy)