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Introduction

Introduction

MGA trajectories:
o Multi Gravity Assist (MGA) impulsive trajectories
e solution space can be quickly pruned (GASP)!

MGADSM trajectory optimization problem:

e Multi Gravity Assist (MGA) with Deep Space Maneuvers (DSM)
impulsive trajectories

@ Deep Space Maneuvers (DSM) can reduce fuel requirement
e many local minima: requires global techniques

@ solution space of great dimension

MGADSM
How can we efficiently prune the solution space ? J

IMyatt, Becerra, Nasuto, Bishop, Advanced global optimisation for mission analysis and
design. Final report. Ariadna 03/4100
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Introduction

MGADSM examples

From CASSINI to MESSENGER
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MGADSM examples

From CASSINI to MESSENGER
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‘Spacecratt oot the Sun 2.7 s

From http://messenger.jhuapl.edu

‘Spacacrattomis e Sun 26 times

‘Spacecraft orbis the Sun 10.2 imes

To insert a scientific spacecraft into an orbit around Mercury
Launched on August 3, 2004
Mercury(Y): High excentricity and inclination, close to the sun, fastest

planet ... many technical transfer orbit shape constraints

e Many Gravity Assist to reduce fuel requirement and reduce average speed
relative to the mercury.

@ Many small DSM to adjust the orbit for the next swingby
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Multi gravity Assits - Deep Space Maneuver trajectories

Plan

© Multi gravity Assits - Deep Space Maneuver trajectories
o SwingBy parameters
e DSM models
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Multi gravity Assits - Deep Space Maneuver trajectories

SwingBy parameters

Non powered swingby

hyperbolic excess velocities: Voot and Vi~
Periapsis radius: 7,

(] Sin5= m
o AV =2V sind

@ 7y > Thody
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Multi gravity Assits - Deep Space Maneuver trajectories [EBISIVEBWIYSIIE

DSM models

Planets’ orbits DSM possible parametrizations

o date, position: (t,r)
o date, initial V: (t,vo)
Keploriafmofon o date, final V: (t,ve)
AVDSI\;&. o swingby + Keplerian
propagation

2 point boundary valus
problem (Lambert)

Use forward/backward integration and/or Lambert’s problem solver.
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Optimization

© Optimization

@ Lawden Primer Vector theory
MGA problems boundary conditions
Primer Vector theory and MGA problems
Example
Summary
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Optimization

Optimization

o The spacecraft is subject to a nonlinear dynamic:

=
df _ . q901sp
i élm =G (r;t)r + 9Py

—q

o With the constraints:

(J(qmaa: - (I) Z 0
[l =1

o With the initial and final conditions:
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(@13t sStENGIM Lawden Primer Vector theory

Lawden Primer Vector theory?

We have to minimize a non linear objective function, defined by the
characteristic velocity of the mission (sum of AVs) plus the rendezvous
maneuver AVy.
T=[lAVe|+ D AV ()
i=0..N
with N > 0 the unspecified number of DSM.
AV is the departure maneuver.

With the introduction of the co state vector A = [Ag, Ay] we have:
ty
L=J+ H (A, z;t)dt (6)

to

H (A, w58) = Af(@,03) + 1" (a(@mar — 0) = 0%) + ™ (Jul® = 1) (7)

2D. Jezewski, Primer Vector Theory and Applications, NASA Technical report R-454,
Nov. 1975

Joris. T. Olympio (ENSMP) ARIADNA final presentation September 10, 2007 12 / 46



Lawden Primer Vector theory
Lawden Primer Vector theory

With calculus of variation we get the TPBVP:

d\y
2V
dt f
dAR
— =G (r;t) A
dt (r;t) A
AV,
Av(to) =
[AVo|
AV
Av(ty) =
SINT
and the control is given by:
— )\V
[Av |
I
S(t) - QOTP)\VTU + CnSt(Qmaza 90, Ispv Mq)
One major issue: we have all the information on the impulses, but their

amplitude ||[AV||!
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[@JeatesttENdlelill Lawden Primer Vector theory

Lawden Primer Vector theory

Primer vector A Primer vector AV

S I N N
Conditions to have an optimal trajectory
o the primer vector and its derivative should be continuous

o if there is an impulse, the primer vector is aligned with the impulse, and
its module is 1.

@ the primer vector module should not exceed 1.

e the derivative of all intermediate impulses is zero.

v
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[0)oY3teatEANSTI I MG A problems boundary conditions

Boundary conditions

We can extend the primer vector theory to MGADSM trajectory if we can
express the boundary conditions.

Consider a body to body transfer from ¢ to ¢y, with one swingby at
t =t~ = tT, with the swingby constraints at ¢:

®,(z7,2") = R(z") — R(z7) (14)
Dp(27,27) = Vo) = Q(B) Ve (z7) (15)
Use the Lagrangien to express optimality conditions at swing-by:

¢ tr
L= J+/ H (A, z;t) dt+ H (A, z;t)dt+ps” @p(e, 2™ +p, @, (x0T
t0

" (16)
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[0)oY3teatEANSTI I MG A problems boundary conditions

Boundary conditions

Initial velocity constraint on leg i:

P(ti) = [V (t:) = Ve (t:)]| — Voo (17)
V(ti) — Vpu(ti)
Ay (t) = uT p 18
V) = ()~ Vel "
Final velocity constraint on leg i:
P(tis1) = [IV(tis1) = Vir(tipa)l] — Vo (19)
)\V(ti+1) —_ _,T V(tH’l) — Vpl(ti+1) (20)

1
[V (tit1) — Vpi(tiza)|l
1 is the lagrange vector associated to the constraint .

Other results 4 are possible depending on the expressions of ¢, ®, or ®4.

3D.R. Glandorf, Primer Vector Theory for Mateched Conic trajectories, AIAA journal,
Technical notes, Vol. 8, No. 1, Jan. 1970
4Konstantinov, Fedotov, Petukhov, ACT Global Optimization Workshop, AGT-ESA 2005
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Primer Vector theory and MGA problems

Interaction prediction principle® gives an efficient algorithm for optimizing
MGADSM trajectory without too much sensitivity.

Consider the multiple impulse body to body sub problems i:

L; = Z AV ||+ e, T ®,i(z(t:), &) + cpi’ p(x(ts), &)+

Ji

" @y (g1, w(tivn)) + pgi” Pp(Gigr, 2(tir))+ (21)
tit1
H; (A z;t)dt
t;
where H; (), u;t) is the Hamiltonian for the sub problem ¢ and ¢,;, cg; and &;

are the coordination variables, and p1,; and pg; are the lagrange vectors for
the constraints ¢, and ¢g.

5G. Cohen, Optimization by Decomposition and Coordination: a unified approach, IEEE
transaction on automatic control, Vol. 23, No. 2, Apr. 1978
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Primer Vector theory and MGA problems
Primer Vector theory and MGA problems

Procedure
© Minimize J; for all j

update the coordination variables c,, cg and £ using the necessary
condition of optimality and the boundary equations.

(2]

@ Reconstruct the complete decision vector X and try to optimize the
complete problem.

()

if convergence, stop, otherwise goto 1 with update coordination variables.

4
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[O)NFEITERI Example

Example

Trajectory

e EVM planet sequence

Optimize for given date (no
optimization on the phasing)

Find 1 DSM for the EV leg,
and no DSM for the VM leg

e Cost = 10.786 km/s
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SRy
Primer Vector theory and MGA problems

@ Primer Vector theory allows to formulate a TPBVP for impulsive Body to
Body transfer problem.

@ The number of impulse is optimally found (local).

e We extend the theory to MGA problem through appropriate boundary
conditions.

e We introduced a Decomposition-Coordination technique to easily solve
the problem.

o Practical results show the efficiency of the method.
o It is however a local optimization method.

o Integration of the state and co-state equations are necessary whatever the
resolution method (TPBVP, transition matrix, ...).
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Heuristic optimization

Plan

@ Heuristic optimization
o Heuristic algorithms
e Hybrid SQP - Heuristic algorithms
o Examples and comparisons
@ Summary
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IS TS TSt EENGTI Il Heuristic algorithms

Heuristic algorithms

Increased popularity of heuristic algorithms (PSO%, DE) for optimization
problem because of:

o Easy to code, easy to use
e Few mathematical restrictions on the objective function (no derivatives)

@ stochastic: do not get trap into local minima

However:
o lack of theoretical evaluation
e search cost (nb of function evaluation)

@ no general rules for parameter tuning

These are fairly good algorithms. Do not always perform well for MGADSM
problem.

6J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proc. IEEE Intl. Conf. On
Neural Networks, 1995.
"R. Storn, K. price, Differential Evolution - A simple and efficient adaptive scheme for
global optimization over continuous space, Technical Report TR-95-012, ICSI
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IS TS TSt EENGTI Il Heuristic algorithms

Heuristic algorithms

Intuition, for those problems, says that there exists a "hard” (or ”difficult”)
and a ”soft” (or ”easy”) part in the decision vector for the optimization and
according to the model used.

The choice of the model and the use we make of the variables have a strong
influence on the result.

Variables

Our ”soft” variables are typically the time and dates.
Our "hard” variables are typically the swingby altitude, B-plane, ...

For the "hard” part, and to improve convergence, we can use a local
optimization solver. The remaining ”soft” part is left to the evolutionary
algorithm.
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JEES TSI NSRS EENATI gl Hybrid SQP - Heuristic algorithms

Heuristics algorithms

PSO3: For every particle 4, and every coordinate j € Xsopr:

X/t+) =X () +v(X/(t) - X/ (t—1)) +

momentum
a(Xe! — X () +
—_——
global best influence
B(Xp? — X7 (t+1))

local previous best influence

Newton: For every particle i, and every coordinate j € Xgarp:

X7 (t+1) = Newton (X;(t), J(X;(t)))

8other possible variant. Can also use DE or other Heuristic algorithms
Joris. T. Olympio (ENSMP) ARIADNA final presentation September 10, 2007
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JEIS ST NSt EENSIN Il Examples and comparisons

Heuristic / Hybrid SQP - Heuristic comparisons

PSO /wo SQP PSO /w SQP
EVM | M = 11.108, StD = 0.183 | M = 10.821, StD = 0.083
EVEJ | M =17.93, StD = 3.016 | M = 12.346, StD = 1.800
EVVEJS | M = 24.629, StD = 6.653 | M = 16.723, StD = 1.856

what has improved convergence?
@ Reduction of the size of the decision vector.

e Convergence less prone to the tuning constants.

Use of deterministic solvers to quickly find good sub-space.

Part of the decision vector gets adapted because of the objective function,
rather than the history of the particle.

We are however still far above the known solutions®!

9A. Petropoulos, J. longuski, E. Bonfiglio, Trajectories to Jupiter via Gravity Assists
from Venus, Earth and Mars, ATAA JSR, Vol. 37, No. 6

Joris. T. Olympio (ENSMP) ARIADNA final presentation September 10, 2007 25 / 46




Heuristic optimization [ESIteEIS

Heuristics algorithm

o We briefly described a "hybrid” Heuristic algorithm®C.
o We extract from the decision vector an ”easy to solve” part.

@ The remaining part is what we called "hard” or "difficult” as it can be
responsible of the "bad qualtiy” of the objective function.

@ We mix a standard heuristic algorithm with a Newton based optimization
solver.

e 7easy” and "hard” part are respectively used in the Heuristic and the
Newton based algorithm.

o Practical experiments and results show an improvement from the
standard Heuristic algorithm.

Ohybrid algorithms usually perform Heuristic and SQP optimization sequentially. Not the
case here!
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GASP-like approach

Plan

© GASP-like approach
e MGA formulation
@ Decomposition
@ Space Pruning
o Algorithm
e Complexity
@ From GASP to DSM-GASP
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(€Y NI SRNTIEVSINEYI MGA formulation

MGA formulation

Consider the decision vector for the MGA problem?!!:

X = [to, Vo, a0, Bostpsar(1)s - - - » tis Bay, tpsa(iys - - - s tN,—2, B(v,—1), tDSM(N, ~1)5

With:

to launch date

e t; intermediate planet encounter date

e ty arrival date

[Vb, ap, Bo] launch velocity
tpsm date of the DSM
B = [r}, ¢] swing by description

Where we considered a sequence Spoay of N, planets, with 1 DSM per phase.

1IM. Vasile, P. DePascale, Preliminary Design of Multiple Gravity Assist Trajectories,
ATAA JSR
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(€Y NI SBITIEI S INEY Decomposition

Decomposition

Split X in n phase, and duplicate missing variable. (phase = Body to Body

transfer).

New overall decision vector:

X = [t07V07a0aﬁ07tDS]\rI(1)7B\ 1 ha/rla"'a

initial leg

ts, Bays tosni(iys By tivty -«

intermediate leg

tn,—2, B(n,—1)stDsa(n,—1), ]

final leg
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(€Y NI SBITIEI S INEY Decomposition

Decomposition and decision vector

Assumption

Initially, we do not care about the swingby feasibility, so we can replace B with
Voo

Legs are however overdescribed!
Xi = [ti, Voooirs tDSM(i)s Vooriy tiv]

It is easier to handle ||V || than V!

sub problems leg description

Intermediate legs are thus well described:

Xi = [ts, [ Voooll  tDsM () | Voot , tit1]

Unique leg 7 Tt is likely that there is no 2 different trajectories of less than 1
revolution with the same X; (not a proof!)
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(€Y NI SBITIEI S INEY Decomposition

Global procedure

Decomposition

Now for all 4, minimize the characteristic velocity of body to body subproblem
¢ with the decision vector X;, disregarded the other subproblems.

Patching
To construct complete trajectories, use the constraints:

Bw = B

CX = 0s.t. { b=, (24)

C is sparse, - are called coordination variables.
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(€Y NI SBITIEI S INEY Decomposition

Subproblem optimization

As we lost information on the complete problem optimality, we need to cover
the V. - space with the coordination variable.

Procedure

For each leg i € {1,2, ..., N, — 1}, for all
X; = [ti—l,tiy Voooi, Voofi7tDSMi] S th XXVOO2 XXtDSM’ solve the transfer
problem from Sgody (%) t0 SBody(i + 1):

Iéllél Ji(Xiv a07ﬂ0a af7ﬂf) = ZAV‘]
) J

Where:

VooOi = VooOi Uag, B0

Veoti = Voo fillay, 8¢

The minimization formulation permits to get the best trajectory in case the
leg formulation is not consistent (unique leg).
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(€Y SIS RNTIEIIINEYS Space Pruning

Space Pruning

Pruning strategies
@ Initial hyperbolic excess velocity ||V ol
@ Maximum AVpgy
@ Forward/Backward Constraining °
o The Backward/Forward constraining is applied both to the date ¢ and the
velocity Veo.
@ RendezVous maneuver constraint ||V sof|
@ Swing by feasibility
e No discrepancies are allowed on the oncoming and outgoing velocities Voo.

e Depending on the Vio-grid, a minimum tolerance on the angular constraint
should be considered.

%Becerra et al., An Efficient Pruning technique for the Global Optimisation of Multiple
Gravity Assist Trajectories, Proceeding of GO 2005
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GASP-like approach [EESERISTINN

Complete Algorithm

Algorithm
@ Decompose the problem into simple Body to Body transfers

@ Solve the subproblems on the grid (subproblem optimization procedure)
min J; (X, u) (25)

© Prune extremals on max AVpgaur

@ Patch extremals together using (swingby energetic conservation):
CX =0 (26)

And accordingly with the encounter date.

@ Prune solutions which have R, < Rp:n (unfeasible swingby)
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[€VNSISRNNIEI SIS Complexity

Complexity

Now we have to solve M problems in a search space of dimension 5, whereas in
the initial approach we solved 1 problem in a search space of dimension
4M + 2, where M is the number of phase.

Global search grid: X,2 ><XV(X>2 xX¢psn With:

X; = [to,ts] — n bins
XVx = [Voomina Voomaz] — m bins
Xipsu = [0.1,0.2, ...,0.9] — 9 bins

Complexity (per leg)
C; = O(n*)O(m?) J

The solver used can strongly penalize the efficiency of the algorithm.
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GASP-like approach

From GASP to DSM-GASP

Comparison:

From GASP to DSM-GASP

GASP DSM-GASP
Dimension 2 5
Time bins n n
Velocity bins 0 m
Complexity | O(n?) | O(n?)0O(m?)
Solver none | SQP (SNOPT)

o Both algorithms use the ”cascade” scheme.

o GASP is a particular case where m = 1 with appropriate values in Xy, _
and X;,,, =0.

@ The local solver strongly penalize the computation time (polynomial
complexity but with a great multiplicative factor!). (might be a simplified
formulation?!)
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© Examples
o EM
@ Methodology
e EVM

ARIADNA final presentation

September 10, 2007

37 / 46



-0 = wewmpks|RM

Examples
EM

544, O Kn, ¥ g « DS 10 1520262038404560 ks

@ No easy representation.

e We consider the map [Voor Xto

xty] for different value of Vo

o Constraining the AVpgas
immediately prunes the search

space.
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RMethodology)
Methodology: some ideas

Multi dimensionnal problem
@ No easy representation.

@ We can use projection in 3D spaces: need a very painstaking job!

Some ideas:

o Consider to prune only the initial phase and the final phase solution
space.
e Forward / Backward propagations give reduced box bounds for
intermediate phase.
o Consider only the time and date for the intermediate phasse.
o The V4 in the intermediate phase are difficult to handle.

Joris. T. Olympio (ENSMP) ARIADNA final presentation September 10, 2007 39 / 46



BV

Examples
EVM - EV

W,y = 1000000 ks, V.= [0 TEE08.59.0 05 10.0105 110 115120 |kmis

LT
4
r BE
& L 43
€
=)
¥
E 25
350 2

1, (days WAJDEDDD)

ARIADNA final presentation September 10, 2007 40 / 46



BV

Examples
EVM - VM

W,y = 000000 kmis, V= 0510 1.5 20 2530 3.54.0 45 5.0] kmis

)

. (days MJOZ000Y
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Plan

@ Conclusion

ARIADNA final presentation September 10, 2007 42 / 46



Conclusion

Conclusion

e Introduced the MGADSM problem and different formulations

@ Deterministic method for optimizing MGADSM trajectories without
constraint on the number of DSM

e Heuristic method to finding optimal solution in the remaining search
space

@ Deterministic method for pruning out infeasible parts of the search space

@ Many possible improvements of ”our GASP” algorithm
e Speed of convergence of the local solver
e graphical intuitive representation
o clear methodology to handle the results
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Conclusion

Thanks for your attention!

Thanks to the ACT-team for the experience.

Questions 7
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Algorithm

Phase 1: Body 1 to Body 2

Ve Phase 2: Body 2 to Body 3
area
Intersections give
possible complete
solution from Body
1to Body 3 Forward
(COORDINATION Pruning .
STEP) remove this
area from
T (date) calculation

W, = hyperbolic excess velocity at Body 2

T = date of arrival at Body 2 for Phase 1,
date of departure from Body 2 for Phase 2
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Algorithm

Phase 3: Body 3 to Body 4
\ 4 Body 1 to Body 3 solution area solution ar

Forward
Intersections Pruning
give possible ] remove this
complete . area from
solution from calculation

BOdy 1to Body W, = hyperbolic excess velocity at Body 3 T (date)

T = date of arrival at Body 3 for Phase 12,
date of departure from Body 3 for Phase 3

ARIADNA final presentation September 10, 2007 46 / 46




47 / 46

~
=)
- - =
LI S S S R S R N R N
: 7 : T -
)
=
=
o
. . L 2
o
PR
&
& wm
2
E
)
o
3
pel
]
pit
=
o)
u
o

r
=}
g
£
i
<
z
[a)]
5
o~
<

2000000 kmis, W = (07560859005 100105110 115120 [kmis

(s

Examples
EVM - EV




Examples
EVM - VM

W, = 9000000 kmis, V= 0510 1.5 20 2530 3.54.0 45 5.0] kmis

)

. (days MJOZ000Y
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