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Introduction

Introduction

MGA trajectories:
Multi Gravity Assist (MGA) impulsive trajectories
solution space can be quickly pruned (GASP)1

MGADSM trajectory optimization problem:
Multi Gravity Assist (MGA) with Deep Space Maneuvers (DSM)
impulsive trajectories
Deep Space Maneuvers (DSM) can reduce fuel requirement
many local minima: requires global techniques
solution space of great dimension

MGADSM
How can we efficiently prune the solution space ?

1Myatt, Becerra, Nasuto, Bishop, Advanced global optimisation for mission analysis and
design. Final report. Ariadna 03/4100
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Introduction

MGADSM examples
From CASSINI to MESSENGER

EVVEJS planet sequence
∆V gravity assist
no DSM between JS
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Introduction

MGADSM examples
From CASSINI to MESSENGER

From http://messenger.jhuapl.edu

To insert a scientific spacecraft into an orbit around Mercury
Launched on August 3, 2004
Mercury(Y): High excentricity and inclination, close to the sun, fastest
planet ... many technical transfer orbit shape constraints
Many Gravity Assist to reduce fuel requirement and reduce average speed
relative to the mercury.
Many small DSM to adjust the orbit for the next swingby
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Multi gravity Assits - Deep Space Maneuver trajectories SwingBy parameters

Non powered swingby

hyperbolic excess velocities: V∞+ and V∞
−

Periapsis radius: rp

sin δ = µ
µ+rpV 2

∞

∆V = 2V∞ sin δ
rp > rbody
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Multi gravity Assits - Deep Space Maneuver trajectories DSM models

DSM models

DSM possible parametrizations
date, position: (t, r)
date, initial V: (t,v0)
date, final V: (t,vf )
swingby + Keplerian
propagation

Use forward/backward integration and/or Lambert’s problem solver.
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Optimization

Optimization

The spacecraft is subject to a nonlinear dynamic:

df

dt
=


dr
dt = v
dv
dt = G (r; t) r + qg0Isp

m u
dm
dt = −q

(1)

With the constraints:

q(qmax − q) ≥ 0 (2)
‖u‖ = 1 (3)

With the initial and final conditions:{
r0 = r(t0)
rf = r(tf ) (4)
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Optimization Lawden Primer Vector theory

Lawden Primer Vector theory2

We have to minimize a non linear objective function, defined by the
characteristic velocity of the mission (sum of ∆V s) plus the rendezvous
maneuver ∆Vf .

J = ‖∆Vf‖+
∑
i=0..N

‖∆Vi‖ (5)

with N > 0 the unspecified number of DSM.
∆V0 is the departure maneuver.

With the introduction of the co state vector Λ = [λR, λV ] we have:

L = J +
∫ tf

t0

H (Λ, x; t) dt (6)

H (Λ, x; t) = Λf(x, u; t) + µq
T
(
q(qmax − q)− α2

)
+ µu

T
(
‖u‖2 − 1

)
(7)

2D. Jezewski, Primer Vector Theory and Applications, NASA Technical report R-454,
Nov. 1975
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Optimization Lawden Primer Vector theory

Lawden Primer Vector theory

With calculus of variation we get the TPBVP:

dλV
dt

= −λR (8)

dλR
dt

= G (r; t)λR (9)

λV (t0) =
∆V0

‖∆V0‖
(10)

λV (tf ) =
∆Vf

‖∆Vf‖
(11)

and the control is given by:

u =
λV
‖λV‖

(12)

S(t) =
g0Isp
m

λV
Tu + cnst(qmax, g0, Isp, µq) (13)

One major issue: we have all the information on the impulses, but their
amplitude ‖∆V‖!
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Optimization Lawden Primer Vector theory

Lawden Primer Vector theory

Conditions to have an optimal trajectory

the primer vector and its derivative should be continuous
if there is an impulse, the primer vector is aligned with the impulse, and
its module is 1.
the primer vector module should not exceed 1.
the derivative of all intermediate impulses is zero.

Joris. T. Olympio (ENSMP) ARIADNA final presentation September 10, 2007 14 / 46



Optimization MGA problems boundary conditions

Boundary conditions

We can extend the primer vector theory to MGADSM trajectory if we can
express the boundary conditions.

Consider a body to body transfer from t0 to tf , with one swingby at
t = t− = t+, with the swingby constraints at t:

Φν(x−, x+) = R(x+)−R(x−) (14)
Φβ(x−, x+) = V∞(x+)−Q(β)V∞(x−) (15)

Use the Lagrangien to express optimality conditions at swing-by:

L = J+
∫ t−

t0

H (Λ, x; t) dt+
∫ tf

t+
H (Λ, x; t) dt+µβTΦβ(x−, x+)+µνTΦν(x−, x+)

(16)

Joris. T. Olympio (ENSMP) ARIADNA final presentation September 10, 2007 15 / 46



Optimization MGA problems boundary conditions

Boundary conditions

Initial velocity constraint on leg i:

ψ(ti) = ‖V(ti)−Vpl(ti)‖ − V∞ (17)

λV (ti) = µT
V(ti)−Vpl(ti)
‖V(ti)−Vpl(ti)‖

(18)

Final velocity constraint on leg i:

ψ(ti+1) = ‖V(ti+1)−Vpl(ti+1)‖ − V∞ (19)

λV (ti+1) = −µT V(ti+1)−Vpl(ti+1)
‖V(ti+1)−Vpl(ti+1)‖

(20)

µ is the lagrange vector associated to the constraint ψ.

Other results 34 are possible depending on the expressions of ψ, Φν or Φβ .

3D.R. Glandorf, Primer Vector Theory for Mateched Conic trajectories, AIAA journal,
Technical notes, Vol. 8, No. 1, Jan. 1970

4Konstantinov, Fedotov, Petukhov, ACT Global Optimization Workshop, ACT-ESA 2005
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Optimization Primer Vector theory and MGA problems

Primer Vector theory and MGA problems

Interaction prediction principle5 gives an efficient algorithm for optimizing
MGADSM trajectory without too much sensitivity.

Consider the multiple impulse body to body sub problems i:

Li =
∑
ji

‖∆Vi,j‖+ cν
TΦνi(x(ti), ξi) + cβi

TΦβ(x(ti), ξi)+

µν
TΦν(ξi+1, x(ti+1)) + µβi

TΦβ(ξi+1, x(ti+1))+∫ ti+1

ti

Hi (λ, x; t) dt

(21)

where Hi (λ, u; t) is the Hamiltonian for the sub problem i and cνi, cβi and ξi
are the coordination variables, and µνi and µβi are the lagrange vectors for
the constraints φν and φβ .

5G. Cohen, Optimization by Decomposition and Coordination: a unified approach, IEEE
transaction on automatic control, Vol. 23, No. 2, Apr. 1978
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Optimization Primer Vector theory and MGA problems

Primer Vector theory and MGA problems

Procedure
1 Minimize Jj for all j
2 update the coordination variables cν , cβ and ξ using the necessary

condition of optimality and the boundary equations.
3 Reconstruct the complete decision vector X and try to optimize the

complete problem.
4 if convergence, stop, otherwise goto 1 with update coordination variables.
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Optimization Example

Example

EVM planet sequence
Optimize for given date (no
optimization on the phasing)
Find 1 DSM for the EV leg,
and no DSM for the VM leg
Cost = 10.786 km/s
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Optimization Summary

Primer Vector theory and MGA problems

Primer Vector theory allows to formulate a TPBVP for impulsive Body to
Body transfer problem.
The number of impulse is optimally found (local).
We extend the theory to MGA problem through appropriate boundary
conditions.
We introduced a Decomposition-Coordination technique to easily solve
the problem.
Practical results show the efficiency of the method.
It is however a local optimization method.
Integration of the state and co-state equations are necessary whatever the
resolution method (TPBVP, transition matrix, ...).
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Heuristic optimization Heuristic algorithms

Heuristic algorithms

Increased popularity of heuristic algorithms (PSO6, DE7) for optimization
problem because of:

Easy to code, easy to use
Few mathematical restrictions on the objective function (no derivatives)
stochastic: do not get trap into local minima

However:
lack of theoretical evaluation
search cost (nb of function evaluation)
no general rules for parameter tuning

These are fairly good algorithms. Do not always perform well for MGADSM
problem.

6J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proc. IEEE Intl. Conf. On
Neural Networks, 1995.

7R. Storn, K. price, Differential Evolution - A simple and efficient adaptive scheme for
global optimization over continuous space, Technical Report TR-95-012, ICSI
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Heuristic optimization Heuristic algorithms

Heuristic algorithms

Intuition, for those problems, says that there exists a ”hard” (or ”difficult”)
and a ”soft” (or ”easy”) part in the decision vector for the optimization and
according to the model used.

The choice of the model and the use we make of the variables have a strong
influence on the result.

Variables
Our ”soft” variables are typically the time and dates.
Our ”hard” variables are typically the swingby altitude, B-plane, ...

For the ”hard” part, and to improve convergence, we can use a local
optimization solver. The remaining ”soft” part is left to the evolutionary
algorithm.
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Heuristic optimization Hybrid SQP - Heuristic algorithms

Heuristics algorithms

PSO8: For every particle i, and every coordinate j ∈ XSOFT :

Xi
j(t+ 1) = Xi

j(t) + ν
(
Xi

j(t)−Xi
j(t− 1)

)︸ ︷︷ ︸
momentum

+

α(XG
j −Xi

j(t))︸ ︷︷ ︸
global best influence

+

β(XL,i
j −Xi

j(t+ 1))︸ ︷︷ ︸
local previous best influence

(22)

Newton: For every particle i, and every coordinate j ∈ XHARD:

Xi
j(t+ 1) = Newton (Xi(t), J(Xi(t))) (23)

8other possible variant. Can also use DE or other Heuristic algorithms
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Heuristic optimization Examples and comparisons

Heuristic / Hybrid SQP - Heuristic comparisons

PSO /wo SQP PSO /w SQP
EVM M = 11.108, StD = 0.183 M = 10.821, StD = 0.083
EVEJ M = 17.93, StD = 3.016 M = 12.346, StD = 1.800

EVVEJS M = 24.629, StD = 6.653 M = 16.723, StD = 1.856

what has improved convergence?

Reduction of the size of the decision vector.
Convergence less prone to the tuning constants.
Use of deterministic solvers to quickly find good sub-space.
Part of the decision vector gets adapted because of the objective function,
rather than the history of the particle.

We are however still far above the known solutions9!
9A. Petropoulos, J. longuski, E. Bonfiglio, Trajectories to Jupiter via Gravity Assists

from Venus, Earth and Mars, AIAA JSR, Vol. 37, No. 6
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Heuristic optimization Summary

Heuristics algorithm

We briefly described a ”hybrid” Heuristic algorithm10.
We extract from the decision vector an ”easy to solve” part.
The remaining part is what we called ”hard” or ”difficult” as it can be
responsible of the ”bad qualtiy” of the objective function.
We mix a standard heuristic algorithm with a Newton based optimization
solver.
”easy” and ”hard” part are respectively used in the Heuristic and the
Newton based algorithm.
Practical experiments and results show an improvement from the
standard Heuristic algorithm.

10hybrid algorithms usually perform Heuristic and SQP optimization sequentially. Not the
case here!
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GASP-like approach MGA formulation

MGA formulation

Consider the decision vector for the MGA problem11:

X = [t0, V0, α0, β0, tDSM(1), . . . , ti, B(i), tDSM(i), . . . , tNp−2, B(Np−1), tDSM(Np−1), tf ]

With:
t0 launch date
ti intermediate planet encounter date
tf arrival date
[V0, α0, β0] launch velocity
tDSM date of the DSM
B = [rp, φ] swing by description

Where we considered a sequence SBody of Np planets, with 1 DSM per phase.

11M. Vasile, P. DePascale, Preliminary Design of Multiple Gravity Assist Trajectories,
AIAA JSR
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GASP-like approach Decomposition

Decomposition

Split X in n phase, and duplicate missing variable. (phase = Body to Body
transfer).

New overall decision vector:

X = [t0, V0, α0, β0, tDSM(1), B̃(1), t̃1︸ ︷︷ ︸
initial leg

, . . . ,

ti, B(i), tDSM(i), B̃(i), t̃i+1︸ ︷︷ ︸
intermediate leg

, . . . ,

tNp−2, B(Np−1), tDSM(Np−1), tf︸ ︷︷ ︸
final leg

]
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GASP-like approach Decomposition

Decomposition and decision vector

Assumption

Initially, we do not care about the swingby feasibility, so we can replace B with
V∞

Legs are however overdescribed!

Xi = [ti, V∞0i, tDSM(i), V∞fi, ti+1]

It is easier to handle ‖V∞‖ than V∞!

sub problems leg description

Intermediate legs are thus well described:

Xi = [ti, ‖V∞0‖ , tDSM(i), ‖V∞f‖ , ti+1]

Unique leg ? It is likely that there is no 2 different trajectories of less than 1
revolution with the same Xi (not a proof!)
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GASP-like approach Decomposition

Global procedure

Decomposition

Now for all i, minimize the characteristic velocity of body to body subproblem
i with the decision vector Xi, disregarded the other subproblems.

Patching

To construct complete trajectories, use the constraints:

CX = 0s.t.
{
B(i) = B̃(i)

ti = t̃i
(24)

C is sparse, .̃ are called coordination variables.
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GASP-like approach Decomposition

Subproblem optimization

As we lost information on the complete problem optimality, we need to cover
the V∞ - space with the coordination variable.

Procedure

For each leg i ∈ {1, 2, ..., Np − 1}, for all
Xi = [ti−1, ti, V∞0i, V∞fi, tDSMi] ∈ Xt2 ÖXV∞

2
ÖXtDSM

, solve the transfer
problem from SBody(i) to SBody(i+ 1):

min
α,β

Ji(Xi, α0, β0, αf , βf ) =
∑
j

∆Vj

Where:

V∞0i = V∞0iuα0,β0

V∞fi = V∞fiuαf ,βf

The minimization formulation permits to get the best trajectory in case the
leg formulation is not consistent (unique leg).
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GASP-like approach Space Pruning

Space Pruning

Pruning strategies
1 Initial hyperbolic excess velocity ‖V∞0‖
2 Maximum ∆VDSM
3 Forward/Backward Constraining a

The Backward/Forward constraining is applied both to the date t and the
velocity V∞.

4 RendezVous maneuver constraint ‖V∞f‖
5 Swing by feasibility

No discrepancies are allowed on the oncoming and outgoing velocities V∞.
Depending on the V∞-grid, a minimum tolerance on the angular constraint
should be considered.

aBecerra et al., An Efficient Pruning technique for the Global Optimisation of Multiple
Gravity Assist Trajectories, Proceeding of GO 2005
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GASP-like approach Algorithm

Complete Algorithm

Algorithm
1 Decompose the problem into simple Body to Body transfers
2 Solve the subproblems on the grid (subproblem optimization procedure)

min
u
Ji(Xi, u) (25)

3 Prune extremals on max ∆VDSM
4 Patch extremals together using (swingby energetic conservation):

CX = 0 (26)

And accordingly with the encounter date.
5 Prune solutions which have Rp < Rpmin (unfeasible swingby)
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GASP-like approach Complexity

Complexity

Now we have to solve M problems in a search space of dimension 5, whereas in
the initial approach we solved 1 problem in a search space of dimension
4M + 2, where M is the number of phase.

Global search grid: Xt2 ÖXV∞
2
ÖXtDSM

with:

Xt = [t0, tf ]→ n bins
XV∞ = [V∞min, V∞max]→ m bins
XtDSM

= [0.1, 0.2, ..., 0.9]→ 9 bins

Complexity (per leg)

Ci = O(n2)O(m2)

The solver used can strongly penalize the efficiency of the algorithm.
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GASP-like approach From GASP to DSM-GASP

From GASP to DSM-GASP

Comparison:

GASP DSM-GASP
Dimension 2 5
Time bins n n

Velocity bins 0 m
Complexity O(n2) O(n2)O(m2)

Solver none SQP (SNOPT)

Both algorithms use the ”cascade” scheme.
GASP is a particular case where m = 1 with appropriate values in XV∞
and XtDSM

= 0.
The local solver strongly penalize the computation time (polynomial
complexity but with a great multiplicative factor!). (might be a simplified
formulation?!)
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Examples EM

Examples
EM

No easy representation.
We consider the map [V∞f Öt0
Ötf ] for different value of V∞0

Constraining the ∆VDSM
immediately prunes the search
space.
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Examples Methodology

Methodology: some ideas

Multi dimensionnal problem
No easy representation.
We can use projection in 3D spaces: need a very painstaking job!

Some ideas:
Consider to prune only the initial phase and the final phase solution
space.

Forward / Backward propagations give reduced box bounds for
intermediate phase.

Consider only the time and date for the intermediate phasse.
The V∞ in the intermediate phase are difficult to handle.
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Examples EVM

Examples
EVM - EV
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Examples EVM

Examples
EVM - VM
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Conclusion

Conclusion

Introduced the MGADSM problem and different formulations

Deterministic method for optimizing MGADSM trajectories without
constraint on the number of DSM
Heuristic method to finding optimal solution in the remaining search
space

Deterministic method for pruning out infeasible parts of the search space
Many possible improvements of ”our GASP” algorithm

Speed of convergence of the local solver
graphical intuitive representation
clear methodology to handle the results
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Conclusion

Thanks for your attention!

Thanks to the ACT-team for the experience.

Questions ?
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Conclusion
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