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The Problem

• Two different problems of different complexity

– Pruning the search space in the case of multiple deep 
space manoeuvres

– Automated trajectory planning integrating transfer arcs 
of different nature
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Available Solutions to the MGA problem

• S-TOUR and LTGAS-TOUR
– 3D,MGA, DSMs, free sequence, systematic scan

• Swingby Calculator
– 3D, MGA, DSMs, enumerative

• PAMSIT
– 2D, MGA, no DSMs, free sequence, systematic search

• IMAGO
– 3D, MGA, DSMs, free sequence, stochastic search

• DEIMOS
– 3D, MGA, no DSMs, free sequence, systematic search

• GASP
– 3D,MGA, no DSMs, systematic pruning plus GO

• MITRADES
– 3D, MGA, DSMs
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Possible Approaches to the MGA problem with DSMs
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Trajectory Models

• MGA trajectories with multiple DSMs can be 
modelled in several ways

• Different models can require algorithms with 
different complexity

• Two different classes of models were developed 
both based on a linked-conic approximation 
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Trajectory Models: Velocity Formulation
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1. Assign a value to the 
position vectors of the 
departure and arrival 
planets rpj and rpj+1 to their 
corresponding times

2. Assign a value to the times 
of the DSMs

3. Propagate from the 
departure time to the time 
of the first DSMs

4. Assign a value to the three 
components of the DSM

5. Propagate till the next DSM
6. Continue till the last DSM
7. Compute a Lambert’s arc 

connecting the last DSM 
with the arrival planet
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Trajectory Models: Velocity Formulation

• Each leg requires the previous one in order to propagate
• The position and velocity vectors of the departure and 

arrival planets can be computed thorugh two variables 
only: the departure time and the arrival time

• Each DSM requires 4 free variables therefore for n DSMs 4n 
variables are requried

• Fixing the arrival and departure time, the DSMs can be 
solved as a 4n dimensional box constrained problem of the 
kind:

• .
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Trajectory Model 1
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1. Split the trajectory in phases

2. Each phase connects two 
celestial bodies

3. Each phase is split into 2 
subphases divided by a deep-
space manoeuvre

4. At the celestial body the 
outgoing velocity is computed 
with the linked conic model

5. The length of each subphase, 
the departure time and the 
initial departure velocity must 
be determined in order to 
minimise the total Δv
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Gravity Assist Model: Unpowered Swing-by

• Hyperbola plane Π
definition

• Rotation of nr
around     of an 
angle γ
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Reference vector ni perpendicular 
to the plane defined by the 
incoming relative velocity vector 
and the planet velocity vector

First rotation from ni to nΠ the 
vector normal to the hyperbola 
plane Π

Gravity Assist Model: Unpowered Swing-by
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• Second rotation in the plane of the 
hyperbola, around the vector nΠ

• The rotation angle β is a function of the 
incoming velocity vector and of the 
pericentre radius rp

Gravity Assist Model: Unpowered Swing-by
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Trajectory Model 1
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• For a Δv minimisation problem the objective function is the
sum of all the Δv’s for all the deep space manoeuvres plus 
the departure Δv:

• The generic solution vector

∑
=

∈
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Trajectory Model 2 and the Position Formulation
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r1

r2

r3

r4

1. Assign a value to the 
position vectors of 
the departure and 
arrival planets rj and 
rj+1 and of the DSMs
and to their 
corresponding times

2. Compute the 
Lambert’s arc 
connecting positions 
of the planets and of 
the DSMs
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Trajectory Model 2 and the Position Formulation
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3. Compute the vector 
difference at each 
junction point

4. Compute the Δv
correction at 
departure and arrival
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Trajectory Models and the Position Formulation

• Each Lambert’s arc connecting two points can be 
computed independently of the others once the 
position vectors are assigned.

• The position of the departure and arrival planet 
can be assigned through two variables only: the 
departure and the arrival times.

• Each DSM requires four variables instead
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Gravity Assist Model: Powered Swing-by

Given          :
• A Newton method is 

used to find the 
pericentre radius for 
the required deviation 
angle

• If the required 
deviation can not be 
achieved computes 
correction manoeuvre
at minimum altitude 
point

,i ov v% %

iv%

ov%

vΔ
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Trajectory Model 2
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• Position and 
velocity of planets 
from analytical 
ephemeris.

• Lambert’s solution 
between two 
DSMs.

• DSM defined by 
radius, two angles 
and fraction of the 
TOF
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Trajectory Model 2

Introduction

Problem Modeling

Reading Solution Approach

Glasgow Solution Approach

Final Remarks
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Trajectory Model 2
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• The objective function is the sum of all the Δv’s either due to a 
powered swingby or to a DSM.

• The generic solution vector is:

• With the constraints on the pericentre radius of the swingby
hyperbolae:
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Preliminary Considerations

• Model 1 and velocity formulations do not 
allow to compute each leg independently 
of the other legs

• Model 2 and position formulations allow 
the computation of each leg independently 
of the other legs
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Preliminary Considerations

• Model 1 leads to a box constrained problem. 
Since physical constraint are satisfied intrinsically 
additional criteria have to be introduced to define 
the feasibility of the solution. 

• Model 2 leads to a constrained optimisation 
problem with nonlinear constraints. If only 
feasible solutions are required the problem 
associated to model 2 reduces to a constraint 
satisfaction one.  
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• The two groups in Glasgow and in Reading 
addressed the problem into two different ways.

• Reading used model 2 while Glasgow used model 
1 to build the trajectory.

• Both approaches, however, try to give a positive 
answer to the reductionist/holistic question:

Is the sum of the parts equivalent to the 
whole?
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Some preliminary Answers

• The sum of the global optima for each subproblem in which we 
can decompose model 1 does not always correspond to the global 
optimum for the sum of the subproblems.

• The choice of the function fk associated to each subproblem can 
change the search for the global solution.

• If we define a box contained in the subspace Dk as:

• Then we can find a union of Q(k) boxes for each slice k the 
cartesian product of which contains the global optimum of the 
whole problem:

,k q kX D⊂

( )

,
1 1

Q kM

global k q
k q

X
= =

∈∏x U
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Searching Through an Optimiser

• Once the problem is properly decomposed each 
subproblem can be addressed separately if a set 
of appropriate criteria can be found that makes 
the sum of the parts equivalent to the whole 

• Each single leg can be optimised either locally or 
globally with respect to one or more criteria or…

• …for each single leg an optimiser can be used to 
look just for a set of feasible solutions 
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Local Optimisation

• From a set of preliminary tests it was observed 
that for each subproblem a set of multiple 
minima exists. This holds true even if the 
departure date and arrival dates for each leg are 
fixed. The result is consistent with the use of a 
Lambert’s solver (or equivalent).

• Optimising locally each subproblem can result 
into a suboptimal solution for the whole 
trajectory, i.e. the sum of the parts is not 
equivalent to the whole   
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University of Reading
• Pruning Algorithm

• Test Cases: Messenger, Bepi Colombo missions

• Sequence Optimizer

• Test Cases including 1st ACT Trajectory Competition
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Multistage Optimisation Problem
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GASP Algorithm with DSM

•Inspired by original GASP ideas

•Sampling based on local optimization

•Clustering employed to estimate feasible regions

•Description based on two phases, but easily
extendible to more phases. 

•One DSM per phase considered, but more can be
added.

• Initial search space is a hyperrectangle (bounds)
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t_depart

Phase 1

t_
ar

riv
al

1) Initialise the local optimiser  
to N starting points.

t0 bounds

Optimization Problem_1

tof bounds
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t_depart

Phase 1

t_
ar

riv
al

1) Initialise the local optimiser  
to N starting points.

2) Run clustering algorithm 
to group remaining 
feasible points.

Optimization Problem_1

3) Generate bounding boxes 
from the extreme points in 
each cluster 

Infeasible arrival times

Departure windows for 
phase 2
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Phase 2

t_
ar

riv
al

Infeasible 
departure 
times

Optimization Problem_1 Optimization Problem_2

t_depart

Phase 1

t_
ar

riv
al

Departure windows for 
phase 2
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Phase 2

t_
ar

riv
al

Optimization Problem_1 Optimization Problem_2

t_depart

Phase 2
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t_
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al

t_depart

Phase 2
1) Initialise the local optimizer n 

times in each window

2) Optimize each point in turn

Optimization Problem_2

Optimization Problem_1
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t_depart

Phase 2

t_
ar

riv
al

t_depart

Phase 1

t_
ar

riv
al

3) Each point in phase 2 is associated with a departure velocity. The feasibility of a point in 
phase 2 w.r.t the preceding swingby manoeuvre is checked by solving a local optimization at 
phase one.

4) If after k attempts no feasible point is found in phase 1, discard the point in phase 2.

Satisfies (1)

All points 
along this line 
are infeasible 

Optimization Problem_2 Optimization Problem_3

Satisfies (2)
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t_depart

Phase 2

t_
ar

riv
al

t_depart

Phase 1

t_
ar

riv
al

5) Run clustering algorithm on remaining points in phase 2, generate bounding boxes

6) Backward constraining: re-cluster phase 1 with new feasible points corresponding to points in 
phase 2

7) Locate solution families

Optimization Problem_2 Optimization Problem_3

f(1)

f(2)

f(3)

8) Explore the solution families by globally optimizing each family for a limited number of 
generations 

9) Further explore the family that produces the lowest objective function value in step 8
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Pruning Algorithm Complexity
Total number of Lambert problem calls:

It is possible to bound the the number of Lambert calls 
with a linear function of the number of phases
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Example: E-M Transfer with 1 DSM
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Comparison:

Grid Sampling

• Sampling resolution of 
45*20*20*10*10*10

(18,000,000 points)
• Constraint values had to be doubled 

to find 
feasible points

• 3.36 hours to run on 2GHz PC
• 36 million calls to Lambert Solver
• Only 19 feasible points found

Pruning Algorithm

• 150 random 6D vectors generated
• 128 s to run on 2GHz PC
• 116,326 calls to the Lambert solver
• 89 feasible points found
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Example: E-V-M
• No DSM in phase 1
• 1 DSM in phase 2
• Launch, swingby, DSM
• Insertion

rp = 3950 km
e  = 0.98

• Bounds:

• Constraints:

Phase 1

Phase 2
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E-V-M with 1 DSM

•Majority of the search space is unfeasible

•Works well over large launch window

•Combines phases with purely ballistic trajectories with more complex cases

•Phase 1 < 30s

•Phase 2 < 2.5mins

•6 solution families found
Optimization Problem
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Global Optimization
1. Apply differential evolution to each of the 6 solution families. Allow a 

maximum of 300 generations with a population size of 20
2. Look at the objective function value of each family, select family with 

best solution
3. Re-optimize best family, this time allowing for 2000 generations

Solution
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Case study 1: Bepi-Colombo 
Mission

Reduced trajectory: E-E-V-V-Me
21-dimensional problem
8 Delta-V’s

Bounds

Constraints
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Case study 1: Bepi Colombo Mission
Results
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Case study 2: Messenger Mission

Challenge
• 7 phase mission
• 1 DSM per phase
• 6 swingbys
• Insertion manoeuvre
• 36-dimensional search space
• 15 constraints

Sequence: E-E-V-V-Me-Me-Me

Bounds

Constraints
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Case study 2: Messenger Mission
Results:
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Case study 2: Messenger Mission
Results:
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Sequence Optimization

Top level: integer optimization
Number of phases

Swingby sequence (which planets to visit)

Number of DSM in each phase

Lower level: 

Pruning + continuous optimization
Timing parameters

DSM parameters
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Top Level Optimization

Non-linear Integer Programming
Strategy:   (from “PSO for Integer Programming” Laskari et al)

Using a standard global optimizer

1)    Evaluate objective function in usual manner

2)    Once the optimizer finishes round the values in 
the solution vector to the nearest whole number

Problem: which global optimizer to use?
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Differential Evolution   vs.  PSO 

• Selection of problems with known optimal minima chosen
• Try to get a feel for how each optimizer performs

Problems included:  (but not limited to)Results
•PSO outperformed DE in every test

•After 100 trials PSO converged to the optimal solution 
100% of the time

•DE converged to the optimal solution 78% of the time

•PSO required fewer generations to converge to optimal 
solution on every occasion
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Problem Formulation:

Departure planet:

Destination planet:

Maximum number of phases:

Maximum DSM’s per phase:

PSO Parameters:
Swarm Size
Generations
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…formulation continued

Top level decision vector:

Lower level:   (objective function of the top level)

Pruning algorithm, followed by optimisation trying to minimize: 
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Case Study 1: Going from Earth to Mercury

Optimize the planetary sequence between Earth and Mercury
Find optimal DSM parameters for each phase
Minimize the total Delta-V

Pdepart = 3
Pdest = 1
n = 3
DSMmax = 1

Restrict solution to planets between Mars and Mercury
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Going from Earth to Mercury 
(cont.) With insertion manoeuvre

rp = 2480 km
e = 0.6679

E-E-V-Me    000   6.9994 km/s
E-E-V-Me    001   8.1962 km/s
E-E-V-Me    111   8.6759 km/s
E-E-Me        11     9.7797 km/s

No insertion manoeuvre

E-E-V-Me   110   1.175 km/s
E-E-V-Me   111   1.746 km/s
E-E-M-Me  110    2.490 km/s
E-V-Me       01     2.838 km/s

Sequence     DSM  Delta-V

Sequence     DSM  Delta-V
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Case Study 2: GTOC 1 Impact Mission

Try to maximise the change in the semi-major axis of the 
asteroid 

2001TW229
Top Level: Use PSO to optimise the integer variables characterising 
the sequence and presence of DSM’s

Lower Level (two sub-cases):
Initially prune to minimise the Delta V

Optimise the deflection of the asteroid

From published results we know that a retrograde transfer in the final 
phase maximises the deflection
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Case Study 2: GTOC 1 Impact Mission

Best trajectory found by the sequence optimizer:
E-E-S-S-S-Ast

1 DSM in phases 1,2&3
J = 997,644

Best solution presented in competition: (found by JPL)

E-V-E-E-E-J-S-J-Ast
J = 1,850,000

Solution contains low thrust arc
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Some trajectories considered by the 
optimizer:

E-E-S-S-S-Ast 11100 997644

E-E-E-V-V-Ast 11110 822401
E-E-J-S-J-Ast 11110 735174
E-Ast 1                   410038
E-E-Ast 11                 280457

Sequence                       DSM                      J
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Concluding remarks from Reading work
• GASP extended to DSM
• Pruning based on constrained local 

optimization.
• Clustering employed to identify feasible 

regions.
• Pruning algorithm scales linearly with the 

number of phases
• Two level optimization method proposed 

to optimise the phase sequence and 
number of DSM.
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The Incremental Approach

• Decomposition in subproblems (levels)
• Search for partial solutions at each level 
• Incremental growth of the dimensions of the search space
• Incremental composition of the solution 
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Incremental Approach IIIa
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2x

1x

4x

3x

1. Decompose the problem into 
M subproblems

2. For each subproblem k (with 
k=1,…,M) define a pruning 
criterion fk

3. Find a set of local minimisers 
for fk in each subdomain Dk.

4. Build a box Bq around each 
minima

5. Build a new connected search 
space Dk

a at level k made of 
all the boxes Bq

6. Perform an optimisation on 
subdomain Dk+1 keeping fixed 
the search space Dk

a

1χ

2χ
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Incremental Approach IIIb
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Glasgow Solution Approach

Final Remarks

2x

1x

3x4
x

3x

1. Decompose the problem into 
M subproblems

2. For each subproblem k (with 
k=1,…,M) define a pruning 
criterion fk and a threshold ft

3. Find all disconnected feasible 
sets Xq within subdomain Dk
such that fk≤ ft for all xє Xq.

4. Build a box Bq around each 
feasible set

5. Build a new connected search 
space Dk

a at level k made of 
all the boxes Bq

6. Perform an optimisation on 
subdomain Dk+1 keeping fixed 
the search space Dk

a

3x

1χ

2χ
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Box Identification

• 4 methods were studied

1

2

3

4
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Affine Transformation and Box Collection

• Given a set of disconnected boxes Bq
k at level k

• We can define a biunivocal mapping function    such that: 

• Where Um(k) is the unit hypercube of dimension m(k)

• The inverse mapping requires Q(k) operations for each level 
k, thus for M levels the number of operations is simply:

Introduction
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Affine transformation: different partitioning methods

1 2 3

4
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Back pruning

2x

1x
4x

3x

2x

1x

Pruning Level 1

Pruning Level 2

Some of the regions, which were feasible 
at level i, then become unfeasible when 
adding one or more levels.

Level 1

Level 1 Level 2

Back pruning further 
reduces the search space 
of the preceding levels

MC12
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Testing the Pruning Approach
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Preliminary Tests

E-E-M
• DSM on each leg

– 5 variables on level 1
– 4 variables on level 2

• t0∈[3650 MJD2000, +15 
years]

• v0 =2 km/s
• T1 ∈[50, 700] d
• rp ∈[1, 5] planet radii
• T2 ∈[50, 700] d

E-V-M
• No DSM on leg E-V

– 2 variables on  level 1
– 4 variables on level 2

• t0∈[3650 MJD2000, +15 
years]

• TOF1 ∈[50, 400] d
• rp ∈[1, 5] planet radii
• T2 ∈[50, 700] d
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Glasgow Solution Approach

Final Remarks
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E-V-M
All-at-Once Approach

• Objective: v0 + ΔvDSM
• 500 random starting 

points + fmincon
• 494,233 total function 

evaluations
• Best solution: 2.98 

km/s
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Earth
at departure

Venus
swing-by

VM DSM
Mars

at arrival
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E-V-M
Comparison among Global Methods

Solver 20000 evaluations 40000 evaluations 80000 evaluations

DIRECT [km/s] 4.3760 4.3730 4.3730

MCS [km/s] 6.7390 5.5240 5.4080

DEVEC, 200 runs

< 3 km/s 6.5% 5.0% 7.0%

< DIRECT 99.5% 99.5% 99.5%

< MCS 100.0% 100.0% 100.0%

Multi-start, 200 runs

< 3 km/s 2.5% 3.0% 3.0%

< DIRECT 97.0% 99.0% 98.5%

< MCS 100.0% 100.0% 100.0%

PSO, 200 runs

< 3 km/s 2.0% 2.5% 7.5%

< DIRECT 71.5% 73.0% 78.5%

< MCS 100.0% 96.0% 93.0%
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Glasgow Solution Approach
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E-V-M
Incremental approach

• 90% of the 20 best 
all-at-once solutions 
are included in one 
of the boxes

• The best all-at-once 
solution has been 
found

• 8827 function 
evaluations to find 
the best solution 
after pruning

Introduction

Problem Modeling

Reading Solution Approach

Glasgow Solution Approach
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E-E-M 
All-at-Once Approach

• Objective:
ΔvEE-DSM + ΔvEM-DSM

• 5000 random 
starting points + 
fmincon

• 9⋅106 total function 
evaluations

• Best solution:
0.326 km/s

-2 -1.5 -1 -0.5 0 0.5 1 1.5
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Earth
at departure

Mars
at arrival

Earth
swing-by

Sun

EE DSM

EM DSM
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E-E-M
Comparison among Global Methods

vΔ0tδθ 1α1T1γ ,1pr 2α2T

Solver 20000 evaluations 40000 evaluations 80000 evaluations

DIRECT [km/s] 2.7989 1.1870 1.1608

MCS [km/s] 1.2070 1.2070 0.9944

DEVEC, 300 runs

< 0.33 km/s 0.0% 2.7% 8.0%

< DIRECT 69.7% 87.7% 85.7%

< MCS 100.0% 86.3% 85.7%

Multi-start, 300 runs

< 0.33 km/s 0.3% 0.0% 0.7%

< DIRECT 100.0% 98.3% 98.7%

< MCS 94.7% 98.3% 96.0%

PSO, 300 runs

< 0.33 km/s 0.7% 0.3% 0.0%

< DIRECT 100.0% 91.3% 76.3%

< MCS 84.0% 91.3% 71.3%
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E-E-M
Incremental Approach

• 86% of the 50 best 
all-at-once solutions 
are included in one 
of the boxes

• The best all-at-once 
solution has been 
found

• 32544 function 
evaluations to find 
the best solution 
after pruning

Introduction

Problem Modeling

Reading Solution Approach

Glasgow Solution Approach

Final Remarks
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Case Studies

• E-E-M with final orbit insertion

• The BepiColombo Mission
– E-E-V-V-Me
– E-V-V-Me-Me-Me

• Generation of Feasible Sequences for a 
NEO mission
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E-E-M with final orbit insertion

• Final orbit:
rp=3950, e=0.98

Incremental approach:

• DSM on each leg
– 5 variables on level 1
– 4 variables on level 2

• t0∈[3650 MJD2000, 
+15 years]

• v0 =2 km/s
• T1 ∈[50, 700] d
• rp ∈[1, 5] planet radii
• T2 ∈[50, 700] d

2 2

1 12

1

h

r

f

v v
f v

v
f v v

θβ
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= + Δ

= Δ + Δ
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30 20
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The RST Components

• Used for legs with 
resonant swing-bys

• Necessity to prune on 
the basis of the velocity 
before the swing-by

Introduction

Problem Modeling

Reading Solution Approach

Glasgow Solution Approach

Final Remarks
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E-E-M with final orbit insertion
Pruning of level 1

Level under 
pruning

Box edges on 
level 1

1

5478.75 d (1)
0.1429 (1/7)
0.1429 (1/7)
0.2967 (1/3)
95 d (1/10)

Introduction

Problem Modeling

Reading Solution Approach

Glasgow Solution Approach

Final Remarks

Threshold = 0.5 km/s

3000 4000 5000 6000 7000 8000 9000 10000
t0, d, MJD2000

t0 at Level 1

All launch window
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-2 -1.5 -1 -0.5 0 0.5 1 1.5
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x [AU]

y 
[A

U
]

Launch from E
t0=5998.97 MJD2000

E swing-by
T1=502 d

Arrival at M
T2=847 d

DSM 1
α1=0.47

DSM 2
α2=0.47

E-E-M with final orbit insertion
Results

Average  
function 

evaluations

Average 
best Δv
[km/s]

Best Δv 
standard 
deviation 
[km/s]

DE
all-at-once 200070 1.591 0.136

PSO
all-at-once 200000 1.556 0.238

fmincon
multi-start
all-at-once

210217 1.268 0.137

Incremental 6097, 
18519

1.171 0.081

Δv=1.08 km/s
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6.5 revs

E-E-V-V-Me

Introduction

Problem Modeling

Reading Solution Approach

Glasgow Solution Approach
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Lower 
bound

Upper 
bound

Level

t0 [d, MJD2000] 4500 5500

1

1
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300
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850

θ 0
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α1 0.2

T1 [d] 350

γ1 [rad] -π

rp,1 [planet radii] 1

α2 0.01

T2 [d] 300

γ2 [rad] -π

rp,2 [planet radii] 1

α3 0.01

T3 [d] 150

γ3 [rad] -π

rp,3 [planet radii] 1

α4 0.595

T4 [d] 750

4

3

2

1

100

Level 2

100

Level 1

200100
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Starting points
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E-E-V-V-Me
Pruning of level 1

4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500
t0, d, MJD2000

E-E-V-V-Me Level 1

All launch window

Level under 
pruning

Box edges on 
level 1

1

1000 d (1)
0.2 (1/5)
0.2 (1/5)

0.233 (1/3)
50 d (1/5)

Threshold = 1 km/s
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E-E-V-V-Me
Pruning of 
level 2

4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500
1

2

3

4

5

6

7

t0, d, MJD2000

E-E-V-V-Me Level 2

Back-pruning of level 1

Level under 
pruning

Box edges on 
level 1

Box edges on 
level 2

2

100 d (1/10)
0.2 (1/5)
0.2 (1/5)

0.233 (1/3)
50 d (1/5)

1.25 rad (1/5)
1.33 (1/3)
0.29 (1/3)
30 d (1/5)

Threshold = 1.1 km/s
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E-E-V-V-Me
Results

Average 
function 

evaluations

Total time 
for 

objective 
function 

evaluation 
[s]

Average 
best Δv
[km/s]

Best Δv
standard 
deviation 
[km/s]

DE
all-at-once 400010 5842 8.456 0.444

PSO
all-at-once 460000 6900 6.094 0.920

fmincon
multi-start 
all-at-once

427499 6412 4.599 0.865

Incremental

24397, 
96674, 
184340, 
154754

3625 3.89 0.739
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Launch from E
t0=4956 MJD2000

E swing-by
T1=503 d

Arrival at Me
T4=800 d

V swing-by 1
T2=420d

V swing-by 2
T3=240 d

Δv=4.55 km/s
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Feasible Set Approach: EVVMeMeMe Sequence

• 2000 days of search window [3457,5457]MJD2000

• No pruning on γ and rp

• Pre-assigned resonance strategy, i.e. fixed number of revolutions 
per leg

• Boundaries on α and TOF function of the number of revolutions

• Special partial pruning criteria for Venus and Mercury incoming 
conditions
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Feasible Set Approach: EVVMeMeMe Sequence

• The best sampled solution during the 
pruning has a total Δv=6.5km/s with a 
vinf=4km/s at Mercury and 
vinf=3.869km/s at launch.

• Not a local minimum just a sample 
in the pruned space

• BepiColombo has a total Δv=4.08km/s 
with a vinf=3.44km/s at Mercury and 
vinf=3.762km/s at launch

• 225000 function evaluations (about 45 
minutes on a centrino 2GHz).

• Good repeatability of the pruning

Venus

Earth
Mercury
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E-V-V-Me-Me-Me Pruning: Feasible Set Approach
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E-V-V-Me-Me-Me Pruning: Search Space Analysis
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Characterisation of the Search Space

• At each level k we define a partial objective 
function:

• The partial objective function might not be 
directly related to the objective function f of the 
whole problem and is uses solely to prune the 
search space Dk

• Definition of characterisation: at each level k we 
want to identify all the minima for fk or all the 
regions that are feasible according to the 
condition fk≤ ft
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• a local minimisers in Dk is:

• and a ball containing a local minimiser l is:

• consider a set of grid points in Dk

• then we have a sufficient grid to characterise Dk
if for a given ε :
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Algorithmic Complexity Analysis II

• The number of generated and stored boxes at each level k is Q(k)≤Nl
• The total number of stored boxes for M levels is: 

• The affine transformation requires for each function evaluation Q(k) 
operations to check the inclusion of the evaluated point

• The total number of operations for M levels is:

• If Ns(k) grid points (function evaluations) are required to characterise the 
search space at level k then the total number of grid points (function 
evaluations) is:
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Trajectory Planning
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Trajectory Planning

• The design of a sequence of GA,DSM and LT arcs 
is addressed by considering each trajectory as a 
scheduled sequence of actions.

• Each action has preconditions and post conditions

• First Pruning Heuristic
– A complete trajectory is feasible if and only if all the pre 

and post conditions for all the actions composing the 
trajectory are true.
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Block Structure Model: Blocks
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Feasibility
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Generation of the Feasible Set

1. Define a set of pruning criteria P
2. Start at level i=0 with a departure action s01 for which ¬P

3. Add a level i=i+1

4. Add to each partial trajectory j an action sij the preconditions of 
which match the post conditions of si-1j. 

5. If at level i multiple actions can be added create a partial 
trajectory for each action

6. Prune all partial trajectories that meet the pruning criteria

7. go to 3.
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Automatic Sequence Generation

• Generation of sequences
– Max no. of resonant swing-bys
– Max no. of inward legs for an outer target
– Max no. of outward legs for an inner target

• STOUR-like, energy based feasibility assessment
– Circular, coplanar planet orbits
– No phasing
– No overturning of the relative velocity vector

• Hohmann Δv for sorting
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Optimisation on the Feasible Set

• Let’s call Of the set of all the feasible trajectories.
• If the number of elements in Of is small, apply 

systematically the pruning procedure to each one 
of them

• Otherwise use a global optimisation method for 
integer problems 

• Evaluate each element of Of by running the 
pruning+optimisation algorithm
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Example: GTOC 1

• Requirements
– E to S transfer
– Max 2 resonant swing-bys
– Max 1 inward leg
– Max vinf at departure=3km/s

• Solution
– 13 feasible sequences
– Ranked according to the 

Hohmann total Δv (km/s)
– The GTOC1 winning sequence 

is the 4th in the list

• Computational time to create 
the set Of: 0.67s

1 E V E E M S 28.14

2

3

4

5

6

7

8

9

10

11

12

E V E E M M S

13

28.14

E E V E E M S

S

S

S

S

28.14

E V E E E J S 28.19

E V E E J J S 28.19

E E V E E J S 28.19

E V E E M J S 28.19

E V E M M J S 29.49

E V E E M M J 29.49

E V E E M J J 29.49

E V E M M J J 29.49

E E V E E M J 29.49

SE E V E M M J 29.49
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Feasible sequences
JPL solution 
sequence
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Final Remarks

• Different models implies different sets of solution and a more or less 
difficult search. For example model 2 contains solutions that do not exist 
in model 1

• With model 1 the sum of the parts is not the whole therefore specific 
heuristics have to be used at each level

• About the algorithmic complexity for model 1 we can say that the number 
of function evaluations grows linearly with the number of levels

• At present we cannot say if the number of grid points required to have a 
sufficient characterisation of the search space for model 1 grows 
polynomially with the number of levels.

• Though both pruning procedures were proven to be robust when applied 
to the test cases, still the search for a solution is stochastic
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Work in Progress

• Analysis of problem complexity

• Statistic tests on the search after pruning

• Alternative models and pruning procedures

• Iterative application of the pruning process can 
lead to a more reliable and effective pruning
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