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The Problem

e Two different problems of different complexity

- Pruning the search space in the case of multiple deep
space manoeuvres

— Automated trajectory planning integrating transfer arcs
of different nature
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Available Solutions to the MGA problem

e S-TOUR and LTGAS-TOUR
- 3D,MGA, DSMs, free sequence, systematic scan
e Swingby Calculator
- 3D, MGA, DSMs, enumerative
o PAMSIT
- 2D, MGA, no DSMs, free sequence, systematic search
e IMAGO
- 3D, MGA, DSMs, free sequence, stochastic search
e DEIMOS
- 3D, MGA, no DSMs, free sequence, systematic search
e GASP
- 3D,MGA, no DSMs, systematic pruning plus GO
e MITRADES
- 3D, MGA, DSMs
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Possible Approaches to the MGA problem with DSMs

Linked conic -
Unpowered A Powered
GA GA

Disconnected Connected position
Optimal set Feasible set Optimiser Grid+optimiser
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Trajectory Models

e MGA trajectories with multiple DSMs can be
modelled in several ways

e Different models can require algorithms with
different complexity

e Two different classes of models were developed
both based on a linked-conic approximation
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Assign a value to the
position vectors of the
departure and arrival
planets r; and r,,, to their
corresponding times
Assign a value to the times
of the DSMs

Propagate from the
departure time to the time
of the first DSMs

Assign a value to the three
components of the DSM
Propagate till the next DSM
Continue till the last DSM
Compute a Lambert’s arc
connecting the last DSM
with the arrival planet



Introduction

Problem Modeling
Reading Solution Approach
Glasgow Solution Approach

University
of
Reading

Final Remarks

Trajectory Models: Velocity Formulation

e Each leg requires the previous one in order to propagate

e The position and velocity vectors of the departure and
arrival planets can be computed thorugh two variables
only: the departure time and the arrival time

e Each DSM requires 4 free variables therefore for n DSMs 4n
variables are requried

e Fixing the arrival and departure time, the DSMs can be

ﬁpl\clled as a 4n dimensional box constrained problem of the
ind:

n
min fj(AVI,---aAVia'--aAVnatla---atia--'atn) = AVO,j +ZAVL] +AVn+1’j
i=1
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Trajectory Model 1

1.

2.

Split the trajectory in phases

Each phase connects two
celestial bodies

Each phase is split into 2
subphases divided by a deep-
space manoeuvre

At the celestial body the
outgoing velocity is computed
with the linked conic model

The length of each subphase,
the departure time and the
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initial departure velocity must

be determined in order to
minimise the total Av
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A 4
8
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MC19 Aggiornata figura qui sotto
Matteo Ceriotti, 9/6/2007
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Gravity Assist Model: Unpowered Swing-by

MC20
e Hyperbola plane II
definition AN
n, LV, -«
n.Lv, .
e Rotation of n.

=
around V; of an /\Vo

angle vy 1 v,
“ n
VIO
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MC20 Propongo questa
Matteo Ceriotti, 9/6/2007
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Gravity Assist Model: Unpowered Swing-by

Reference vector n, perpendicular
to the plane defined by the
incoming relative velocity vector
and the planet velocity vector

\N/i
Ui -
Vi
> First rotation from n. to n, the
v vector normal to the hyperbola
P plane I1
aal
q:[uisma,cosa}
Ny :Q(vi)ni

11
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Gravity Assist Model: Unpowered Swing-by

e Second rotation in the plane of the
hyperbola, around the vector n,
v,
V.

e The rotation angle gis a function of the
incoming velocity vector and of the
pericentre radius r,

i ﬂT

=| Ny Sin—, cOS —
q |:H 7 >

vo — Q(nn)vi

12
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Trajectory Model 1

e For a Av minimisation problem the objective function is the
sum of all the Av’s for all the deep space manoeuvres plus

the departure Av:

N
min f(X)= Z AV,
=0

xeD
MC21

e The generic solution vector

X=|\V,,0,0,1,

A 4

T2, 710016 T2, Qg

13
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MC21 Sostituito vettore x con quello usato nel paper. Divide le variabili in gruppi di livelli
Matteo Ceriotti, 9/6/2007
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1. Assign a value to the
position vectors of
the departure and
arrival planets r; and
r;; and of the DSMs
and to their
corresponding times

2. Compute the
Lambert’s arc
connecting positions
of the planets and of
the DSMs

14
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Trajectory Model 2 and the Position Formulation

3. Compute the vector
difference at each
junction point

4. Compute the Av
correction at
departure and arrival

15
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Trajectory Models and the Position Formulation

e Each Lambert’s arc connecting two points can be
computed independently of the others once the
position vectors are assigned.

e The position of the departure and arrival planet
can be assigned through two variables only: the
departure and the arrival times.

e Each DSM requires four variables instead

16
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Gravity Assist Model: Powered Swing-by

MC15
Given V;, V,:
e A Newton method is
used to find the
pericentre radius for

the required deviation
angle

e If the required
deviation can not be
achieved computes
correction manoeuvre
at minimum altitude
point

17
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MC15 Inserito modello powered
Matteo Ceriotti, 9/6/2007
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MC16

e Position and
velocity of planets
from analytical
ephemeris.

e Lambert’s solution
between two
DSMs.

e DSM defined by
radius, two angles
and fraction of the

TOF

18
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MC16 Text added
Matteo Ceriotti, 9/6/2007
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Trajectory Model 2 T

\
Timing and 1
1
1

position of DSMs position of DSMs
® T ¢ ® @ - ’ ¥

1
Timing and 1
1
1

————

Deep space flight with Deep space flight with |
multiple manoeuvres

multiple manoeuvres

Powered l

swing-by

19
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MC17 Added text
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Trajectory Model 2 MC18

e The objective function is the sum of all the 4v’s either due to a
powered swingby or to a DSM.

xeD

N N
min f(X)= ZAVG INE ZAVDSM i TAY,
i=0 i=0

e The generic solution vector is:
T
X:[tO,rIJ,91J9¢1J,a1J,T ,...,rij,eij,wij,aij ,Ti,...,rNj,gNj,wNj,aNj ,TN]

e With the constraints on the pericentre radius of the swingby
hyperbolae:
rp >r

pmin

20
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Preliminary Considerations

e Model 1 and velocity formulations do not
allow to compute each leg independently
of the other legs

e Model 2 and position formulations allow
the computation of each leg independently
of the other legs

21
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Preliminary Considerations

e Model 1 leads to a box constrained problem.
Since physical constraint are satisfied intrinsically
additional criteria have to be introduced to define
the feasibility of the solution.

e Model 2 leads to a constrained optimisation
problem with nonlinear constraints. If only
feasible solutions are required the problem
associated to model 2 reduces to a constraint
satisfaction one.

22
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e The two groups in Glasgow and in Reading
addressed the problem into two different ways.

e Reading used model 2 while Glasgow used model
1 to build the trajectory.

e Both approaches, however, try to give a positive
answer to the reductionist/holistic question:

Is the sum of the parts equivalent to the
whole?

23
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Some preliminary Answers

The sum of the global optima for each subproblem in which we
can decompose model 1 does not always correspond to the global
optimum for the sum of the subproblems.

The choice of the function f, associated to each subproblem can
change the search for the gliobal solution.

If we define a box contained in the subspace D, as:
Xk’q c Dy

Then we can find a union of Q(k) boxes for each slice k the
cartesian Broduct of which contains the global optimum of the
whole problem: M Q)

Xglobal EI I U ><k,q
g=1

k=1
24
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Searching Through an Optimiser

e Once the problem is properly decomposed each
subproblem can be addressed separately if a set
of appropriate criteria can be found that makes
the sum of the parts equivalent to the whole

e Each single leg can be optimised either locally or
globally with respect to one or more criteria or...

e ..for each single leg an optimiser can be used to
look just for a set of feasible solutions

25
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Local Optimisation

e From a set of preliminary tests it was observed
that for each subproblem a set of multiple
minima exists. This holds true even if the
departure date and arrival dates for each leg are
fixed. The result is consistent with the use of a
Lambert’s solver (or equivalent).

e Optimising locally each subproblem can result
into a suboptimal solution for the whole
trajectory, I.e. the sum of the parts is not
equivalent to the whole

26
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Unlver5|ty of Reading
Pruning Algorithm

« Test Cases: Messenger, Bepi Colombo missions
« Sequence Optimizer

« Test Cases including 18t ACT Trajectory Competition

27
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GASP Algorithm with DSM

Inspired by original GASP ideas
«Sampling based on local optimization
Clustering employed to estimate feasible regions

*Description based on two phases, but easily
extendible to more phases.

*One DSM per phase considered, but more can be
added.

* Initial search space is a hyperrectangle (bounds)
29
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Phase 1

1) Initialise the local optimiser
to N starting points.

t_arrival

tof bounds

- t _depart

t0 bounds

v

Optimization Problem 1

30
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1) Initialise the local optimiser
to N starting points.

arrival

______ 2) Run clustering algorithm
to group remaining
feasible points.

3) Generate bounding boxes
from the extreme points in
each cluster

t_dcpart

Departure windows for
phase 2

Optimization Problem 1 31
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Phase 2

g g
v S 5
Ex4 _._..l
Infeasible
<_—
departure
times
t depart
+—> +“—>

Departure windows for
phase 2

Optimization Problem 1

Optimization Problem 2 32
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Phase 2

Optimization Problem 1
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t_arrival

Phase 2
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t depart

Optimization Problem 2

33
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Phase 2

1 1) Initialise the local optimizer n

o times in each window
© 8
> (]
.E ..
° X e 2) Optimize each point in turn
[ )
()
()
(]
() ® L
PAPS () .. ... Optimization Problem 2
(] () @
(] () () ®
8 °
® ()
® : .. (]
() ()
(]
..
@
- t depart

Optimization Problem 1 34
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Phase 1 Phase 2 ° oo
— T 0
2 2 ®e l
@ All points ©
! A along this line - ® o .. ® /
V are infeasible 0% © —> o ®

Satisfies (1)

t depart

3) Each pointin phase 2 is associated with a departure velocity. The feasibility of a point in
phase 2 w.r.t the preceding swingby manoeuvre is checked by solving a local optimization at
phase one.

4)

If after k attempts no feasible point is found in phase 1, discard the point in phase 2.

Optimization Problem 2

Optimization Problem 3 35
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t_arrival

5)
6)

7)
8)

9)

Phase 1

A
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Phase 2

t_arrival

[
»

v

&

v

t depart

Run clustering algorithm on remaining points in phase 2, generate bounding boxes

Backward constraining: re-cluster phase 1 with new feasible points corresponding to points in

phase 2

Locate solution families

Explore the solution families by globally optimizing each family for a limited number of

generations

Further explore the family that produces the lowest objective function value in step 8

Optimization Problem 2

Optimization Problem 3
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Pruning Algorithm Complexity

Total number of Lambert problem calls:

n—1
= s1(dy + )kl+k22{s w;(d; + 1 }+k32{s w;(d; + 1)}
1=2 —
[ calls to Lambert solver

n  number of phases

s1  number of local optimisations in first phase

s;  number of local optimisations per window (i > 1)
d; number of DSM’s in phase i

w;  departure windows found in phase ¢

k;  average number of function evaluations in phase ¢

It is possible to bound the the number of Lambert calls
with a linear function of the number of phases -
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Grid sampling results Bounding baxes found in Earth=Mars mission
3800 | 3800 r r . .
3600 E i n S 3604
00 3400 J
- [9 ‘ 9
I!-E‘IJE"” € I_[]U(l, .{U(]U] M.JD2000 | 1200 |
=1 ' =3 *"%
=] - f 15 0] ave =
R sooctof € [150,450] days % w000
E s
3 200 € [1.496e8, 2.2794¢8] km - § 2800)
E ‘% 26040 [
2% ¢ [-m/6,7/6] rad 1
Mot i . i 2400 J
¢ € |-m/6,7/6] rad A
2200 | ° g 22'30|
2000 ) ) . L i 2000 | L L L L .
3000 2200 2400 3600 2800 3000 2200 1400 2000 2200 2400 2600 280 3000 3200 3400
0 [MJD 2000] 10 (MUD 200:0)
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Comparison:

Grid Sampling

Sampling resolution of
45*%20*20*10*10*10

(18,000,000 points)
Constraint values had to be doubled
to find

feasible points

3.36 hours to run on 2GHz PC

36 million calls to Lambert Solver
Only 19 feasible points found

University
of
Reading

Pruning Algorithm

150 random 6D vectors generated
128 s to run on 2GHz PC

116,326 calls to the Lambert solver
89 feasible points found

39



Introduction

Problem Modeling

Reading Solution Approach ,
& -

Glasgow Solution Approach
University
of
Reading

Final Remarks

n and Nine Planets Copyright @ Calvin J. Hamiltc

Bounding boxes found for the Earth=Venus phase

B000
F500 fx
7000 -
9 6500 -
[ ] S ao00 |
Example: E-V-M Phase 1 .
:—:S 5500 =
e No DSM in phase 1 so00
. .
e 1DSMin phase 2 wor
. 4000 -
[ ) : X X ; i i
I—aunChl SWInngI DSM 4000 4500 5000 5500 6000 6500 7000 7SO0
. 'n (WD 2000)
e Insertior +, < 36507302) MID2000
rF TLJ}) c [HD‘_LOO:I i SUilJnding tn?xe'sfounltlrclrthe\u'erlus—Mil\r'sphasel .
e .. B
¢2) < [50,700] ”
e Bounds: oo -
UNAS: . - [1.0821¢8,2.27948] ¢
6500
0 e [—m, 7 g p
R 6000 #
¢ [—7/8,7/8] Phase 2 2, ;
/ 5‘-5 S50
a € [0.1,0.9] so00 ”
4500
Avgep < 5km/s o
A.‘l,gﬂ i 51{111’4'.‘. 4000 4500 S000 t..;s?:ungT G500 FO00 T30
dep i

. A < 9 lern /e
e Constraint: ~"psm = 2km/s
Awv, < 3km/s

40
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E-V-M with 1 DSM

l:: MID 2000)

6000

= 5500

5000

4500

4000 [

Baunding boxes found for the Earth=Venus phase
T T T T T

Bounding boxes found for the Venus—Mars phase
T T T T T

" 7500 &

B0 - -

¥
4 (D 2000)

am

55040 -

5000

4500 -

000 -

4000 4500 S000 5500 &000 6500 FO00 TS0 4000 4500 SO00 5500 000 G500 T0og TS0
L D 20000 ' MUD 2000}

*Majority of the search space is unfeasible

*Works well over large launch window

*Combines phases with purely ballistic trajectories with more complex cases
*Phase 1 < 30s

*Phase 2 < 2.5mins

*6 solution families found 41

Optimization Problem
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Global Optimization

1. Apply differential evolution to each of the 6 solution families. Allow a
maximum of 300 generations with a population size of 20
2. Look at the objective function value of each family, select family with
best solution
3. Re-optimize best family, this time allowing for 2000 generations
i o 1) 1Y ik 3
min f(x) = &*{-‘éei} + Avly) + Avpdy + ﬁ».-t-*f""
Solution -
~ subject to x c B,
to = 4469.€ ~ 1) - )
£ = 17178 Alep
of A (1)
(2) _ aqo SUpsmM
f = ()?_'1.2.4' .:’]_:'. ¢ y
o "in - ll{XJ
r2) = 1.725 (2)
H{QJ e <] 1] Vout
e ’ &_.{,(QJ
#(2) = —0.0 - DSM- e
(2) = 0.50% R B o - O L R 0 S B
H 003 Alé’aﬁ = q1 I[1|“"'r:'11'1 ’ Wouti.‘ 32 111:11‘1J a

w10

42
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Case study 1: Bepi-Colombo

Mission

Reduced trajectory: E-E-V-V-Me
21-dimensional problem

8 Delta-V’s _
Constraints

Avgep < 3km/s
A'z:gﬂ-};':” < 3km/s
A'z?gé';[) < 2km/s

Avp, < 3km/s

Bounds

tof -4 € [100, 800]

r(1) € [1.3464€8, 1.6456¢8]
r(2) € [1.0821e8, 1.4960¢8]
r3) € 9.7388¢7,1.1903¢8]
r4) e [5.7909¢7,1.0821 €8]
p(l--4) [—7, 7]

oY € [—7/6,7/6)

a1 €10.1,0.9]

University
of
Reading
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Case study 1: Bepi Colombo Mission

Results

index | ¢ (MJD2000) | tof (days) r (km) 0 rad o rad "
0 7.5983e+003

1 372.3406 1.5203e+008 | -2.8955 | 0.0001 | 0.5166
2 171.2483 1.2460e+008 | 1.4827 0.0143 | 0.4886
3 305.9244 9.7390e+-007 | -0.6870 | -0.0000 | 0.6110
4 256.0651 9.7822e+4+007 | -0.8699 | -0.0730 | 0.5178

Bepi Columbo Trajectory

Manoeuvre | Type | Bodies Involved | AV(km/s) | Constraint Violation P Earth Swingby

1 Launch E (I‘JTM]O No

) DSM E-E 0263321 No kéﬁigﬁj 5

3 DSM EV 0.010990 No \

4 DSM V.V 0.036779 No ‘

5 DSM V-Me 0.188297 No

9 Swingby E 0413114 No

10 Swinghy V 0.002458 No

11 Swingby V 0.006241 No

Total AV 1.195605
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Case study 2: Messenger Mission
Sequence: E-E-V-V-Me-Me-Me

Challenge
7/ phase mission
« 1 DSM per phase
* 6 swingbys
* Insertion manoeuvre

« 36-dimensional search space

15 constraints

Constraints
Avgep < 5km/s
Avie® < 2km/s
Avpgy < 3km/s

Avy, < 4km/s

Bounds

to € [1000, 4000]

tof(1--7) e [200, 500]

r(1) = [1.3464€8, 1.6456¢8]
r(2) e [1.0821e8, 1.4960e8]
r(3) = [9.739€7, 1.1903¢8)]
r1) e [5.791e7, 1.0821¢8]

€ [5.212¢7.6.370eT]

007 & [, 7]
> e [—m /6, 7 /6]
a < [0.1,0.9]

45
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Case study 2: Messenger Mission

Results:
index | t (MJD2000) | tof (days) | 7 (km) f rad o rad 9!

0 1527.3

1 399.9972 | 1.4993e+8 | -3.1117 | 6.0655e-6 | 0.4658
2 377.1584 | 1.3667e+8 | -1.4910 | 0.01 ([J 0.6430
3 177.7119 | 1.0398e+8 | 2.2906 | 6.7708e-4 | 0.3966
4 171.7616 | 5.8483e+7 | -2.8456 | 0.0197 | 0.4707
5 126.5759 | 6.7573e+7 | -1.1223 | 3.6121e-4 | 0.5166
6 132.5413 | 5.2811e47 | -2.2575 | -0.0053 | 0.4979
7 107.1364 | 6.7171e+7 | -1.0448 | -6.0022e-5 | 0.6219
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Case study 2: Messenger Mission

Results:
Manoeuvre | Type | Bodies Involved | AV(km/s) | Constraint Violation |--*——* 7 A ¥777 7 Lt o e Y721
I Lannch ) 0.127137 No
2 DSM EE 0.074635 No
3 DSM EV 2253177 No
4 DSM V-V 1.621058 No
5 DSM V-Me 3.085007 Yes launc}
{ DSM Me-Me 0.094500 No \
i DSM Me-Me 0.166076 No j )
S| DS | MeMe | 00w Ko g faiciTgnsiiod
9 Swinghy ) 0509242 No
10 Swinghy V 0005469 No
11 Swinghy v 0843764 No
12 Swinghy Me 1774886 No
B | Swmgy | Me | OU1HD Ko carh 7 o W
14| Swinghy Me 0.001736 No Swingby
15 | Inserfion v 0.275635 No a7 10.9139%0
Total Al 10913980

47
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Sequence Optimization

Top level: integer optimization

Number of phases

Swingby sequence (which planets to visit)

L]

Pruning + continuous optimization

Timini iarameters

Lower level:
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Top Level Optimization

Non-linear Integer Programming
Strategy: (from “PSO for Integer Programming” Laskari et al)

Using a standard global optimizer

1) Evaluate objective function in usual manner

2) Once the optimizer finishes round the values in
the solution vector to the nearest whole number

Problem: which global optimizer to use?
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Differential Evolution vs. PSO

Selection of problems with known optimal minima chosen
Try to get a feel for how each optimizer performs

Reshlldens included: ®ut not limited to)
*PSO outperformed DE in every test

JntAfter:1000trials RSO converged-1o the @ptimal solution
100% of the time

o 0 0 0 0 T 35 .—2[] =10 32 .—][] ]

DE ?anerged %? th Gptlmakgolutld‘h 78% of the time .
Jy(z)=—] 15 27 36718 12 |z+x 10 6 11 6 —10 |« rt = [ 0 12 23 17 ()']
g . 32 =31 _~6 38, =20 .

19PST required fewer |generationsitosconvergeta-optimal
solution on every occasion
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Problem Formulation:

Departure planet: Py

Destination planet: P, .,

Maximum number of phases: 72
Maximum DSM'’s per phase: DSM,, 4,

PSO Parameters:

Swarm Size
Generations

University
of
Reading
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Top level decision vector:

...formulation continued
X = [Pl:PQ:!"'7P’n—11D1:D27"':Dn]

Pi.n €]0,9]
Dy .n € [O,DSMma:L']

Lower level: (objective function of the top level)

Pruning algorithm, followed by optimisation trying to minimize:

DAV
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Case Study 1: Going from Earth to Mercury

Optimize the planetary sequence between Earth and Mercury
Find optimal DSM parameters for each phase
Minimize the total Delta-V

Pdepart =3
Pdest = 1

n=3
DSMmax = 1

Restrict solution to planets between Mars and Mercury
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Going from Earth to Mercury
(CO nt . ) With insertion manoeuvre

No insertion manoeuvre

Sequence DSM Delta-V r, = 2480 km

E-E-V-Me 110 1.175 km/s e =0.6679

E-E-V-Me 111 1.746 km/s

E-E-M-Me 110 2.490 km/s

E-V-Me 01 2.838 km/s Sequence DSM Delta-V

E-E-V-Me 000 6.9994 km/s
E-E-V-Me 001 8.1962 km/s
E-E-V-Me 111 8.6759 km/s
E-E-Me 11 9.7797 km/s
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Case Study 2: GTOC 1 Impact Mission

Try to maximise the change in the semi-major axis of the
asteroid

2001TW229

Top Level: Use PSO to optimise the integer variables characterising
the sequence and presence of DSM’s

Lower Level (two sub-cases):
Initially prune to minimise the Delta V

Optimise the deflection of the asteroid

From published results we know that a retrograde transfer in the final
phase maximises the deflection
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Case Study 2: GTOC 1 Impact Mission

Best trajectory found by the sequence optimizer:

E-E-S-S-S-Ast
1 DSM in phases 1,2&3
J = 997,644

Best solution presented in competition: (found by JrL)

E-V-E-E-E-J-S-J-Ast
J =1,850,000

Solution contains low thrust arc

56



Introduction
Problem Modeling
Reading Solution Approach

Glasgow Solution Approach

University
of
Reading

Final Remarks

Some trajectories considered by the

optimizer:
Sequence DSM J
E-E-S-5-5-Ast 11100 097644
E-E-E-V-V-Ast 11110 822401
E-E-J-S-]J-Ast 11110 735174
E-Ast 1 410038
E-E-Ast 11 280457
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Concluding remarks from Reading work

e GASP extended to DSM

e Pruning based on constrained local
optimization.

e Clustering employed to identify feasible
regions.

e Pruning algorithm scales linearly with the
number of phases

e Two level optimization method proposed
to optimise the phase sequence and
number of DSM. s
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The Incremental Approach R

e Decomposition in subproblems (levels)
e Search for partial solutions at each level

University
of
Reading

e Incremental growth of the dimensions of the search space

e Incremental composition of the solution

Level 1

Level 2

Level 3

[tY,.6,6.T,,a, |

|:rp,19719T2’a2_

|:rp,2’7/29T3’a3_
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Decompose the problem into
M subproblems

For each subproblem k (with
k=1,...,M) define a pruning
criterion f,

Find a set of local minimisers
for f, in each subdomain D,.

Build a box B, around each
minima

Build a new connected search
space D,2 at level k made of
all the boxes Bq

Perform an optimisation on
subdomain D, keeping fixed
the search space D2
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Decompose the problem into
M subproblems

For each subproblem k (with
k=1,...,,M) define a pruning
criterion f, and a threshold f,

Find all disconnected feasible
sets X, within subdomain D,
such that f,< f, for all xe X,.

Build a box B, around each
feasible set

Build a new connected search
space D,2 at level k made of
all the boxes B,

Perform an optimisation on
subdomain D, ; keeping fixed

the search space D2 o1
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MC9
Box Identification it _ i

e 4 methods were studied ) T
Level 1 " - 400 L m 1.

200

100

O
1

o1 02 03 04 05 06 07 08 09 " 450 ]
Level 1 = 1;‘ - 400 |
500 E 2 400 b | ]
[T F 380+ 1
e 380 3
' ) o - ]
700 ., 30 m i E a
B50 o d Z 260t — |
g i o [ s 8 -
&00 g + 200+
¥ 200 E p— 1
== | er| | | ‘ Ei ] 7] 150 F
Y e T 160
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Affine Transformation and Box Collection
e Given a set of disconnected boxes qu at level k

e We can define a biunivocal mapping function ¢ such that:

Q(k) ) ) 1 ) Q(k) )

. m =1, m
| )BE Um0 ghum | B

q=1 q=1

e Where UMK) js the unit hypercube of dimension m(k)

e The inverse mapping requires Q(k) operations for each level
k, thus for M levels the number of operations is simply:

M
> (k)
k=1
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" Affine transformation: different partitioning methods

1 1 1 1 1 1 1 1 1 1 1 1
05 o0& o0& ‘ 05 0.4 05 04a ‘ 0.4 05 05 0.5 0s
0 0 0 0 0 0 u] 0 0 0 0 ]
1] 0.5 1T 0 05 1T 0 05 1T 0 0.5 1 0 0.5 1 0 05 1 0 05 1 0 05 1 0 05 1 0 0a 1 0 0.4a 1 0 0.5 1
1 1 1 1 1 1 1 1 1 1 1 1
045 0.5 0.4 0.5 045 05 045 0.a 05 05 0s 0s
0 o 1] 0 0 0 u] 0 0 ] ] o
a 0.5 10 0.5 1.0 05 1.0 04 1 i] 1R} 10 045 10 ns 10 04 1 0 0s 10 0s 10 0s 1.0 0s 1
1 1 1 1 1 1 1 1 1 1 1 1
05 0.5 [ 045 [ 05 [ [ 0.4 05 0.5 — 0.5 — 05 0s 05— ns
| | | | | | — 1 — ] —1
0 0 0 0 1} 0 u] 0
a 0& 10 0. 10 05 10 04 1 0 0.5 10 0.4 10 045 10 04 1 DD 0s 1 DD 05 1 DD 05 1 DU 05 1
1 1 1 1 1 1 1 1 1 1 1 1
05 [ 1°5 08 0s 05— 05 05 05 05 0.5 — 05 0.5
| | — —
] ] ] u] 0 0 u] u]
o 05 10 05 10 05 10 05 1 o 05 10 05 10 05 1 0 05 1 % os % os 1% w0s 1% s g
Real space Affine space
5 1
45 0.9
4 0.8
35 07
Ezs i;ug
> 5
2 ~ 04
15 03
! 0.2
05
01
"5 1 18 2z 25 3 55 4 15 i : . : : ; : . .
wariabla 1 0 o1 02 03 04 05 0B 07 08 09 1
Wariable 1
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MC12

Back pruning
Some of the regions, which were feasible
Pruning Level 1 at level i, then become unfeasible when
t X% adding one or more levels.

I * Pruning Level 2
> X1

Level 1 t X% X
Back pruning further 5
reduces the search space | evel 1 Level D
of the preceding levels cve . ceve . x,
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Testing the Pruning Approach
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Preliminary Tests

E-V-M E-E-M

e No DSM on leg E-V e DSM on each leg
- 2 variables on level 1 — 5 variables on level 1
- 4 variables on level 2 - 4 variables on level 2

* Gel3650 MID2000, +15  t (13650 MID2000, +15
years] years]

e TOF, €[50, 400] d
e r, €[1, 5] planet radii
e T, €[50, 700] d

e v, =2 km/s

e T, €[50, 700]d

e r, €[1, 5] planet radii
e T, €[50, 700] d
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E-V-M
All-at-Once Approach

- 500 random starting
| points + fmincon
« 494,233 total function
; evaluations
] . Best solution: 2.98
km/s
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Comparison among Global Methods
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Reading

Solver 20000 evaluations 40000 evaluations 80000 evaluations
DIRECT [km/s] 4.3760 4.3730 4.3730
MCS [km/s] 6.7390 5.5240 5.4080
< 3 km/s 6.5%0 5.0%0 7.0%0
< DIRECT 99.590 99.59%6 99.5%90
< MCS 100.0%0 100.0%0 100.0%%0
< 3 km/s 2.5%0 3.0%0 3.0%0
< DIRECT 97.0%0 99.0%06 98.5%0
< MCS 100.0%0 100.0%0 100.0%%0
< 3 km/s 2.0%0 2.5%0 7.5%0
< DIRECT 71.5%0 73.0%0 78.5%0
< MCS 100.0%0 96.0%0 93.0%0
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Incremental approach

90% of the 20 best
all-at-once solutions

are included in one

of the boxes '
The best all-at-once :

solution has been
found

evaluations to find
the best solution
after pruning

1 ]
]
I H I P20
II:E ﬂ
L

8827 function

University
of
Reading

Lewvel 1

*

D 1 1 1 1 1 1 1 | L 1 1
4000 4500 5000 5500 BOO0 BSO00 7OO0 7500 8000 8500 9000 Aw, kmis

tg, d, MJDZ000
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E-E-M
All-at-Once Approach

* Objective:

I s AVee.psm t AVEm-psm
) . "~ « 5000 random
AN starting points +
o _Earn \\ \ fmincon
o T sun / | » 9-10° total function
ct osw // evaluations
: o+ Best solution:
\ 0.326 km/s
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Solver 20000 evaluations 40000 evaluations 80000 evaluations
DIRECT [km/s] 2.7989 1.1870 1.1608
MCS [km/s] 1.2070 1.2070 0.9944
< 0.33 km/s 0.0%20 2.7% 8.0%0
< DIRECT 69.7%0 87.7%0 85.7%0
< MCS 100.0%0 86.3%0 85.7%
< 0.33 km/s 0.3%0 0.0%0 0.7%0
< DIRECT 100.0%0 98.3%0 98.7%0
< MCS 94.7% 98.3%06 96.0%0
< 0.33 km/s 0.7%0 0.3%0 0.0%20
< DIRECT 100.0%06 91.3% 76.3%0
< MCS 84.0%0 91.3%0 71.3%0
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E-E-M

Incremental Approach
- _® 86% of the 50 best
= all-at-once solutions
. ] are included in one
- B of the boxes
| N e The best all-at-once

S solution has been

T found
e 32544 function
evaluations to find

the best solution
after pruning
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Case Studies
e E-E-M with final orbit insertion

e The BepiColombo Mission
- E-E-V-V-Me
- E-V-V-Me-Me-Me

e Generation of Feasible Sequences for a
NEO mission
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E-E-M with final orbit insertion

e DSM on each leg e Final orbit:

- 5 variables on level 1 r,=3950, €=0.98
— 4 variables on level 2

* t<[3650 MID2000, Incremental approach:

+15 years] .
e Vo =2 km/s fI:,BVQ +2Vh + AV,
e T, €[50, 700] d r
f =Av, +Av;

e r, €[1, 5] planet radii
e T, €[50, 700] d Starting points

Level 1 Level 2
30 20
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151 =

2 2 i
Vyp +V
_ o h
f. =p —+ E AV,
Vi k=1

e Used for legs with
resonant swing-bys

. e Necessity to prune on
1 | a5 £ o x £ the basis of the velocity
0 00 200 300 400 S0 BOD 700 0D GO0 1000 before the swing-by

Solutions
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E-E-M with final orbit insertion L ewe
Pruning of level 1

Level under Box edges on
pruning level 1

5478.75 d (1)
0.1429 (1/7)
1 0.1429 (1/7)
0.2967 (1/3) ; X
95 d (1/10) All launch window

Level 1 Level 1
1 1000
08 900 i
0.8 800
*

Threshold = 0.5 km/s . .

300
02
200
01
100
o 07 02 03 04 05 06 0F 08 09 1 n1 02 03 04 05 06 07 08 03
8 o
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Results

DE
all-at-once

Copyright © Calvin J. Hamiltc

200070

Reading

E-E-M with final orbit insertion

0.136

1.591

PSO
all-at-once

200000

1.556 0.238

fmincon
multi-start
all-at-once

210217

1.268 0.137

Incremental

6097,
18519

1.171 0.081

E swing-by
DSM 2 T,=502d
, a2=0447 /
/ \ DSM 1 \Y
o.4=0.47 \
| 1 \‘
\ “
| Launch from E ‘
l0=5998A97 MJD2000
Arrival at M
T2=847 d — >
L L L i T L L L
-2 -1.5 -1 -0.5 0 0.5 1 15

x [AU]

Av=1.08 km/s
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t, [d, MIJD2000]

University
of
Reading

) 0 1
> 0 1 1
a, 0.2 0.9
T, [d] 350 600
Y; [rad] -1 n
rp,1 [Planet radii] 1 5 ;
a, 0.01 0.99
T, [d] 300 450
Starting points Yo [iads il 1
rp 2 [planet radii] 1 5
Level 1 | Level 2 | Level 3 | Level 4 - T e 3
100 100 100 200 T, [d] 150 300
Y5 [rad] -1 mn
6.5 revs ‘ r,,3 [planet radii] 1] 5 .
. 0.595 | 0.733
T, [d] 750 850
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E-E-V-V-Me L e
Pruning of level 1

Level under Box edges on
pruning level 1

1000 d (1)
0.2 (1/5)
1 0.2 (1/5) 452) 46‘00b%00 28‘00‘” 45?0,15;\?,‘(?-2?;?00 5;06 53‘00* 54%0 551

0.233 (1/3) «
50 d (1/5)

S

All launch window

E-E-4-v-Me Level 1 E-E-v-v-he Level 1

0sr

0gr 5450
e

HF + s +
06 a0o

—_ .
Threshold = 1 km/s o051 - + :
&
04 450}
nar
o 400
0t
s #
0 . . . . ‘ . . . . . 20 i ; : : :
O o1 02 03 04 05 06 07 08 03 1 02 03 04 05 06 07 08 04
9 o
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§ *
AR S S

0.1

02

03 0.4 0s 06 07 s
E-E-v-W-Me Level 2
F

+
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#
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E-E-V-V-Me
Pruning of
level 2

Threshold = 1.1 km/s 2}

~

University
of
Reading

E-E-V-V-Me Lewel 2
T T T

GLASGOW

(=2
T

o

1 - Il I Il e Il w*\ * Il Il Il
4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500

ty» d, MJD2000

Back-pruning of level 1

Level under | Box edges on Box edges on
pruning level 1 level 2
—
1000 d (11//51)0 1.25 rad (1/5)
. 1.33 (1/3)
2 0.2 (1/5) 0.29 (1/3)
0.233 (1/3) 30d (1/5)
50d (1/5)
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E-E-V-V-Me
Results

University
of

Reading

X _/
. T = V swing-by 2
\Y TW-Z%gg 1 T,=240d _+ Launch from E
P ~_ > t0=4956 MJD2000
| | _ ., |
-1 -0.5 0 0.5 1
x [AU]

Total time
Average for Average Best Av
19 objective 9 standard
function 3 best Av i
Lom functhn [km/s] deviation
evaluation [km/s]
[s]
DE
400010 5842 8.456 0.444
all-at-once
PSO 460000 6900 6.094 0.920
all-at-once
fmincon
multi-start 427499 6412 4.599 0.865
all-at-once
24397,
96674,
Incremental 184340, 3625 3.89 0.739
154754
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Feasible Set Approach: EVVMeMeMe Sequence

e 2000 days of search window [3457,5457]1M]JD2000
 No pruning onyandr,

o Pre—lassigned resonance strategy, i.e. fixed number of revolutions
per leg

e Boundaries on a and TOF function of the number of revolutions

e Special partial pruning criteria for Venus and Mercury incoming
conditions

o) 7 2 2 I
Vo +V Vg +Vy
_Vy h C—
fy =——"—+Av, fi = L+ ) Ay
Vr Vr k=1
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Feasible Set Approach: EVVMeMeMe Sequence

e The best sampled solution during the
pruning has a total Av=6.5km/s with a

Mercury  Vinr=4km/s at Mercury and

Vi e=3.869km/s at launch.

e Not a local minimum just a sample
INn the pruned space

e BepiColombo has a total Av=4.08km/s
with a v, =3.44km/s at Mercury and
Vin,=3.762km/s at launch

e 225000 function evaluations (about 45
minutes on a centrino 2GHz).

e Good repeatability of the pruning
84
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E-V-V-Me-Me-Me Pruning: Feasible Set Approach

Lewvel 6. Pruning on variables o« and TOFE
620

610

600

590

580

570

TOR;

EepiColombo

560

550

540

530

0.05 0.1 015 0z 0.25 0.3 0.35

520
0
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E-V-V-Me-Me-Me Pruning: Search Space Analysis

Vo at level3 EVVMeMeMe sequence v opt

BQD T T T T T T T T 95
630 | - 9
85
570} I
L 13
660 | -
: =75
= _
& s50} 1 .
L
- B i
O 540 ' 55
530 1 s
520 ] 55
5
510} -
|, | 45

005 01 015 02 025 03 035 04
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Characterisation of the Search Space

e At each level k we define a partial objective
function:

e The partial objective function might not be
directly related to the objective function f of the

whole problem and is uses solely to prune the
search space D,

e Definition of characterisation: at each level k we
want to identify all the minima for f, or all the

regions that are feasible according to the
condition f < f,
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e a local minimisers in D, is:
X; € D:VE (X)) =0AX| H(X,)X; >0

e and a ball containing a local minimiser | is:
Xo1 ={X|xeDA|x—x|<e}
e consider a set of grid points in D,
XN :{XI |X| e D/\l :1,,N}

e then we have a sufficient grid to characterise D,
if for a given ¢:

Xy X #0 Vi
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Algorithmic Complexity Analysis II

e The number of generated and stored boxes at each level k is Q(k)<N,
e The total number of stored boxes for M levels is:

e The affine transformation requires for each function evaluation Q(k)
operations to check the inclusion of the evaluated point

e The total number of operations for M levels is:

M
D Qk)
k=1

e If N.(k) grid points (function evaluations) are required to characterise the
search space at level k then the total number of grid points (function

evaluations) is:
M
D Ny(k)
k=1
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Trajectory Planning
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Trajectory Planning

e The design of a sequence of GA,DSM and LT arcs
is addressed by considering each trajectory as a
scheduled sequence of actions.

e Each action has preconditions and post conditions

e First Pruning Heuristic

— A complete trajectory is feasible if and only if all the pre
and post conditions for all the actions composing the
trajectory are true.
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Block Structure Model: Blocks

v

dv r| > —Ppir T > —Ppir rl— « r
Launch Zra(;i%i Lambert Brake
v I—p —Pv v <4V v —Pp —p| v dv
Pow rp gamma
- Unpow
swingby swinab
—>v 4 Vie— [
<4+ Frix r—p» <4—{" Planet Planet ' —p> R | U ) -
osition arrival departure DSM
-—-'VE———\r——— i Vi DR R Bttt i —Pp|V vV |—

92



Introduction

Problem Modeling

Reading Solution Approach N
8 PP -

Glasgow Solution Approach
University
of
Reading

Final Remarks

n and Nine Planets Copyright @ Calvin J. Hamiltc

Feasibility
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Model 1 with blocks
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Model 2 with blocks
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Generation of the Feasible Set

=

Define a set of pruning criteria P
2. Start at level i=0 with a departure action sy, for which =P

3. Add a level i=i+1

4. Add to each partial trajectory j an action s;; the preconditions of
which match the post conditions of s, ,;.

5. If at level i multiple actions can be added create a partial
trajectory for each action

6. Prune all partial trajectories that meet the pruning criteria

/. go to 3.

96



University
of
Reading

Automatic Sequence Generation

e Generation of sequences
- Max no. of resonant swing-bys
- Max no. of inward legs for an outer target
- Max no. of outward legs for an inner target

e STOUR-like, energy based feasibility assessment
— Circular, coplanar planet orbits
— No phasing
— No overturning of the relative velocity vector

e Hohmann Av for sorting
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Optimisation on the Feasible Set

e Let’s call O; the set of all the feasible trajectories.

e If the number of elements in O is small, apply
systematically the pruning procedure to each one
of them

e Otherwise use a global optimisation method for
integer problems

e Evaluate each element of O; by running the
pruning+optimisation algorithm
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Example: GTOC 1

JPL solution

e Requirements
sequence

Feasible sequences
- E to S transfer

- Max 2 resonant swing-bys 1ME V E E M S8 28.14

- Max 1 inward leg 2|E V E E M M S 28.14

- Max v, at departure=3km/s 3|lE E V E E M S 28.14

e Solution 4lE V E E E J s 28.19
- 13 feasible sequences 5|lE VvV E E J J S 28.19
Ranked according to the e v e s [an

- The GTOC1 winning sequence r(e veEMJS 28.19

is the 4t in the list 8|E V E M M J S 29.49

9|E V E E M M J S| 2949

e Computational time to create 10|E V E E M J J S| 2949
the set O;: 0.67s M|E V E M M J J S| 2049
12|E E V E E M J S| 2949

13|E E V E M M J S| 2949
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o Different models implies different sets of solution and a more or less
difficult search. For example model 2 contains solutions that do not exist

in model 1

e With model 1 the sum of the parts is not the whole therefore specific
heuristics have to be used at each level

e About the algorithmic complexity for model 1 we can say that the number
of function evaluations grows linearly with the number of levels

. Atfpresent we cannot say if the number of grid points required to have a
sufficient characterisation of the search space for model 1 grows
polynomially with the number of levels.

e Though both pruning procedures were proven to be robust when applied
to the test cases, still the search for a solution is stochastic
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Work in Progress

e Analysis of problem complexity
o Statistic tests on the search after pruning
e Alternative models and pruning procedures

e [terative application of the pruning process can
lead to a more reliable and effective pruning
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