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pelsi i ) |Introduction to Differential Algebra (DA)
» Pruning of MGA transfers using DA (GASP-DA)

* Time of flight approach
- discontinuities analysis
- dependency problem
Absolute time approach

Objective function semi-analytical approximation
Non-validated quadratic bounder
Test cases

Introduction of DSM in GASP-DA

Forward propagation approach
Absolute variables approach
» Test cases
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peiviniuag ) Alternative strategy: sequential GASP-DA + DSM

UNIVERSITY

» Post-processing GASP results
- Solution set selection
- DSM modeling

e Test cases

» Conclusions on DA-based MGA transfers pruning
» Extra-Schedule Application: Validated Optimization of MGA
Transfers
* Introduction to Taylor Models
Main problem
Verified optimization of planet-to-planet transfers: Earth-Mars

Verified optimization of MGA transfers: Earth-Venus-Mars
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wwews 1{ferential Algebra: Some History

yostng p  Differential Algebra (DA) is an automatic differentiation
technique

» DA was first developed by Martin Berz in the late ‘80s:

e 1986
Definition of the algebra of Taylor Polynomials in the so-called
Truncated Power Series Algebra (TPSA).

1987
Introduction of methods to treat common elementary
functions and the operations on them

1989 \
Introduction of the analytic operations
of differentiation and integration

(Differential Algebra) > Implementation in
1998 COSY-Infinity

Validated Remainder Enhanced
Differential Algebra (Taylor Models) ~
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e Introduction to Difterential Algebra

TS »  The basic idea is to bring the treatment of functions and
the operations on them to the computer in a similar way
as the treatment of numbers

T

> G,b € FP f,9 —L— F g

- ®

\4 \/ \/
>a® f*g > F®G
T T
Real numbers are e 7T isthe extraction of

approximated by floating Taylor coefficients
point numbers (equivalence relation)

For each *, adjoint ® The new space can be
can be crafted on floating endowed with
point numbers corresponding operations
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8 Minimal Differential Algebra

» Consider the set of all ordered pairs of reals (ag, a1)
» Define the operations:

(ag,a1) + (bg,b1) := (ag + bg, a1 + by)
t-(ag,a1) := (t-ap,t-a)
(ag,a1)-(bg,b1) := (ag-bg,ag-b1 +ayr-bg) |
(a0,a1)™" := (1/ao, —a1/ag)
» The previous algebra allows the automatic computation of
derivatives. E.g.:
« Assume to have f and g, and to put their values and
derivatives at the origin in 1 D1: (f(0), f/(0))and (g(0), ¢’ (0))
o Evaluate:

(£(0), £(0)) - (9(0), 4'(0)) - -9(0) + f(0) - 4'(0))

Algebm
1D1
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wwee Minimal Differential Algebra
This observation can be used to compute derivatives of

many functions starting from the ordered pair
corresponding to the identity function = + xq » (29, 1)

E.g.:
flz) =

f(3)

MICHIGAN STATE
UNIVERSITY

1 1/332 —1 3\
f(x) = 5 Symbolic

g +1/x * (372+ L) { manipulators

_ 3 ()= _ = approach

3 F=-x

Evaluating fin =+ 3 ® (3,1) using the previous algebra:

1 1 1 3 9
F((3,1))= (3,1)+1/(3,1) (3, 1)+(1/3,-1/9) (10/3,8/9) (E’ __>

» Important implementation advantages:
e ordered pairs B> new variable type
e algebra B operator overloading
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e General Difterential Algebra ,, D,

MICHIOAN STATE 1D+ can be generalized to ,, 1), for function of v
variables and the arbitrary order n
7’LD’U . '
. ! . N+ .o+ n

(..., le,m,jv, )

a vectorin ,, D, is a collection of all the Taylor coefficients of
the function f w.rtthe v variables up to the order

»D, can be further extended to treat any transcendental
function (sin, cos, exp, log, etc.)

D

Real algebra is substituted by Taylor polynomial algebra

Starting from the Taylor polynomial of the identity function,
the DA computation of f returns its Taylor expansion
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e Pruning of MGA Transfers: Problem Formulation

Tene® p  Example: Direct Earth-Mars transfer

UNIVERSITY

 The positions of the starting and arrival planets are computed
through the ephemerides evaluation:

(rg,vg) = eph(Tg,Earth)  (rar, var) = eph(Tas, Mars)

 The starting velocity V1 and the final one vo are computed by
solving the Lambert’s problem

Objective function:
AV = AV] + AV,

Pruning constraints:
AV < AVl,maa:

AVQ < AVQ’max
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wwmwes 1iferential Algebra - Based GASP

» Main ldea:

MICHIGCAN STATE
D The point-wise evaluation of the objective function in GASP is
substituted by a DA-based evaluation

 The search space is subdivided in boxes

e The Taylor expansion of the objective fonr
function is computed within each box
(the center is used as reference point)

The resulting polynomials are bounded to estimate
the range of the objective function over each box

 The resulting range is used in the pruning process

» Advantages:
o Wider sampling of the search space
e Lipschitz’s constant avoidance
e Availability of analytical information
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e Objective Function Evaluation

o
» A set of nonlinear equations must be solved

MICHIGAN STATE
UNIVERSITY

» Planet-to-planet transfers

e Ephemeris evaluation
An analytical model is available to obtain € and M as a
function of the epoch. The Kepler’s equation must be solved:

f(E)=FE—esinE—M =0

Lambert problem
An algorithm developed by |zzo has been used. The Lagrange
equation for the time of flight must be solved:

fz) =log(A(z)) — log(tioy) = 0

» MGA transfers

e Bending angle equation

/ (7“ p) = arcsin - + arcsin

a +7“p
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e P arametric Implicit Equations

wemeeemal ) Taylor expanding the objective function leads to the
necessity of expanding the solution of the implicit equations

» E.g.: Kepler’s equation. Given a reference epoch Y
 The DA evaluation of the analytical model gives: €(6t), M (dt)
e Kepler’'s equation becomes a parametric implicit equation:
f(E,6t) =FE —e(dt)sin E — M (d6t) =0

« We need to solve the previous equation for E(dt)

» Algorithm overview:

A point solution is computed at
the reference point (Newton
method)

The solution is expanded A
around the computed one 0 T O T T T B

1445 1450 1455 1460 1465 1470 1475
t, [MID]
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m ) A Based Pruning: ToF Approach

NN »  Subdivide the search space in subintervals

UNIVERSITY

. tEM
» For each subinterval

Initialize 1’z and tE s as DA variables and
compute the Taylor expansion of AV; on X

Bound the polynomial expansion of AV; on X

—

IF min AV; > AV 40 — discard X and analyze the next
subinterval

Compute the Taylor expansion of AV5 on X’)

Bound the polynomial expansion of AV5 on X

—

IF min AV, > AV, par — discard X and analyze the next
subinterval
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e - arth-Mars Transter: ToF Approach

» Example: Direct Earth-Mars transfer

« The optimization variables are the departure epoch I’z and
the time of flight tgyr =1y — 1B
e Search space: [1000,6000] x [100, 600]

600

S0
550

S0
500

=70
- B0
t 50

AV [kmig]
- 0

i
2000 3000 4000 5000 6000
T [

Obijective function structure
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e - arth-Mars Transter: ToF Approach

» Example: Direct Earth-Mars transfer
e Pruning constraints: AVy, AVe < 5 km/s

AV [kmis]
7.5

b

1000 2000 3000 4000
T [d)

Pruned search space
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8 Earth-Mars Transfer: ToF Approach

Pruning constraints: AV1, AVs <5 km/s
Box size: 50 x 50 days

AV [km/s]
Il [ 75

H 7

200}[

Il

150+

! q 00 2000 3000 4000 5000
T ld)
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Remaining boxes




e - arth-Mars Transter: ToF Approach

600
250

200

450

400
= 350 -’
Wi | AV [kmis]

300

250

200 Wy

3000 4000 5000
T_[d]

Remaining boxes
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s | arth-Mars Transfer: Discontinuities

» Example: Direct Earth-Mars transfer

« The optimization variables are the departure epoch I’z and
the time of flight tgyr =1y — 1B
e Search space: [1000,6000] x [100, 600]

600

Discontinuities:

550

500 B From “long way”
' to “short way”

From “short way”
to “long way”

AV [kmig)

e The transfer orbit
IS perpendicular
to the ecliptic

B |
2000 3000 4000 5000 6000
T [d]

Obijective function structure
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s [)1scontinuity Problem

» Example: Direct Earth-Venus transfer
» “Short way” to “long way” transition:

Geometrical View Objective function discontinuity

.« long way

A v [km/s]

O i i i i
1.457 1.458 1.459 1.46 1.461 1.462

short way Epoch [MJD] o
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e D1scontinuity Problem: Box Reshaping
£ T

NSNS ) The discontinuities correspond to the transition from "short
way" to "long way" and vice versa in the Lambert solver

» In case of circular and coplanar orbits:
e they would be straight lines
» their slope could be easily computed using the orbital periods:

PM a0
tanag = —— — 1 550
PE 500

S0

[/ O
450

» Based on the previous T RER1
observations we can B | L v
suitably reshape the 1 i

boxes .

0
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mowsw D1scontinuity Problem: Box Reshaping

» Rectangular box:

X = [TE + ATE,tEM -+ AtEM]
» Reshaped box:

—

X =[Tg+ATg + (1/tanc) - Atgny, tem + Atgar]

600

550}

500}

450~

"Roo

. L = ; N Wi =
1300 1400 1500 1100 1200 1400 1500

1100 1200
T [

Rectangular box Reshaped box
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8 Discontinuity Problem: Box Reshaping
I

nenery® » Example: Direct Earth-Mars transfer

UNIVER SITY

Pruning constraints: AVi, AVs, <5 km/s
Box size: 50 x 50 days

4000 5000 6000 7000
T ld]

Remaining boxes
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s Discontinuity Problem: Box Splitting
: T
» Suppose a box lying on the discontinuity is being analyzed
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s Discontinuity Problem: Box Splitting
» Suppose a box lying on the discontinuity is being analyzed

» Moving on a horizontal line, identify a point lying on the
discontinuity

600

550+
500+
42 [ Z

400 o 7

—

=)
= 3501
_._‘LLI

300f
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s Discontinuity Problem: Box Splitting
.:’:
Suppose a box lying on the discontinuity is being analyzed

Moving on a horizontal line, identify a point lying on the
discontinuity

Enclose the discontinuity
In a strip

300[E
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00 s

150

101 e ]
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s Discontinuity Problem: Box Splitting
-
MICHIGAN STATE Suppose a box lying on the discontinuity is being analyzed

UNIVERSITY

Moving on a horizontal line, identify a point lying on the
discontinuity

Enclose the discontinuity
In a strip

Identify and process two
“discontinuity-free” boxes ., 4"
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s Discontinuity Problem: Box Splitting
MICHIGAN STATE Suppose a box lying on the discontinuity is being analyzed

UNIVERSITY

Moving on a horizontal line, identify a point lying on the
discontinuity

Enclose the discontinuity
In a strip

Identify and process two 4
“discontinuity-free” boxes .o 2"

—

. ;
= 350

Problems and Drawbacks: -*

Difficult assessment of
lying conditions 200;

Computational time 150}
iIncrease op
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s D1scontinuity Problem: Planar Model

600

» The unfavorable
discontinuity lines
correspond to the
transition from “short way” % 000
to “long way” in the B
Lambert solver

150 [ 1

10% = l ! L I
1000 2000 3000 4000 5000 6000
T, [d]

100

The previous discontinuity
does not occur in a planar
planetary model (the
orbital plane of the
Lambert’s arc is uniquely
determined)

80t

60

AV [km/s]
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1.459 1.46 1.461 1.462

Epoch [MID] <10




s D1scontinuity Problem: Planar Model

» Adopted solution:

Given the previous consideration and the low inclination of
all planetary orbits, a planar Solar System model has been
adopted to perform the pruning process

Objective Function Comparison

i sl hlLILl. - =

| ! 1
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Teld T [d
E

3D-Model 2D-Model
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s D1scontinuity Problem: Planar Model

Main observation:
AVerp = AVap —AVop >0 =iy AVip > AVsp

The pruned search space in the 2D-Model encloses the pruned
search space in the 3D-Model

Pruned Search Spaces

GOOF"“ AAAAAAAAAAAAAAAAAAAAA -

2000 3000 4000 5000 3000 4000 5000
T [d Tl

3D-Model 2D-Model
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s D1scontinuity Problem: Planar Model
—

Teenenee b The pruned search space in the 2D-Model encloses the
pruned search space in the 3D-Model

DA Based Pruning

- i 7.5

400 B 3 .
5 | é E [
E_ 350- xS g - R - A v [km.f’S]
w s N o

300+

250+ Ht
200L

1504 4
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3D-Model




s Dependency Problems

et ® » Consider a Earth-Mars-dupiter (EMJ) transfer

UNIVERSITY

First Arc Second Arc

1
1
1
1
4
1
1
+
1
1
1
1
1

M

» The box size increases along the transfer
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s Dependency Problems

MICHIGAN STATE
UNIVERSITY

» The box size increases along the transfer

» The dependency on the design variables increases along
the transfer

* The Absolute Times formulation to the problem is adopted
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POLITECNICO DI MILANO

GASP-DA Absolute Time Approach

MICHIGAN STATE
UNIVERSITY
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T
GASP is fully translated in the DA environment

The 2D model is used to avoid discontinuities

The computed AVs and 7, are Taylor expansions about
the center of the boxes

The absolute time approach allows to limit the maximum
number of dependencies to 3 (for AV 4 and 7 )

z 4000

3000 ¢

2000 F; / .................. ................... ................... ................. o
1000 ' ' ' '

7000 r

1000 2000 3000 4000 5000 6000 3000 4000
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s Scmi-Analytical Solution of the Implicit Egs.

MICHIGAN STATE

SRS )  The use of semi-analytical solutions of the involved implicit
equations has been introduced to:

Avoid the iterative process of

Newton’s method , Computational time
Avoid the use of the dedicated savings (20%)

auxiliary DA variable

> The evaluation of the objective function requires the
solution of three scalar nonlinear equations

* Ephemerides function == Kepler's eq
e Lambert’s problem = Lagrange’s eq
« Powered gravity assist ss bending angle eq
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s Analytical Ephemerides

. T
S Kepler's equation M = E — esin E is replaced by a third
B order expansion in the eccentricity

esin M 1 ( esin M

E=M — —
+ 1l—ecosM 2 \1—esinM

)3 +0(e*)

> Afirst order expansion has been derived for:

e Lagrange equation (Lambert’s problem):

f(x) = log(A(x)) — log(tror) = 0
using the variable change t =log(1l + z) [lzzo]

e Bending angle equation (powered GA)

- +
. a i a
f(Tp) — arCslll—— -+ arcsin —a=0

a” +1p at 4+ 1,
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using the variable change t=1/r,




s Scmi-Analytical Solution: Objective Function

» Purely Numerical vs. Semi-Analytical approach

Objective Function Comparison

7000 , g : } 7000
a s z a B0
6000 /— 20 -

- -[60
50001

= 4000

30001

2000 Fs / .................. ................... ................. oo
1000 . i ' . 1000

1000 2000 3000 4000 5000 6000 hoo 2000 3000 2000 5000 5000
Te [d] Te ld]

Purely Numerical Semi-Analytical
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S— Validated Linear Bounder

qerawens > Problem: careful analyses show that the pruning
process is not as effective as expected

» Suppose a box X canbe pruned away if: min f > feutors
X

» The validated linear bounder uses the linear part of the
Taylor expansion to get validated bounds of the Taylor
expansion
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S— Validated Linear Bounder

qerawens > Problem: careful analyses show that the pruning
process is not as effective as expected

» Suppose a box X canbe pruned away if: min f > feutors
X

» The validated linear bounder uses the linear part of the
Taylor expansion to get validated bounds of the Taylor
expansion
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e \/alidated Linear Bounder

erennn® » Problem: careful analyses show that the pruning
process is not as effective as expected

» Suppose a box X canbe pruned away if: min f > feutors
X

» The validated linear bounder uses the linear part of the
Taylor expansion to get validated bounds of the Taylor
expansion

f 4 _ » The computed bounds
5 : overestimate the exact
range
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e \/alidated Linear Bounder

erennn® » Problem: careful analyses show that the pruning
process is not as effective as expected

» Suppose a box X canbe pruned away if: min f > feutors
X

» The validated linear bounder uses the linear part of the
Taylor expansion to get validated bounds of the Taylor
expansion

f 4 _ » The computed bounds
5 : overestimate the exact
range

\

The linear bounder
would not prune away
the box
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e N on-Validated Quadratic Bounder
meontn® » The non-validated quadratic bounder uses the quadratic

B part of the Taylor expansion to get non-validated
bounds of the Taylor expansion
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e N on-Validated Quadratic Bounder
meontn® » The non-validated quadratic bounder uses the quadratic

B part of the Taylor expansion to get non-validated
bounds of the Taylor expansion
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e N on-Validated Quadratic Bounder
meontn® » The non-validated quadratic bounder uses the quadratic

B part of the Taylor expansion to get non-validated
bounds of the Taylor expansion

= The non-validated
guadratic bounder
prunes away the box
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e N on-Validated Quadratic Bounder
meontn® » The non-validated quadratic bounder uses the quadratic

B part of the Taylor expansion to get non-validated
bounds of the Taylor expansion

» Drawback: the computed bounds might underestimate
the exact range

I =» The non-validated
' quadratic bounder
prunes away the box
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s D A -Based Pruning: Earth-Mars Transfer

nenery® » Example: Direct Earth-Mars transfer

UNIVERSITY

e Pruning constraints: AV;, AV, <5 km/s

Remaining Boxes

7000 ! ; ! ;' §
6000 : : : : .
K

5000 { 5

7000

-5

% 4000

-7.5

3000 1 &

2000

1000 ; ; i ;
1000 2000 3000 4000 5000 6000

T L]

Validated Linear Bounder Non-Validated Quadratic Bounder
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s D A -Based Pruning: Earth-Mars Transfer

» Example: Direct Earth-Mars transfer
e Pruning constraints: AV;, AV, <5 km/s

Remaining Boxes

7000 ! ; ! ;' §

0.5
6000 : : : : .

0

5000

7000

- 4000

3000

2000

1000 ; ; i ;
1000 2000 3000 4000 5000 6000

T L]

Validated Linear Bounder Non-Validated Quadratic Bounder
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s D A-Based Pruning: Earth-Mars Transfer
» Example: Direct Earth-Mars transfer

e Pruning constraints: AV;, AV, <5 km/s

Remaining Boxes

4400 7
4200 |

4000 |

3800 |-
3600 -

3400

3200

3000 |

2800 B : ; 2 : 2 R ¥ ¢ i g 3 : : :
2600 2800 3000 3200 3400 3600 3800 4000 Qslgg 2800 3000 3200 3400 3600 3800
T_ [d] T, [d]

Validated Linear Bounder Non-Validated Quadratic Bounder
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e ()ptimization Process

wemeeema ) An optimization process follows the pruning process

UNIVERSITY

» Two approaches have been studied:
e COSY-GO: Cosy language based Validated Global Optimizer

 Multiple runs of a local optimizer

The non-validated quadratic bounder is used to estimate the
minimum within each box (used as starting point)

The boxes are sorted based on the objective function
Boxes selection heuristic

Overall obj function range

5% interval =i Boxes belonging to this
interval are selected
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Local runs are performed within each selected box




Performance Analysis

MICHIGAN STATE
UNIVER SITY

» All tests have been performed on a standard pc with
e 2.01 GHz CPU
512 Mb RAM
e Microsoft Windows XP Professional Service Pack 2
» All tests used expansion order = 2
» Problem dimension = number of planets involved

» No Deep Space Maneuver considered
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POLITECNICO DI MILANO I ,M I I al lS I ( :I
OUTEG
Sh. O
485
Y
o) Hig

» Problem Definition:

Search Space

Dep. Epoch | 1000 - 6000

MICHIGAN STATE
UNIVERSITY

tof; 100 - 600

» Results:

Tot. boxes 1000

Remaining 64 (6.4%)

CPU Time 0.22
Obj Fen 5.6673
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e VM transfer

» Problem Definition:
Search Space
Dep. Epoch | 1000 - 6000
tof] 100 - 500

tof> 100 - 1000

MICHIGAN STATE
UNIVERSITY

» Results:

Tot. boxes 14400

Remaining [ 165 (1.1%)

CPU Time 0.65
Obj Fcn 8.5226
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s |- MJ transfer

» Problem Definition:
Search Space
Dep. Epoch | 1000 - 6000
tof} 100 - 1200

tof> 100 - 2000

MICHIGAN STATE
UNIVERSITY

» Results:

Tot. boxes 41800

Remaining | 329 (0.7%)

CPU Time 2.64
Obj Fen 13.4165
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e [\ MV E transfer
» Problem Definition:

Problem Search Space

MICHIGAN STATE
UNIVERSITY

Cut-off (15)
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Dep. Epoch

3000 - 4000

6

tof;

25-525

E
V
M

tof

20 - 520

E

tofs

25-525

2
2
6

» Results:

Tot. boxes

20000

Remaining

26 (0.1%)

CPU Time

0.20

Obj Fcn

12.4431




Cassini-like transfter

» Problem Definition:

Search Space Cut-off (12)
Dep. Epoch | -1000- 0 4

tofi 10 - 410
tofz 100 - 500
tof3 10 - 410
tofy 400 - 2000
tofs 1000 - 6000

MICHIGAN STATE
UNIVER SITY
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Cassini-like transter

T Tot. boxes 32768000
1085 (0003%) The “black-box” ObjeCtive
, function provided by the
CPU Time 1.93 ACT has been used

Obj Fen

Remaining
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Introduction of DSM 1n GASP-DA

The strategy for the introduction of the DSM is not
unique

In the DA frame, the problem formulation strongly
affects the results!

If the number of optimization variables grows, the
number of Taylor monomials increases with
factorial law

The problem complexity increases (nonlinear
functions of many variables to approximate)

In the DA environment, it is important to carefully
formalize the DSM problem in order to reduce the
polynomial dimension
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S DSM in GASP-GA

sness®  Characteristics of GASP
» cascade of planet-to-planet problems
> definition of cut-off pruning values

It would be useful to exploit the structure of GASP
for the DSM introduction. Let’'s consider the
following planet-to-planet transfer

AUQ

Avq \’ 1 Lambert’s problem

P2 (TQ)
Py (Ty)

T1,T5: epochs constraints: Av; < Av™**
max
Avi™™, Avgy*™* : cut-off values Avz < Av,
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s DSM formulation: forward propagation

mwennnd® » Inthe planar case, the DSM point is uniquely specified
once three scalars are given

» The DSM point, D = D(Ty, Avy, «, 0), can be obtained by forward
propagation (with Lagrange coefficients).
angle: « € [0, 27]
anomaly: 0 € |0, 27]
maneuver magnitude: Av; € [0, Av™%]

AUD

Av, 1 Propagation

1 Lambert’s problem
Py(13)

constraints: Av; < Av™**
A”UD S A,Urgaa:
Avy < Avd*e?
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s DSM formulation: forward propagation
o

TeesEn » The forward propagation + Lambert’s problem fits the
cascade structure of GASP, but ...

optimization variables: x = {11, Ty, Avy, a, 6}

Avl = A?Jl

functions to approximate: { Avp = Avp(Ti, Ty, Avi,«,0)
A'UQ = A’UQ(Tl,TQ,A’Ul,Of,9>
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s DSM formulation: forward propagation

TeesEn » The forward propagation + Lambert’s problem fits the
cascade structure of GASP, but ...

optimization variables: x = {11, Ty, Avy, a, 6}

A?}D(Tl, TQ, Avl, Q,
AUQ (Tla T27 Avla a, 9)

Even in this very simple case,
these two functions depend
on all the optimization
variables!
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s DSM formulation: forward propagation
e O It we simply add another planet and another DSM ...

UNIVERSITY

optimization variables: X = {11, T, Ts, Avy, a, 01, Avy, 1y, 02}
N——

Avy = A “a
Avpr = Avp(Ty,Ts, Avy,a,by)

Av, = Auv,
apprOXimateZ A’UDQ = AUQ (Tl, T27 T3AU17 «, 917 AU}% Tp, 92)
Avs = Auvz(Th1, T, T3Av1, a, 01, Avy, 1y, 02)

functions to

\

Dl (T17 A’Ul, Q, 91) DQ(T17 T27 Avla a, 917 Avpa T'p, 62)
A’UDl

Av :

P 2 Propagation

2 Lambert’s problems

A’UDQ
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s DSM formulation: forward propagation
wernen®  » If we simply add another planet and another DSM ...

UNIVERSITY

optimization variables: X = {71, Ts, Ts, Avy, @, 01, Avy, 7, 02}
N——
GA

[ Avy = Awny

Avpr = Avp(Ti, Tz, Avy,a,0)
Av, = Av

approximate: Avpy =,/Dvy(T1, T, T3Av1, ., 0, Avy, rp, 02

\ A’U3 — A'US(TlaTQaTBAvlaO‘aeaAvZ”rp’ez

function of Nplanets + 3Npsm “

« The more planets and DSM, the more complicated functions
to approximate.

functions to

Bounding functions of many variables is very difficult (and
leads to incorrect results).

Re-formulate the problem in suitable variables such that the
“dependency chain” is broken (analogously in the absolute time
formulation of GASP).
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e DSM formulation: absolute variables

kg > The DSM point is specified by a radius and an angle

UNIVERSITY

> The problem is solved by two Lambert’s arcs

variables: x = {T1,Ts,7p,0,tp}"

omin .. max
rp € [rp", rh]

6 € [0, 2] Av; = Avy(Ty,rp,0,tp)

tD - -O,TQ — Tl] functions: A/UD A/UD<T17T27TD7 HatD>
- AUQ — AUZ(T17T27TD7 HvtD)

\ J

Apparently there is no
improvement, but ...

2 Lambert’s problems
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e DSM formulation: absolute variables

emeseeey > |f both one planet and one DSM are added ...

UNIVERSITY

. ] T
variables: x = {T17 T27 T37TD17 917 tDlJ? TDQ) 927 tD%}

DSM1 DSM?2

[ Av; = Auv(Ti,rp1,61,tp1)

Avpr = Avpi(Th,T%,7p1,01,tp1)
functions: < Av, = Awv,(T1,T5,7p1,01,tp1,7D2,02,tD2)
Avpy = Awvpa(Ts,rpa,b02,tp2)

Avs = Avz(Ts,15,7p2,02,tp2)

\

D1<T17 D1, Hl)
A’Up D2 (T27 D2, (92)

A’UDl

Py (T:
2(T2) 4 Lambert’s problems

Avpsa
A?Jg
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e DSM formulation: absolute variables

emeeeeey > |f both one planet and one DSM are added ...

UNIVERSITY

. ] T
variables: x = {T17 T27 T37TD17 917 tDlJ? TD27 927 tD%}

DSM1 DSM?2

[ Av; = Auv(Ti,rp1,61,tp1)
Avpr = Avpi(Th,T%,7p1,01,tp1)
functions: < Av, = Awv,(T1,T5,7p1,01,tp1,7D2,02,tD2)
Avpy = Awvpa(Ts,rpa,b02,tp2)

Avs = Avz(Ts,15,7p2,02,tp2)

\

Independently from the problem structure, the
absolute variables formulation involves functions of
at most 8 variables.

In the forward propagation method, the
dependencies blow up with Npjanets+3psm.
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DSM formulation: absolute variables
JE

Absolute time formulation
The “dependency chain” is broken
Reduced number of variable dependencies
Better functions to approximate and bound

More Lambert’s problems to solve (but for us it is
a mere function evaluation)
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e Results: EAM problem

1000 - 2000 50

0.9rg- 1.1rm 0.1
0 - (Tm-TE) 50
0 -360 10

200 - 650 50

Total n. of boxes = 388800
Feasible boxes = 1603 (0.41%)
CPU time =253.2 s

Best ObjFcn = 5.632

Best ObjFcn =2.77 + 2.77 + 0.07
Best ObjFcn (GASP) = 5.667
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e Results: EMdJ problem

1000 - 3000 50
300 - 700 50

0.9rm- 1.11g 0.1
0 - (Ty-Tm) 50
0 - 360 10

1000 - 2000

Total n. of boxes = 8.52¢e7

Feasible boxes = 323 (3.79e-4%)
CPU time =451 s

Best ObjFcn = 12.481

Best ObjFcn =3.93 + 0 + 4.16 + 4.39
Best ObjFcn (GASP) = 13.416
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POLITECNICO DI MILANO

MICHIGAN STATE
UNIVERSITY

Results: EMdMJ problem

Search Space

Int. size

3650 - 7300

50

30 -430

100

0.91’1\4 - 1. la(res 2:1)

0.3

0 - T(res 2:1) 50
0-360 20

330 - 830
600 - 2000

Total n. of boxes = 9.19e7

Feasible boxes = 717 (7.8e-3%)

CPU time =144.26 s

Best ObjFcn = 10.843

Best ObjFcn =3.18 + 0 + 1.01 + 2.42 + 4.21
Best ObjFcn (GASP) = 12.864
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MICHIGAN STATE
UNIVERSITY
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e Results: EVAVE] problem

MICHIGAN STATE Search Space Int. size
3650 - 7300 50 4.5
80 - 430 25 0

0.91'\/'— l.la(res 2:1) 0.3
O - T(res 2:1) 50 05
0-360 10

80 - 830 25
80 - 830 50
600 - 2000

Total n. of boxes = 1.85e10

Feasible boxes = 38025 (2.06e-4%)

CPU time =2770 s

Best ObjFcn = 9.304 (Ref. solutiont: 10.503)
Best ObjFcn=3.04 + 0+ 0.26 + 0 + 0 + 5.99
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S Recsults: EVEJEJ problem

3650 - 7300 50
80 - 430 25
80 - 830 50

Ong' 1.1a(res 2;1) 03
0 - T(res 2:1) 50
0-360 10

80 - 830 50
600 - 2000

Total n. of boxes = 9.25e9

Feasible boxes = 48461 (5.23e-4%)

CPU time = 2392 s

Best ObjFcn = 8.670 (Ref. solutiont: 8.680)

Best ObjFcn=2.84+0+0+0.39 + 0 + 5.42

Best ObjFcn (GASP) = 10.09 T Vasile and De Pascale, 2006
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s Results: EAVAM problem

0 - 1000 50

09ry- 1.1rg 0.1
0 - (Tv-TE) 50
0 -360 10

50 - 400 25

0.9ry- 1.1rum 0.1
0 - (Tw-Tv) 50
0 - 360 10

200 - 1000 50

Total n. of boxes = 8.70€9, Feasible boxes = 1.13e4 (1.24e-4%)
CPU time = 2324 s

Best ObjFcn = 8.167

Best ObjFcn =2.89 + 0+ 0 + 4.37 + 0.90

Best ObjFcn (GASP) = 8.522
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W Results: EVAMAE problem

3000 - 4000 50
25 - 425 25

0.9rm- 1.1rm 0.2
0 - (Twm-Ty) 50
0-360 10

20 - 420 50

0.91g- 1.1rm 0.2
0 - (Tm-TE) 50
0-360 10

25-525 50 5
Total n. of boxes = 4.97e10, Feasible boxes = 2.05e4 (4e-5%)
CPU time = 2456 s

Best ObjFcn = 10.931

Best ObjFcn =5.38 + 0+ 0 + 0.97 + 3.64 + 0.93

Best ObjFcn (GASP) = 12.443
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e Results: EVAVEJS problem

1000 - 0 50
80 - 430 25

0.9y - A(res 2:1) 0.3
0 - T(res 2:1) 50
0-360 10

200 - 500 25

30 -180 50
400 - 1600
800 - 2200

> Total n. of boxes = 3.92e8 Best ObjFcn = 8.299

> Feasible boxes = 2281 (1e-3%) Best ObjFcn = 2.933 + 0.693 +
» CPUtime=210s 0428 +0+0+0+4.243

Best ObjFcn (GASP) = 8.619
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et Results: EVAVEIS problem

MICHIGAN STATE Search sm Int. size M(l l)
UNIVERSITY _1000_0 50 4
80 - 430 25 1

0.9y - d(res 2:1) 0.3
0 - T(res 2:1) 50
0-360 10

200 - 500 25
30 -180 50
400 - 1600 200

0.9r5- 1.1rs 0.6
0-(Ts-Ty) 50
0-360 30

1600 - 3000 200 5
Total n. of boxes = 1.4109e+12 Feasible boxes = 22350 (1.6e-6%)
CPU time = 2000 s Best ObjFcn = 8.276

Best ObjFcn =2.78 + 0.89 + Best ObjFcn (GASP) = 8.619
0.38+0+0+0+0+4.2268
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Sequential GASP+DSM

MICHIGAN STATE

The method is based on the consideration that DSM
transfers can be obtained by modifying MGA ones

MGA-DSM trajectories are obtained by inserting DSM
In desired transfer legs

The need of a DSM is suggested by the magnitude of
the AVs required for the powered GAs

The overall optimization architecture is
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GASP + Local
Optimization

DSMs insertion
(first guesses
generation)

v

v

Solution Set
Selection

MGA+DSM
Optimization




Solution Set Selection

A ST » GASP delivers a set of solutions as a result of
local optimizations inside the remaining boxes

The non-dominated solutions in the Tof-AV plot
are selected for DSMs insertion

30

Solutions close to the
Pareto set can be B i A VO,
Included to increase

the number of cases -
analyzed (by o
dominance level)

5 Il Il Il Il Il Il
2000 3000 4000 5000 6000 7000 8000 9000
Tof
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Solution Set Selection

A ST » GASP delivers a set of solutions as a result of
local optimizations inside the remaining boxes

The non-dominated solutions in the Tof-AV plot
are selected for DSMs insertion

30

*
+ TR

Solutions close to the

Pareto set can be et T ety
Included to increase

the number of cases -
analyzed (by
dominance level) '

5 1 1 1 1 1 1
2000 3000 4000 5000 6000 7000 8000 9000
Tof
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[ ]
OUTEG
q T(\.’
T
37
»‘ AN

T, Rp, n, AV,
MICHIGAN STATE 2 G4
UNIVERSITY

GA =3 GA+DSM AVpsu

» Each DSM requires 4 additional variables

The pericenter radius rp is no more computed trough the
bending angle equation

The GA plane is determined by the additional variable 7
A tangential AV is allowed at the hyperbola pericenter

The first part of a leg including a DSM is analytically
propagated for the fraction of the time of flight €

» The AVpswm is computed by solving a Lambert’s problem
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s I1rst Guesses and Optimization

LUCICAN ST The number and the arcs where DSMs are introduced is
given by setting a limit on AVegas

No DSM in the first leg is allowed (the AV at launch has
been already bounded in GASP)

Each selected MGA solution is modified to obtain a first
guess for a DSM transfer setting

e AVea=0,€ =05
e Rpand7] are those of the MGA transfer

The problem is formulated as nonlinear programming
problem with box constraints

A SQP optimizer is used to obtain optimal DSM transfers

The non dominated solutions in the plot AV-Tof are
identified after the optimization
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e Results: EVM problem

R > Optimal structure: EVdM

* Search space [days]: * Search space [days]:

[0, 2000]x[100, 1200]x[100, 2000] [1000, 6000]x[100, 500]x[100, 1000]
* Best obj [km/s]=7.75 * Best obj [km/s] =8.07
* AVs [km/s]=3.43+0+3.52+0.80 ¢ AVs[km/s]=2.95+ 0+ 3.90 + 1.22
* GASP sol [km/s] =9.03 * GASP sol [km/s] = 8.52

e Ref solf [km/s] =8.15

X 108
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e Results: EMJ problem

» Optimal Structure: EMdJ

e Search space [days]: [1000, 6000]x[100, 1200]x[100, 2000]
e Best obj [km/s] = 12.39 (12.48 GASP DSM)

e AVdep [km/s]=3.93

e AVga, psm [km/s] =0 + 4.04

e AVarr [km/s]=4.41

e GASP sol [km/s] = 13.41

X 108

MICHIGAN STATE
UNIVERSITY

AV [km/s]
@

12.81

12.6¢

12.4¢ ¢
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s Results: EVME problem

MICHIGAN STATE

2Rl > Optimal structure: EVAMdE

8

* Search space [days]: x 10°
3000, 4000
25, 525
20, 520]
25, 525]

e Best obj [km/s] =10.87 - 05t |
(10.93 GASP DSM) < o
e A\Vdep [km/s]=547 s

* AVgapsm [km/s] = ol
0+0.70+ 0+ 4.21
* AVarr [km/s]=0.49

e GASP sol [km/s] = 12.44

CLSE
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s Results: EMMJ problem

wozascad > Optimal structure: EMdMdJ

e Search space [days]: x 10°
3650, 5500] -
80, 430]
330, 830
1000, 2000]
e Best Obj [km/s] = 10.97
(10.84 GASP DSM)
e AVdep [km/s]=3.26
* AVgapsm [km/s] =
O+=0+0+3.20

e AV arr [km/s] = 4.51
* GASP sol [km/s] = 12.86
* Ref solt [km/s] = 11.05
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T Vasile and De Pascale, 2006



S Recsults: EVEEJ problem

s ® > Optimal structure: EVEdEJ

* Search space [days]: x10°
3650, 7300]

80,  430]
80,  830]
80,  830]
600, 2000]
e Bestobj [km/s] =8.68

(8.67 GASP DSM)

e AVdep [km/s]=2.83

* AVGa psm [km/s] =
0+0+042+0

e AV arr [km/s] = 5.43
e GASP sol [km/s] =9.72
* Ref solt [km/s] = 8.68

T Vasile and De Pascale, 2006
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e Results: EVVEJS problem

MICHIGAN STATE > Optlmal structure: EVAVEJS

e Search space [days]
-1000, O]
30, 430]
(100, 500
30, 330
400, 1600]
1000, 2200]
* Best ob] [km/s] = 8.59

(8.29 GASP DSM)

e AVdep [km/s]=3.57

* AVgapsm [km/s] =
040+058+0+0+0

e AVarr [km/s]=4.24
e GASP sol [km/s] =8.68 -1 B T
e Ref solt [km/s] =9.06 x [km] x 10°

T Vasile and De Pascale, 2006
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s Results: EVVEJS problem

-
aiea® > Optimal Structure EVAVEJAS

* Search space [days]
-1000, 0]
30, 430]
(100, 500]
30, 330]
400, 2000]
1000, 6000]

* Best obj [km/s] =7.60
e AVdep [km/s]=3.57

* AVgapsm [Km/s] = 1
033+033+O+O+O+257 ‘

e AV arr [km/s]=0.80
* GASP sol [km/s] = 8.61

~1.54
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Conclusions: General Considerations
-

> A DA-Based version of GASP has been implemented

e Significant work was
devoted to solve the
discontinuity and
dependency problems

—_

e The resulting algorithm
can effectively optimize
MGA transfers with no
DSMs o

» The DA-Based GASP has been extended to include
DSMs

e Dependency problem leads to the choice of modeling
the whole transfer as a sequence of Lambert’s arcs
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e Test cases show the effectiveness of the algorithm




Conclusions: GASP-DA with DSM

) o
menen®  Main problems limiting the number of DSMs:

UNIVER SITY

> Memory:
A DA number is a vector of (n+v)!/(n!v!) coefficients
where n is the order and v the number of variables

Many coefficients are usually equal to zero
But COSY does not allow dynamic memory allocation

b 4

A great amount of memory must be allocated anyway

> Dependency:
e 3 variables must be added for each DSM

¢ Multimodality increases with DSM number
== Taylor expansions might lose their accuracy
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s (Conclusions: Alternative Approach

MICHIGAN STATE > An alternative approach has been developed

e The DA based GASP with no DSM is used to gain suitable
first guess solutions (Pareto optimality)

e An optimization process is performed to insert DSMs

» Main advantages:
e Larger search spaces can be processed

e The resulting solutions are comparable with those achieved
by the pruning based algorithm

e The computational time decreases significantly

> Future steps:

e Insertion of a global component at the beginning of the
optimization process

e |nsertion of more than 1 DSM per arc
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e Taylor Models

sl Differential Algebra Interval Arithmetic

» Describe the bulk of the » Bound the deviation of the
functional dependence original function from the
through a Taylor polynomial polynomial by an interval

L Tayior vodel [RE

» Theorem (Taylor):
« Given f:[a,b]CR" =R, feC"([a,b])
e Given x € |a, b
« Then, Vx € |a,b] , thereis 6§ € R, 0 < 8 < 1, such that:

L (w— o) - V)" S + (& — 20)0)

f(ZIZ) — P’n,mo,f + (,n_|_ 1).
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Taylor Models

-
merenn®  » Consequently, the function f can be written as:

UNIVER SITY

f(m) — PnamOnf(m o wo) —I_ gnamOaf(m o mo)

» Letthe interval I, s, = (n,xo,[a, b]) , be such that:

\V/ZC E [a;, b]7 E’n,,w(),f(:B o CIJ()) E ICE,f
» Then: Vz € |a,b], f(x)€ Pz, (@ —xo)+ Lot

» The pair (P, 4, ¢, I ) is said a Taylor Model (TM) of J :

To,t = (Pnzo,f>1a,f)

and it represents a validated enclosure of f on |a, b
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VAlidated Global Optimization of MGA

> Non-guaranteed global optimizers are classically
used in MGA transfers design

e They are able to find good solutions
e The solution is not guaranteed to be the global

optimum *

We have only best known solutions

> Validated global optimizers can be used to
rigorously identify the global minimum

» COSY-GO implements a validated global optimizer
based on Taylor Models
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Main Problems on MGA Transfers

> The validated solution of parametric implicit
equations must be computed

e Ephemeris evaluation == Kepler's eq.

e |ambert’s problem == Lagrange’s eq.

e Power GA =» Bending angle eq.
> A dedicated algorithm is developed

e Find a reference point solution

e Expand the solution using DA

e \alidate the solution using TM

» The previous validated solver enables the TM
evaluation of the objective function for MGA
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Main Problems on MGA Transfers

> The validated solution of parametric implicit
equations must be computed

e Ephemeris evaluation == Kepler's eq.

e |ambert’s problem == Lagrange’s eq.

e Power GA =» Bending angle eq.
> A dedicated algorithm is developed

e Find a reference point solution

e Expand the solution using DA} DA-based GASP

e \alidate the solution using TM

» The previous validated solver enables the TM
evaluation of the objective function for MGA
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Main Problems on MGA Transfers

> The validated solution of parametric implicit
equations must be computed

e Ephemeris evaluation == Kepler's eq.

e |ambert’s problem == Lagrange’s eq.

e Power GA =» Bending angle eq.
> A dedicated algorithm is developed

e Find a reference point solution

DA- ASP
e Expand the solution using DA} based GAS

e |Validate the solution using TM

» The previous validated solver enables the TM
evaluation of the objective function for MGA
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s Farth-Mars 2 impulse Transfer

» COSY-GO was applied to find the verified global
optimum of the impulsive Earth-Mars transfer

600 -
550
500 -
450 -
400 -
350

300

2501
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s arth-Mars 2 impulse Transter

R EETE COSY-GO was applied to find the verified global
optimum of the impulsive Earth-Mars transfer

Platform: Pentium IV 3.06 GHz laptop

Computational time: 11
4954.39 s

Enclosure of the
minimum [km/s]:
[5.6673264, 5.6673272]

(GASP-DA: 5.6673270)

[lem/z]

AW cutoeff value

Enclosure of the
solution [days]:

: 11 1.|5
to {[3573.176, 3573.212] ——
tem | [324.034, 324.088]
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s [ arth- Venus-Mars Transfer

VICHIGAN STATE The validated implicit equation solver is used for the
powered gravity assist maneuver
The MGA problem is reformulated in absolute times

The verified global optimization of the Earth-Venus-Mars
transfer is addressed

Search Space [days] : [5000,6000]x[140,240]x[200,400]
\4 \Z \

Results: to tev tvm

Computational time: about 3 weeks!

Enclosure of the minimum: [8.5220251,8.5231393] km/s
(GASP-DA: 8.5226)

Enclosure of the [5611.475, 5611.512]
solution:

[157.592, 157.623]
[255.564, 255.620]
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s Main Drawbacks and possible solutions
T

auzasiad > Management of the constraints obj

¢ Boxes lying on the constraint
are kept as feasible

: :

The computed obj can box
underestimate the actual obj*

e Possible solution: validated enclosure of the
constraint manifold
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Main Drawbacks and possible solutions
T

s > Management of the constraints  ob/4

¢ Boxes lying on the constraint
are kept as feasible

A
=2

The computed obj can box
underestimate the actual obj*

e Possible solution: validated enclosure of the
constraint manifold

NOTE: The global optimum of the Earth-Venus-Mars
transfer does not lie on the constraint manifold
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Main Drawbacks and possible solutions
T

Taes® > Management of the constraints  ob/4

¢ Boxes lying on the constraint
are kept as feasible

A
=2

The computed obj can box
underestimate the actual obj*

e Possible solution: validated enclosure of the
constraint manifold

NOTE: The global optimum of the Earth-Venus-Mars
transfer does not lie on the constraint manifold

> High computational time
e (COSY-GO algorithm ‘ Possible solution:
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is fully parallelizable Parallel run




e (Conference announcement

MICHIGAN STATE
UNIVERSITY

New Trends in Astrodynamics and Applications V
Politecnico di Milano, Milano, Italy

Summer 2008 B AN | TERNATIC AL ConsEREnCE

More details coming soon ...

ASTRODYNAMICS
AND APPLICATIONS

s
<
S

2
S

S
S
w~
.

%!
=
S

.20

=

=
|
S
S
=
=
S

R
=
S
O
Ry

~
S

R

g
Té
<
@)
=
)
©
o
R~




