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Outline

‣ Introduction to Differential Algebra (DA)

‣ Pruning of MGA transfers using DA (GASP-DA)

• Time of flight approach
- discontinuities analysis            
- dependency problem

• Absolute time approach
• Objective function semi-analytical approximation
• Non-validated quadratic bounder
• Test cases

‣ Introduction of DSM in GASP-DA
• Forward propagation approach
• Absolute variables approach
• Test cases
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Outline

‣ Alternative strategy: sequential GASP-DA + DSM
• Post-processing GASP results

- Solution set selection          
- DSM modeling

• Test cases

‣ Conclusions on DA-based MGA transfers pruning

‣ Extra-Schedule Application: Validated Optimization of MGA 
Transfers
• Introduction to Taylor Models

• Main problem

• Verified optimization of planet-to-planet transfers: Earth-Mars

• Verified optimization of MGA transfers: Earth-Venus-Mars

• Conclusions and future works



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
Pi

er
lu

ig
i D

i L
iz

ia
Differential Algebra: Some History

‣ Differential Algebra (DA) is an automatic differentiation 
technique

‣ DA was first developed by Martin Berz in the late ‘80s:
• 1986

Definition of the algebra of Taylor Polynomials in the so-called 
Truncated Power Series Algebra (TPSA).

• 1987
Introduction of methods to treat common elementary 
functions and the operations on them

• 1989
Introduction of the analytic operations 
of differentiation and integration 
(Differential Algebra)

• 1998
Validated Remainder Enhanced 
Differential Algebra (Taylor Models)

Implementation in 
COSY-Infinity
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Introduction to Differential Algebra

‣ The basic idea is to bring the treatment of functions and 
the operations on them to the computer in a similar way 
as the treatment of numbers

a, b ∈ " ā, b̄ ∈ FP

∗∗

a ∗ b ā b̄∗
T

T

∗∗

f, g F,G

f ∗ g F G∗

T

T
• Real numbers are 

approximated by floating 
point numbers

• For each    , adjoint       
can be crafted on floating 
point numbers

•      is the extraction of 
Taylor coefficients 
(equivalence relation)

• The new space can be 
endowed with 
corresponding operations

∗ ∗

T
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Minimal Differential Algebra

First order Differential Algebra
‣ Consider the set of all ordered pairs of reals
‣ Define the operations:

(a0, a1)

(a0, a1) + (b0, b1) := (a0 + b0, a1 + b1)
t · (a0, a1) := (t · a0, t · a1)

(a0, a1)·(b0, b1) := (a0 ·b0, a0 ·b1 + a1 ·b0)

Algebra

(a0, a1)−1 := (1/a0,−a1/a2
0)

1D1

‣ The previous algebra allows the automatic computation of 
derivatives. E.g.:

• Assume to have    and    , and to put their values and 
derivatives at the origin in        :                     and

• Evaluate: 

f g
1D1 (f(0), f ′(0)) (g(0), g′(0))

(f(0), f ′(0)) · (g(0), g′(0)) = (f(0) · g(0), f ′(0) · g(0) + f(0) · g′(0))



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
Pi

er
lu

ig
i D

i L
iz

ia

‣ This observation can be used to compute derivatives of 
many functions starting from the ordered pair 
corresponding to the identity function                            
E.g.:

Minimal Differential Algebra

f(x) =
1

x + 1/x
f ′(x) =

1/x2 − 1
(x + 1/x)2

f(3)=
3
10

f ′(3)=− 2
25

Symbolic 
manipulators 
approach

f((3, 1))=
1

(3, 1)+1/(3, 1)
=

1
(3, 1)+(1/3,−1/9)

=
1

(10/3, 8/9)
=

(
3
10

,− 2
25

)
Evaluating     in                              using the previous algebra:f

[x + x0] = (x0, 1)

[x + 3] = (3, 1)

‣ Important implementation advantages: 
• ordered pairs          new variable type 
• algebra                   operator overloading
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‣          can be generalized to           for function of       
variables and  the arbitrary order

General Differential Algebra nDv

1D1 nDv v
n

(a0, a1)

1D1 nDv

a vector in           is a collection of all the Taylor coefficients of 
the function       w.r.t the      variables up to the order  

nDv

f v n

(..., cj1,...,jv , ...)
j1 + ... + jv ≤ n

‣           can be further extended to treat any transcendental 
function (sin, cos, exp, log, etc.)
nDv

‣ Real algebra is substituted by Taylor polynomial algebra
‣ Starting from the Taylor polynomial of the identity function, 

the DA computation of      returns its Taylor expansion f
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Pruning of MGA Transfers: Problem Formulation

‣ Example: Direct Earth-Mars transfer

• The positions of the starting and arrival planets are computed 
through the ephemerides evaluation:

• The starting velocity       and the final one       are computed by 
solving the Lambert’s problem

• Objective function:

• Pruning constraints:

(rE ,vE) = eph(TE ,Earth) (rM ,vM ) = eph(TM ,Mars)

v1 v2

∆V1 < ∆V1,max

∆V2 < ∆V2,max

∆V = ∆V1 + ∆V2
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Differential Algebra - Based GASP
‣ Main Idea:

The point-wise evaluation of the objective function in GASP is 
substituted by a DA-based evaluation

• The search space is subdivided in boxes

TE

tEM
• The Taylor expansion of the objective 

function is computed within each box 
(the center is used as reference point)

• The resulting polynomials are bounded to estimate 
the range of the objective function over each box

• The resulting range is used in the pruning process

‣ Advantages:
• Wider sampling of the search space
• Lipschitz’s constant avoidance
• Availability of analytical information
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Objective Function Evaluation
‣ A set of nonlinear equations must be solved
‣ Planet-to-planet transfers

• Ephemeris evaluation
An analytical model is available to obtain      and       as a 
function of the epoch. The Kepler’s equation must be solved:

f(E) = E − e sinE −M = 0

e M

• Lambert problem
An algorithm developed by Izzo has been used. The Lagrange 
equation for the time of flight must be solved:

f(x) = log(A(x))− log(ttof ) = 0

‣ MGA transfers
• Bending angle equation

f(rp) = arcsin
a−

a− + rp
+ arcsin

a+

a+ + rp
− α = 0
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‣ Taylor expanding the objective function leads to the 
necessity of expanding the solution of the implicit equations

Parametric Implicit Equations

t0‣ E.g.: Kepler’s equation. Given a reference epoch
• The DA evaluation of the analytical model gives:          ,e(δt) M(δt)

• Kepler’s equation becomes a parametric implicit equation:
f(E, δt) = E − e(δt) sinE −M(δt) = 0

• We need to solve the previous equation for E(δt)

‣ Algorithm overview:
• A point solution is computed at 

the reference point (Newton 
method)

• The solution is expanded 
around the computed one 
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‣ Subdivide the search space in subintervals

‣ For each subinterval 

• Initialize            and               as DA variables and 
compute the Taylor expansion of            on

• Bound the polynomial expansion of            on 

• IF                                                           discard         and analyze the next 
subinterval

• Compute the Taylor expansion of            on

• Bound the polynomial expansion of            on

• IF                                                           discard         and analyze the next 
subinterval

DA Based Pruning: ToF Approach

!X

!X

!X

∆V1

min∆V1 > ∆V1,max

TE tEM

∆V1 !X
TE

tEM

∆V2 !X

∆V2
!X

min∆V2 > ∆V2,max
!X
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‣ Example: Direct Earth-Mars transfer

• The optimization variables are the departure epoch        and 
the time of flight

Earth-Mars Transfer: ToF Approach

TE

[1000, 6000]× [100, 600]• Search space:

Objective function structure 

tEM = TM − TE
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Earth-Mars Transfer: ToF Approach

‣ Example: Direct Earth-Mars transfer

• Pruning constraints:                             km/s∆V1,∆V2 < 5

Pruned search space 
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Earth-Mars Transfer: ToF Approach

Remaining boxes

‣ Example: Direct Earth-Mars transfer

• Pruning constraints:                             km/s
• Box size: 50 x 50 days

∆V1,∆V2 < 5
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Earth-Mars Transfer: ToF Approach

Remaining boxes

‣ Example: Direct Earth-Mars transfer



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
Pi

er
lu

ig
i D

i L
iz

ia

‣ Example: Direct Earth-Mars transfer

• The optimization variables are the departure epoch        and 
the time of flight

Earth-Mars Transfer: Discontinuities

TE

[1000, 6000]× [100, 600]• Search space:

Objective function structure 

tEM = TM − TE

From “short way”
to “long way”

From “long way”
to “short way”

• The transfer orbit 
is perpendicular 
to the ecliptic

Discontinuities:
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‣ Example: Direct Earth-Venus transfer

Discontinuity Problem

Geometrical View

‣ “Short way” to “long way” transition:

Objective function discontinuity

1.457 1.458 1.459 1.46 1.461 1.462
x 104

0

20

40

60

80

100

Epoch [MJD]

!
 v

 [k
m

/s]

short way

long way
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Discontinuity Problem: Box Reshaping

‣ The discontinuities correspond to the transition from "short 
way" to "long way" and vice versa in the Lambert solver

‣ In case of circular and coplanar orbits:
• they would be straight lines
• their slope could be easily computed using the orbital periods:

tanα =
PM

PE
− 1

α

‣ Based on the previous 
observations we can 
suitably reshape the 
boxes
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Discontinuity Problem: Box Reshaping

‣ Rectangular box:

‣ Reshaped box:
!X = [TE + ∆TE + (1/ tanα) · ∆tEM , tEM + ∆tEM ]

!X = [TE + ∆TE , tEM + ∆tEM ]

Rectangular box Reshaped box
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Discontinuity Problem: Box Reshaping

‣ Example: Direct Earth-Mars transfer

• Pruning constraints:                             km/s
• Box size: 50 x 50 days

∆V1,∆V2 < 5

Remaining boxes
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‣ Suppose a box lying on the discontinuity is being analyzed

Discontinuity Problem: Box Splitting
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‣ Suppose a box lying on the discontinuity is being analyzed

‣ Moving on a horizontal line, identify a point lying on the 
discontinuity

Discontinuity Problem: Box Splitting
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‣ Suppose a box lying on the discontinuity is being analyzed

‣ Moving on a horizontal line, identify a point lying on the 
discontinuity

‣ Enclose the discontinuity
in a strip

Discontinuity Problem: Box Splitting
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‣ Suppose a box lying on the discontinuity is being analyzed

‣ Moving on a horizontal line, identify a point lying on the 
discontinuity

‣ Enclose the discontinuity
in a strip

‣ Identify and process two
“discontinuity-free” boxes

Discontinuity Problem: Box Splitting
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‣ Suppose a box lying on the discontinuity is being analyzed

‣ Moving on a horizontal line, identify a point lying on the 
discontinuity

‣ Enclose the discontinuity
in a strip

‣ Identify and process two
“discontinuity-free” boxes

‣ Problems and Drawbacks:

• Difficult assessment of
lying conditions

• Computational time
increase

Discontinuity Problem: Box Splitting
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‣ The unfavorable 
discontinuity lines 
correspond to the 
transition from “short way” 
to “long way” in the 
Lambert solver

‣ The previous discontinuity 
does not occur in a planar 
planetary model (the 
orbital plane of the 
Lambert’s arc is uniquely 
determined)

Discontinuity Problem: Planar Model

1.457 1.458 1.459 1.46 1.461 1.462
x 104

0

20

40

60

80

100

Epoch [MJD]
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Discontinuity Problem: Planar Model

3D-Model 2D-Model

Objective Function Comparison

Given the previous consideration and the low inclination of 
all planetary orbits, a planar Solar System model has been 
adopted to perform the pruning process

‣ Adopted solution:
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‣ Main observation:

The pruned search space in the 2D-Model encloses the pruned 
search space in the 3D-Model

Discontinuity Problem: Planar Model

3D-Model 2D-Model

Pruned Search Spaces

∆V3D ≥ ∆V2D∆Verr = ∆V3D −∆V2D ≥ 0
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‣ The pruned search space in the 2D-Model encloses the 
pruned search space in the 3D-Model

Discontinuity Problem: Planar Model

DA Based Pruning

3D-Model
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‣ Consider a Earth-Mars-Jupiter (EMJ) transfer

Dependency Problems

TE

tEM

[tEM ]

[TE ]

{

{ TM[TE ] + [tEM ]

[tMJ ]{

tMJ

First Arc Second Arc

‣ The box size increases along the transfer
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‣ Consider a Earth-Mars-Jupiter (EMJ) transfer

Dependency Problems

‣ The box size increases along the transfer

PE(TE)

PM (TE , tEM )

PJ(TE , tEM , tMJ)

TE

tEM

tMJ

‣ The dependency on the design variables increases along 
the transfer 

The Absolute Times formulation to the problem is adopted
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GASP-DA Absolute Time Approach

‣ GASP is fully translated in the DA environment

‣ The 2D model is used to avoid discontinuities

‣ The computed  ∆Vs and       are Taylor expansions about 
the center of the boxes

‣ The absolute time approach allows to limit the maximum 
number of dependencies to 3 (for            and       )∆VGA rp

rp
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Semi-Analytical Solution of the Implicit Eqs.

‣ The use of semi-analytical solutions of the involved implicit 
equations has been introduced to:

• Avoid the iterative process of 
Newton’s method

• Avoid the use of the dedicated 
auxiliary DA variable

Computational time 
savings (20%)

‣ The evaluation of the objective function requires the 
solution of three scalar nonlinear equations 

• Ephemerides function            Kepler’s eq 
• Lambert´s problem                 Lagrange’s eq
• Powered gravity assist           bending angle eq
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‣ Kepler´s equation                           is replaced by a third 
order expansion in the eccentricity

Analytical Ephemerides

E = M +
e sinM

1− e cos M
− 1

2

(
e sinM

1− e sinM

)3

+ O(e4)

M = E − e sinE

‣ A first order expansion has been derived for:

• Lagrange equation (Lambert’s problem):

using the variable change                        [Izzo]

• Bending angle equation (powered GA)

using the variable change              

f(x) = log(A(x))− log(ttof ) = 0

t = log(1 + x)

f(rp) = arcsin
a−

a− + rp
+ arcsin

a+

a+ + rp
− α = 0

t = 1/rp
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Semi-Analytical Solution: Objective Function

‣ Purely Numerical   vs.  Semi-Analytical  approach

Objective Function Comparison

Purely Numerical Semi-Analytical
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Validated Linear Bounder

‣ Suppose a box       can be pruned away if:

!X
[ !X]

f

fcutoff

!X min f > fcutoff
!X

‣ The validated linear bounder uses the linear part of the 
Taylor expansion to get validated bounds of the Taylor 
expansion

‣ Problem: careful analyses show that the pruning 
process is not as effective as expected
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Validated Linear Bounder

!X
[ !X]

f

fcutoff

‣ Suppose a box       can be pruned away if:!X min f > fcutoff
!X

‣ The validated linear bounder uses the linear part of the 
Taylor expansion to get validated bounds of the Taylor 
expansion

‣ Problem: careful analyses show that the pruning 
process is not as effective as expected
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Validated Linear Bounder

!X
[ !X]

f

fcutoff

‣ The computed bounds 
overestimate the exact 
range

‣ Suppose a box       can be pruned away if:!X min f > fcutoff
!X

‣ The validated linear bounder uses the linear part of the 
Taylor expansion to get validated bounds of the Taylor 
expansion

‣ Problem: careful analyses show that the pruning 
process is not as effective as expected
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Validated Linear Bounder

The linear bounder 
would not prune away 
the box

!X
[ !X]

f

fcutoff

‣ The computed bounds 
overestimate the exact 
range

‣ Suppose a box       can be pruned away if:!X min f > fcutoff
!X

‣ The validated linear bounder uses the linear part of the 
Taylor expansion to get validated bounds of the Taylor 
expansion

‣ Problem: careful analyses show that the pruning 
process is not as effective as expected
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Non-Validated Quadratic Bounder

‣ The non-validated quadratic bounder uses the quadratic 
part of the Taylor expansion to get non-validated 
bounds of the Taylor expansion

!X
[ !X]

f

fcutoff
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Non-Validated Quadratic Bounder

‣ The non-validated quadratic bounder uses the quadratic 
part of the Taylor expansion to get non-validated 
bounds of the Taylor expansion

!X
[ !X]

f

fcutoff
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Non-Validated Quadratic Bounder

‣ The non-validated quadratic bounder uses the quadratic 
part of the Taylor expansion to get non-validated 
bounds of the Taylor expansion

!X
[ !X]

f

fcutoff

The non-validated 
quadratic bounder 
prunes away the box
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Non-Validated Quadratic Bounder

‣ The non-validated quadratic bounder uses the quadratic 
part of the Taylor expansion to get non-validated 
bounds of the Taylor expansion

!X
[ !X]

f

fcutoff

The non-validated 
quadratic bounder 
prunes away the box

‣ Drawback: the computed bounds might underestimate 
the exact range
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DA-Based Pruning: Earth-Mars Transfer

‣ Example: Direct Earth-Mars transfer

• Pruning constraints:                             km/s∆V1,∆V2 < 5

Remaining Boxes

Non-Validated Quadratic BounderValidated Linear Bounder
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DA-Based Pruning: Earth-Mars Transfer

‣ Example: Direct Earth-Mars transfer

• Pruning constraints:                             km/s∆V1,∆V2 < 5

Remaining Boxes

Non-Validated Quadratic BounderValidated Linear Bounder
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DA-Based Pruning: Earth-Mars Transfer

‣ Example: Direct Earth-Mars transfer

• Pruning constraints:                             km/s∆V1,∆V2 < 5

Remaining Boxes

Non-Validated Quadratic BounderValidated Linear Bounder
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Optimization Process

‣ An optimization process follows the pruning process

‣ Two approaches have been studied:

• COSY-GO: Cosy language based Validated Global Optimizer

• Multiple runs of a local optimizer
- The non-validated quadratic bounder is used to estimate the 

minimum within each box (used as starting point)
- The boxes are sorted based on the objective function
- Boxes selection heuristic

- Local runs are performed within each selected box

Overall obj function range Obj

5% interval Boxes belonging to this 
interval are selected
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Performance Analysis

‣ All tests have been performed on a standard pc with
• 2.01 GHz CPU
• 512 Mb RAM
• Microsoft Windows XP Professional Service Pack 2

‣ All tests used expansion order = 2

‣ Problem dimension = number of planets involved

‣ No Deep Space Maneuver considered
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EM Transfer

Problem Search Space Int. size Cut-off (10)

E Dep. Epoch 1000 - 6000 50 5

M tof1 100 - 600 50 5

Tot. boxes 1000
Remaining 64 (6.4%)
CPU Time 0.22

Obj Fcn 5.6673

‣ Problem Definition: 

‣ Results:
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EVM transfer

Tot. boxes 14400
Remaining 165 (1.1%)
CPU Time 0.65

Obj Fcn 8.5226

‣ Problem Definition: 

‣ Results:

Problem Search Space Int. size Cut-off (12)
E Dep. Epoch 1000 - 6000 50 5

V tof1 100 - 500 50 2

M tof2 100 - 1000 50 5



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
Fr

an
ce

sc
o 

To
pp

ut
o

EMJ transfer

Tot. boxes 41800
Remaining 329 (0.7%)
CPU Time 2.64

Obj Fcn 13.4165

‣ Results:

‣ Problem Definition: 
Problem Search Space Int. size Cut-off (20)

E Dep. Epoch 1000 - 6000 50 10

M tof1 100 - 1200 50 5

J tof2 100 - 2000 100 10
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EVME transfer
‣ Problem Definition: 

‣ Results:
Tot. boxes 20000
Remaining 26 (0.1%)
CPU Time 0.20

Obj Fcn 12.4431

Problem Search Space Int. size Cut-off (15)
E Dep. Epoch 3000 - 4000 50 6

V tof1 25 - 525 50 2

M tof2 20 - 520 50 2

E tof3 25 - 525 50 6
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Cassini-like transfer

Problem Search Space Int. size Cut-off (12)
E Dep. Epoch -1000 -  0 50 4
V tof1 10 - 410 25 2
V tof2 100 - 500 25 2
E tof3 10 - 410 25 2
J tof4 400 - 2000 200 2
S tof5 1000 - 6000 200 6

‣ Problem Definition: 
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Tot. boxes 32768000
Remaining 1085 (0.003%)
CPU Time 1.93

Obj Fcn 4.9357

Cassini-like transfer

The “black-box” objective 
function provided by the 
ACT has been used
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Introduction of DSM in GASP-DA

‣ The strategy for the introduction of the DSM is not 
unique

‣ In the DA frame, the problem formulation strongly 
affects the results!

‣ If the number of optimization variables grows, the 
number of Taylor monomials increases with 
factorial law

‣ The problem complexity increases (nonlinear 
functions of many variables to approximate)

In the DA environment, it is important to carefully 
formalize the DSM problem in order to reduce the 
polynomial dimension
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DSM in GASP-GA

Characteristics of GASP

‣ cascade of planet-to-planet problems

‣ definition of cut-off pruning values
It would be useful to exploit the structure of GASP 
for the DSM introduction. Let’s consider the 
following planet-to-planet transfer

P1(T1)
P2(T2)

∆v1 ≤ ∆vmax
1

∆v2 ≤ ∆vmax
2

T1, T2

∆vmax
1 ,∆vmax

2

: epochs
: cut-off values

∆v1

∆v2

constraints:

1 Lambert’s problem
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‣ The DSM point,                              , can be obtained by forward 
propagation (with Lagrange coefficients). 

DSM formulation: forward propagation

P1(T1)

P2(T2)

∆v1

∆v2 1 Propagation
1 Lambert’s problem

∆v1 ≤ ∆vmax
1

∆v2 ≤ ∆vmax
2

constraints:
∆vD ≤ ∆vmax

D

∆vD

∆v1 ∈ [0,∆vmax]

v1

α

D

α ∈ [0, 2π]
θ ∈ [0, 2π]

θ

o

D = D(T1,∆v1,α, θ)

‣ In the planar case, the DSM point is uniquely specified 
once three scalars are given

• angle:
• anomaly:
• maneuver magnitude:
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DSM formulation: forward propagation

x = {T1, T2,∆v1,α, θ}Toptimization variables: 

functions to approximate: 






∆v1 = ∆v1

∆vD = ∆vD(T1, T2,∆v1,α, θ)
∆v2 = ∆v2(T1, T2,∆v1,α, θ)

P1(T1)

P2(T2)

∆v1

∆v2

∆vD

v1

α

D

θ

o

‣ The forward propagation + Lambert’s problem fits the 
cascade structure of GASP, but ...
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DSM formulation: forward propagation

P1(T1)

P2(T2)
∆v1

∆v2

∆vD

v1

α

D

θ

o

Even in this very simple case, 
these two functions depend 
on all the optimization 
variables!

x = {T1, T2,∆v1,α, θ}Toptimization variables: 

functions to approximate: 






∆v1 = ∆v1

∆vD = ∆vD(T1, T2,∆v1,α, θ)
∆v2 = ∆v2(T1, T2,∆v1,α, θ)

‣ The forward propagation + Lambert’s problem fits the 
cascade structure of GASP, but ...
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DSM formulation: forward propagation

P1(T1)

P2(T2)∆v1

v1

α

o

2 Propagation
2 Lambert’s problems

∆v3

P3(T3)

optimization variables: 

functions to 
approximate: 

x = {T1, T2, T3,∆v1,α, θ1,∆vp, rp︸ ︷︷ ︸
GA

, θ2}T

θ1

D1 ∆vD1

∆vD2

D2
θ2

∆vp

D1(T1,∆v1,α, θ1) D2(T1, T2,∆v1,α, θ1,∆vp, rp, θ2)






∆v1 = ∆v1

∆vD1 = ∆vD(T1, T2,∆v1,α, θ1)
∆vp = ∆vp

∆vD2 = ∆v2(T1, T2, T3∆v1,α, θ1,∆vp, rp, θ2)
∆v3 = ∆v3(T1, T2, T3∆v1,α, θ1,∆vp, rp, θ2)

‣ If we simply add another planet and another DSM ...
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DSM formulation: forward propagation

optimization variables: 

functions to 
approximate: 

x = {T1, T2, T3,∆v1,α, θ1,∆vp, rp︸ ︷︷ ︸
GA

, θ2}T






∆v1 = ∆v1

∆vD1 = ∆vD(T1, T2,∆v1,α, θ)
∆vp = ∆vp

∆vD2 = ∆v2(T1, T2, T3∆v1,α, θ,∆vp, rp, θ2)
∆v3 = ∆v3(T1, T2, T3∆v1,α, θ,∆vp, rp, θ2)

• The more planets and DSM, the more complicated  functions 
to approximate.

• Bounding functions of many variables is very difficult (and 
leads to incorrect results).

• Re-formulate the problem in suitable variables such that the 
“dependency chain” is broken (analogously in the absolute time 
formulation of GASP). 

function of nplanets + 3nDSM

‣ If we simply add another planet and another DSM ...
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DSM formulation: absolute variables

‣ The DSM point is specified by a radius and an angle

‣ The problem is solved by two Lambert’s arcs 

P1(T1)

P2(T2)

∆v1

∆v2

2 Lambert’s problems

∆vDD

θ

o

rD

tD

rD ∈ [rmin
D , rmax

D ]

θ ∈ [0, 2π]

tD ∈ [0, T2 − T1]

x = {T1, T2, rD, θ, tD}T






∆v1 = ∆v1(T1, rD, θ, tD)
∆vD = ∆vD(T1, T2, rD, θ, tD)
∆v2 = ∆v2(T1, T2, rD, θ, tD)

variables: 

functions: 

Apparently there is no 
improvement, but ...
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DSM formulation: absolute variables

‣ If both one planet and one DSM are added ...

P1(T1)

P2(T2)∆v1

o

4 Lambert’s problems

∆v3

P3(T3)

θ1

D1 ∆vD1

∆vD2

D2

∆vp

variables: 

functions: 

x = {T1, T2, T3, rD1, θ1, tD1︸ ︷︷ ︸
DSM1

, rD2, θ2, tD2︸ ︷︷ ︸
DSM2

}T






∆v1 = ∆v1(T1, rD1, θ1, tD1)
∆vD1 = ∆vD1(T1, T2, rD1, θ1, tD1)
∆vp = ∆vp(T1, T2, rD1, θ1, tD1, rD2, θ2, tD2)

∆vD2 = ∆vD2(T2, rD2, θ2, tD2)
∆v3 = ∆v3(T2, T3, rD2, θ2, tD2)

D1(T1, rD1, θ1)

D2(T2, rD2, θ2)

θ2

rD1

r1
rD2

r2
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DSM formulation: absolute variables

• Independently from the problem structure, the 
absolute variables formulation involves functions of 
at most 8 variables.

• In the forward propagation method, the 
dependencies blow up with nplanets+3DSM.

‣ If both one planet and one DSM are added ...
variables: 

functions: 

x = {T1, T2, T3, rD1, θ1, tD1︸ ︷︷ ︸
DSM1

, rD2, θ2, tD2︸ ︷︷ ︸
DSM2

}T






∆v1 = ∆v1(T1, rD1, θ1, tD1)
∆vD1 = ∆vD1(T1, T2, rD1, θ1, tD1)
∆vp = ∆vp(T1, T2, rD1, θ1, tD1, rD2, θ2, tD2)

∆vD2 = ∆vD2(T2, rD2, θ2, tD2)
∆v3 = ∆v3(T2, T3, rD2, θ2, tD2)
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DSM formulation: absolute variables

Absolute time formulation

‣ The “dependency chain” is broken

‣ Reduced number of variable dependencies

‣ Better functions to approximate and bound

‣ More Lambert’s problems to solve (but for us it is 
a mere function evaluation)
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!2 !1 0 1 2
x 108

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

2.5
x 108

x [km]

y 
[k

m
]

Results: EdM problem

Problem Search Space Int. size Cut-off (7)
E 1000 - 2000 50 3

d
0.9rE - 1.1rM
0 - (TM-TE)

0 - 360

0.1
50
10

3

M 200 - 650 50 3

‣ Total n. of boxes = 388800

‣ Feasible boxes = 1603 (0.41%)

‣ CPU time = 253.2 s

‣ Best ObjFcn = 5.632

‣ Best ObjFcn = 2.77 + 2.77 + 0.07

‣ Best ObjFcn (GASP) = 5.667
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!10 !5 0 5
x 108

!6

!4

!2

0

2

4

6

x 108

x [km]

y 
[k

m
]

Results: EMdJ problem

Problem Search Space Int. size Cut-off (15)
E 1000 - 3000 50 5
M 300 - 700 50 0

d
0.9rM - 1.1rJ
0 - (TJ-TM)

0 - 360

0.1
50
10

5

J 1000 - 2000 100 5

‣ Total n. of boxes = 8.52e7

‣ Feasible boxes = 323 (3.79e-4%)

‣ CPU time = 451 s

‣ Best ObjFcn = 12.481

‣ Best ObjFcn = 3.93 + 0 + 4.16 + 4.39

‣ Best ObjFcn (GASP) = 13.416
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Results: EMdMJ problem

Problem Search Space Int. size Cut-off (12)
E 3650 - 7300 50 4
M 30 - 430 100 0

d
0.9rM - 1.1a(res 2:1)

0 - T(res 2:1)
0 - 360

0.3
50
20

3

M 330 - 830 100 0
J 600 - 2000 200 7

‣ Total n. of boxes = 9.19e7

‣ Feasible boxes = 717 (7.8e-3%)

‣ CPU time = 144.26 s

‣ Best ObjFcn = 10.843

‣ Best ObjFcn = 3.18 + 0 + 1.01 + 2.42 + 4.21

‣ Best ObjFcn (GASP) = 12.864
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Results: EMdMJ problem

!10 !8 !6 !4 !2 0 2 4 6 8
x 108

!6

!4

!2

0
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Results: EVdVEJ problem

Problem Search Space Int. size Cut-off (12)
E 3650 - 7300 50 4 .5
V 80 - 430 25 0

d
0.9rV - 1.1a(res 2:1)

0 - T(res 2:1)
0 - 360

0.3
50
10

0 .5

V 80 - 830 25 0
E 80 - 830 50 0
J 600 - 2000 200 7

‣ Total n. of boxes = 1.85e10

‣ Feasible boxes = 38025 (2.06e-4%)

‣ CPU time = 2770 s

‣ Best ObjFcn = 9.304 (Ref. solution†: 10.503)

‣ Best ObjFcn = 3.04 + 0 + 0.26 + 0 + 0 + 5.99

†   Vasile and De Pascale, 2006 
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Results: EVdVEJ problem
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Results: EVEdEJ problem

Problem Search Space Int. size Cut-off (12)
E 3650 - 7300 50 4
V 80 - 430 25 0
E 80 - 830 50 0

d
0.9rV - 1.1a(res 2:1)

0 - T(res 2:1)
0 - 360

0.3
50
10

3

E 80 - 830 50 0
J 600 - 2000 200 7

‣ Total n. of boxes = 9.25e9

‣ Feasible boxes = 48461 (5.23e-4%)

‣ CPU time = 2392 s

‣ Best ObjFcn = 8.670 (Ref. solution†: 8.680)

‣ Best ObjFcn = 2.84 + 0 + 0 + 0.39 + 0 + 5.42

‣ Best ObjFcn (GASP) = 10.09 †   Vasile and De Pascale, 2006 
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Results: EVEdEJ problem
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Results: EdVdM problem

Problem Search Space Int. size Cut-off (10)
E 0 - 1000 50 4

d
0.9rV - 1.1rE
0 - (TV-TE)

0 - 360

0.1
50
10

1

V 50 - 400 25 0

d
0.9rV - 1.1rM
0 - (TM-TV)

0 - 360

0.1
50
10

5

M 200 - 1000 50 3

‣ Total n. of boxes = 8.70e9, Feasible boxes = 1.13e4 (1.24e-4%)

‣ CPU time = 2324 s

‣ Best ObjFcn = 8.167

‣ Best ObjFcn = 2.89 + 0 + 0 + 4.37 + 0.90

‣ Best ObjFcn (GASP) = 8.522
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Results: EdVdM problem

!3 !2 !1 0 1 2
x 108

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

x 108

x [km]

y 
[k

m
]



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
R

ob
er

to
 A

rm
el

lin
Results: EVdMdE problem

Problem Search Space Int. size Cut-off (13)
E 3000 - 4000 50 5
V 25 - 425 25 0

d
0.9rM - 1.1rM
0 - (TM-TJ)

0 - 360

0.2
50
10

2

M 20 - 420 50 0

d
0.9rE - 1.1rM
0 - (TM-TE)

0 - 360

0.2
50
10

4

E 25 - 525 50 5

‣ Total n. of boxes = 4.97e10, Feasible boxes = 2.05e4 (4e-5%)

‣ CPU time = 2456 s

‣ Best ObjFcn = 10.931

‣ Best ObjFcn = 5.38 + 0 + 0 + 0.97 + 3.64 + 0.93

‣ Best ObjFcn (GASP) = 12.443
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Results: EVdMdE problem
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Results: EVdVEJS problem

‣ Total n. of boxes = 3.92e8

‣ Feasible boxes = 2281 (1e-3%)

‣ CPU time = 210 s

Problem Search Space Int. size Cut-off (11)
E -1000 - 0 50 4
V 80 - 430 25 1

d
0.9rV - a(res 2:1)

0 - T(res 2:1)
0 - 360

0.3
50
10

1

V 200 - 500 25 0
E 30 -180 50 0
J 400 - 1600 200 0
S 800 - 2200 200 5

‣ Best ObjFcn = 8.299

‣ Best ObjFcn = 2.933 + 0.693 + 
0.428 + 0 + 0 + 0 + 4.243

‣ Best ObjFcn (GASP) = 8.619
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Results: EVdVEJS problem
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Results: EVdVEJdS problem

Problem Search Space Int. size Cut-off (11)
E -1000 - 0 50 4
V 80 - 430 25 1

d
0.9rV - a(res 2:1)

0 - T(res 2:1)
0 - 360

0.3
50
10

1

V 200 - 500 25 0
E 30 -180 50 0
J 400 - 1600 200 0

d
0.9rJ - 1.1rS
0 - (TS -TJ)

0 - 360

0.6
50
30

1

S 1600 - 3000 200 5

‣ Total n. of boxes =  1.4109e+12     Feasible boxes = 22350 (1.6e-6%)

‣ CPU time = 2000 s                         Best ObjFcn = 8.276

‣ Best ObjFcn = 2.78 + 0.89 +          Best ObjFcn (GASP) = 8.619
0.38 + 0 + 0 + 0 + 0 + 4.2268
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Results: EVdVEJdS problem
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Sequential GASP+DSM

‣ The method is based on the consideration that DSM 
transfers can be obtained by modifying MGA ones 

‣ MGA-DSM trajectories are obtained by inserting DSM 
in desired transfer legs

‣ The need of a DSM is suggested by the magnitude of 
the ∆Vs required for the powered GAs

‣ The overall optimization architecture is  

GASP + Local 
Optimization

Solution Set 
Selection 

DSMs insertion
(first guesses 
generation) 

MGA+DSM 
Optimization
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Solution Set Selection

‣ GASP delivers a set of solutions as a result of 
local optimizations inside the remaining boxes

‣ The non-dominated solutions in the Tof-∆V plot 
are selected for DSMs insertion 

2000 3000 4000 5000 6000 7000 8000 9000
5

10

15

20

25

30

Tof

!
 V

‣ Solutions close to the 
Pareto set can be 
included to increase 
the number of cases 
analyzed (by 
dominance level)
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Solution Set Selection

‣ GASP delivers a set of solutions as a result of 
local optimizations inside the remaining boxes

‣ The non-dominated solutions in the Tof-∆V plot 
are selected for DSMs insertion 

2000 3000 4000 5000 6000 7000 8000 9000
5

10

15

20

25

30

Tof

!
V

‣ Solutions close to the 
Pareto set can be 
included to increase 
the number of cases 
analyzed (by 
dominance level)
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DSM modeling

‣ Each DSM requires 4 additional variables

• The pericenter radius rp is no more computed trough the 
bending angle equation 

• The GA plane is determined by the additional variable 

• A tangential ∆V is allowed at the hyperbola pericenter  

• The first part of a leg including a DSM is analytically 
propagated for the fraction of the time of flight  

‣ The ∆VDSM is computed by solving a Lambert´s problem

GA           GA+DSM 

η

ε
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First Guesses and Optimization

‣ The number and the arcs where DSMs are introduced is 
given by setting a limit on ∆VGAs

‣ No DSM in the first leg is allowed (the ∆V at launch has 
been already bounded in GASP)

‣ Each selected MGA solution is modified to obtain a first 
guess for a DSM transfer setting 

• ∆VGA = 0,     = 0.5

• Rp and    are those of the MGA transfer

‣ The problem is formulated as nonlinear programming 
problem with box constraints 

‣ A SQP optimizer is used to obtain optimal DSM transfers 

‣ The non dominated solutions in the plot ∆V-Tof are 
identified after the optimization

ε
η
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Results: EVM problem

‣ Optimal structure: EVdM
• Search space [days]:
  [0, 2000]x[100, 1200]x[100, 2000]
• Best obj  [km/s] = 7.75 
• ∆Vs [km/s] = 3.43 + 0 + 3.52 + 0.80
• GASP sol [km/s] = 9.03
• Ref sol†    [km/s] = 8.15

• Search space [days]:
  [1000, 6000]x[100, 500]x[100, 1000]
• Best obj  [km/s] = 8.07 
• ∆Vs [km/s] = 2.95 + 0 + 3.90 + 1.22
• GASP sol [km/s] = 8.52

† Izzo, 2006 !2 !1 0 1 2
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Results: EMJ problem

‣ Optimal Structure: EMdJ
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• Search space [days]: [1000, 6000]x[100, 1200]x[100, 2000]
• Best obj  [km/s] = 12.39 (12.48 GASP DSM)
• ∆V dep    [km/s] = 3.93
• ∆VGA, DSM [km/s] = 0 + 4.04
• ∆V arr      [km/s] = 4.41
• GASP sol [km/s] = 13.41
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Results: EVME problem

• Search space [days]:
   [3000,  4000]
   [25,        525]
   [20,        520]
   [25,        525]
• Best obj  [km/s] = 10.87
   (10.93 GASP DSM)
• ∆V dep    [km/s] = 5.47
• ∆VGA,DSM  [km/s] =
   0 + 0.70 + 0 + 4.21 
• ∆V arr      [km/s] = 0.49
• GASP sol [km/s] = 12.44

‣ Optimal structure: EVdMdE
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Results: EMMJ problem

‣ Optimal structure: EMdMdJ

!! !" !# !2 % 2 # "
& 1%!

!"

!#

!2

%

2

#

"

& 1%!

& )*+,

- 
)*

+
,

• Search space [days]:
   [3650, 5500]
   [80,       430]
   [330,     830]
   [1000, 2000]
• Best Obj  [km/s] = 10.97
  (10.84 GASP DSM)
• ∆V dep    [km/s] = 3.26 
• ∆VGA,DSM  [km/s] = 
   0 + ≈ 0 + 0 + 3.20 
• ∆V arr      [km/s] = 4.51 
• GASP sol [km/s] = 12.86
• Ref sol†     [km/s] = 11.05

† Vasile and De Pascale, 2006 
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Results: EVEEJ problem

‣ Optimal structure: EVEdEJ
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• Search space [days]:
   [3650, 7300]
   [80,       430]
   [80,       830]
   [80,       830]
   [600,   2000]
• Best obj    [km/s] = 8.68
   (8.67 GASP DSM)
• ∆V dep     [km/s] = 2.83 
• ∆VGA, DSM   [km/s] =
   0 + 0 + 0.42 + 0 
• ∆V arr       [km/s] = 5.43
• GASP sol  [km/s] = 9.72
• Ref sol†     [km/s] = 8.68

† Vasile and De Pascale, 2006 
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Results: EVVEJS problem

‣ Optimal structure: EVdVEJS
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• Search space [days]
   [-1000,      0]
   [30,       430]
   [100,     500]
   [30,       330] 
   [400,   1600]
   [1000, 2200]
• Best obj   [km/s] = 8.59
   (8.29 GASP DSM)
• ∆V dep    [km/s] = 3.57 
• ∆VGA,DSM  [km/s] = 
  0.40 + 0.58 + 0 + 0 + 0
• ∆V arr      [km/s] = 4.24
• GASP sol [km/s] = 8.68
• Ref sol†    [km/s] = 9.06

† Vasile and De Pascale, 2006 
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Results: EVVEJS problem

‣ Optimal Structure EVdVEJdS
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• Search space [days]
   [-1000,       0]
   [30,        430]
   [100,      500]
   [30,        330]
   [400,    2000]
   [1000,  6000]
• Best obj  [km/s] = 7.60
• ∆V dep    [km/s] = 3.57 
• ∆VGA,DSM  [km/s] =
   0.33 + 0.33 + 0 + 0 + 0 + 2.57 
• ∆V arr      [km/s] = 0.80
• GASP sol [km/s] = 8.61



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
R

ob
er

to
 A

rm
el

lin
Conclusions: General Considerations

‣ A DA-Based version of GASP has been implemented
• Significant work was 

devoted to solve the
discontinuity and 
dependency problems 

• The resulting algorithm
can effectively optimize
MGA transfers with no
DSMs

‣ The DA-Based GASP has been extended to include 
DSMs
• Dependency problem leads to the choice of modeling 

the whole transfer as a sequence of Lambert´s arcs

• Test cases show the effectiveness of the algorithm
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Main problems limiting the number of DSMs:

‣ Memory:
• A DA number is a vector of (n+v)!/(n!v!) coefficients 

where n is the order and v the number of variables
• Many coefficients are usually equal to zero 
• But COSY does not allow dynamic memory allocation

A great amount of memory must be allocated anyway

‣ Dependency:
• 3 variables must be added for each DSM

• Multimodality increases with DSM number
         Taylor expansions might lose their accuracy

Conclusions: GASP-DA with DSM
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Conclusions: Alternative Approach

‣ An alternative approach has been developed
• The DA based GASP with no DSM is used to gain suitable 

first guess solutions (Pareto optimality)

• An optimization process is performed to insert DSMs

‣ Main advantages:
• Larger search spaces can be processed

• The resulting solutions are comparable with those achieved 
by the pruning based algorithm

• The computational time decreases significantly

‣ Future steps: 
• Insertion of a global component at the beginning of the 

optimization process

• Insertion of more than 1 DSM per arc 
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Taylor Models 

Differential Algebra Interval Arithmetic

‣ Describe the bulk of the 
functional dependence 
through a Taylor polynomial

‣ Bound the deviation of the 
original function from the 
polynomial by an interval

Taylor Model

‣ Theorem (Taylor):
• Given
• Given
• Then,                     , there is                                  such that:

f : [a, b] ⊂ Rv → R, f ∈ Cn+1([a, b])
x0 ∈ [a, b]
∀x ∈ [a, b] θ ∈ R, 0 < θ < 1,

f(x) = Pn,x0,f +
1

(n + 1)!
((x− x0) · ∇)n+1 f(x0 + (x− x0)θ)
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Taylor Models

‣ Consequently, the function      can be written as:

f(x) = Pn,x0,f (x− x0) + εn,x0,f (x− x0)

f

‣ Let the interval          ,                               , be such that:α = (n, x0, [a, b])Iα,f

∀x ∈ [a, b], εn,x0,f (x− x0) ∈ Iα,f

‣ Then: ∀x ∈ [a, b], f(x) ∈ Pn,x0,f (x− x0) + Iα,f

‣ The pair                         is said a Taylor Model (TM) of     :(Pn,x0,f , Iα,f ) f

Tα,f = (Pn,x0,f , Iα,f )

and it represents a validated enclosure of      onf [a, b]
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VAlidated Global Optimization of MGA

‣ Non-guaranteed global optimizers are classically 
used in MGA transfers design
• They are able to find good solutions

• The solution is not guaranteed to be the global 
optimum 

‣ Validated global optimizers can be used to 
rigorously identify the global minimum

‣ COSY-GO implements a validated global optimizer 
based on Taylor Models 

We have only best known solutions 
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‣ The validated solution of parametric implicit 
equations must be computed

• Ephemeris evaluation          Kepler´s eq.

• Lambert´s problem              Lagrange´s eq.

• Power GA                            Bending angle eq.

‣ A dedicated algorithm is developed

• Find a reference point solution

• Expand the solution using DA

• Validate the solution using TM

‣ The previous validated solver enables the TM 
evaluation of the objective function for MGA

Main Problems on MGA Transfers
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Main Problems on MGA Transfers

DA-based GASP}

‣ The validated solution of parametric implicit 
equations must be computed

• Ephemeris evaluation          Kepler´s eq.

• Lambert´s problem              Lagrange´s eq.

• Power GA                            Bending angle eq.

‣ A dedicated algorithm is developed

• Find a reference point solution

• Expand the solution using DA

• Validate the solution using TM

‣ The previous validated solver enables the TM 
evaluation of the objective function for MGA
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Main Problems on MGA Transfers

DA-based GASP}

‣ The validated solution of parametric implicit 
equations must be computed

• Ephemeris evaluation          Kepler´s eq.

• Lambert´s problem              Lagrange´s eq.

• Power GA                            Bending angle eq.

‣ A dedicated algorithm is developed

• Find a reference point solution

• Expand the solution using DA

• Validate the solution using TM

‣ The previous validated solver enables the TM 
evaluation of the objective function for MGA
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Earth-Mars 2 impulse Transfer

‣ COSY-GO was applied to find the verified global 
optimum of the impulsive Earth-Mars transfer
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Earth-Mars 2 impulse Transfer

‣ COSY-GO was applied to find the verified global 
optimum of the impulsive Earth-Mars transfer

‣ Platform: Pentium IV 3.06 GHz laptop

‣ Computational time:
4954.39 s

‣ Enclosure of the
minimum [km/s]:
[5.6673264, 5.6673272]
(GASP-DA: 5.6673270)

‣ Enclosure of the
solution [days]:

t0 [3573.176, 3573.212]
tEM [324.034, 324.088]
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Earth-Venus-Mars Transfer 

‣ The validated implicit equation solver is used for the 
powered gravity assist maneuver

‣ The MGA problem is reformulated in absolute times

‣ The verified global optimization of the Earth-Venus-Mars 
transfer is addressed

‣ Search Space [days] : [5000,6000]x[140,240]x[200,400]

‣ Results:

• Computational time: about 3 weeks!

• Enclosure of the minimum: [8.5220251,8.5231393] km/s
(GASP-DA: 8.5226)

• Enclosure of the 
solution: 

t0 tVMtEV

t0 [5611.475, 5611.512]

tEV [157.592, 157.623]
tVM [255.564, 255.620]
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Main Drawbacks and possible solutions

‣ Management of the constraints 
• Boxes lying on the constraint

are kept as feasible

The computed obj can
underestimate the actual obj*

• Possible solution: validated enclosure of the 
constraint manifold



Po
lit

ec
ni

co
 d

i M
ila

no
 - 

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
R

ob
er

to
 A

rm
el

lin

‣ Management of the constraints 
• Boxes lying on the constraint

are kept as feasible

The computed obj can
underestimate the actual obj*

• Possible solution: validated enclosure of the 
constraint manifold

NOTE: The global optimum of the Earth-Venus-Mars 
transfer does not lie on the constraint manifold

Main Drawbacks and possible solutions
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Main Drawbacks and possible solutions

‣ High computational time   
• COSY-GO algorithm                   Possible solution:

is fully parallelizable                    Parallel run

‣ Management of the constraints 
• Boxes lying on the constraint

are kept as feasible

The computed obj can
underestimate the actual obj*

• Possible solution: validated enclosure of the 
constraint manifold

NOTE: The global optimum of the Earth-Venus-Mars 
transfer does not lie on the constraint manifold
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