• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Space Engineering

    • What we do
    • Directorate of Technical and Quality Management (TEC)
    • Electrical
    • Electrical engineering
    • Control Systems
    • Data Systems
    • Radio Frequency Payload Systems
    • Electromagnetics and Space Environment
    • Power and Energy Conversion
    • Mechanical
    • Mechanical engineering
    • Thermal Control
    • Structures and Mechanisms
    • Mechatronics and Optics, incl. robotics and life support
    • Propulsion and Aerothermodynamics
    • Systems
    • Systems and software engineering
    • Software Systems
    • Systems Engineering, incl. cost engineering
    • Technology programmes
    • Product Assurance
    • Product Assurance
    • Flight Safety
    • Dependability
    • Quality Management and Assurance
    • Materials and Processes
    • Electronic Components
    • Software Product Assurance
    • Standards
    • Requirements and standards
    • European Cooperation for Space Standardization (ECSS)
    • European Space Components Coordination (ESCC)
    • Services
    • ESA calendar of events
    • Subscribe

    ESA > Our Activities > Space Engineering

    Artist's impression of the three LISA spacecraft

    Control Systems

    In order for satellites or space vehicles to accomplish their mission their orientation and position in space often require extremely precise management,performed by onboard control systems.

    What is the Control Systems domain?

    Control engineering focuses on the modelling of dynamic systems and the design of closed-loop controllers that cause these systems to behave in the manner desired.

    In a closed-loop control system, a set of sensors monitors the output (for example, the satellite pointing direction, or the space vehicle relative position) and feeds the data to a computer which continuously adjusts the control input (through actuators) as necessary to keep the control error to a minimum (that is, to maintain the desired pointing orientation or relative position).

    Feedback on how the system is performing allows the controller in the onboard computer to compensate dynamically for disturbances to the system. An ideal feedback control system cancels out all errors, effectively mitigating the effects of any forces that may arise during operation and producing a response in the system that perfectly matches the user's wishes.

    The space applications this discipline encompass includes satellite attitude and orbit control, antennas or optical terminal fine pointing, and more generally guidance, navigation and control for space vehicles that have to accomplish specialised functions such as formation flying and orbital rendezvous, landing on asteroids and planetary bodies as well as re-entry through Earths atmosphere.

    Attitude and Orbit Control Systems (AOCS) are required for all space missions. The general scope of a satellites trajectory is set by the launcher that hauls it skyward – selected by orbital dynamics experts long in advance of the satellite being built – after which smaller thrusters manoeuvre it into its operational orbit. After that the onboard closed-loop control is in charge of controlling the spacecrafts pointing direction – known as its attitude – as it proceeds along its orbital path.

    The problem is that satellites have their attitude perturbed in various ways, whether by airdrag from the outermost layers of the atmosphere or Earths gravitational influence or solar radiation pressure exerted on large appendages, or interaction between Earth's magnetic field and satellite magnetic dipoles. A satellite attitude is also disturbed by its own contents which can set up undesirable vibrations liquid sloshing in a propellant tank and oscillations of large solar wings are classical examples.

    The perturbing effects of such external and internal torques need then to be counteracted by the AOCS. This system incorporates sensors to identify the satellite's current attitude (such as gyroscopes, startrackers, Sun sensors or magnetometers) and actuators (including thrusters, reaction wheels or magnetic torquers) to trigger the desired corrective rotations around the satellites centre of mass.

    Last update: 22 April 2010

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    221
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • More information
      • Control Systems
        • Why is Control Systems important?
          • What Control Systems innovations are involved?
            • What applications and missions does Control Systems enable?
            • Laboratory
              • Avionics Laboratory
              • Related article
                • ESA preparing ‘sugar-cube’ gyro sensors for future missions

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions