• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Space Engineering

    • What we do
    • Directorate of Technical and Quality Management (TEC)
    • Electrical
    • Electrical engineering
    • Control Systems
    • Data Systems
    • Radio Frequency Payload Systems
    • Electromagnetics and Space Environment
    • Power and Energy Conversion
    • Mechanical
    • Mechanical engineering
    • Thermal Control
    • Structures and Mechanisms
    • Mechatronics and Optics, incl. robotics and life support
    • Propulsion and Aerothermodynamics
    • Systems
    • Systems and software engineering
    • Software Systems
    • Systems Engineering, incl. cost engineering
    • Technology programmes
    • Product Assurance
    • Product Assurance
    • Flight Safety
    • Dependability
    • Quality Management and Assurance
    • Materials and Processes
    • Electronic Components
    • Software Product Assurance
    • Standards
    • Requirements and standards
    • European Cooperation for Space Standardization (ECSS)
    • European Space Components Coordination (ESCC)
    • Services
    • ESA calendar of events
    • Subscribe

    ESA > Our Activities > Space Engineering

    ESA preparing ‘sugar-cube’ gyro sensors for future missions

    Inside view of MEMS rate sensor
    9 September 2009

    One of ESA's future Earth observation missions will monitor its orientation in space with the help of the smallest gyro ever flown by the Agency. Now being tested, the sugar cube-sized device at the heart of the gyro unit is derived from a sensor used in anti-lock braking systems on millions of cars.

    There is no up or down in space. Satellites track their pointing direction using the same approach as on submarines and aircraft: fast-spinning gyroscopes that maintain a fixed orientation in the same way as a child’s spinning top. But space-quality gyros employing this principle are complex, bulky and insufficiently reliable for long space missions.

    “There have been several failures in orbit of these older mechanical gyros and their reliability became an issue,” says Stéphane Dussy of ESA’s Control Systems Division. “They are now considered to be obsolete because more reliable gyros have been developed using solid-state technologies from other areas.”

    MEMS in their millions

    Micro-Electro-Mechanical Systems (MEMS) are an especially promising innovation. They are made in a similar way to microprocessors but incorporating moving parts or sensors so that complete devices can be fitted onto a single silicon chip.

    Attractive for space because of their small size, low power consumption and resistance to vibration, these micromachined devices may sound exotic but MEMS sensors are already used in their millions on European roads.

    In the last 15 years the automobile industry has adopted MEMS in a major way. The devices are embedded throughout modern cars: MEMS accelerometers trigger airbags, MEMS pressure sensors check tyres and MEMS gyros help to prevent brakes locking and maintain traction during skids.

    In a project funded by its Basic Technology Research Programme (TRP) and General Support Technology Programme (GSTP), ESA selected a particular MEMS gyro to modify for space use: the silicon-based SiRRS-01, manufactured by the UK’s Atlantic Inertial Systems Limited (AIS), formerly part of BAE Systems. Scotland’s Selex Galileo is prime contractor for the industrialisation phase, while English company SEA was the prime for the initial development phase.

    'Singing' like a wine glass

    MEMS rate sensor
    MEMS rate sensor

    Instead of a classic spinning gyroscope, the SiRRS-01 is a ’vibrating structure gyro’, with a silicon ring fixed to a silicon structure and set vibrating by a small electric current. The design is based on a principle discovered by physicist George Hartley Bryan in 1890. He caused a wineglass to resonate audibly by rubbing his finger around its rim, then rotated it. As he did so, its tone changed in proportion to its rate of rotation, an effect driven by the ‘Coriolis force’.

    “The gyro works in the same way,” explains Mr Dussy. “Its silicon ring is vibrated just like the wine glass, and any shifts in vibration are measured to derive its rotation rate.”

    Hardened for space

    While the underlying principle remains the same, the gyro needed a complete redesign to make it space-worthy, says Dick Durrant of SEA: “The challenge was to harden the technology to meet the space environment while improving its state-of-the-art performance.”

    This meant proofing the device against launch stresses and space radiation, as well as substituting space-proven electronic components for standard off-the-shelf parts. In the process of development this variant MEMS gyro, dubbed SiREUS, more than doubled in size from just 4x4 mm to a still-compact 10x10 mm.

    Put to work

    Sentinel-3 artist's impression

    On ESA's Sentinel-3 the gyros will be used for identifying satellite motion and also to place it into a pre-set attitude in association with optical sensors after its separation from the launcher, for Sun and Earth acquisition. Three of the devices will fly inside an integrated gyro unit, each measuring a different axis of motion, with a backup unit ensuring system redundancy. Each unit measures 11x11x7 cm, with an overall mass of 750 grams.

    Once qualified, SiREUS will become available to other space missions, Mr Durrant explains: “We have succeeded in providing a product with significant operational and cost benefits to future space projects, with the next phase resulting in a unit qualified for future operational use.”

    “ESA provided the critical funding to cross from a ‘breadboard’ engineering model to one qualified for space use, which could not been justified on purely commercial terms. It has also enabled us to achieve a performance far in excess of previous MEMS rate sensors.”

    Sentinel-3

    Sentinel-3 is one of a series of satellites designed to meet the observing requirements of the Global Monitoring for Environment and Security (GMES) joint initiative of ESA and the European Commission to establish operational environmental monitoring systems. Sentinel-3 will provide global ocean, ice and land vegetation observations. Its launch is scheduled for 2013.

    More information

    Please contact Stephane.Dussy @ esa.int
    Control Systems Engineer

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    39
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • Technology
    • Space Engineering
    • General Support Technology Programme (GSTP)
    • Technology Research Programme (TRP)
    • Sentinel-3
    • ESA on Youtube
    • Technology at ESA
    • Related links
    • SEA (Group) Ltd
    • Atlantic Inertial Systems Limited (AIS)
    • Selex Galileo

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions